The present invention relates to a projection display apparatus and a display system which have a projection element for projecting light emitted from a light source to a projection plane.
There has heretofore been known a projection display apparatus having an imager and a projection optical system for projecting light emitted from the imager. The projection display apparatus has an image adjustment function (e.g., a trapezoid correction function) to adjust an image formed on a projection plane such as a screen by the light emitted from the projection optical system.
Generally, the image adjustment function is executed by operating buttons provided on a main body or a remote controller of the projection display apparatus. For example, the image adjustment function is selected by the button operation from a menu screen including a list of various functions. Thereafter, setting of the image adjustment function is performed by the button operation.
Meanwhile, there has recently been proposed a portable projection display apparatus to extend the usage scene of the projection display apparatus (e.g., see Patent Document 1).
Here, an installation location of the portable projection display apparatus is frequently changed. Accordingly, the image adjustment function such as the trapezoid correction function is also frequently used.
In the current projection display apparatus, however, the image adjustment function is positioned in a lower layer of a menu function, and therefore needs to be called, which complicates an operation (such as a button operation) for adjusting an image on the projection plane.
A projection display apparatus of first aspect includes: a main body unit (main body unit 110) including a light source (solid light source 152) and a projection element (projection element 154) which projects light emitted from the light source to a projection plane. The projection element is provided inside the main body unit. The main body unit further includes an adjusting member (horizontal adjusting member 112 and vertical adjusting member 113) used exclusively for operation of an image adjustment function to adjust an image on the projection plane, the image being formed by the light emitted from the projection element.
In the first aspect, the projection display apparatus according to claim 1, further includes: a supporting member (supporting member 120) which supports the main body unit rotatably around a plurality of axes; and a fixing member (fixing member 150) which fixes the main body unit and the supporting member to installation sites.
In the first aspect, the projection display apparatus according to claim 1, further includes: an image processor which controls the image adjustment function based on an adjustment signal inputted from the adjusting member. The image projected onto the projection plane includes a plurality of pixels each having coordinates determined by a row in the horizontal direction and a column in the vertical direction. The image processor changes the number of pixels in the horizontal direction and the number of pixels in the vertical direction by converting an image signal inputted from an external device.
In the first aspect, the projection display apparatus according to claim 1, further includes: an image processor which controls the image adjustment function based on an adjustment signal inputted from the adjusting member. The image projected onto the projection plane including a plurality of pixels each having coordinates determined by a row in the horizontal direction in the column in the vertical direction. The image processor outputs, as a request to convert the image signal, the adjustment signal inputted from the adjusting member, to an external device. The image processor acquires the converted image signal from the external device. The converted image signal is a signal obtained by changing the number of pixels in the horizontal direction and the number of pixels in the vertical direction.
In the first aspect, the projection display apparatus according to claim 1, further includes: an image processor which controls the image adjustment function based on an adjustment signal inputted from the adjusting member. The light source is a solid light source. The projection element scans the projection plane in a predetermined scanning direction for each of a plurality of pixels each having coordinates determined by a row in the horizontal direction and a column in the vertical direction. The image processor controls a scan angle for the projection element in the predetermined scanning direction.
In the first aspect, the projection display apparatus according to claim 1, further includes: a storage unit which stores projection angles at which the projection element projects the light onto the projection plane and a plurality of correction shapes in association with each other, the plurality of correction shapes obtained by deforming a predetermined reference shape according to the projection angles; and an image processor which controls the light source and the projection element so that at least two or more of the plurality of correction shapes are formed on the projection plane as an image formed by the light projected onto the projection plane.
In the first aspect, the projection display apparatus according to claim 1, further includes: an image processor which controls the light source and the projection element so that an image is formed with the light projected onto the projection plane. The image processor controls the light source and the projection element so that a vertical guide line and a horizontal guide line are formed on the projection plane as a start-up image when the projection display apparatus is started, the vertical guide line forming a vertical line when processing of the image adjustment function is completed and the horizontal guide line forming a horizontal line when processing of the image adjustment function is completed.
A display system of a second aspect includes at least a projection display apparatus including a light source and a projection element which projects light emitted from the light source to a projection plane, the display system further comprising an adjusting member used for operation of an image adjustment function to adjust an image on the projection plane, the image being formed by the light emitted from the projection element. The projection element is provided in the projection display apparatus.
A projection display apparatus according to an embodiment of the present invention is described below with reference to the drawings. Note that, in the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
Note that, the drawings are schematic and ratios of dimensions and the like are different from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Moreover, the drawings also include portions having different dimensional relationships and ratios from each other.
The projection display apparatus according to the embodiment is provided with a main body unit including a light source and a projection element for projecting light emitted from the light source to a projection plane. The projection element is provided in the main body unit. The main body unit further includes an adjusting member used exclusively for the operation of an image adjustment function to adjust an image on the projection plane, the image being formed by the light emitted from the projection element.
Note that the projection display apparatus may be a portable projection display apparatus attached to a terminal such as a notebook computer. In such a case, the projection display apparatus may include: a supporting member for rotatably supporting the main body unit around multiple axes; and a fixing member for fixing the main body unit and the supporting member at their installation sites.
As described above, in the projection display apparatus according to the embodiment, the adjusting member used exclusively for the image adjustment function is provided in the main body unit, thereby simplifying the operation for using the image adjustment function.
More specifically, it should be noted in the embodiment that the adjusting member used exclusively for the image adjustment function is provided in the main body unit, focusing on high usage frequency of the image adjustment function in the portable projection display apparatus.
The embodiment is described by taking a trapezoid correction function as an example of the image adjustment function. However, the image adjustment function is not limited to the trapezoid correction function. That is, the image adjustment function needs only be a function to adjust, on the projection plane, the image formed by the light emitted from the projection element.
(Configuration of Display System)
A configuration of a display system according to a first embodiment is described below with reference to the drawings.
As shown in
For example, as shown in
(Configuration of Projection Display Apparatus)
A configuration of a projection display apparatus according to the first embodiment is described below with reference to the drawings.
As shown in
As shown in
As described later, the main body unit 110 includes a solid light source 152 and a projection element 154 for projecting light emitted from the solid light source 152 to the projection plane 300. The main body unit 110 has the port 111 described above. The main body unit 110 further includes a horizontal adjusting member 112 and a vertical adjusting member 113.
The horizontal adjusting member 112 and the vertical adjusting member 113 are used exclusively for a trapezoid correction function to correct, on the projection plane 300, a shape of an image formed by light emitted from the projection element 154. The image formed by the light emitted from the projection element 154 includes multiple pixels each having coordinates determined by a row in the horizontal direction and a column along the vertical direction.
In the first embodiment, the horizontal adjusting member 112 is used to change the number of pixels in the horizontal direction. Here, the horizontal adjusting member 112 is configured to be rotatable. As described later, thinning of the pixels in the horizontal direction or pixel interpolation in the horizontal direction is performed by rotating the horizontal adjusting member 112. Specifically, the number of pixels in the horizontal direction is changed for each row by rotating the horizontal adjusting member 112.
Note that the horizontal adjusting member 112 outputs a horizontal adjustment signal indicating the degree of the change of the pixels in the horizontal direction in response to the rotation of the horizontal adjusting member 112.
In the first embodiment, the vertical adjusting member 113 is used to change the number of pixels in the vertical direction. Here, the vertical adjusting member 113 is configured to be rotatable. As described later, thinning of the pixels in the vertical direction or pixel interpolation in the vertical direction is performed by rotating the vertical adjusting member 113. Specifically, the number of pixels in the vertical direction is changed for each column by rotating the horizontal adjusting member 112.
Note that the vertical adjusting member 113 outputs a vertical adjustment signal indicating the degree of the change of the pixels in the vertical direction in response to the rotation of the vertical adjusting member 113.
The supporting member 120 rotatably supports the main body unit 110. The supporting member 120 supports the main body unit 110 so that the main body unit 110 is rotatable around at least a horizontal axis and a vertical axis. In the first embodiment, the supporting member 120 supports the main body unit 110 so that the main body unit 110 is rotatable around any axis (free axis).
The fixing member 130 is a member for fixing the main body unit 110 and the supporting member 120 to the terminal 200, and is, for example, a clip and the like. Here, the fixing member 130 is formed integrally with the supporting member 120. Note that the fixing member 130 has a latch 131 for latching the cable 10.
(Functions of Display System)
Functions of the display system according to the first embodiment are described below with reference to the drawing.
As shown in
The frame memory 251 stores an image signal for each of a plurality of pixels making up one frame. The image signal includes, for example, R, G and B signals.
The driver 252 outputs to the projection display apparatus 100 the image signal of the plural pixels making up one frame. Specifically, the driver 252 outputs the image signal through the cable 10 (not shown). As described above, the image signal includes, for example, the R, G and B signals.
The display unit 253 displays an image of one frame based on the image signal stored in the frame memory 251. Note that the image displayed on the display unit 253 is preferably coincided with an image to be projected on the projection plane 300.
As shown in
The image processor 151 processes the image signal acquired from the terminal 200. The image processor 151 has a trapezoid correction function, a gamma correction function and the like.
Here, the image processor 151 acquires a horizontal adjustment signal from the horizontal adjusting member 112. Likewise, a vertical adjustment signal from the vertical adjusting member 113.
The image processor 151 controls the trapezoid correction function based on the horizontal adjustment signal inputted from the horizontal adjusting member 112 and the vertical adjustment signal inputted from the vertical adjusting member 113. To be more specific, the image processor 151 converts the image signal based on the horizontal adjustment signal and the vertical adjustment signal, the image signal being acquired from the terminal 200. In other words, the image processor 151 controls the trapezoid correction function.
The image processor 151 performs, for example, thinning of the pixels in the horizontal direction, pixel interpolation in the horizontal direction, or the like in response to the horizontal adjustment signal. Likewise, the image processor 151 performs thinning of the pixels in the vertical direction, pixel interpolation in the vertical direction, or the like in response to the vertical adjustment signal.
The solid light source 152 is an LED (Laser Emitting Diode), an LD (Laser Diode) or the like. The solid light source 152 includes a red solid light source, a green solid light source and a blue solid light source. The solid light source of each color may be an array light source including multiple solid light sources.
The solid light source driver 153 controls the solid light source 152 based on the image signal. Specifically, the solid light source driver 153 controls an amount of red component light emitted from the red solid light source by controlling drive power for the red solid light source based on the R signal. The solid light source driver 158 controls an amount of green component light emitted from the green solid light source by controlling drive power for the green solid light source based on the G signal. The solid light source driver 153 controls an amount of blue component light emitted from the blue solid light source by controlling drive power for the blue solid light source based on the B signal.
The projection element 154 projects the light emitted from the solid light source driver 153 to the projection plane 300. Specifically, the projection element 154 sequentially scans the projection plane 300 for each of a plurality of pixels in a predetermined scanning direction. The predetermined scanning direction may be the horizontal direction or vertical direction.
The projection element driver 155 controls the projection element 154 in response to the image signal. The projection element driver 155 controls the projection element 154 so that the scanning can take a round per frame.
Here, even when the number of pixels in the horizontal direction is changed by the conversion of the image signal by the image processor 151, an oscillation angle of a mirror provided in the projection element 154 is kept constant. Note however that an interval between adjacent pixels in the horizontal direction is changed by the change in the number of pixels in the horizontal direction.
Similarly, even when the number of pixels in the vertical direction is changed by the conversion of the image signal by the image processor 151, the oscillation angle of the mirror provided in the projection element 154 is kept constant. Note however that an interval between adjacent pixels in the vertical direction is changed by the change in the number of pixels in the vertical direction.
An example of trapezoid correction is described below with reference to
As shown in
Note that since the width of the light projected onto the projection plane 300 remains unchanged, a background is displayed in shaded areas shown in
As shown in
Note that since the width of the light projected onto the projection plane 300 remains unchanged, a background is displayed in shaded areas shown in
(Advantageous Effects)
In the projection display apparatus 100 according to the first embodiment, the horizontal adjusting member 112 and vertical adjusting member 113 used exclusively for the trapezoid correction function are provided in the main body unit 110, thereby simplifying the operation for using the trapezoid correction function in the portable projection display apparatus 100.
More specifically, it should be noted in the first embodiment that the horizontal adjusting member 112 and vertical adjusting member 113 used exclusively for the trapezoid correction function are provided in the main body unit 110, focusing on high usage frequency of the trapezoid correction function in the portable projection display apparatus 100.
Modified example 1 of the first embodiment is described below. The following description is mainly given of differences from the first embodiment.
To be more specific, in modified example 1, configuration examples of the horizontal adjusting member 112 and the vertical adjusting member 113 are described with reference to
As shown in
As shown in
Note that directions of axes of rotation of rotating members 112b and 113b shown in
As shown in
As shown in
Modified example 2 of the first embodiment is described below. The following description is mainly given of differences from the first embodiment.
Specifically, in modified example 2, as shown in
Note that the terminal 200 changes the number of pixels in the horizontal direction and the number of pixels in the vertical direction in response to the request to convert the image signal. The terminal 200 outputs the converted image signal to the projection display apparatus 100 (the image processor 151). The converted image signal is a signal obtained by changing the number of pixels in the horizontal direction and the number of pixels in the vertical direction.
Modified example 3 of the first embodiment is described below. The following description is mainly given of differences from the first embodiment.
Specifically, in modified example 3, a trapezoid correction function is realized not by conversion of the image signal but by controlling a scan angle for a projection element 154.
As shown in
The projection element driver 155 controls the trapezoid correction function based on the horizontal adjustment signal or the vertical adjustment signal. To be more specific, the projection element driver 155 controls a horizontal scan angle for the projection element 154 based on the horizontal adjustment signal when the scanning direction of the projection element 154 is the horizontal direction. On the other hand, the projection element driver 155 controls a vertical scan angle for the projection element 154 based on the vertical adjustment signal when the scanning direction of the projection element 154 is the vertical direction.
In modified example 3, description is given of an example of control when the scanning direction of the projection element 154 is the horizontal direction.
First, with reference to
Second, with reference to
As described above, in the case where the scanning direction of the projection element 154 is the horizontal direction, it is preferable that the image processor 151 changes the number of pixels in the vertical direction based on the vertical adjustment signal inputted from the vertical adjusting member 113.
Note that the case where the scanning direction of the projection element 154 is the vertical direction is the same as the case where the scanning direction of the projection element 154 is the horizontal direction, and therefore description thereof is omitted.
A second embodiment is described below with reference to the drawings. The following description is mainly given of differences from the first embodiment.
In the second embodiment, a projection display apparatus 100 forms on a projection plane 300 at least two or more correction shapes as an image formed by light projected onto the projection plane 300. The correction shapes are shapes obtained by deforming a predetermined reference shape according to projection angles.
(Functions of Display System)
Functions of a display system according to the second embodiment are described below with reference to the drawing.
As shown in
The storage unit 156 stores multiple correction shapes. Specifically, as shown in
Here, the predetermined reference shape is preferably a shape similar to a light projection area (e.g., a rectangle with an aspect ratio of 4:3 or a rectangle with an aspect ratio of 16:9) which is formed by the light projected onto the projection plane 300 when the projection angle is a reference projection angle.
Each of the correction shapes is one deformed so that the predetermined reference shape is formed on the projection plane 300 when the projection angle is the one associated with the correction shape. The correction shape is preferably a shape similar to a light projection area (e.g., a rectangle with an aspect ratio of 4:3 or a rectangle with an aspect ratio of 16:9) which is formed by the light projected onto the projection plane 300 when the projection angle is the one associated with the correction shape.
In the second embodiment, as shown in
The image processor 151 described above controls the solid light source driver 153 and the projection element driver 155 so that at least two or more correction shapes, among the multiple correction shapes, are formed on the projection plane 300 as the image formed by the light projected onto the projection plane 300. That is, the image processor 151 indirectly controls the solid light source 152 and the projection element 154 so that at least two or more correction shapes, among the multiple correction shapes, are formed on the projection plane 300.
(Display Example of Correction Shape)
Description is given below of display examples of the correction shapes according to the second embodiment with reference to the drawings.
As shown in
As shown in
When “UP” is entered using an operation I/F in the state shown in
Note that the horizontal adjusting member 112 and vertical adjusting member 113 can be used as the operation I/F. Moreover, keys (e.g., cursor keys) provided on the terminal 200 may be used as the operation I/F. Furthermore, keys (e.g., cursor keys) provided on a remote controller may be used as the operation I/F.
When the correction shape associated with the projection angle (tilt angle=+40° and pan angle=−40°) is selected using the operation I/F in the state shown in
Moreover, the correction shapes associated with the projection angles at a second interval (e.g., tilt angle=±20° and pan angle=±20°) from the projection angle (tilt angle=+40° and pan angle=−40°) associated with the center correction shape formed are formed around the center correction shape on the projection plane 300. It should be noted that the second interval is narrower than the first interval.
When the correction shape associated with the projection angle (tilt angle=+40° and pan angle=−40°) is finally selected using the operation I/F in the state shown in
(Advantageous Effects)
In the second embodiment, the projection display apparatus 100 forms on the projection plane 300 the correction shapes, which are obtained by deforming the predetermined reference shape according to the projection angle, as the image formed by the light projected onto the projection plane 300. Accordingly, correction shapes similar to the predetermined reference shape need only be selected on the projection plane 300, thus facilitating image adjustment (trapezoid correction).
A third embodiment is described below with reference to the drawings. The following description is mainly given of differences from the first embodiment.
In the third embodiment, a projection display apparatus 100 forms on a projection plane 300 a vertical guide line and a horizontal guide line as a start-up image when the projection display apparatus 100 is started. Here, the vertical guide line forms a vertical line when processing of an image adjustment function (trapezoid correction function) is completed and the horizontal guide line forms a horizontal line when processing of the image adjustment function (trapezoid correction function) is completed.
(Display Example of Start-Up Image)
Description is given below of display examples of the start-up image according to the third embodiment with reference to the drawings.
As shown in
In other words, the image processor 151 described above controls the solid light source driver 153 and the projection element driver 155 so that the vertical guide line, the horizontal guide line and the initial image 303 are formed on the projection plane 300 as the start-up image. That is, the image processor 151 indirectly controls the solid light source 152 and the projection element 154 so that the vertical guide line, the horizontal guide line and the initial image 303 are formed on the projection plane 300.
Here, the vertical guide line 301 forms a vertical line when the processing of the image adjustment function (trapezoid correction function) is completed. Also, the horizontal guide line 302 forms a horizontal line when the processing of the image adjustment function (trapezoid correction function) is completed.
Accordingly, in the start-up image shown in
Note that, in the third embodiment, there are one vertical guide line 301 and one horizontal guide line 302. However, the embodiment of the present invention is not limited thereto. Thus, there may be more than one vertical guide line 301 and more than one horizontal guide line 302.
Furthermore, a tetragon may be formed by a pair of vertical guide lines 301 and a pair of horizontal guide lines 302. That is, the pair of vertical guide lines 301 and the pair of horizontal guide lines 302 form a rectangular shape when the processing of the image adjustment function (trapezoid correction function) is completed.
(Advantageous Effects)
In the third embodiment, the projection display apparatus 100 forms on the projection plane 300 the vertical guide line 301 and the horizontal guide line 302 as the start-up image. Accordingly, the vertical guide line 301 needs only be aligned with the vertical direction and the horizontal guide line 302 needs only be aligned with the horizontal direction on the projection plane 300, thus facilitating image adjustment (trapezoid correction).
As described above, the details of the present invention have been disclosed by using the embodiments of the present invention. However, it should not be understood that the description and drawings which constitute part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be easily found by those skilled in the art.
For example, conversion of the image signal and control of the scan angle may be combined together. In the case where the scanning direction of the projection element 154 is the horizontal direction, the trapezoid correction function in the horizontal direction may be realized by controlling the scan angle for the projection element 154, and the trapezoid correction function in the vertical direction may be realized by converting the image signal. Similarly, in the case where the scanning direction of the projection element 154 is the vertical direction, the trapezoid correction function in the vertical direction may be realized by controlling the scan angle for the projection element 154, and the trapezoid correction function in the horizontal direction may be realized by converting the image signal.
In the embodiments described above, the portable projection display apparatus 100 has been described as an example. However, the projection display apparatus 100 may also be a stationary projection display apparatus.
Although no detailed description is given of signal conversion for the trapezoid correction function in the above embodiments, conversion of the image signal besides the number of pixels is required, as a matter of course, for the trapezoid correction.
In the above embodiments, the description has been mainly given of the case where the adjusting members used exclusively for the image adjustment function are provided in the projection display apparatus 100. However, the embodiments of the present invention are not limited thereto. Thus, the operation I/F used to operate the image adjustment function may be provided in the terminal 200. The operation I/F provided in the terminal 200 does not have to be used exclusively for operating the image adjustment function.
Although the solid light source has been described as the light source in the above embodiments, the light source is not limited thereto. Specifically, the light source may be a UHP lamp or a xenon lamp.
The present invention can provide a projection display apparatus and a display system, which are capable of simplifying an operation for adjusting an image on a projection plane.
Number | Date | Country | Kind |
---|---|---|---|
2008-241525 | Sep 2008 | JP | national |
2009-210255 | Sep 2009 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2009/066388 | Sep 2009 | US |
Child | 13051381 | US |