The present invention relates to a projection image display apparatus.
In a projection display apparatus such as a liquid crystal projector, a display element such as a liquid crystal panel is irradiated with light emitted from a light source such as a mercury lamp, and an image formed on the display element is enlarged and projected onto a screen through a projection lens.
A configuration of an optical system in the apparatus includes an optical unit (hereinafter referred to as an optical engine) which irradiates a liquid crystal panel with light emitted from a light source to form an image and a projection optical system which enlarges and projects the image formed on the liquid crystal panel through a projection lens. An optical engine in a color image display apparatus is provided with three liquid crystal panels for the three primary colors (RGB) as display elements, a color separating system for separating the colors of irradiation light, and a color synthesizing system for synthesizing the colors of an image. The projection optical system is provided with a lens shift mechanism for moving the projection lens in a direction perpendicular to an optical axis in order to adjust an image display position on a screen.
Here, as a method for fixing the projection lens so as not to easily move, a technique in which a lock plate is moved in an optical axis direction to perform a locking operation is disclosed (see Patent Document 1).
Japanese Patent Application Laid-Open Publication No. 2010-078776
According to Patent Document 1, in order to detach a projection lens, after a tab of a lock plate is once moved in an optical axis direction to release a lock, a lens fixing plate needs to be rotated in a detachment direction, and this makes the user's operation complicated. However, when it is tried to ensure the operability of a user, a large space has to be provided around the tab, and this causes a problem that the size of a set increases and the structure of the set becomes complicated. Further, there is also a problem that the number of components increases, which leads to the cost increase.
Therefore, an object of the present invention is to provide a projection image display apparatus capable of attaching and detaching a projection lens with a simple mechanism.
For the solution of the above-mentioned problems, one of desirable aspects of the present invention is as follows. The projection image display apparatus includes an optical engine which irradiates a display element with light emitted from a light source to form an image, a projection lens to enlarge and project the image emitted from the optical engine, a lens shift mechanism for adjusting a position of an image projected onto a screen, a lens attachment unit for attaching the projection lens to the lens shift mechanism, and a first plate for attaching the projection lens to the lens attachment unit to achieve a locked state, and the attachment of the projection lens to the lens attachment unit and the achievement of the locked state are performed by only rotation of the first plate in a first direction. Also, detachment of the projection lens and release of the locked state are performed by only rotation of the first plate in a second direction opposite to the first direction.
According to the present invention, it is possible to provide a projection image display apparatus capable of attaching and detaching a projection lens with a simple mechanism.
An embodiment will be described below with reference to the drawings.
The optical engine 2 is composed of a light source unit 21, a color separating optical system 22, and a color synthesizing optical system 23. These components are housed in a cylindrical light guide 20 and are respectively fixed to predetermined positions. The light source unit 21 is a light source such as an ultra-high pressure mercury lamp and emits substantially white light. The color separating optical system 22 separates the substantially white light into lights of the three primary colors of R, G and B and guides each of the lights of the three primary colors to each corresponding liquid crystal panel. The color synthesizing optical system 23 has liquid crystal panels 231 for R, G and B and a cross dichroic prism 232, and forms respective images based on RGB signals and performs color synthesis of these images.
The projection optical system 3 is composed of a projection lens 31 and a lens shift mechanism 32. Image light emitted from the color synthesizing optical system 23 is enlarged by the projection lens 31 and is projected onto a screen or the like. The lens shift mechanism 32 holds the projection lens 31 and moves the projection lens 31 in two axial directions perpendicular to an optical axis (projection direction), and includes a horizontal-direction (X-direction) driving unit 32x and a vertical-direction (Y-direction) driving unit 32y. The projection lens 31 is fixed to lens attachment surfaces of the lens shift mechanism 32. Thus, a position of an image to be projected onto the screen can be adjusted by moving it in a horizontal direction and a vertical direction.
In the present embodiment, attachment and locking of the projection lens to the lens shift mechanism and detachment and unlocking of the projection lens are each achieved by one operation. A method thereof will be described in detail below with reference to the drawings.
The lens fixing plate 54 has concave notch portions 61 having the same phase as the convex portions 41, and attaches and detaches the projection lens 31 in a state where the notch portions 61 and the lens attachment surfaces 52 are matched in phase. When the convex portions 41 are fitted in the lens attachment surfaces 52 and the notch portions 61, the projection lens 31 can be positioned in a rotational direction. The lens fixing plate 54 rotates around an optical axis of the projection lens 31 with respect to the lens attachment unit 51.
In the lock unit 7, a pin 71 connected to the lock plate 72 and serving as a rotation axis of the lock plate 72 is swaged. Also, the lock unit 7 includes a lever 77.
The lock plate 72 has a hook shape and includes an urging spring 73, an E ring 74, a tab 75, and a hook 76. The lock unit 7 is provided to prevent the projection lens 31 from dropping off by the rotation of the lens fixing plate 54 due to vibration or the like. The lock plate 72 rotates around the pin 71 and is urged by the urging spring 73 in a locking direction.
The lens attachment unit 51 has a concave portion 81 on which the hook 76 is to be hung. When the lever 77 is pushed up, the lens fixing plate 54 rotates rightward in the drawing, so that the hook 76 is hung on the concave portion 81 (i.e., the projection lens 31 enters a locked state). In this manner, by just the one operation of rotating the lens fixing plate 54, the convex portions 41 and the notch portions 61 deviate in phase, so that the projection lens 31 is attached to the lens attachment unit 51 and enters the locked state.
Also, when the tab 75 is pushed down in the locked state, the lens fixing plate 54 rotates leftward in the drawing, so that the hook 76 being hung comes off the concave portion 81 (i.e., the locked state is released). Then, when the tab 75 is further pushed down, the tab 75 comes in contact with the lever 77, and these are pushed down together. As a result, the lock plate 72 and the lens fixing plate 54 rotate together, and the state 90 in
As described above, the attachment and the locking of the projection lens 31 can be achieved by one operation of pushing up the lever 77, and the detachment and the unlocking of the projection lens 31 can be achieved by one operation of pushing down the tab 75.
According to the present embodiment, an operation for attaching and detaching the projection lens can be performed by one action with a simple mechanism. More specifically, an operation for attaching and locking the projection lens or an operation for detaching and unlocking the projection lens can be performed by one action seamlessly without any distinction. As a result, operability of a user can be significantly improved and the number of components can be reduced to achieve the cost reduction.
1 . . . housing, 2 . . . optical engine, 3 . . . projection optical system, 20 . . . light guide, 21 . . . light source unit, 22 . . . color separating optical system, 23 . . . color synthesizing optical system, 231 . . . liquid crystal panel, 232 . . . cross dichroic prism, 31 . . . projection lens, 32 . . . lens shift mechanism, 40 . . . mirror cylinder of projection lens, 41 . . . convex portion of mirror cylinder of projection lens, 51 . . . lens attachment unit, 52 . . . lens attachment surface, 53 . . . spring, 54 . . . lens fixing plate, 61 . . . notch portion of lens fixing plate, 7 . . . lock unit, 71 . . . pin, 72 . . . lock plate, 73 . . . urging spring, 74 . . . E ring, 75 . . . tab, 76 . . . hook, 77 . . . lever, 81 . . . concave portion of lens attachment unit
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/006309 | 11/11/2011 | WO | 00 | 5/5/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/069065 | 5/16/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6364491 | Okada et al. | Apr 2002 | B1 |
6452733 | Verbiest | Sep 2002 | B2 |
6778340 | Hoshide | Aug 2004 | B2 |
6909560 | Lin | Jun 2005 | B2 |
7165848 | Gishi | Jan 2007 | B2 |
7954964 | Kitahara | Jun 2011 | B2 |
20040027692 | Hoshide | Feb 2004 | A1 |
20050030492 | Gishi | Feb 2005 | A1 |
20050083585 | Lin | Apr 2005 | A1 |
20070133109 | Kuroki | Jun 2007 | A1 |
20080252995 | Wei et al. | Oct 2008 | A1 |
20090185145 | Kitahara | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
100592186 | Feb 2010 | CN |
2001-166380 | Jun 2001 | JP |
2001-207712 | Aug 2001 | JP |
2004-133358 | Apr 2004 | JP |
2010-72456 | Apr 2010 | JP |
2010-78776 | Apr 2010 | JP |
Entry |
---|
Taiwanese Office Action for Taiwanese Patent Application No. 101139248, issued on Mar. 5, 2014. |
Number | Date | Country | |
---|---|---|---|
20140313492 A1 | Oct 2014 | US |