The present invention relates to projectiles with strike point marking. In particular, these projectiles are useful for training purposes or for use as marker rounds.
Practice ammunition has been in use. For example, U.S. Pat. No. 7,004,074, assigned to Martin Electronics, describes a practice projectile 10 containing a powder dye charge 14 (see
In another example, U.S. Pat. No. RE40,482, assigned to Nico-Pyrotechnik Hanns-Juergen, describes a practice projectile in which a marking agent is contained in a frangible hood at the head of the projectile. The marking agent consists of two chemical components contained in separate, adjacent compartments. These compartments share a common partition that has predetermined thin regions. When fired, the acceleration forces on the projectile break these thin wall regions to allow the two chemical components to react and give a chemo-luminescent light. The luminous light is emitted through the transparent hood while the projectile is in flight. Upon striking the target, the hood bursts to scatter the luminous chemical dye, thereby making the strike point optically visible. It appears that this projectile is limited to night time use.
U.S. Pat. No. 7,475,638, also assigned to Nico-Pyrotechnik Hanns-Juergen, describes an improved projectile 50 that is usable for both day and night time use. In this projectile, two chemically active marking materials are separately contained in two containers 55, which are placed side-by-side to each (see
It is appreciated that larger quantities of projectiles are used in training than in service; as such, cost becomes a very important factor in providing training projectiles. Coupled with limitations of known projectiles, it can thus be seen that there exists a need for other types of training projectiles to meet current and future challenges.
The following presents a simplified summary to provide a basic understanding of the present invention. This summary is not an extensive overview of the invention, and is not intended to identify key features of the invention. Rather, it is to present some of the inventive concepts of this invention in a generalised form as a prelude to the detailed description that is to follow.
The present invention seeks to provide a frangible projectile with strike point marking for training purposes or for use as marker rounds during both day and night. The luminescent dye contained in the projectile is activated after the projectile is launched and the flight time allows the luminescent dye to produce an effective glow at the point of impact.
In one embodiment, the present invention provides a projectile having a hollow nose cap threadedly connected to a forward portion of a projectile body and a cartridge case bonded to a rear portion of said projectile body, such that said projectile is elongate and defines a longitudinal axis. The projectile comprises: an ampoule disposed inside said hollow nose cap, with said ampoule's longitudinal axis substantially coaxial with said longitudinal axis of said projectile, and said ampoule contains a first luminescent dye component; a vial disposed inside said ampoule, with said vial containing a second luminescent dye component; a front crusher disposed at a front end of said ampoule; and a rear crusher disposed at a rear end of said ampoule; wherein upon launching of said projectile, impulse of said front crusher crushes said front end of said ampoule and said vial, thereby allowing said first and second luminescent dye components to mix and produce a luminous glow, and upon said projectile striking a target, said nose cap breaks and then said rear crusher throws said luminous dye out of said broken nose cap to mark the point of impact of said projectile.
In one embodiment, the projectile comprises a dye powder disposed around said ampoule and front crusher, and said dye powder comprises a catalyst that is reactable with said luminescent dye to produce a stronger glow. In another embodiment, the dye powder is contained in a sachet. In another embodiment, the projectile contains a phosphorus compound that is ignited when the rear crusher is thrown out of the projectile body during impact and this provides a thermal glow that is noticeable with night vision equipment. In another embodiment, the rear of the projectile has a transparent plug/window or channel and the luminous glow of the dye is emitted through the transparent plug so that the projectile's trajectory can be traced or plotted. The channel allows hot propulsion gas to thaw the luminescent dye when the projectile is used in a cold environment.
In another embodiment, the present invention provides a method for marking a strike point of a projectile noticeable. The method comprises: breaking an ampoule and a vial contained in said ampoule by a front crusher, mixing two luminescent dye components separately contained in said ampoule and vial to give a luminous glow; breaking open a nose cap of said projectile along a line of thickness transition upon impact at a strike point; and sputtering said luminous dye out of said broken nose cap by a rear crusher to mark the strike point; wherein said method is used during the night and with the aid of a night vision camera.
In another embodiment, the method comprises igniting said oxidant and phosphorus compound to provide a thermal glow as said rear crusher is thrown out of said projectile body at the point of impact. In yet another embodiment, the method comprises emitting the luminous light through a transparent plug/window or channel disposed at a rear of the projectile body for tracing or plotting the projectile's trajectory.
This invention will be described by way of non-limiting embodiments of the present invention, with reference to the accompanying drawings, in which:
One or more specific and alternative embodiments of the present invention will now be described with reference to the attached drawings. It shall be apparent to one skilled in the art, however, that this invention may be practised without such specific details. Some of the details may not be described at length so as not to obscure the invention. For ease of reference, common reference numerals or series of numerals will be used throughout the figures when referring to the same or similar features common to the figures. Front/forward or rear orientation of any component is with respect to the travel direction of the projectile.
The front exterior of the nose cap or ogive 110 is substantially hemispherical in shape and it extends to its rear 116 in a cylindrical shape. As can be seen from
A front end 141 of the projectile body 140 has a recess 146 at its centre, with respect to the centre axis C. The recess 146 is cylindrical in section and has a round bottom. The bottom of the recess 146 is shaped and dimensioned to receive a rear crusher 130. The outer surface of the projectile body 140 between the connections with the nose cap 110 and the cartridge case 160 has two projected rings 147. The ring 147 surfaces have substantially the same dimension as the outside cylindrical surface of the nose cap 110 so that they fit with a bore of a launcher (not shown in the figures) to spin stabilise the projectile 100.
The cartridge shell 160 has a generally cylindrical outside surface 162. The base of the cartridge shell 160 extends out of the cylindrical surface 162 to form a flange 164, which helps retain a spent cartridge shell in the firing chamber of the launcher. The cartridge shell 160 for use with this invention is typically known and therefore no further description of the cartridge shell is provided. When assembled with the projectile body 140, there is a space 150 between a rear end 148 of the projectile body 140 and an interior of the cartridge shell 160. The space 150 forms a low pressure chamber for propulsion gas to eject the projectile 100 through the bore of its launcher.
When the projectile 100 is assembled, the centre, with respect to the centre axis C, of the cavity 118 between the front interior end of the nose cap 110 and the recess 146 on the projectile body 140 is located, in contiguous contact, the front crusher 120, an ampoule 122 and the rear crusher 130. The ampoule 122 is a plastic container containing a first luminescent dye component 123. Inside the ampoule 122 is a glass vial 124, which contains a second luminescent dye component 125 that reacts with the first luminescent dye component 123 to give a luminous glow. The space in the cavity 118 surrounding the front crusher 120 and ampoule 122 is packed with a coloured dye powder 126. In one embodiment, the front and rear crushers 120,130 are made of metal, such as, steel or stainless steel. In one embodiment, the front crusher 120 is relatively smaller in size and mass than the rear crusher 130; for example, the front crusher 120 sits in a depression 122a formed on the front end of the ampoule 122 such that the outside diameter of the front crusher 120 is substantially smaller than an interior diameter of the ampoule 122, whilst the ampoule 122 and rear crusher 130 have substantially the same outside dimension. In terms of mass difference, the rear crusher 130 is substantially 50% to 80% heavier than the front crusher 120.
In use, when the projectile 100 is ejected from a launcher after firing, the projectile 100 experiences large acceleration and spin forces; as a result, the impulse imparted onto the front crusher 120 crushes the front end of the plastic ampoule 122 and the glass vial 124 contained therein; this causes the first and second luminescent dye components 123,125 to react with each other. The spin forces and the front crusher 120 additively cause turbulent mixing of the first and second luminescent dye components 123,125 to give a luminous glow, even when the projectile 100 is in flight. When the projectile 100 hits its target, the impact of the projectile 100 causes the plastic nose cap 110 to crack or break at the thickness transition lines 113,114 whilst the impulse of the rear crusher 130 throws the ampoule 122 forward to release the luminous dye and provides a luminous effect at the point of impact; this is advantageous during night time training when night vision cameras are used; in addition, this projectile 100 may be used as a marker round to pin point a target. The impact forces also cause the coloured dye powder 126 to sputter and to provide a visible effect at the point of impact during day time training. The sputtering of the dye powder 126 carries with it the luminous dye, causing the point of impact to be more visible from a distance. In addition, the coloured dye powder 126 also contains a catalyst to give the luminous dye a stronger glow after the projectile 100 hits its target.
In another embodiment of the front crusher, the front crusher 120a additionally comprises a cutting edge 121 around a periphery of its rear face that is in contact with the front end of the ampoule 122, as seen in
In a variation of the above embodiment 100b, the outside surface of the ampoule 122 is coated with the oxidant 131. In another embodiment, the phosphorus compound 142 is coated on the outside of the ampoule 122 and/or rear crusher 130 whilst the oxidant 131 is deposited on the interior surface of the recess 146 and/or filler plug 141a.
In yet another embodiment 100c of the projectile, a through hole 134 is provided in the rear crusher 130 along the centre axis C. A hole 144 in register with the through hole 134 is also provided at the rear end of the projectile body 140. The hole 144 is threaded and is fitted with a transparent plug or window 145. In one embodiment, the transparent plug 145 is made of clear polycarbonate; for use with this embodiment, outlet channels of the cartridge 160 direct propulsion gases at an angle to the centre axis C to divert the propulsion gases from the polycarbonate plug 145 and minimise burning it. In flight, light from the luminous dye inside the ampoule 122 is emitted through the holes 134,144 and plug 145 as the projectile 100c travels to its target. In this way, the luminous light seen at the rear of the flying projectile 100c is useful for plotting or tracing its trajectory, for example, during training purposes. An advantage of this projectile 100c is that luminous light from the projectile 100c is not seen by its target, especially when the nose cap 110 is translucent or opaque.
In the above embodiments, ballistic performance of the projectiles 100,100a,100b, etc. is desirably as close as possible to the ballistic performance of projectiles in service. To achieve this, tests with projectiles made of different materials and mass distributions of the components were carried out. In addition, safety tests, such as drop test, were carried out to ensure that these projectiles 100,100a,100b, etc. are strong enough to withstand handling during transportation and forseeable types of mishandling.
While specific embodiments have been described and illustrated, it is understood that many changes, modifications, variations and combinations thereof could be made to the present invention without departing from the scope of the present invention. For example, a larger calibre projectile may be configured with a front crusher, an ampoule containing a luminescent dye component, a vial contained within the ampoule and holding a second luminescent dye component, a rear crusher and dye powder surrounding the ampoule and front crusher, so that a strike point is visually marked with the dye powder during day training and with luminescent dye during night training. In another example, a grenade may also be similarly configured according to the teaching of the present invention. In another example, the materials of the ampoule and vial are not limited, respectively, to plastic and glass; they can be made of other materials to store the luminescent dye components.
Number | Date | Country | Kind |
---|---|---|---|
201006718-9 | Sep 2010 | SG | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SG11/00308 | 9/10/2011 | WO | 00 | 6/11/2013 |