1. Field of the Invention
The present invention relates to a projection lens and a projection device thereof, and more specifically, to a projection lens having a short throw function and a projection device thereof.
2. Description of the Prior Art
With development of technology, a projection device has been commonly used for presenting image information in a meeting. Due to limited space of a meeting room, a projection device having a projection lens with an ultra-short focal length is widely applied to image projection since it is convenient to carry as well as easy to adjust its focus. A conventional lens mechanism of short throw projectors is composed of two lens groups including five lenses. In this design, one lens group close to a projection screen has a negative diopter for diverging light, and the other lens group away from the projection screen has a positive diopter for converging light. However, this design usually needs to utilize an aspherical lens with a high cost to eliminate lateral color aberration of light, so as to greatly increase the manufacturing cost of the short throw lens mechanism. Thus, how to reduce the manufacturing cost of the short throw lens mechanism and further eliminate lateral color aberration of light is one of the major issues in the optical lens industry.
The present invention provides a projection lens applied to image projection of a projection device. The projection device is used for projecting images to a screen and includes an imaging unit. The projection lens includes a first lens group and a second lens group. The first lens group has a negative diopter. The first lens group is adjacent to the screen and has a first lens. The first lens has a first negative diopter. The second lens group has a positive diopter. The second lens group is adjacent to the imaging unit and includes a second lens, a third lens, a fourth lens, and a fifth lens. The second lens has a second negative diopter. The third lens and the fourth lens are located between the first lens and the second lens. The fifth lens is located between the imaging unit and the second lens. The fifth lens is an aspherical lens. A refractive index of the first lens is less than or equal to 1.64, an ABBE number of the first lens represents Vd1, an ABBE number of the second lens represents Vd2, 0.4≦Vd2/Vd1≦1.2, and Vd1<50.
The present invention further provides a projection device for projecting images to a screen. The projection device includes alight source, an imaging unit, and a projection lens. The light source is used for providing light. The imaging unit is used for receiving the light. The projection lens is disposed between the imaging unit and the screen for projecting the light to the screen. The projection lens includes a first lens group and a second lens group. The first lens group has a negative diopter. The first lens group is adjacent to the screen and has a first lens. The first lens has a first negative diopter. The second lens group has a positive diopter. The second lens group is adjacent to the imaging unit and comprising a second lens, a third lens, a fourth lens, and a fifth lens. The second lens has a second negative diopter. The third lens and the fourth lens are located between the first lens and the second lens. The fifth lens is located between the imaging unit and the second lens. The fifth lens is an aspherical lens. A refractive index of the first lens is less than or equal to 1.64, an ABBE number of the first lens represents Vd1, an ABBE number of the second lens represents Vd2, 0.4≦d2/Vd1≦1.2, and Vd1<50.
The present invention further provides a projection lens applied to image projection of a projection device. The projection device is used for projecting images to a screen and includes an imaging unit. The projection lens includes a first lens group and a second lens group. The first lens group has a negative diopter. The first lens group is adjacent to the screen and has a first lens. The first lens has a first negative diopter. The second lens group has a positive diopter. The second lens group is adjacent to the imaging unit and includes a second lens, a third lens, a fourth lens, and a fifth lens. The second lens has a second negative diopter. The third lens and the fourth lens are located between the first lens and the second lens. The fifth lens is located between the imaging unit and the second lens. A refractive power of the first lens is less than refractive powers of the second lens, the third lens, the fourth lens, and the fifth lens. An ABBE number of the first lens represents Vd1, an ABBE number of the second lens represents Vd2, 0.4≦Vd2/Vd1≦1.2, and Vd1<5 0.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
Please refer to
Furthermore, as shown in
For reducing the manufacturing cost of the projection lens 18 and improving the structural design of the projection lens 18, the present invention could preferably constrain a distance ratio of the projection lens 18 to the imaging unit 16 and a focal length ratio of the first lens group 24 to the second lens group 26, but not limited thereto. For example, a distance between the first lens 28 and the third lens 32 represents d1 (substantially regarded as a front focal length of the projection lens 18), a distance between the fifth lens 36 and the imaging unit 16 represents dbf1 (substantially regarded as a back focal length of the projection lens 18), a focal length of the first lens 28 represents f1, and a focal length of the second lens 30 represents f2. In this embodiment, dbf1/d1≦1, and dbf1-≧20 mm. Further, 0.2≦|f2|/|f1|≦0.5. That is, in practical application, if the distance ratio of the projection lens 18 to the imaging unit 16 is larger than the aforesaid upper limit (i.e. dbf1/d1>1), it causes that the overall length of the projection lens 18 is relatively short, the back focal length dbf1 of the projection lens 18 is relatively long, and the projection lens 18 needs more lens components to eliminate color aberration of light. Accordingly, the related design and manufacturing costs could be increased. Furthermore, since the first lens group 24 and the second lens group 26 are very close to each other, structural interference between the first lens group 24 and the second lens group 26 could occur easily to cause damage of the projection lens 18 during the projection device 10 performs a focal adjustment operation. On the contrary, if the distance ratio of the projection lens 18 to the imaging unit 16 and the focal length ratio of the first lens group 24 to the second lens group 26 conform to the aforesaid constraints (i.e. dbf1/d1≦1, dbf1≧20 mm, and 0.2≦|f2|/|f1|≦0.5), the overall length and the back focal length dbf1 of the projection lens 18 could be adjusted appropriately, so as to surely prevent interference between the projection lens 18 and other components (e.g. the imaging unit 16) in the projection device 10 and efficiently reduce the design and manufacturing costs of the projection lens 18. To be noted, as shown in Table 1, considering a plus or minus sign of the focal length of each lens, the focal lengths of the second lens 30, the third lens 32, the fourth lens 34, and the fifth lens 36 are larger than the focal length of the first lens 28. On the other hand, considering an absolute value of the focal length of each lens, the second lens 30 has the minimum focal length. That is, compared with the first lens 28, the third lens 32, the fourth lens 34, and the fifth lens 36, the second lens 30 closest to the aperture 19 could have the maximum refractive power for further eliminating lateral color aberration of light.
Please refer to
In summary, the present invention adopts the lens design that the first lens group with a negative diopter has the first lens with a negative diopter, the second lens group with a positive diopter includes the second lens with a negative diopter, the ABBE number of the first lens is less than 50, and the ratio of the ABBE number of the first lens to the ABBE number of the second lens is between 0.4 and 1.2 (i.e. 0.4≦Vd2/Vd1≦1.2), to efficiently correct image distortion and eliminate lateral color aberration of light, so as to improve the image quality of the projection device and reduce the lens amount of the projection lens.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
104125162 | Aug 2015 | TW | national |