The invention is described in greater detail using illustrations, which show:
The illustrated practice round is usually fired from a weapon with a drawn barrel with a twist, so an additional twist- or guide-band 11 is provided on the projectile body 4.
Such a practice round consisting of cartridge shell and projectile is described, for example, in U.S. Pat. No. 5,936,189.
The ogive 6 rests on an insert 12 within the projectile body that extends perpendicular to the longitudinal axis A of the projectile body 4. The ogive 6 is, for example, a plastic part, cylindrical in its lower region, which transforms into a vaulted hood with the shape of a universal ball joint. In the hollow inner portion of the ogive 6 a marking material, in this case a red dye powder 13, is provided that is placed into a protective cap 14 that covers it. The protective cap 14 that is made, for example, of polyethylene terephthalate (PET), is completely filled with dye, and has a shape roughly corresponding to that of the ogive 6; that is, it has a lower cylindrical part that rests closely on the inner wall of the cylindrical part of the ogive 6 and an adjacent vaulted hood that extends approximately parallel to the hood. A small intermediate space 15 is provided between the protective cap 14 and the ogive 6 that is filled with a filler material 16 that rests on the protective cap 14 and the inner wall of the ogive 15 in the vaulted portion. This material 16 may be, for example, a plate of soft foamed material, as shown in
As mentioned above, when the vaulted part of the ogive 6 of the projectile 2 is damaged, e.g., by improper handling of the cartridge or by a misalignment with the firing chamber of the weapon being fired, then the space between the ogive and the protective cap ensures that the protective cap remains intact, thus allowing no dye to escape. The foam basically has the function of protecting the protective cap 14 from damage by any splinters from the damaged ogive.
A container 21 within which an inner container 22 is mounted rests on the insert 12 that forms the base of the ogive 6. A material is inserted into the inner container 22 and into the space between the inner container and the container 21 that reacts with chemoluminescence upon mixing with the other material. As soon as the projectile strikes a target, the ogive 6 bursts and the dye powder 13 is released. Simultaneously, the containers 21 and 22 are broken so that the two chemoluminescent materials react with each other, releasing an illuminating signal within the normal visible spectrum, or perhaps within the infrared region that is visible over long distances.
As described in the above-mentioned U.S. Pat. No. 5,936,189, the two containers 21 and 22 may be so configured that they burst immediately upon initial acceleration of the projectile and/or by the twisting motion of the projectile immediately after firing, so that the chemoluminescent reaction is initiated. When the light thus created is conducted outward from the projectile body, the trajectory of the projectile may be followed.
There is the option to configure the base of the insert 12 to be transparent at least in a partial region 23 below the two containers 21 and 22 so that the light created by chemoluminescence shines, for example, into a hollow cavity 24 of the projectile body. When one configures the guide- or twist- band 11 to be translucent and the wall of the hollow cavity 24 in a region 25 of the guide-band, then the light may exit from the hollow cavity 24 to the outside, so that the trajectory of the projectile may be followed.
It is possible, of course, to find other passages to the outside for light created by chemoluminescence. For example, the insert 12 itself might be transparent and extend to translucent regions in the wall of the projectile body. so that light is also perceptible from the outside.
Although the above discussion describes advantageous embodiments of the invention, it will be apparent to the specialist that alterations and modifications of the embodiments are possible without deviating from the object of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 017 466.0 | Apr 2004 | DE | national |