1. Field of the Invention
The present invention relates to a projection lens and a projection device thereof, and more particularly, to a short throw projection lens and a related projection device having a short throw projection lens.
2. Description of the Prior Art
With the advanced technology, the projection device is utilized to display image information in conferences, and the short throw projection lens becomes popular due to its properties of easy portability and convenient focus adjustment for the narrow council room. The conventional projection lens is expensive and achieves short throw effect by secondary imaging technique, so that design of a short throw projection lens with advantages of lower cost and easy mass production is an important issue in the optical lens industry.
The present invention provides a short throw projection lens and a related projection device having a short throw projection lens for solving above drawbacks.
According to the claimed invention, a projection lens includes a first lens group adjacent to an object side, and a second lens group adjacent to an image side. The first lens group includes a first lens, a second lens and a third lens having negative diopter. The first lens is an aspheric lens adjacent to the object side, and the second lens is located between the first lens and the third lens. The second lens group has positive diopter. An effective focal length of the projection lens represents f, a focal length of the first lends group represents fG1, focal length of the first lens, the second lens and the third lens respectively represents fL1 fL2 and fL3, and
According to the claimed invention, a projection device of projecting an image on a screen is disclosed. The projection device includes a light source for emitting light, an imaging unit for receiving the light, and a projection lens disposed between the screen and an imaging unit to project the light on the screen. The projection lens includes a first lens group adjacent to the screen, and a second lens group adjacent to the imaging unit . The first lens group includes a first lens, a second lens and a third lens having negative diopter. The first lens is an aspheric lens adjacent to the object side, and the second lens is located between the first lens and the third lens. The second lens group has positive diopter. An effective focal length of the projection lens represents f, a focal length of the first lends group represents fG1, focal length of the first lens, the second lens and the third lens respectively represents fL1, fL2 and fL3, and
The present invention designs the non-telecentric projection lens which applies the aspheric lens to be the first lens of the lens group. The present invention utilizes the aspheric lens to correct optical defect such as imaging distortion and chromatic aberration, not only can effectively increase imaging quality of the projection device but also decreases the lens amount of the projection lens to provide advantages of inexpensive cost and easy mass production.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
Please refer to
In the present invention, a focus ratio of the first lens group 24 to the projection lens 18 is constrained within a specific range for balancing the manufacturing cost and structural design of the projection lens 18. For example, an effective focal length of the projection lens 18 represents f, a focal length of the first lens group 24 represents fG1, the effective focal length f preferably ranges from 5 to 7 millimeter (such as 5.0 mm ≦f≦7.0 mm), and the focus ratio of the focal length fG1 to the effective focal length f preferably equals 0.75≦|fG1|/f≦1.28.
Please refer to
As shown in
In addition, the third lens 32 of the present invention is designed to have greater refractive power. For instance, the focal length of the first lens 28 represents fL1, the focal length of the second lens 30 represents fL2, the focal length of the third lens 32 represent fL3, and a formula of
is set accordingly. That is, the first lens 28 and the second lens 30 with smaller curvature in surface are easily manufactured, so as to decrease the integral cost of the projection lens 18. The third lens 32 preferably can be a biconcave lens.
The second lens group 26 further includes a fourth lens 34, a fifth lens 36, a sixth lens 40 and a seventh lens 42. The fourth lens 34 preferably may be an aspheric lens made of glass material, to provide heat resistant function. The fifth lens 36 is disposed between the fourth lens 34 and the imaging unit 16. The fifth lens 36 preferably maybe a doublet lens shown in
In the present invention, the projection lens 18 has ten lenses composed of two aspheric lenses (such as the first lens 28 and the fourth lens 34) and eight spherical lenses (such as the second lens 30, the third lens 32, the fifth lens 36, the sixth lens 40, the seventh lens 42, the eighth lens 44 and the ninth lens 46). The fifth lens 36 may be the doublet lens combined with two single lenses. Table 2 illustrates preferred parameters of each lens of the projection lens 18. Further, “Distance” in Table 2 represents an interval between the surface in the current row and the surface in the next row.
In another embodiment of the present invention, the projection lens 18 may be composed of eight lenses. The third lens group 38 may consist of the eighth lens 44 (which means the ninth lens 46 is omitted), and the fifth lens 36 of the second lens group 26 is replaced by an aspheric lens (not shown in figures) accordingly. Therefore, the lens amount of the projection lens 18 of the present invention is not less than eight lenses, and cannot have more than twelve lenses due to the limited inner space of the projection lens 18; it is to say, the lens amount of the projection lens 18 preferably ranges from 8 to 12 lenses.
Please refer to
A conventional short throw projection lens forms obvious aberration on an edge of the image. The present invention designs the non-telecentric projection lens which applies the aspheric lens to be the first lens 28 of the lens group. The present invention utilizes the aspheric lens to correct optical defect such as imaging distortion and chromatic aberration, not only can effectively increase imaging quality of the projection device but also decreases the lens amount of the projection lens to provide advantages of inexpensive cost and easy mass production.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103114235 | Apr 2014 | TW | national |