Projection lamp safety interlock apparatus and method

Information

  • Patent Grant
  • 6424097
  • Patent Number
    6,424,097
  • Date Filed
    Friday, May 12, 2000
    24 years ago
  • Date Issued
    Tuesday, July 23, 2002
    22 years ago
Abstract
A safety interlock apparatus for an electrical device includes a DC power supply, a ballast power supply including a ballast control circuit that controls a ballast power circuit, and a lamp. A relatively low voltage electrical connection is present between the DC power supply and the ballast control circuit. A relatively high voltage electrical connection is present between the lamp and the ballast power circuit. A safety interlock switch is positioned on the relatively low voltage electrical connection, the switch having a closed state wherein the relatively low voltage is supplied to the ballast control circuit and an open disconnected state wherein the relatively low voltage electrical connection is disconnected. A panel is fixable to the electrical device frame, and is selectively movable to expose the lamp for removal. The panel has a switch actuator positioned thereon operable to actuate the interlock switch to the open disconnected state when the panel is removed from the device, thereby disconnecting power to the ballast control circuit, which in turn immediately disables the ballast power circuit, rendering the lamp safe for removal.
Description




RELATED APPLICATIONS




Not Applicable




FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




Not Applicable




TECHNICAL FIELD




This invention relates to safety interlock devices and more particularly to an electromechanical interlock connector for supplying power to an arc lamp module and concurrently securing the arc lamp module within an image projector.




BACKGROUND OF THE INVENTION




There are previously known safety interlocking systems for protecting electrical equipment users and technicians against hazards, such as electrical shock, bums, radiation, and improper operating modes.




For example, it is well known to enclose a hazardous apparatus in a protective cage having an access door or panel, the removal of which actuates a safety interlock switch. Such a safety interlock switch typically removes primary power from the electrical equipment and must, therefore, be rated to carry primary currents and voltages.




In another example, some electrical equipment include a module that is removable for servicing or replacement. Often the removable module is secured behind or attached to an access panel. Typically, such removable modules are secured within the electrical equipment by mechanical fasteners and have separate electrical interconnections, safety interlock switches, and related wiring harnesses.




Portable image projectors present an interesting mix of requirements and hazards. Many such projectors employ a metal-halide or mercury vapor arc lamp that operates at a very high temperature, requires a high voltage pulse to ignite the arc, must be readily replaceable, must be compact and lightweight, and must be packaged to protect users and the projector from heat, high voltage, and improper operating modes, such as operation of equipment at excessive temperatures, and high-voltage pulse generation during arc lamp replacement.




Portable image projectors are generally referred to as being “ultra-portable” if they are small enough and light enough to be carried by one hand. However, in order to safely manage the above-described arc lamp hazards, prior art safety interlock apparatus have generally been relatively heavy and bulky, rendering them undesirable for use in ultra-portable projectors.




One such conventional prior art safety interlock design is shown in FIG.


1


. As indicated, a DC power supply


1


A receives high voltage alternating current (“AC”) line power from an electrical outlet along line


2


A and provides positive direct current (“DC”) voltage to a lamp ballast power supply


3


A, which generates a ballasted voltage for lamp


5


A. A safety interlock switch


7


A is placed along AC line


2


A upstream of the DC power supply. To shut down the projector for lamp removal or the like, switch


7


A is automatically actuated by opening a lamp access panel to interrupt the high voltage line current along line


2


A. Interruption of the line power eliminates power to the DC power supply


1


A, ballast power supply


3


A, and lamp


5


A, thereby rendering the projector safe for lamp removal. While this prior art approach is effective, interruption of the relatively high voltage AC line power requires a relative large, expensive safety interlock switch


7


A. Such high voltage switch needs to be well insulated and have substantial contact spacing requirements (e.g. 3 mm) in order to prevent electrical arcing, both of which tend to increase the size, weight and cost of the switch


7


A.




What is needed, therefore, is a compact, lightweight, inexpensive and safe safety interlock system that is suitable for use in portable and ultra-portable image projectors.




SUMMARY OF THE INVENTION




An object of this invention is, therefore, to provide a lamp apparatus that is suitable for use in portable and ultra-portable image projectors.




Another object of this invention is to provide a replaceable arc lamp module having a low power electrical safety interlock apparatus.




A further object of this invention is to provide a method for safely replacing an arc lamp in an image projector.




A safety interlock apparatus for an electrical device in accordance with this invention includes a DC power supply, a ballast power supply including a ballast control circuit that controls a ballast power circuit, and a lamp all housed within the frame. A relatively low voltage electrical connection is present between the DC power supply and the ballast control circuit. A relatively high voltage electrical connection is present between the lamp and the ballast power circuit. A switch is positioned on the relatively low voltage electrical connection, the switch having a closed state wherein the relatively low voltage is supplied to the ballast control circuit and an open disconnected state wherein the relatively low voltage electrical connection is disconnected. A panel is fixable to the frame to close the cavity within the frame, and selectively movable to expose the lamp for removal. The panel has a switch actuator operable to actuate the switch to the open disconnected state when the panel is removed from the device, thereby disconnecting power to the ballast control circuit, which in turn immediately disables the ballast power circuit, rendering the lamp safe for removal.




An advantage of this invention is that the switch, being connected to a relatively low voltage circuit, may be of compact and inexpensive design.




Another advantage of this invention is that when the panel is moved to expose the cavity, power is removed from the ballast, thereby preventing users from receiving electrical shocks.




Yet another advantage of this invention is that the switch and switch actuator design of the safety interlock circuit that “fails” in a safe, open-circuit condition.




Additional objects and advantages of this invention will be apparent from the following detailed description of a preferred embodiment thereof that proceeds with reference to the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an electrical schematic diagram showing a prior art embodiment of a safety interlocking lamp interlock apparatus.





FIG. 2

is a front isometric view of an image projector in an inverted position showing a lamp access panel removed for lamp access.





FIG. 3

is a rear isometric, cutaway view of an image projector in an inverted position showing portions of a safety interlocking lamp connector of this invention.





FIG. 4

is an electrical schematic diagram showing a preferred embodiment of a safety interlocking lamp interlock circuit of this invention.











DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT





FIG. 2

,hows an image projector


10


(hereafter “projector


10


”) in an inverted position. The projector comprises a housing


12


having a lamp module cavity


13


, into which a lamp module


14


may be slid ably removed or inserted. Cavity


13


is sized to closely mate with lamp module


14


, thereby properly aligning and positioning lamp module


14


as it slides into or out of cavity


13


. When fully inserted into cavity


13


, lamp module


14


is covered by an access panel


16


that snaps into place. The present invention is directed to a safety interlock system that automatically eliminates lamp voltage upon removal of the access panel


16


, thereby permitting safe access to the lamp module


14


for removal and replacement.





FIG. 4

depicts the schematic electrical design of the present safety interlock system


38


. A DC power supply


40


receives relatively high voltage alternating current line power (typically ranging from 100 to 230 V AC) from an electrical outlet along line


42


. A bridge rectifier


44


receives the line power and produces relatively high DC voltage (around 300 V DC in the preferred embodiment). Such high DC voltage is supplied along line


46


to a fly back converter


48


positioned within the DC power supply, and to a lamp ballast power supply


50


. Ballast power supply


50


includes a ballast control circuit


52


and a ballast power circuit


54


, which generates a ballasted AC voltage for lamp


56


.




The fly back converter


48


produces a relatively low DC voltage (around 12 V DC in the preferred embodiment) supplied along line


58


to ballast control circuit


52


. A safety interlock switch


53


is located along line


58


to automatically cut the voltage to ballast control circuit


52


in the event of removal of the access panel


16


from the projector


10


. Safety interlock switch


53


and its coupling to the access panel


16


are described in detail below.




Ballast control circuit


52


is electrically connected to and controls ballast power circuit


54


through line


60


. Ballast power circuit


54


may be of conventional design and contains several semiconductor switches along with passive L, C, and R filters that receive the high voltage DC current from line


46


. Ballast control circuit


52


is connected to such switches through a plurality of lines


60


and generates control signals to control the ballast power circuit switches. Such switches are operated in specific timing sequences in order to produce sufficient AC voltage through line


62


for the lamp in operation (around 85 V AC in the preferred embodiment) and the high voltage at lamp ignition (around 20 KV AC in the preferred embodiment). In the event that line


58


is broken by opening switch


53


(i.e., actuating the switch


53


to an open disconnected state), the control signals from ballast control circuit


52


are eliminated, which interrupts the sequenced switch operation in the ballast power circuit


54


and immediately eliminates the high voltage output


62


from the ballast power supply to the lamp


56


, thereby rendering the projector


10


safe for removal of the lamp.




A thermal switch


64


may also be positioned adjacent the lamp module


14


. Like operation of the safety interlock switch, thermal switch


64


is opened in the event of a pre-determined over temperature adjacent the lamp module to eliminate high voltage to the lamp


56


.




In another embodiment, the safety interlock switch could be placed along line


60


to interrupt the control signals downstream of the ballast control circuit


52


. Alternatively, the safety interlock switch could be placed directly within the ballast control circuit to interrupt control signal output.




The mechanical design of the preferred embodiment will now be described in detail. As shown in

FIG. 2

, lamp access panel


16


is secured to housing


12


by a snap latch with male and female portions


68




a


,


68




b


. Male portion


68




a


is formed in the access panel to provide a cavity on the outward facing surface of the access panel


16


and a male snap protrusion on the inward facing surface of the access panel. The male snap protrusion snaps into female portion


68




b


, which is a cavity formed in the housing


12


. The cavity of the upper portion


68




a


is sized to receive a screwdriver or similar tool to facilitate access panel removal from the projector. The housing has a shallow depression


69


shaped to receive the access panel


16


to further register and secure the access panel to the projector


10


. Lamp module


14


slides in and out of housing


12


along a direction defined by cavity


13


, and is secured in place by fasteners such as screws


67




a


,


67




b


or the like.




The safety interlock apparatus will now be described in detail by reference to

FIGS. 1 and 3

. A switch cavity


71


(see

FIG. 2

) is formed in the housing adjacent the lamp module


14


. A safety interlock switch


53


(see

FIG. 3

) is mounted adjacent the lamp module cavity


13


at the distal end of switch cavity


71


within the housing


12


. Access panel


16


has a switch actuator


70


extending therefrom that is received into cavity


71


when the access panel is placed over the lamp module


14


and snapped into place, as shown in FIG.


2


. As best shown in

FIG. 3

, actuator


70


has a sloped cam surface


72


that couples with switch


53


when access panel


16


is installed on the housing


12


.




Switch


53


includes a deflectable switch lever


76


, which may be formed in a “question mark” shape to smoothly contact the cam surface


72


as the actuator moves into the cavity


71


, which results in the switch lever


76


being deflected along direction


78


into a closed position to permit operation of the projector


10


.

FIG. 3

shows the switch


53


in such closed state. Correspondingly, removal of access panel


16


removes actuator


70


contact with the switch lever


76


, whereby switch lever deflects along direction


78


(i.e. rightward in

FIG. 3

) into a disengaged open position wherein lamp power is interrupted and the projector is made safe for lamp removal. The open position is a default position so that power is interrupted to the lamp in any event that switch actuator


70


is removed from contact with switch lever


76


.




In present invention, since switch


53


breaks a relatively low voltage circuit


58


, electrical arcing considerations are minimal. Thus, a small switch may be utilized without substantial contact spacing or stringent insulation requirements. As a result, the present switch


53


is smaller and less expensive than analogous switches in prior art safety interlock circuits. One preferred example of a switch


53


according to the present invention is a Model 311 SM5-T Micro switch from Honey well Corp. A variety of other similar switches would also operate well with the invention.




One preferred ballast power supply is a model from OSRAM Sylvania, of Danvers, Mass. It is to be understood that the ballast power supply could be of numerous other makes and designs, so long as the relatively high voltage power circuit is control by a relatively low voltage control circuit. A preferred lamp is 120 watt high pressure mercury vapor lamp manufactured by OSRAM Sylvania of Danvers, Mass. It is to be understood that a variety of lamps of various designs and wattages may be applied to this invention, which will of course will vary the voltage requirements of the DC power supply and ballast power supply systems.




As described, preferred DC power supply


40


incorporates fly back converter


48


to provide both relatively high voltage (300 VDC) and relatively low voltage (12 VDC) outputs. While fly back converter


48


is integrally designed into the preferred DC power supply


40


of the present invention, it is to be understood that separate DC power supplies may be employed, with each producing a respective high or low voltage output




Removing lamp module


14


from projector


10


entails removing the power cord (not shown) from projector


10


, ensuring that lamp module


14


is sufficiently cool to handle, removing the lamp module access panel


16


from projector


10


, which automatically actuates the safety interlock switch


24


to ensure disengagement of power to the lamp


56


as described above. Lamp module


14


, including lamp


56


and its pre wired assembly may then be safely lifted out of the projector


10


.




Installing a replacement lamp


56


in projector


10


entails installing lamp


56


and its pre wired assembly in lamp module


14


, sliding lamp module


14


into lamp cavity


13


, securing the screw connectors


67




a


,


67




b


, and snapping lamp access panel


16


into place on the projector


10


, and reinserting the power cord in projector


10


.




Skilled workers will recognize that portions of this invention can be implemented differently from the implementation described above for a preferred embodiment. For example, the safety interlock of this invention may be applied to virtually any electrical apparatus requiring a removable module enclosing an electrical load. The switch may be of various different types and constructions.




It will be obvious to those having skill in the art that many changes can be made to the details of the above-described embodiment of this invention without departing from the underlying principles thereof. Accordingly, it will be appreciated that this invention is also applicable to safety interlock applications other than those found in image projectors. The scope of the present invention should, therefore, be determined only by the following claims.



Claims
  • 1. A safety interlock apparatus for an electrical device that includes a power supply and an electrical load, comprising:a frame; a DC power supply, a ballast power supply including a ballast control circuit and a ballast power circuit, and a lamp module configured for insertion into or removal from the frame, the ballast control circuit producing control signals for delivery to the ballast power circuit to control its operation and the lamp module configured for installation of a lamp; a first electrical connection between the DC power supply and the ballast power supply, the first electrical connection including a relatively low voltage electrical connection supplying a relatively low voltage for control of the ballast power supply; a second electrical connection between the lamp and the ballast power supply; a switch positioned in operative association with the ballast power supply to provide an interruptible low voltage electrical connection that controls production of the control signals or their delivery to the ballast power circuit, the switch including a switch lever and having a first state in which the relatively low voltage electrical connection enables production and delivery of the control signals to and thereby enables power output from the ballast power circuit, and a second state in which the relatively low voltage electrical connection does not enable production and delivery of the control signals to and thereby disables power output from the ballast power circuit; and a panel fixable to the frame and positioned to provide access to and sufficient clearance for the lamp module to facilitate its removal from the frame for lamp access, the panel having an actuator that is operable to actuate the switch from the first state to the second state when the panel is moved to open the frame, thereby disabling power output from the ballast power circuit to the lamp, and to contact the switch lever to actuate the switch from the second state to the first state when the panel is fixed to the frame.
  • 2. The interlock apparatus of claim 1, in which the switch is positioned to provide an interruptible electrical connection between the DC power supply and the ballast power supply.
  • 3. The interlock apparatus of claim 2, in which the DC power supply comprises a fly back converter and the switch is positioned to provide an interruptible electrical connection between the fly back converter and the ballast control circuit.
  • 4. The interlock apparatus of claim 1, in which the electrical device is an image projector and the ballast power circuit provides electric power to the lamp.
  • 5. The interlock apparatus of claim 1, further comprising a thermal switch that is actuated in response to an over-temperature condition associated with the electrical device, the thermal switch being in electrical series connection with the switch to interrupt power from the ballast power supply.
  • 6. The interlock apparatus of claim 1, in which the DC power supply comprises a fly back converter that produces the relatively low voltage connection supplying a relatively low voltage for control of the operation of the ballast power supply.
US Referenced Citations (14)
Number Name Date Kind
4093366 Hapke Jun 1978 A
4387951 Hall et al. Jun 1983 A
4455509 Crum et al. Jun 1984 A
4470100 Rebaudo et al. Sep 1984 A
5084653 Nilssen Jan 1992 A
5117178 Roth May 1992 A
5166579 Kawabata et al. Nov 1992 A
5205753 Butterfield et al. Apr 1993 A
5347324 Sasaki et al. Sep 1994 A
5670846 Hollaway Sep 1997 A
5676442 Fujimori Oct 1997 A
5855488 Heintz et al. Jan 1999 A
6034485 Parra Mar 2000 A
6051940 Arun Apr 2000 A