1. Field of the Invention
The description and claims in this application related to wall structures and methods of making wall structures, which provide protection against ballistic devices such as projectiles from pistols, rifles and machine guns.
2. Description of the Related Art
The walls of conventional buildings generally do not provide significant safety from bullets shot from handguns, rifles and machine guns. In particular, although the relatively thin exterior and interior panels of a conventional building may reduce the velocity of bullets, the bullets may penetrate both panels with sufficient velocity remaining to harm or kill an occupant of the building. Fortress-like structures may be built having hardened walls of steel or reinforced concrete; however, such construction is quite expensive. Furthermore, such construction requires the time-consuming transportation of construction materials and heavy construction equipment, and then requires a considerable amount of time to erect. Thus, for example, when a military force enters an area subject to live fire from enemy forces, the military personnel must rely on existing unreinforced structures or portable structures such as tents, none of which provide adequate protection from bullets.
In view of the foregoing, a need exists for buildings which can be quickly constructed using conventional techniques and using readily transportable materials.
An aspect of an embodiment disclosed herein is a wall system comprising a lower horizontal member, an upper horizontal member, and a plurality of spaced apart vertical supports positioned between the lower horizontal member and the upper horizontal member. Each vertical support has a thickness between a respective first side and a respective second side. A first panel is mounted to the respective first sides of at least two of the vertical supports, and a second panel is mounted to the respective second sides of the at least two of the vertical supports to form a cavity bounded by the first panel and the second panel and bounded by the at least two of the vertical supports. At least one of the first panel and the second panel comprises a sheet of construction material, and a metallic sheet secured to the sheet of construction material. A granular filler material substantially fills the cavity between the lower support member and the upper support member.
In certain embodiments, the granular material comprises a stony material. For example, the stony material comprises sand in certain embodiments. In certain embodiments, a flexible sheet (e.g., a rubber sheet) is suspended from the upper support member in a position between the first panel and the second panel. The flexible sheet has a first face and a second face. A first portion of the granular filler material is positioned between the first face of the flexible sheet and the first panel, and a second portion of the granular filler material is positioned between the second face of the flexible sheet and the second panel. In particular embodiments, a sheet of woven para-aramid fiber (e.g., Kevlar®) is loosely coupled to at least one of the first face and the second face. For example, the woven sheet is secured to the flexible sheet at a plurality of spaced apart locations. In certain embodiments of the wall system, a self-sealing material is positioned on the inside of the metallic sheet to inhibit loss of the granular filler material when the metallic sheet is penetrated by a projectile.
Another aspect of an embodiment disclosed herein is a method of constructing a wall system. The method comprises erecting a plurality of vertical support members between a lower horizontal member and an upper horizontal member to form wall frame having a first side and a second side. The method also comprises mounting a first panel on a first side of the wall frame and mounting a second panel on a second side of the wall frame to form a cavity therebetween. At least one of the first panel and the second panel comprises a sheet of construction material and a sheet of metal adhered to the sheet of construction material. The method further comprises filing the cavity with a granular filler material such that the granular filler material extends from the lower horizontal member to the upper horizontal member.
In certain embodiments of the method, the granular material comprises a stony material, such as, for example, sand. In certain embodiments, the method further comprises suspending a flexible sheet (e.g., a rubber sheet) from the upper horizontal member. The flexible sheet extends from the upper horizontal member to a position proximate the lower horizontal member. In certain embodiments of the method, the flexible sheet is suspended from the upper horizontal member prior to filling the cavity with the granular filler material. In accordance with one embodiment of the method, the flexible sheet is mounted with a first portion of the granular filler material between the flexible sheet and the first panel and with a second portion of the granular filler material between the flexible sheet and the second panel. In accordance with another embodiment of the method, the first portion of granular filler material has a first volume and the second portion of granular filler material has a second volume. In accordance with one embodiment of this aspect of the method, the first volume and the second volume are substantially equal. In certain embodiments of the method, the flexible sheet has a first face and a second face, and a sheet of woven para-aramid fiber (e.g., Kevlar®) is mounted to at least one of the first face or the second face. In certain embodiments, the sheet of woven Kevlar fibers is fastened to the flexible sheet at a plurality of spaced apart locations to provide a loose coupling between the flexible sheet and the Kevlar sheet. In certain embodiments of the method, a self-sealing material is positioned on the inside of the sheet of metal to inhibit loss of the granular filler material when the metallic sheet is penetrated by a projectile.
Another aspect of an embodiment disclosed herein is a method of constructing a protective wall system. The method comprises erecting a plurality of vertical support members between a lower horizontal member and an upper horizontal member to form a wall frame having a first side and a second side. The method further comprises mounting a first panel on a first side of the wall frame and mounting a second panel on a second side of the wall frame to form a cavity therebetween. At least one of the first panel and the second panel comprises a sheet of construction material and a sheet of metal adhered to the sheet of construction material. The method further comprises filing the cavity with a granular filler material. Certain embodiments of the method include suspending a flexible sheet (e.g., a rubber sheet) within the cavity. Certain embodiments further include loosely mounting a sheet of woven para-aramid fiber (e.g., Kevlar®) to at least one side of the flexible sheet. In certain embodiments of the method, a self-sealing material is positioned on the inside of the sheet of metal to inhibit loss of the granular filler material when the metallic sheet is penetrated by a projectile.
Another aspect in accordance with embodiments disclosed herein is a wall section that comprises a lower horizontal member. At least a first vertical member and a second vertical member have respective lower ends mounted on the lower horizontal member and have respective upper ends. Each of the vertical members has a first side and a second side. An upper horizontal member is mounted on the upper end of the first vertical member and on the upper end of the second vertical member. A first panel is secured to the first side of the first vertical member and to the first side of the second vertical member. A second panel is secured to the second side of the first vertical member and to the second side of the second vertical member. The first panel and the second panel form a cavity bounded by the lower horizontal member, the upper horizontal member, the first vertical member and the second vertical member. At least one of the first panel and the second panel comprises a wallboard sheet and a thin sheet of high strength material attached to and covering at least one side of the wallboard sheet. The wall section further comprises a granular filler material that substantially fills the cavity between the lower horizontal member and the upper horizontal member. In certain embodiments, a flexible sheet is suspended within the cavity. In certain embodiments, a sheet of woven para-aramid fiber (e.g., Kevlar®) is loosely mounted to at least one side of the flexible sheet.
In certain embodiments of the wall section, the granular material comprises a stony material, such as, for example, sand. In certain embodiments of the wall section including a flexible sheet, the flexible sheet is in a plane between and generally parallel to the first panel and the second panel. The flexible sheet has a first face and a second face. A first portion of the granular filler material is positioned between the first face of the flexible sheet and the first panel, and a second portion of the granular filler material is positioned between the second face of the flexible sheet and the second panel. In certain embodiments, the wall system further comprises a sheet of woven para-aramid fiber (e.g., Kevlar®) loosely coupled to at least one of the first face and the second face of the flexible sheet. For example, the woven sheet of Kevlar fiber is secured to the flexible sheet at a plurality of spaced apart locations. In certain embodiments of the wall section, a self-sealing material is positioned on the inside of the sheet of metal to inhibit loss of the granular filler material when the metallic sheet is penetrated by a projectile.
Another aspect in accordance with embodiments disclosed herein is a wall system that includes a lower horizontal member, an upper horizontal member, and a plurality of spaced apart vertical supports positioned between the lower horizontal member and the upper horizontal member. Each vertical support has a thickness between a respective first side and a respective second side. A first panel is mounted to the respective first sides of at least two of the vertical supports and a second panel is mounted to the respective second sides of the at least two of the vertical supports to form a cavity bounded by the first panel and the second panel and bounded by the at least two of the vertical supports. At least one of the first panel and the second panel comprises a sheet of construction material, and a metallic sheet secured to the sheet of construction material. The wall system further includes a bag-like structure secured within the cavity. The bag-like structure comprises at least one sheet of woven, high tensile strength fiber. In certain embodiments, the bag-like structure has a first side facing the first panel and a second side facing the second panel, a first closed edge common to the first side and the second side and a second closed edge common to the first side and the second side, a closed bottom and an open top. The bag-like structure has a flexible cavity defined between the first side and the second side. In certain embodiments, the bag-like structure is supported within the cavity by securing the first and second sides proximate the first closed edge to a first of the vertical supports that bound the cavity and by securing the first and second sides proximate the flexible cavity of the bag-like structure is filled with a selected material. For example, the selected material is advantageously a granular material. The granular material is advantageously a stony material such as sand. The selected material may also be an insulating material such as fiberglass or expanding polyurethane foam. In certain preferred embodiments, the at least one sheet of woven, high tensile strength fiber comprises woven para-aramid fiber. In certain preferred embodiments, the metallic sheet comprises a first face and a second face, wherein the first face of the metallic sheet is secured to the sheet of construction material, and wherein a sheet of self-healing material is positioned on the second face of the metallic sheet.
Another aspect in accordance with embodiments disclosed herein is a method of constructing a wall system. The method includes erecting a plurality of vertical support members between a lower horizontal member and an upper horizontal member to form wall frame having a first side and a second side, and mounting a first panel on a first side of the wall frame and mounting a second panel on a second side of the wall frame to form a plurality of cavities therebetween. At least one of the first panel and the second panel comprises a sheet of construction material and a sheet of metal adhered to the sheet of construction material. The method further includes securing a bag-like structure within the cavity. The bag-like structure comprises at least one sheet of woven, high tensile strength fiber. The bag-like structure has a first side facing the first panel and a second side facing the second panel, a first closed edge common to the first side and the second side and a second closed edge common to the first side and the second side, a closed bottom and an open top. The bag-like structure has a flexible cavity defined between the first side and the second side. In certain embodiments, the method includes filling the flexible cavity of the bag-like structure is filled with a selected material. For example, the selected material is advantageously a granular material. The granular material is advantageously a stony material such as sand. The selected material may also be an insulating material such as fiberglass or expanding polyurethane foam. In certain preferred embodiments, the at least one sheet of woven, high tensile strength fiber comprises woven para-aramid fiber.
Another aspect in accordance with embodiments disclosed herein is a wall section that comprises a lower horizontal member and at least a first vertical member and a second vertical member. Each vertical member comprises a lower end mounted on the lower horizontal member, an upper end, a first side, and a second side. An upper horizontal member is mounted on the upper end of the first vertical member and the upper end of the second vertical member. A first panel is secured to the first side of the first vertical member and to the first side of the second vertical member. A second panel is secured to the second side of the first vertical member and to the second side of the second vertical member. The first panel and the second panel form a cavity bounded by the lower horizontal member, the upper horizontal member, the first vertical member and the second vertical member. At least one of the first panel and the second panel comprises a wallboard sheet, and a thin sheet of high-strength material attached to and covering at least one side of the wallboard sheet. The wall section further comprises a bag-like structure secured within the cavity. The bag-like structure comprises at least one sheet of woven, high tensile strength fiber.
The foregoing aspects and other aspects of this disclosure are described in detail below in connection with the accompanying drawing figures in which:
The wall section further includes a plurality of vertical members 24, which may be referred to as wall studs. The vertical members have respective lower ends 30 mounted on the lower horizontal member and have respective upper ends 32 which support the upper horizontal member. The vertical members are mounted perpendicular to the horizontal member such that when the horizontal member is mounted horizontally on a foundation or other supporting surface, the vertical members are perpendicular to the supporting surface.
The lower horizontal member 20, the upper horizontal member 22 and the vertical members 24 may comprise a variety of construction materials, such as, for example, wood or metal. In the embodiments illustrated herein, the lower and upper horizontal members are metal (e.g., steel) channel sections, and the vertical members comprise metal (e.g., steel) C-sections or channel sections, which provide a combination of high strength, light weight, consistent dimensions, and fast construction. In particular, the horizontal members and the vertical members may be manufactured in a factory or at a remote location and shipped to a construction site for rapid assembly. Alternatively, entire wall sections may be prefabricated and shipped to the construction site, where the sections are interconnected before performing the steps described below.
The vertical members 24 have cross-sectional dimensions chosen in accordance with a selected wall thickness. For example, in the illustrated embodiment, the C-shaped cross section has a web 40, a first flange 42 and a second flange 44. The first and second flanges are perpendicular to the web. The two flanges have respective perpendicular lips 46 and 48, which are parallel to the web. The two flanges define a minor width of 1.5 inches, and the web defines a single major width of 3.5 inches. Thus, the dimensions of the illustrated vertical members generally correspond to the cross-sectional dimensions of a “two-by-four” construction stud. If a greater wall thickness is desired, the major width of the web may be selected to be 5.5 inches to correspond to the major width of a “two-by-six” construction stud. The minor width of the flanges may also be increased for additional strength.
In the illustrated embodiment, the lower horizontal member 20 is a lower framing track that has a structure similar to the structure of the vertical members 24. In particular, the lower horizontal member has a central web 50 and a first perpendicular flange 52 and a second perpendicular flange 54. Unlike the flanges of the vertical members 24, the flanges of the lower horizontal member do not have lips. The web of the lower horizontal member is slightly larger than the overall major width of the vertical members so that the lower ends 30 of the vertical members fit between the flanges 52 and 54. The vertical members are secured to the horizontal member by conventional interconnection devices (e.g., using screws, rivets, or other suitable fasteners (not shown)).
In the illustrated embodiment, the upper horizontal member 22 is similar to the lower horizontal member 20 and has a horizontal web 60, a first perpendicular web 62 and a second perpendicular web 64. The upper horizontal member is positioned over the upper ends 32 of the vertical members 24 between the first and second flanges and with the web resting on the upper ends. The upper horizontal member is secured to the vertical members by conventional interconnection devices (not shown).
In preferred embodiments, the vertical members 24 are spaced apart by selected distances in accordance with conventional construction techniques. For example, in the illustrated embodiment, the vertical members have a center-to-center spacing of 16 inches. In other embodiments, the vertical members have a center-to-center spacing of 24 inches.
The lengths of the vertical members 24 are selected in accordance with a desired height of the wall section. For example, when the desired height of a wall section is eight feet, the lengths of the vertical members may be slightly less than eight feet so that the combined length of a vertical member and the thicknesses of the web of lower horizontal member 20 and the web of the upper horizontal member 22 are approximately eight feet.
As illustrated by an assembled wall structure 70 in
In the illustrated embodiment, the outer wall panel 72 and the inner wall panel 74 are composite structures, which are illustrated in
Each of the two panels 72 and 74 comprises a wallboard structure, such as, for example, the composite wallboard structure disclosed in U.S. Pat. No. 5,768,841 to Swartz et al., which is incorporated herein by reference. As shown in the exploded view in
In certain embodiments, the wallboard panel 82 of the inner wall panel 74 comprises gypsum board. In certain embodiments, the wallboard panel 82 of the outer wall panel 72 may also be a gypsum board. In alternative embodiments, the wallboard panel of the outer wall panel comprises a non-combustible material such as Durock® brand underlayment available from USG Corporation headquartered in Chicago, Ill.; PermaBase® brand cement board available from National Gypsum Company headquartered in Charlotte, N.C.; and Hardiebacker 500® brand cement backerboard available from James Hardie Building Products in Mission Viejo, Calif. Other cement boards and boards comprising other non-combustible materials may also be used.
As illustrated in
As further illustrated in the exploded view of
When fastened to the framing structure 10, the outer wall panel 72 and the inner wall panel 74 assist the assembled wall structure 70 in resisting in-plane and shear loading stresses. In addition, the two panels provide the advantages described below in protecting building occupants from bullets and other ballistic projectiles.
As shown in
As illustrated in
The embodiment of
As illustrated in the enlarged perspective view in
The flexible sheet 130 has a length that is selected to so that the flexible sheet spans substantially the entire distance from the upper horizontal member 22 to the lower horizontal member 20. The flexible sheet has a width selected to span the distance between adjacent vertical members 24. For example, in a wall section using metal studs having a center-to-center spacing of 16 inches, the flexible sheet has a width of slightly less than 16 inches. If wooden 2 by 4 studs are used, the flexible sheet has a width of approximate 14.5 inches to accommodate the thickness of the studs. In a wall section using metal studs having a center-to-center spacing of 24 inches, the flexible sheet has a width of slightly less than 24 inches.
Preferably, the flexible sheet 130 is suspended in the cavity 90 before adding the outer wall panel 72, the inner wall panel 74 and the sand (or other granular filler material) 100. As illustrated in the enlarged cross-sectional view in
In the embodiment of
The embodiment of
The woven fiber sheet 160 is attached to the second face 142 of the flexible sheet 130 at a plurality of widely spaced spots using a suitable adhesive. Thus, the woven fiber sheet hangs parallel to the flexible sheet. In the illustrated embodiment, the woven fiber sheet is mounted to the second face 142 of the flexible sheet so that a ballistic projectile passes through the flexible sheet before encountering the woven fiber sheet. Since the woven fiber sheet is loosely coupled to the flexible sheet, the fibers of the woven fiber sheet are able to move freely when impacted by the ballistic projectile, thus increasing the likelihood that the woven fiber sheet will capture the projectile rather than allowing the projectile to pass through the woven fiber sheet. Even if the projectile does pass through the woven fiber sheet, the velocity of the projectile will be further reduced, thus increasing the probability that the projectile will be stopped or sufficiently slowed by the combination of the sand in the second volume 146 and the metal sheet 80 of the inner wall panel 74 so that the projectile will not harm a person protected by the wall section 150. As discussed above, in preferred embodiments, the sheets 86 of self-healing material on the two wall panels assist in reducing or eliminating leakage through openings caused by passages of projectiles through the wall panels.
As illustrated in the foregoing embodiments, the walls of a structure can be erected easily and quickly at a construction site. The metal construction materials, the panels and the flexible sheet can be easily transported to a construction site and installed as described above. Alternatively, the wall sections, including the flexible sheet if desired, can be prefabricated and delivered to a construction site ready to be interconnected. After the walls are erected in either manner, the sand is added to the cavities of the wall sections. The sand to fill the cavities can be found at many construction sites or can be readily hauled to a construction site.
As shown in more detail in
In the illustrated embodiment, the first side 212 and the second side 214 of the bag-like structure 210 are formed from a single, generally rectangular sheet 230 of the woven, high tensile strength fiber having a first end 232, a second end 234, a first edge 236 and a second edge 238. The length and width of the single sheet are selected to conform to the height, width and thickness of the wall structure 200, as discussed below. Preferably, the two edges and the two ends of the sheet are finished (e.g., serged, hemmed, overlocked, or the like) in a suitable manner to prevent fraying of the fibers exposed at the edges and the ends.
As shown in
The aligned first portion 236A and second portion 236B of the first edge 236 are interconnected in a suitable manner. Similarly, the aligned first portion 238A and second portion 238B of the second edge 238 are interconnected in a suitable manner.
In the illustrated embodiment, the two portions of the first edge 236 are interconnected using at least a first strip 250 of a suitable reinforcement material having a width of approximately 1 inch in the illustrated embodiment. The first strip is positioned over the first side 212 substantially from the top 226 to the bottom 220 and is aligned with the first edge so that the first strip overlaps approximately 1 inch of the first side proximate to the first edge. The first strip is secured to the underlying first side and second side 214 by two or more parallel rows of stitches 252 extending from the top to the bottom. Thus, the two portions of the first edge are interconnected to form the first closed vertical side 222, which is reinforced by the first strip. The first closed vertical side is shown in more detail in the enlarged view in
In the illustrated embodiment, the two portions of the second edge 238 are interconnected using a second strip 260 of the reinforcement material having a similar width. The second strip is positioned over the first side 212 substantially from the top 226 to the bottom 220 and is aligned with the second edge so that the second strip overlaps approximately 1 inch of the first side proximate to the second edge. The second strip is secured to the underlying first side and second side 214 by two or more parallel rows of stitches 262 extending from the top to the bottom. Thus, the two portions of the second edge are interconnected to form the second closed vertical side 223, which is reinforced by the second strip.
Although the two reinforcement strips 250 and 260 are only shown on the two edges of the first side 212, additional reinforcement can be provided by including corresponding reinforcement strips (not shown) on the second side 214 and sewing through the respective pairs of reinforcement strips.
After securing the first reinforcement strip 250 to the first edge 236 of the first side 212 and securing the second reinforcement strip 260 to the second edge 238 of the first side, a first plurality of mounting holes 270 are formed through the first strip and the underlying layers of the sheet 230 along a first vertical centerline 272 approximately in the middle of the first strip. A second plurality of mounting holes 280 are formed through the second strip and the underlying layers of the sheet along a second vertical centerline 282. For example, in the illustrated embodiment, three holes are formed in each strip, with one hole located near the top of the respective strip, with one hole located approximately one-third of the distance from the top of the respective strip to the bottom of the strip, and with one hole located approximately two-thirds of the distance from the top of the respective strip to the bottom of the strip. The holes are advantageously formed through the reinforcement strips and the underlying layers of the sheet by a suitable procedure, such as, for example, drilling. The reinforcement strips provide a suitable base for drilling through the strips and through the two underlying layers of the sheet without significant fraying of the material in the sheet. Additional inhibition of fraying can be provided by stitching (not shown) around the positions of the holes prior to drilling or otherwise forming the holes. In addition to inhibiting fraying of the woven fibers, the reinforcement strips assist in bearing the load and spreading the load over a larger area of the sheet when the bag-like structure 210 is mounted in the wall structure 200 as shown in
In the illustrated embodiment, the strips 250, 260 of reinforcement material advantageously comprise a strong felt-like backing material, such as, for example, the material used as the backing material for the loop portion of a loop and hook interconnection combination, which is sold, for example, under the brand name VELCRO®.
The bag-like structure 210 formed in the manner described above is mounted in the wall section 200, as shown in
After mounting the bag-like structure 210 in the cavity 90 of the wall structure 200, the bag-like structure may remain empty as shown in
The bag-like structure 210 may be installed and remain empty to provide the projectile inhibition benefits of the two sides 212 and 214 of the woven, high tensile strength fiber. In alternative embodiments, the flexible cavity formed between the two sides of the bag-like structure is filled with a suitable material to provide additional safety or environmental benefits. For example, in the enlarged view of the top of the wall section 200 in
In a further embodiment shown in
As discussed above, the length and width of the single sheet 230 that is formed into the bag-like structure 210 are selected to conform to the height, width and thickness of the wall structure 200. For example, in a wall structure having a cavity 90 with a nominal height of 8 feet and a nominal width of approximately 16 inches between adjacent vertical members 24, the single sheet has an initial length of approximately 16 feet to provide a folded length of approximately 8 feet when the bag-like structure is formed as discussed above.
The width of the single sheet 230 for an application where the bag-like structure 210 is to remain empty is approximately 18 inches to accommodate the width of the cavity and to provide 1 inch along the edges of the folded structure for mounting the reinforcement strips 250 and 260. In particular, when mounted in the cavity, the portions of the bag-like structure having the reinforcement strips are bent to approximately 90 degrees so that the fasteners 290 passing through the mounting holes 270 and 280 are perpendicular to the vertical members. For applications where the bag-like structure is filled with granular material or insulation, length and width of the single sheet are adjusted to compensate for the thickness of the filled bag-like structure. For example, in a wall structure having a cavity with a nominal thickness of 4 inches, the width of the single sheet is advantageously increased by approximately 4 inches so that the first side 212 and the second side 214 can each expand approximately two inches from the closed edges. The overall length of the single sheet may also be adjusted to accommodate the cavity thickness, and the amount of the adjustment may be determined empirically based on the type of filler material in the bag-like structure and how the filler material affects the shape of the lower portion of the bag-like structure.
One skilled in art will appreciate that the foregoing embodiments are illustrative of the present invention. The present invention can be advantageously incorporated into alternative embodiments while remaining within the spirit and scope of the present invention, as defined by the appended claims.
The present application is a continuation-in-part application of U.S. patent application Ser. No. 11/620,670, filed on Jan. 6, 2007, and issuing on Dec. 29, 2009, as U.S. Pat. No. 7,637,073, which claims the benefit of priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/766,286, filed on Jan. 8, 2006.
Number | Date | Country | |
---|---|---|---|
60766286 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11620670 | Jan 2007 | US |
Child | 12644518 | US |