This invention generally relates to a system for projectile weapons training, and more particularly to a system for detecting impact of said projectile weapons.
Projectile weapon training systems, such as weapon firing simulation systems, are generally used to provide weapon training to a trainee. Generally, the trainee is given a modified weapon including a laser light used to engage a target or simulation. The purpose is to allow the trainee to practice his or her targeting skills with the projectile weapon without discharging said weapon. While this may provide an element of safety to the training scenario, it does not provide a realistic experience for the trainee which replicates the use of an unmodified weapon. The trainee is therefore not able to replicate the targeting experience which would be utilized in the context outside the training system.
Alternately, traditional targeting ranges may utilize a non-responsive and/or non-interactive target, such as a paper or plastic bullseye, which the trainee may utilize in training with an unmodified or “live” projectile weapon such as a gun. These systems, including traditional gun ranges, offer the trainee a more realistic experience in terms of the discharge of the projectile weapon (as unmodified, conventional, or “live” weapons are often used). However, they are unable to accurately simulate realistic surroundings that may be present in the case of a weapon discharge outside the context of the targeting range. Additionally, traditional targeting ranges are limited in the feedback available to a trainee, such as temporal recognition of an accurate contact with a target.
Accordingly, a need has been identified for a targeting system which addresses these and other shortcomings of the trainee's training experience.
An objective of the present invention is to provide an improved interactive targeting system for use with a projectile weapon firing a projectile, said system providing feedback to a user of the system.
In one embodiment, a targeting system is provided for use with a projectile weapon for firing a projectile, wherein the system comprises a light emitter for projecting a light, said light designating a valid target for the projectile, a first sensor for detecting an impact of the projectile, a controller for receiving feedback from a user and for controlling the light emitter, and a processor for receiving a first input from the first sensor and calculating an output relating to the impact of the projectile.
In one aspect, the light emitter may comprise a laser and the light comprises a focused light beam. In another aspect, the light emitter may comprise a video projector. In such an aspect, the light may comprise an image, a video, or both.
In another aspect, the light emitter may be adapted for projecting a second light upon the target, said second light designating an invalid target. In such an aspect, the output may include a measure of the user's accuracy with respect to hitting a valid target with the projectile and avoiding hitting an invalid target with the projectile.
The first sensor for detecting impact of the projectile may comprise one of any number of types of sensors. For example, the first sensor may comprise a piezoelectric sensor. The first sensor may comprise a sonic sensor. In a further aspect of the system, the first sensor may comprise a video camera. In one aspect, the first sensor may comprise a first conductor and a second conductor, and wherein impact of the projectile is detected by contact of the first conductor with the second conductor. In such an embodiment, the first conductor may be located within the second conductor. The system may further include a multi-vibrator circuit for causing a stable single pulse electronic signal as the first input from the first sensor to the processor.
The system may further include a plurality of second sensors for detecting the impact of the projectile and for generating a plurality of second inputs for the processor, and the processor may be adapted to use the first input and the second inputs to locate a position of the impact of the projectile.
The system may include one or more position sensors for sensing a position of the user. The system may further include one or more alerts for alerting the user that the user has remained in a first position beyond a predetermined period of time. A timer may be provided for measuring the predetermined period of time. The system may include a processor for receiving a signal from the position sensor and for triggering the alert upon expiration of the predetermined period of time in the event that the user has remained in the first position. The alert may include a bumper for contacting the user. In another aspect, the alert may comprise an auditory alarm.
In another aspect, the system may include a target receiver upon which the light from the light emitter is projected. The target receiver may comprise a solid surface for receiving the projectile. In another embodiment, the target receiver may comprise a fluid surface through which the projectile may pass. In a further aspect, the target receiver may comprise a visible vapor. The target receiver may comprise a foreground surface with at least one aperture and at least one background surface generally aligning with the aperture. In such an embodiment, the sensor may be associated with the at least one background surface for detecting the impact of the projectile with the background surface.
The light projected by the light emitter may comprise an image, and the system may further comprise an image recorder for recording said image. The image may comprise a moving object, and the system may further comprise a second sensor for sensing a virtual impact of said moving object.
In one aspect of the invention, the weapon may not be in communication with the targeting system.
In another embodiment of the present invention, a method is disclosed for measuring accuracy of a user's use of a projectile. The method may include the steps of providing a valid target designated for impact from the projectile, providing an invalid target designated for avoiding impact from the projectile, sensing a location of an impact of the projectile, and determining a cognitive response of the user based on a calculated accuracy of the user creating an impact of the projectile near the valid target and avoiding an impact of the projectile near the invalid target.
In one aspect, the providing steps may comprise projecting a first image of the valid target and a second image of the invalid target. The method may further include the step of recording at least one of the first or second images.
The determining step may further comprise calculating a time between the step of providing the valid target and the sensed impact of the projectile.
The projectile may be fired from a weapon, and the weapon may be an unmodified weapon. For purposes of this disclosure, the term “unmodified weapon” means a weapon that is not adapted to communicate with the targeting system, and which fires a projectile.
The sensing may comprise providing two conductors associated with at least one of the targets, and wherein contact between the two conductors indicates the impact of the projectile.
The method may further include the step of providing a targeting surface upon which the valid target and the invalid targeted are projected. The targeting surface may comprise a fluid. In another aspect, the targeting surface may comprise a visible mist. In still a further aspect, the method may include the step of providing a second surface between the user and the targeting surface, wherein the second surface includes at least one aperture and the targeting surface is aligned with the aperture.
In yet another embodiment of the present invention, a targeting system is disclosed for use with a plurality of projectile weapons for firing a projectile, each of said projectile weapons associated with one of a plurality of users. The system may include at least one projector for projecting a plurality of valid targets, each valid target designated for one of the plurality of users, a first sensor for detecting a first impact of a projectile from a first of the plurality of users, a second sensor for detecting a second impact of a projectile from a second of the plurality of users, a controller for receiving feedback from at least one of the plurality of users and for controlling the at least one projector, and a processor for receiving a first input from the first sensor and a second input from the second sensor, and for determining a characteristic of the first impact relative to the second impact.
The characteristic may include a time between the projection of one of the valid targets and one of the first or second impacts. In another aspect, the characteristic may include a comparison of a distance between a valid target for the first user and the first impact with a distance between a valid target for the second user and the second impact.
The apparatus described provides for an integrated system 10 that may create various training scenarios. The system 10 may use a visual display to determine targeting, consisting of a control device which may be located at or near the shooter or trainer and one or more detection devices generally mounted on or near the targets.
The system 10 may allow the use of one or more unmodified weapons 32 and standard ammunition for firearms and other projectile weapons. In the context of the present disclosure, the term “unmodified weapon” refers to a conventional or “live ammunition” weapon that is only adapted to communicate with the system 10 via the strike of the projectile (e.g. the ammunition). These unmodified weapons may include firearms, bows, crossbows, and other projectile weapons, and the projectile may trigger a detector(s) for later reporting the outcome/results of the shooter's actions.
Visual projections from the system 10 may be used to initiate a shooter response. These visual projections may be in the form of a visible laser, focused light emission, image, or video displayed on the target 28 from one or more light emitters, such as from the laser 22 and/or the projector 18. The visual projection(s) may be projected upon the target 28 for visualization by the shooter 12. In another aspect, a sonic initiation may be used to trigger a shooter response, such as from an audio source (e.g. a speaker, not shown).
Response detection methods may include one or more sensors 26 near or attached to target(s) for recording strikes on the target(s). The controller 16 may be adapted to vary target selection, timing, and output based on target strike detections. Result information from various sensor techniques may be received by the system 10, merged with one or more program parameters selected and reported, which may include digital displays, number and location of projectile target strikes, and timing data related to shooter response for multiple programs. In one aspect, results from the system may be exported to a target external to the system. For example, the results may be exported to a computer, tablet, smartphone, mobile application, or any other device or receiver capable of displaying the results to the user.
The system 10 facilitates the shooter's learning of targeting, speed, accuracy, and judgment of the use of a projectile weapon. The shooter 12 and/or an instructor or evaluator may input parameters to the controller 16 for a desired shooter scenario. In one embodiment, the system 10 may begin a program of lights or projections that designates both threat and nonthreat targets in a timed manner, with strike timing on the target recorded and displayed as an output. Detection devices or light emitting devices may vary depending on the targeting devices or scenario chosen at setup by trainer or shooter (see, e.g.,
With further reference to
The system 10 may further include one or more light emitters adapted to emit visibly light of an intensity sufficient to be projected to the target and observed by the shooter. The light emitter(s) may comprise the projector 18 and/or the laser 22. The projector 18 may create a visual target field upon the target 28. One or more of the light emitters may project a laser or light dot, an image, or a motion video projection upon the target to create the visual target field. The laser 22 may be adapted to direct the shooter to a given target within the target field. In one example, one or more of the projector 18 and the laser 22 may emit one of various visible wavelengths, colors, or projections, each of which may be adapted to elicit a varying shooter response. For example, a projection of the color green, either from the projector 18 or the laser 22, may elicit a “shoot” response from the shooter, while a projection of the color red from the projector 18 or the laser 22 may elicit a “do not shoot” response. The light emitters may be mechanically and/or electrically adjustable for placement of the emitted light upon a given target. For example, the laser adjust mechanism 24 may be provided in order to adjust the horizontal and/or vertical position of the laser 22. The laser adjust mechanism may take any form such as a manual control (e.g. a knob, a lever, or dial) or an electronic controller associated with the overall system controller 16. The controller 16 may be adapted to control one or more of the projector 18 and the laser 22 for accurate presentation of the visible light upon the given target.
The user display 14 may provide an interactive interface between the shooter 12 or a trainer and the system 10. The user display may include an analog or digital feedback display for communicating to the shooter 12 instructions and/or results from the system 10. The shooter 12 or trainer may input instructions and/or preprogrammed scenarios into the system 10 for enacting a training exercise. In one instance, the user display may comprise one or more interactive elements such as buttons, as may be associated with a keyboard, and/or screen. The screen may be a touch screen.
In one aspect, one or more of the various elements of the system 10 may be contained within or connected to a control system housing 34. For example, in the embodiment illustrated in
One or more targets 28, suitable for the impact of one or more projectiles that may be used by the shooter 12, may be placed in the shooter's range of fire. The target(s) 28 may be adapted to reflect the light from the light emitter(s) back to the shooter for use during a training scenario.
The system 10 may further include means for sensing an impact of a projectile with the target 28, such as one or more strike detecting devices. For example, sensors 26 may be attached to or in communication with the target 26 for sensing an impact. The sensors 26 may comprise vibration and/or sonic sensors.
In one example, sensors 26 may comprise mechanical sensors 40 such as those illustrated in
With further reference to
Reduction of a false indication of multiple target hits may be accomplished by providing an electronic mono-stable multi-vibrator such as a NE555, NE556, or similar devices placed in electrical series between the mechanical sensor 40 and digital input of a microprocessor/computer associated with controller 16, as illustrated in
As illustrated in
In a further aspect, a two or three axis accelerometer may be used to detect the target acceleration caused by a projectile strike and processed in a manner similar to the vibration detector. The sensor(s) 26 may be piezoelectric in nature.
In another embodiment, one or more of the sensors 26 associated with the target 28 may comprise a sonic sensor 60, as shown in
In one aspect, the sonic sensor 60 may be at least partially enclosed in an acoustic foam 62 in order to insulate outside sound from interfering with the sonic sensor 60. As illustrated in
With reference to
Time and location of projectile strike on a large target may be recorded by using paired sonic sensors 60 on opposite sides of the target, detecting the sound wave sensor time differential generated by the projectile passage through the air in front of the target.
A second technique may detect vibrations in the solid target material caused by an impact of the projectile on a solid target by using high speed sensors (for example piezoelectric) attached to the edge of the target. Vibration propagation from the strike moves though the target material to the sensors attached near the edges of the target. For example, steel has a wave propagation speed of approximately 20,000 ft/s, the sensors mounted to the steel target provide data that allows triangulation and calculations in a similar fashion to an air sonic detector. Sensor data is transmitted back to the computer for calculations and data storage on strike locations. Calculations may include using the strike time differentials between multiple pairs of sensors using hyperbolic intersections and other equations, much as with the sonic sensors.
In some instances, target strike detection requires rapid and accurate detection of each strike during repeated fire on the same target (e.g. in the context of a “double tap”). Vibration detection may have extended vibration on poorly secured targets causing false multiple reads of a single strike. Sonic detectors may occasionally detect an invalid strike on a nearby target, thereby creating a false detection of a strike. Accordingly, the use of at least one vibration or mechanical sensor 40 and at least one sonic sensor 60 (as illustrated in
In another aspect of the present invention, the a strike detector may be provided in the form of an image recording device, such as a camera 20, as illustrated in
The target 28 may comprise one or more of any suitable type of target desired for a given training scenario. In one aspect, the target 28 may comprise a non-penetrable solid material for vibration and/or sonic detection of projectile impact. In another aspect, the target 28 may comprise a reflective target for reflecting an image or video projection.
With reference to
The foreground target 90 may be at least partially covered with a penetrable screen 96. The screen 96 may comprise a projection material for image or video display and/or hiding a location of the background target(s) 94. Only projectiles passing through the holes or apertures 92 may strike the background target(s) 94. The light emitter(s) may place a target or a threat on an area of the screen 96 covering the background target 94, thus allowing differentiation between a desired shooter response (e.g. impact on the background target) and an undesired response (e.g. impact on the foreground target).
The system 10 may use simple fixed targets or complex mechanical targets, such as spring loaded or knockdown targets, etc. In one aspect, the foreground target 90 may comprise a complex mechanical target.
In a further embodiment, the target 28 may comprise a liquid film. For example, a surface such as a screen may be provided with a liquid dispenser (not pictured) thereabove, said dispenser adapted to trickle liquid along a surface of the screen. Alternately, there may be no screen present, and the liquid may be dispensed from the dispenser in the form of a curtain. A recycle reservoir and/or conduit may be provided for recycling liquid back to the liquid dispenser.
The system may be adapted to project a light, image, and/or video onto the liquid film during a training session. A projectile striking the liquid film will disrupt the liquid film, creating a temporarily visible impact site. This temporarily visible impact site may be detected by a recording device such as camera 20. The fluid may comprise one or more surfactants for uniformity, reflective color material for enhanced visibility, and/or other special effects chemicals.
In another embodiment, the target 28 may comprise a continuous spray or mist. This spray or mist may be provided by a nozzle or misting machine (not pictured). Similar to the liquid film, an impact from a projectile will disrupt the spray or mist, thereby creating a temporarily visible impact site that may be detected by a recording device such as a camera 20. The spray or mist may comprise aerosol agents, reflective color materials for enhanced visibility, and/or other special effect chemicals. In one aspect, these additives may be recycled to the spray or mist device.
The system 10 may be adapted to present one or more training scenarios to a shooter 12. The controller 16 may be adapted to integrate all aspects of each scenario for later output or review. The system allows the shooter or trainer to evaluate the session or scenario during or after the event and facilitates the shooter in gaining experience with the scenario(s) and record performance(s).
In one embodiment, the system 10 may designate one or more target(s) and evaluate shooter response by using custom software programs that record various aspects of the shooter's response including but not limited to the following: shooter reaction time(s), strike contacts on targets, non-threat targets and multiple strikes on same target such as “double tap,” or cognitive discrimination of targets. Calculations of results may be recorded, interpreted, and distributed in common data output methods, i.e. USB, wifi, Bluetooth, etc. Software package may include multiple scenario parameters that can be modified by the trainer or designer.
In one embodiment, an alert signal, such as an audible tone or visual stimulation such as a flashing light, may be given to ready the shooter. After a random delay, a laser or focused light beam may be projected on a target. Upon seeing the light on the target, the shooter responds by drawing his/her weapon and shoots at the designated target. When the target is struck, a detection system associated with the target using, for example, an enhanced vibration detector, communicates with the controller 16 to confirm each hit on the target. The controller 16 turns off the laser 22 confirming the hit to shooter and continues the scenario. The time to draw and hit may be displayed for review, such as using a digital display or screen. Optionally, a “double tap” program may re-activate the laser on a previously hit target requiring multiple hits to finish scenario sequence.
With reference to
Another embodiment may use the projector for projecting an image on the target 28. After alerting the shooter, such as via the alert signal, an image may be displayed on the target. As before, the strike data may be recorded for later review and evaluation. The image may be a threat, such as a man pointing a gun at the shooter, or non-threat, such as a mother holding a baby to create cognitive responses.
A further embodiment may use the projector 18 for projecting a video display on the target 28. A large target may display a video scene with a threat scenario. The shooter may be required to respond to a more complex shooting situation. Target strike detection may include time and location of strike on the screen target. Location on the screen may be accomplished by smaller targets nested in the larger screen target (e.g. the multilayer target), sensor triangulation using multiple sonic, piezoelectric or light sensors located around the target, or via a camera 20, such as an infrared video camera. The composite threat/thermal video movie may be reviewed for recreation of the shooter response. When used, video projection may provide a more realistic experience for the shooter for a better training scenario.
With reference to
As illustrated in
A camera 120 may be provided for recording the attack with the first weapon 32′. Video of the attack using the first weapon 32′ may be displayed (either in real time or on a delay) on the second target 28y, such as via the projector 18. Thus, a real life situation (e.g. an attack with a knife) is created as a trigger for the shooter 12 to respond. Additionally, the time of the recorded attack from the first weapon 32′ may provide a realistic response time for the shooter 12 to respond (i.e. before the first weapon 32′ strikes the first target 28x).
In a further embodiment, the targeting system 10 may be designed for use with a plurality of shooters simultaneously, each with his or her own weapon. A projector or light emitter may be provided for directing each user to fire at a specific target. For instance, there may be a first target for the first user and a second target for the second user. The system may sense the impact of the shot(s) from one or a plurality of the users. This sensing of each impact may be performed by a single sensor or a plurality of sensors, either operating individually or on coordination with one another. The data from the sensors may be interpreted by the controller so as to compare the shots fired from each user. The result may be an integrated response from the input of a plurality of users. For instance, the controller may determine the timing associated with each user hitting a target so as to determine which user was faster at hitting his or her designated target. The processor may also calculate an accuracy of the placement of the fired shot. This accuracy may be used to determine which user was able to come closer to his or her designated target.
In another embodiment, as illustrated in
As is further illustrated in
In a further aspect of the invention,
One or more of the position sensors 204, 205 may be in communication with a processor 206. The processor may be a component of the controller 16, may be independent from the controller 16, and/or may be in communication with the controller 16. In one aspect, the processor 206 may include a timer. The processor 206 may be adapted to receive a signal from the one or more position sensors 204,205 indicating the presence of the user in a given position. The processor 206 may initiate the timer to measure a predetermined time period. This predetermined time period may be an allowable time period before which the user is encouraged to alter his or her position during a training session. The predetermined time period may be set by the user, by a trainer, or may be preset with the position alert 200.
One or more of the position sensors 204,205 may be adapted to sense a change in the user's position, such as when the user moves from a first position to a second position. The one or more position sensors 204,205 may be adapted to send a signal to the processor 206 upon sensing the movement of the user from the first position. Upon receipt of a signal from the position sensor(s) 204,205 that the user has changed position, the processor 206 or the controller 16 may reset the timer and again initiate a countdown of the predetermined time.
At the termination of the predetermined time period, the user may be alerted if he or she has not changed position. For instance, in the event that the one or more position sensors 204,205 has not detected a movement of the user from the position that triggers the timer, an alert may be provided to the user. In the illustrated embodiment of
In one aspect, the bumper 201 may include a sensor for sensing contact, such as with a user. The sensor may be in communication with the processor 206 and/or the controller 16. Upon receipt of an input from the sensor indicating contact by the bumper 201, the movement of the bumper 201 may be stopped and/or reversed.
In another aspect, the position alert 200 may include an auditory signal for alerting the user that a position has been maintained beyond the predetermined time period. The auditory signal may be in communication with the processor 206 and/or the controller 16. Upon indication from the position sensor(s) 204,205 that the user has remained in a given position beyond the predetermined time period, the auditory signal may be adapted to sound. The auditory signal may be provided independent of or in conjunction with the bumper 201.
While the invention has been described with reference to specific examples, it will be understood that numerous variations, modifications and additional embodiments are possible, and all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of the invention. Also, the drawings, while illustrating the inventive concepts, are not to scale, and should not be limited to any particular sizes or dimensions. Accordingly, it is intended that the present disclosure not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
This application claims priority to U.S. PROVISIONAL Application Ser. No. 62/079,839, filed Nov. 14, 2014, the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4604668 | Lemelson | Aug 1986 | A |
8506369 | Grant | Aug 2013 | B2 |
8523185 | Gilbreath | Sep 2013 | B1 |
20060170421 | Benz | Aug 2006 | A1 |
20070035528 | Hodge | Feb 2007 | A1 |
20080213732 | Manard | Sep 2008 | A1 |
20150092266 | Yeremian | Apr 2015 | A1 |
20150198420 | Foege | Jul 2015 | A1 |
20160252326 | Jones | Sep 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160138895 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
62079839 | Nov 2014 | US |