This invention relates in general to the field of projection display devices, and more specifically to projection display devices for viewing high resolution images in mobile applications.
In recent years, electronic devices such as mobile phones, Personal Digital Assistants (PDAs), messaging devices, and the like, are increasingly being used for data creation and data transfer. Examples of data include images, videos, and document files. Existing electronic devices commonly use Liquid Crystal Display (LCD) screens to view received data and stored data. However, direct view LCD screens offer only a limited display resolution and physical size due to the limited size of the device. Therefore, high resolution images may not be viewed properly on these electronic devices. It is also difficult to share the content displayed on the built-in LCD screen with other people without passing the devices themselves around.
Several display technologies could potentially be used to solve the electronic device size limitations. One such display technology includes use of virtual image displays. Virtual image displays that employ micro display imagers and optical lens systems require near eye usages, which has generally been deemed awkward ergonomically to implement. Extendable or rollable displays that are made of flexible plastic materials have not yet proven desired mechanical properties for reliable use under the promised bending conditions.
In addition, these electronic devices may have one or more of the following additional limitations for viewing high resolution images. First, the existing electronic devices may not have the required processing capabilities to generate high resolution images. Second, the existing electronic devices may not support an integrated high resolution display due to constraints on cost, size, and power consumption. Third, even if attached to an external, high resolution display over an interface, these electronic devices may not support the high data rate interface required for the transfer of high resolution displays.
The present invention is illustrated by way of example, and not limitation, in the accompanying figures, in which like references indicate similar elements, and in which:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
Various embodiments of the present invention provide a projection display device. The projection display device includes a communication unit for communicating with a host device such as a mobile phone, a laptop, a Personal Digital Assistant (PDA), and the like. The communication unit is capable of enabling the host device to control the operation of the projection display device. The projection display device also includes a system processor and a display unit. The system processor decodes encoded inputs received by the communication unit and generates a high resolution image. Further, the display unit projects the high resolution image to form a display.
Before describing in detail the projection display device in accordance with the present invention, it should be observed that the present invention resides primarily in combinations of method steps and apparatus components related to the projection display device. Accordingly, the apparatus components and method steps have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
In this document, relational terms may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element. The term “another”, as used herein, is defined as at least a second or more. The terms “including” and/or “having”, as used herein, are defined as comprising.
The system processor 204 decodes the received inputs. The system processor 204 may perform the decoding operation by executing software instructions, through dedicated decoding hardware, and through a combination of various methods. The decoding steps in the system processor 204 follow the already existing methods for decoding the inputs, such as still image files, video files, or document files. For example, the decoding process for JPEG still images follows the steps of entropy decoding (e.g. Huffman), dequantization, inverse zig-zag sequencing, and Inverse Discrete Cosine Transform to recreate the pixel information of the original bitmap image. Similarly for MPEG-4 video files, in addition to steps similar to the JPEG decoding process, the decoding process follows further steps of motion compensation to recover data from the temporal variations between frames in the original video sequence. After decoding the encoded inputs, the system processor 204 generates a high resolution image of the received inputs. The system processor 204 sends the decoded inputs to the display unit 206, which is operatively coupled to the system processor 204. The display unit 206 projects the high resolution image on to a screen to form the display 106 (shown in
In various embodiments of the invention, the system processor 204 is further capable of formatting the decoded inputs, based on the properties of the input. For example, in the present invention, for a visual media content of a three mega-pixel JPEG image (2000×1500 pixels), which exceeds the resolution of the display 106 when decoded, the projection display device 104 formats this image by resizing it to the maximum screen resolution of the display 106. Similarly, for a visual media content of a Quarter Common Intermediate Format (QCIF) resolution (176×144 pixels) video clip in MPEG-4 encoding, as generated by many existing host devices, the projection display device 104 decodes this video clip file and scales the video image to a larger size, such as Common Intermediate Format (CIF) (352×288 pixels) or Video Graphics Array (VGA) (640×480 pixels) resolution to fill more of the display 106. In an embodiment of the present invention, the high resolution display has a resolution of Extended Graphics Array (XGA) (1024×768 pixels).
In an embodiment of the present invention, the projection display device 104 further includes a storage unit 208, a power source 210, and a UI 212. The storage unit 208 stores the inputs received from the host device 102, and supplies the stored inputs to the system processor 204 for decoding and further processing. The storage unit 208 enables stand-alone operation of the projection display device 104, as inputs can be stored and decoded at a later time for projection, without requiring any communication with the host device 102. In an embodiment of the present invention, the storage unit 208 may store software that may be required for operating the projection display device 104. In one embodiment of the present invention, the storage unit 208 includes at least one of a removable storage unit and a local storage unit. The removable storage unit can be a storage card of the host device 102, such as a Secure Digital (SD) card, a Multimedia Card (MMC), or the like. This enables stand-alone operation of the projection display device 104. Examples of the storage unit 208 include a Dynamic Random Access Memory (DRAM) and a Flash memory.
The power source 210 is operatively coupled to the other components of the projection display device 104, such as the communication unit 202, the system processor 204, the display unit 206, and the storage unit 208, to provide power for their operations. In an embodiment of the present invention, the power source 210 is an in-built power source, such as a rechargeable battery. The in-built power source enables handheld operation of the projection display device 104. In addition, the in-built power source provides portability to the projection display device 104. In another embodiment of the present invention, the power source 210 is an Alternating Current (AC) adapter. The UI 212 provides an interface for a user to give commands to the projection display device 104. The UI 212 may include menus and operation commands presented in a graphical form or a textual form on a display for the user to choose from. The UI 212 may further include one or more buttons to enable the user to operate the projection display device 104. The UI 212 may include a set of keys for handling tasks such as power On/Off, navigation among menu items, audio volume control, or it could include a touch pad for navigation with a cursor, or it could even include a QWERTY keypad for text entry. The display 106 from the projection display device 104 may be used to present the menus that support the UI 212 functions, in accordance with various embodiment of the present invention.
Alternatively, an LCD could display the selected operation commands on its screen for visual confirmation from the user and display information for system dialogue when the display 106 is not properly functioning. The UI 212 could also include indicators such as icons lit by LEDs or electroluminescent light sources to communicate power status, battery charging status, data communication status, and the like. In an embodiment of the present invention, the UI 212 may be used to operate the host device 102. For example, if the host device 102 is a mobile phone, the user may see the UI of the mobile phone at a much higher resolution. Similarly, the projection display device 104 may show a high resolution view of a calendar or a phone book data that resides in the host device 102. The host device 102 would transfer this data to the projection display device 104 and the projection display device 104 would process the data to generate a high resolution display. In more advanced applications, the projection display device 104 could be used as an extension to a UI of the host device 102. The UI of the host device 102 has also been referred to as a host device UI. Users could create message texts or documents using a QWERTY keyboard attached to the projection display device 104 and view the entered texts on the display 106 produced by the projection display device 104. The texts can then be communicated to the host device 102 either in a streaming fashion or in a data block. The texts may be processed by an application software such as an email, document processors, and the like, on the host device 102. Users could also view a high resolution version of application software of the host device 102 such as a document processing software, a web navigation software, a multimedia handling software, and a gaming software on the display 106 created by the projection display device 104. The elements of UI 212, such as, the key presses, the QWERTY keyboard, a touch pad, etc., may be used by the users to interface with the above mentioned application software to fulfill functions such as menu selections, text entrances, graphics navigation. The commands entered by the users, after viewing the high resolution images of the application, can be communicated to and processed by the application software running on the host device 102. The high resolution image of a new document, a new web page, a new video/picture or a new game frame can be rendered by the system processor 204 and displayed by the projection display device 104. In an embodiment of the present invention, the elements of UI 212 may be used to control the host device 102 by enabling the UI 212 to perform some functions of the host device UI. For example, when the host device 102 is a mobile phone, the projection display device 104 could use UI 212 to browse the phone book, to initiate a phone call, to answer a phone call, to mute or the change the volume/ring tone of the mobile phone. In another embodiment of the present invention, the projection display device 104 may be used together with the host device UI to perform more advanced communication tasks. For example, when the host device 102 is a camera phone, the projection device 104 can enable a video conferencing session by displaying the incoming video images on the projected display 106 at higher resolution and larger physical size than the built-in display on the host device 102, while the camera on the host device 102 could be more optimally oriented to capture the video images of sending end participants.
A decoding module 324, present in the system processor 308, decodes the received inputs for generating a high resolution display. The system processor 308 may perform the decoding operation by executing software instructions, through dedicated decoding hardware, or through a combination of various existing methods. The decoding steps followed by the system processor 308 are same as the steps described for the system processor 204 (described in conjunction with
The projection display device 300 further includes a UI 334 for enabling a user to interact with the projection display device 300. For example, the UI 334 may provide menus and operation commands to the user to operate the projection display device 300. The UI 334 could include key presses for handling tasks such as power On/Off, navigation among menu items, audio volume control, in accordance with an embodiment of the present invention. The UI 334 includes a touch pad for navigation with a cursor, in accordance with another embodiment of the present invention. The UI 334 may include a QWERTY keypad for text entrance, in accordance with yet another embodiment of the present invention. The display 106 from the projection display device 300 can be used to present the menus in UI functions. Alternatively, an LCD 336 could display the selected operation commands on its screen for visual confirmation from the user and display information for system dialogue when the display 106 is not proper. The UI 334 could also include indicators such as icons lit by LEDs or electroluminescent light sources to communicate power status, charging status, data communication status, and the like. In various embodiments of the present invention, the projection display device 300 further includes a power source 338, coupled to a power management unit 340. In an embodiment of the present invention, the power source 338 is connected to an Alternating Current (AC) adapter 342 through a three-pin connector 344. The power source 338 provides power to various units of the projection display device 300 for their operations. The projection display device 300 may also include an audio support unit 346, coupled to a speaker 348, an audio jack 350, and having an audio interface 352, to provide sound while playing video files. The audio interface 352 provides the ability to decode encoded audio content, which may be a part of an encoded video file. For example, audio interface 352 may decode encoded audio content into a form that the audio support unit 346 would process into analog audio signals. These analog audio signals may be used to drive the speaker 348 or the audio output jack 350. The audio support unit 346 may provide the ability to amplify the analog audio signals to produce a louder output sound from the speaker 348 or the audio jack 350.
Various embodiments of the present invention, as described above, provide a projection display device for projecting a high resolution image. The projection display device is capable of decoding the received encoded inputs, which results in eliminating the need for any third party device, such as a computer, to perform the decoding. In addition, the projection display device supports transfer of data at a high rate due to transfer of encoded data.
Advantageously, the projection display device enables a high resolution image through image projection such that the size of the image can be adjusted to a much larger size than provided by the host device. Further, the image size can be determined to be within a wide range. In addition, the projection display device is capable of generating and displaying high resolution images regardless of factors such as the processing capability of the host device, the resolution of the original files, or the speed of the data interface. The projection display device is further capable of operating the host device, and may be operable from the host device as well. The projection display device provides similar levels of mobility as a large suite of host devices.
It is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
In the foregoing specification, the invention and its benefits and advantages have been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.