Many computing systems include at least one display and at least one input device. The display may include, for example, a monitor, a screen, or the like. Example input devices include a mouse, a keyboard, a touchpad, or the like. Some computing systems include a touch-sensitive display to both display output of the computing system and receive physical (e.g., touch) input.
The following detailed description references the drawings, wherein:
In addition to the input devices mentioned above, a camera is another example of an input device for a computing system. In some examples, a computing system may capture video or a still image with the camera. The video or still image may be stored or provided to another computing system via a suitable computer network. In other examples, an image captured by the camera may be analyzed, and the computing system may utilize the content of the image as input to the computing system. For example, the computing system may analyze an object represented in the captured image, and determine input to the computing system based on characteristics (e.g., location, position, orientation, shape, etc.) of the object represented in the image.
In such examples, the computing system may perform a process on the captured image to extract an image of at least one foreground object represented in the captured image. This process may be referred to herein as “segmentation”. In some examples, the result of such a segmentation process may be an image of the foreground object separated from at least a background represented in the captured image. As an example, at least a portion of the background represented in the captured image may correspond to a surface, such as a projection screen, for reflecting image(s) projected from a projector assembly communicatively coupled to the computing system. The image(s) projected by the projector assembly may comprise information and/or images produced by software being executed by the computing system. In order to provide a sufficiently bright projected image onto the projection screen, the screen may be constructed with materials for diffusing light. As an example, the camera may be disposed above and pointed at the projection screen to capture an image representing an object disposed between the camera and the projection screen, based on light reflected by the object.
In some examples, a segmentation process may comprise determining a segmentation boundary for an object represented in a captured image. As used herein, a “segmentation boundary” for an object represented in an image may be information representing an estimate of which portion(s) of the image represent the object and which portion(s) of the image represent features other than the object, such as the projection screen. In some examples, a segmentation boundary for an object represented in an image may include information representing at least one outer edge of the object as represented in the image. When performing a segmentation process, a computing system may use the segmentation boundary to extract an image of the object from a larger captured image including, at least, a portion of the projection screen.
However, it may be difficult to accurately determine a segmentation boundary for an object disposed between the camera and the projection screen, as certain conditions may make it difficult to accurately distinguish the foreground object from the projection screen. For example, it may be difficult to accurately determine a segmentation boundary based on an image captured by a color camera (e.g., an RGB camera) in the presence of shadows, or when the foreground object and the projection screen are similar in color. As an example, an infrared (IR) camera may be used because an image captured by the IR camera may not be affected by either shadows or color similarity. However, when the projection screen is constructed with materials for diffusing light, which may include diffusing IR light, it may be difficult to accurately determine a segmentation boundary for an object that may also diffuse IR light. For example, by diffusing IR light the projection screen may not provide sufficient contrast when the computing system determines the segmentation boundary for a foreground object that also diffuses IR light.
To address these issues, examples described herein provide a projection screen that both specularly reflects IR light and diffuses visible light. By specularly reflecting IR light, for example, away from the IR camera disposed above and pointed at the projection screen, the projection screen may provide sufficient contrast when the computing system determines the segmentation boundary for a foreground object disposed between the IR camera and the projection screen, based on IR light reflected by the object. By diffusing visible light, the projection screen may provide a sufficiently bright image reflected from the projector assembly.
Examples described herein provide a projection screen including a first surface to specularly reflect IR light and a second surface to diffuse visible light. By using a projection screen including a first surface to specularly reflect IR light and a second surface to diffuse visible light may allow the computing system to more accurately determine a segmentation boundary for an object disposed between the screen and an IR camera. In addition, the projection screen may provide a sufficiently bright image reflected from the projector assembly.
Referring now to the drawings,
Computing device 150 may comprise any suitable computing device complying with the principles disclosed herein. As used herein, a “computing device” may comprise an electronic display device, a smartphone, a tablet, a chip set, an all-in-one computer (e.g., a device comprising a display device that also houses processing resource(s) of the computer), a desktop computer, a notebook computer, workstation, server, any other processing device or equipment, or a combination thereof. In this example, device 150 is an all-in-one computer having a central axis or center line 155, first or top side 150A, a second or bottom side 150B axially opposite the top side 150A, a front side 150C extending axially between sides 150A and 150B, a rear side 150D also extending axially between sides 150A and 150B and generally radially opposite front side 150C. A display 152 is disposed along front side 150C and defines a viewing surface of computing system 100 to display images for viewing by a user of system 100. In examples described herein, a display may include components of any technology suitable for displaying images, video, or the like.
In some examples, display 152 may be a touch-sensitive display. In examples described herein, a touch-sensitive display may include, for example, any suitable technology (e.g., components) for displaying images, video, or the like, and may include any suitable technology (e.g., components) for detecting physical contact (e.g., touch input), such as, for example, a resistive, capacitive, surface acoustic wave, infrared (IR), strain gauge, optical imaging, acoustic pulse recognition, dispersive signal sensing, or in-cell system, or the like. In examples described herein, display 152 may be referred to as a touch-sensitive display 152. Device 150 may further include a camera 154, which may be a web camera, for example. In some examples, camera 154 may capture images of a user positioned in front of display 152. In some examples, device 150 may also include a microphone or other device to receive sound input (e.g., voice input from a user).
In the example of
Upright member 140 includes a first or upper end 140A, a second or lower end 1408 opposite the upper end 140A, a first or front side 140C extending between the ends 140A and 140B, and a second or rear side 140D opposite the front side 140C and also extending between the ends 140A and 140B. Lower end 1408 of member 140 is coupled to rear end 120B of base 120, such that member 140 extends substantially upward from support surface 15.
Top 160 includes a first or proximate end 160A, a second or distal end 160B opposite the proximate end 160A, a top surface 160C extending between ends 160A and 160B, and a bottom surface 160D opposite the top surface 160C and also extending between ends 160A and 160B. Proximate end 160A of top 160 is coupled to upper end 140A of upright member 140 such that distal end 160B extends outward from upper end 140A of upright member 140. As such, in the example shown in
Projection screen 200 may include a central axis or centerline 205, a first or front side 200A, and a second or rear side 200B axially opposite the front side 200A. In the example of
In examples described herein, projection screen 200 may be any suitable planar object, such as a mat (e.g., a touch-sensitive mat), tabletop, sheet, etc. In some examples, projection screen 200 may be disposed horizontal (or approximately or substantially horizontal). For example, screen 200 may be disposed on support surface 15, which may be horizontal (or approximately or substantially horizontal).
Referring to
In order to specularly reflect IR light, the first surface 802 may be a highly reflective surface (e.g., mirror-like). As a result, IR light 806A projected toward screen 200 from a single incoming direction may be reflected into a single outgoing direction (indicated as 806B). As will be further discussed, by specularly reflecting IR light (instead of diffusing IR light), the screen 200 may provide sufficient contrast when the computing system 150 determines a segmentation boundary for a foreground object disposed between an IR camera and the screen 200. With regards to diffusing visible light (e.g., visible light 808A projected from projector unit 180), the second surface 804 may be an appropriate surface for reflecting visible light in a broad range of directions (indicated as 808B). As a result, the screen 200 may provide a sufficiently bright image reflected from the projector unit 180.
Referring to
As described above, screen 200 may be aligned with base 120 of structure 110 to assist with proper alignment of screen 200 (e.g., at least during operation of system 100). In the example of
In some examples, region 202 of screen 200 and device 150 may be communicatively connected (e.g., electrically coupled) to one another such that user inputs received by region 202 may be communicated to device 150. Region 202 and device 150 may communicate with one another via any suitable wired or wireless communication technology or mechanism, such as, for example, WI-FI, BLUETOOTH, ultrasonic technology, electrical cables, electrical leads, electrical conductors, electrical spring-loaded pogo pins with magnetic holding force, or the like, or a combination thereof. In the example of
Referring to
Referring to
Referring again to
Referring still to
Sensor bundle 164 includes a plurality of sensors (e.g., cameras, or other types of sensors) to detect, measure, or otherwise acquire data based on the state of (e.g., activities occurring in) a region between sensor bundle 164 and screen 200. The state of the region between sensor bundle 164 and screen 200 may include object(s) on or over screen 200, or activit(ies) occurring on or near screen 200. In the example of
In some examples, RGB camera 164A may be a camera to capture color images (e.g., at least one of still images and video). In some examples, RGB camera 164A may be a camera to capture images according to the RGB color model, which may be referred to herein as “RGB images”. In some examples, RGB camera 164A may capture images with relatively high resolution, such as a resolution on the order of multiple megapixels (MPs), for example. As an example, RGB camera 164A may capture color (e.g., RGB) images with a resolution of 14 MPs. In other examples, RBG camera 164A may capture images with a different resolution. In some examples, RGB camera 164A may be pointed toward screen 200 and may capture image(s) of screen 200, object(s) disposed between screen 200 and RGB camera 164A (e.g., on or above screen 200), or a combination thereof.
IR camera 164B may be a camera to detect intensity of IR light at a plurality of points in the field of view of the camera 164B. In examples described herein, IR camera 164B may operate in conjunction with an IR light projector 166 (see
Depth camera 164C may be a camera (sensor(s), etc.) to detect the respective distance(s) (or depth(s)) of portions of object(s) in the field of view of depth camera 164C. As used herein, the data detected by a depth camera may be referred to herein as “distance” or “depth” data. In examples described herein, depth camera 164C may capture a multi-pixel depth image (e.g., a depth map), wherein the data of each pixel represents the distance or depth (measured from camera 164C) of a portion of an object at a point represented by the pixel. Depth camera 164C may be implemented using any suitable technology, such as stereovision camera(s), a single IR camera sensor with a uniform flood of IR light, a dual IR camera sensor with a uniform flood of IR light, structured light depth sensor technology, time-of-flight (TOF) depth sensor technology, or a combination thereof. In some examples, depth sensor 164C may indicate when an object (e.g., a three-dimensional object) is on screen 200, which includes a surface to specularly reflect IR light, for example, away from the depth camera 164C. In some examples, depth sensor 164C may detect at least one of the presence, shape, contours, motion, and the respective distance(s) of an object (or portions thereof) placed on screen 200.
Ambient light sensor 164D may be arranged to measure the intensity of light in the environment surrounding system 100. In some examples, system 100 may use the measurements of sensor 164D to adjust other components of system 100, such as, for example, exposure settings of sensors or cameras of system 100 (e.g., cameras 164A-164C), the intensity of the light emitted from light sources of system 100 (e.g., projector assembly 184, display 152, etc.), or the like.
In some examples, sensor bundle 164 may omit at least one of sensors 164A-164D. In other examples, sensor bundle 164 may comprise other camera(s), sensor(s), or the like in addition to sensors 164A-164D, or in lieu of at least one of sensors 164A-164D. For example, sensor bundle 164 may include a user interface sensor comprising any suitable device(s) (e.g., sensor(s), camera(s)) for tracking a user input device such as, for example, a hand, stylus, pointing device, etc. In some examples, the user interface sensor may include a pair of cameras which are arranged to stereoscopically track the location of a user input device (e.g., a stylus) as it is moved by a user about the screen 200 (e.g., about region 202 of screen 200). In other examples, the user interface sensor may additionally or alternatively include IR camera(s) or sensor(s) arranged to detect infrared light that is either emitted or reflected by a user input device.
In examples described herein, each of sensors 164A-164D of bundle 164 is communicatively connected (e.g., coupled) to device 150 such that data generated within bundle 164 (e.g., images captured by the cameras) may be provided to device 150, and device 150 may provide commands to the sensor(s) and camera(s) of sensor bundle 164. Sensors 164A-164D of bundle 164 may be communicatively connected to device 150 via any suitable wired or wireless communication technology or mechanism, examples of which are described above. In the example of
Referring to
In some examples, cameras 164A-164C of sensor bundle 164 are arranged within system 100 such that the field of view of each of cameras 164A-164C includes a space 168 of screen 200 that may overlap with some or all of display space 188 or may be coterminous with display space 188. In examples described herein, the field of view of cameras 164A-164C may be said to include space 168, though at times screen 200 may be at least partially occluded by object(s) on or over screen 200. In such examples, the object(s) on or over screen 200 may be in the field of view of at least one of cameras 164A-164C. In such examples, sensors of sensor bundle 164 may acquire data based on the state of (e.g., activities occurring in, object(s) disposed in) a region between sensor bundle 164 and space 168 of screen 200. For example, with regards to the IR camera 164B, with the screen 200 specularly reflecting IR light (e.g., from IR light projector 166) away from the IR camera 164B, the screen 200 may provide sufficient contrast for the computing device 150 to reliably determine the segmentation boundary of the object disposed in the region between sensor bundle 164 and space 168 of screen 200.
In some examples, both space 188 and space 168 coincide or correspond with region 202 of screen 200 such that functionalities of touch sensitive region 202, projector assembly 184, and sensor bundle 164 are all performed in relation to the same defined area. A field of view 165 of cameras 164A-164C is schematically illustrated in
Referring again to
Referring to
Referring now to
As an example, when a user interacts with region 202 of screen 200 (e.g., with a hand 35, as shown in
In some examples, sensors of sensor bundle 164 may also generate system input that may be provided to device 150 for further processing. For example, system 100 may utilize at least sensor(s) of bundle 164 and segmentation engine 170 detect at least one of the presence and location of a user's hand 35 (or a stylus 25, as shown in
In some examples, region 202 (with image(s) projected on it by assembly 184) may serve as a second or alternative touch-sensitive display within system 100. In addition, detection of interaction with image(s) displayed on region 202 may be enhanced through use of sensors of sensor bundle 164 as described above.
In some examples, system 100 may capture two-dimensional (2D) image(s) or create a three-dimensional (3D) scan of a physical object such that an image of the object may then be projected onto region 202 for further use and manipulation thereof. For example, as shown in
In some examples, once object(s) are scanned by sensors of bundle 164, the background of the image representing the object may be removed (e.g., via a segmentation process as described above), and the resulting image of the foreground object may be projected onto region 202 (or shown on display 152). In such examples, images of physical objects (e.g., an object 40) may be captured, processed, and displayed on region 202 to quickly and easily create a digital version of the physical object to allow for further manipulation thereof. The background of the image representing the object 40 that is removed may correspond to at least a portion of the screen 200. With the screen 200 specularly reflecting IR light (e.g., from IR light projector 166) away from the IR camera 164B, the screen 200 may provide sufficient contrast for the computing device 150 to reliably determine the segmentation boundary of the object 40, thereby removing the background of the image.
Computing device 150 (or any other computing device implementing segmentation engine 170) may include at least one processing resource. In examples described herein, a processing resource may include, for example, one processor or multiple processors included in a single computing device or distributed across multiple computing devices. As used herein, a “processor” may be at least one of a central processing unit (CPU), a semiconductor-based microprocessor, a graphics processing unit (GPU), a field-programmable gate array (FPGA) configured to retrieve and execute instructions, other electronic circuitry suitable for the retrieval and execution instructions stored on a machine-readable storage medium, or a combination thereof.
Each of engines 170, 904, 906, 908, and any other engines of computing device 150, may be any combination of hardware and programming to implement the functionalities of the respective engine. Such combinations of hardware and programming may be implemented in a number of different ways. For example, the programming may be processor executable instructions stored on a non-transitory machine-readable storage medium and the hardware may include a processing resource to execute those instructions. In such examples, the machine-readable storage medium may store instructions that, when executed by the processing resource, implement the engines. The machine-readable storage medium storing the instructions may be integrated in the same computing device (e.g., device 150) as the processing resource to execute the instructions, or the machine-readable storage medium may be separate from but accessible to the computing device and the processing resource. The processing resource may comprise one processor or multiple processors included in a single computing device or distributed across multiple computing devices.
In some examples, the instructions can be part of an installation package that, when installed, can be executed by the processing resource to implement the engines of system 100. In such examples, the machine-readable storage medium may be a portable medium, such as a compact disc, DVD, or flash drive, or a memory maintained by a server from which the installation package can be downloaded and installed. In other examples, the instructions may be part of an application or applications already installed on a computing device including the processing resource (e.g., device 150). In such examples, the machine-readable storage medium may include memory such as a hard drive, solid state drive, or the like.
As used herein, a “machine-readable storage medium” may be any electronic, magnetic, optical, or other physical storage apparatus to contain or store information such as executable instructions, data, and the like. For example, any machine-readable storage medium described herein may be any of a storage drive (e.g., a hard drive), flash memory, Random Access Memory (RAM), any type of storage disc (e.g., a compact disc, a DVD, etc.), and the like, or a combination thereof. Further, any machine-readable storage medium described herein may be non-transitory.
In the example of
With the projection screen 200 specularly reflecting IR light, for example, away from the IR camera 164B, the boundary engine 904 may determine, for each pixel of the IR image, an IR intensity value. As an example, the IR camera 164B may detect a lesser intensity of IR light from the projection screen 200 than from the object, such that portion of the IR image representing the projection screen 200 include lesser IR light intensity values than higher IR light intensity values included in portions of the IR image representing the object. The first set of IR light intensity values may include the lesser IR light intensity values, and the second set may include the higher IR light intensity values. As such, segmentation engine 170 may determine the segmentation boundary based at least in part on at least one boundary between the lesser IR light intensity values of the IR image and the greater IR light intensity values of the IR image.
In some examples, engine 904 may estimate that a portion of the IR image represents an edge of object if the IR intensity data suggests (or otherwise indicates) the presence of an edge. In some examples, engine 904 may additionally or alternatively utilize various heuristic(s), rule(s), or the like, for estimating the presence of edges of the object based on the IR intensity of the IR image.
Remove engine 906 may remove portions of the IR image that lie outside the segmentation boundary in order to generate an image 910 of the object disposed between the IR camera 164B and the projection screen 200. As an example, the portions of the IR image that lie outside the segmentation boundary may correspond to at least a portion of the screen 200 that is captured in the IR image. With the screen 200 specularly reflecting IR light away from the IR camera 164B, the screen 200 may provide sufficient contrast for the computing device 150 to reliably determine the segmentation boundary of the object, thereby removing the background represented in the IR image. Project engine 908 may project, via the projector assembly 184, the image 910 of the object onto the projection screen 200. Creating a digital version of the physical object may allow for further manipulation of the object via the computing system 100.
In the example of
Instructions 1024 may include instructions for determining a segmentation boundary of the object represented in the IR image. The segmentation boundary may be determined based at least in part on at least one boundary between a first set of IR light intensity values obtained from the IR image and a second set of IR light intensity values obtained from the IR image.
Instructions 1026 may include instructions for removing portions of the IR image that lie outside the segmentation boundary in order to generate a digital image of the object disposed between the IR camera 164B and the projection screen 200. As an example, the portions of the IR image that lie outside the segmentation boundary may correspond to at least a portion of the screen 200 that is captured in the IR image. With the screen 200 specularly reflecting IR light away from the IR camera 164B, the screen 200 may provide sufficient contrast for the computing device 150 to reliably determine the segmentation boundary of the object, thereby removing the background represented in the IR image.
Instructions 1028 may include instructions for projecting, via the projector assembly 184, the digital image of the object onto the projection screen 200. Creating a digital image of the physical object may allow for further manipulation of the object via the computing system 100.
At 1105 of method 1100, IR camera 164B, disposed above and pointing at projection screen 200 of computing system 100, may capture an IR image representing an object disposed between the projection screen 200 and the IR camera 164B. As an example, the IR image may be captured based on an intensity of IR light reflected by the object and the projection screen 200. The projection screen 200 may include a surface (e.g., first surface 802) to specularly reflect IR light. As an example, the IR camera 164B and the projection screen 200 may be arranged such that the projection screen 200 may specularly reflect the IR light away from the IR camera 164B.
At 1105, the computing system 100 may determine a segmentation boundary based at least in part on at least one boundary between a first set of IR light intensity values and a second set of IR light intensity values. As an example, the segmentation boundary may represent at least one outer edge of the object based on the IR image. With the projection screen 200 specularly reflecting light away from the IR camera 164B, the IR camera 164B may detect lesser intensity of IR light from the projection screen 200 than from the object such that portions of the IR image representing the projection screen 200 include lesser IR light intensity values than higher IR light intensity values included in portions of the IR image representing the object. As a result, when determining the segmentation boundary, the first set of IR light intensity values may include the lesser IR light intensity values and the second set of IR light intensity values may include the higher IR light intensity values.
Although the flowchart of
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/071240 | 11/21/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/076811 | 5/28/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6381068 | Harada et al. | Apr 2002 | B1 |
6618076 | Sukthankar et al. | Sep 2003 | B1 |
7023536 | Zhang et al. | Apr 2006 | B2 |
7038846 | Mandella et al. | May 2006 | B2 |
7088440 | Buermann et al. | Aug 2006 | B2 |
7110100 | Buermann et al. | Sep 2006 | B2 |
7113270 | Buermann et al. | Sep 2006 | B2 |
7161664 | Buermann et al. | Jan 2007 | B2 |
7203384 | Carl et al. | Apr 2007 | B2 |
7268956 | Mandella et al. | Sep 2007 | B2 |
7474809 | Carl et al. | Jan 2009 | B2 |
7599561 | Wilson et al. | Oct 2009 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729515 | Mandella et al. | Jun 2010 | B2 |
7826641 | Mandella et al. | Nov 2010 | B2 |
7961909 | Mandella et al. | Jun 2011 | B2 |
8121640 | Russ et al. | Feb 2012 | B2 |
8199117 | Izadi et al. | Jun 2012 | B2 |
8736583 | Anderson et al. | May 2014 | B2 |
20050078092 | Clapper | Apr 2005 | A1 |
20050168437 | Carl et al. | Aug 2005 | A1 |
20050168448 | Simpson | Aug 2005 | A1 |
20050200955 | Ma | Sep 2005 | A1 |
20080018591 | Pittel et al. | Jan 2008 | A1 |
20090128499 | Izadi | May 2009 | A1 |
20090219253 | Izadi et al. | Sep 2009 | A1 |
20090309838 | Adan et al. | Dec 2009 | A1 |
20100033683 | Reichow et al. | Feb 2010 | A1 |
20110227876 | Ilmonen | Sep 2011 | A1 |
20110227915 | Mandella et al. | Sep 2011 | A1 |
20110242054 | Tsu | Oct 2011 | A1 |
20110293180 | Criminisi et al. | Dec 2011 | A1 |
20120013851 | Liu | Jan 2012 | A1 |
20120038549 | Mandella et al. | Feb 2012 | A1 |
20120076353 | Large | Mar 2012 | A1 |
20130077236 | Becze et al. | Mar 2013 | A1 |
20130182077 | Holz | Jul 2013 | A1 |
20130194418 | Gonzalez-Banos et al. | Aug 2013 | A1 |
20130257748 | Ambrus et al. | Oct 2013 | A1 |
20130287257 | Dedhia | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
1350648 | May 2002 | CN |
Entry |
---|
Gao, Rut et al; Microsoft Research-Mobile Surface; Microsoft Research; 2010; http://research.microsoft.com/en-us/projects/mobilesurface/ ˜ 1 page. |
Hand, Randall; Infinite Z Launches zSpace Virtual Holographic 3D Display for Designers; VizWorld.com; Dec. 13, 2011; http://www.vizworld.com/ ˜ 2 pages. |
Harrison, B et al; Bringing Toys to Life: Intel Labs Oasis Project; Augmented Engineering; Jan. 26, 2011; http://augmentedengineering.wordpress.com/ ˜ 1 page. |
Harrison, C et al; OmniTouch: Wearable Multitouch Interaction Everywhere; UIST'11; Oct. 16, 2011; http://research.microsoft.com/ ˜ 10 pages. |
Hartmann, B et al; Pictionaire: Supporting Collaborative Design Work by Integrating Physical and Digital Artifacts: CSCW 2010; http://research.microsoft.com/ ˜ 4 Pages. |
Hinckley, K et al; Pen + Touch=New Tools; UIST'10; Oct. 3, 2010; http://research.microsoft.com/ ˜ 10 pages. |
Izadi, S et al; C-Slate: A Multi-Touch and Object Recognition System for Remote Collaboration Using Horizontal Surfaces; IEEE; 2007—8 pages. |
Junuzovic, S eta:; Microsoft Research-IllumiShare; Microsoft Research; 2012; http://delivery.acm.org/ ˜ 2 pages. |
Kane, Shaun K. et al; Bonfire: A Nomadic System for Hybrid Laptop-Tabletop Interaction; UIST'09; Oct. 4, 2009; http://dub.washington.edu/ ˜ 10 pages. |
Linder, Natan et al; LuminAR: Portable Robotic Augmented Reality Interface Design and Prototype; UIST'10, Oct. 3, 2010; http://fluid.media.mit.edu/ ˜ 2 pages. |
Melanson, D; Microsoft Research Working on Portable Surface; Mar. 2, 2010; http://www.engadget.com/ ˜ 2 pages. |
Melanson, D; Wiimote Repurposed for Multi-Point Interactive Whiteboard; Dec. 10, 2007, http://www.engadget.com/ ˜ 2 pages. |
Shahram, etal., “C-Slate: A Multi-Touch and Object Recognition System for Remote Collaboration using Horizontal Surfaces;” IEEE International Workshop, 2007, 8 pgs. |
Simonite, Tom; A Kitchen Countertop With a Bain; MIT Technology Review; Jul. 2, 2010; http://www.technologyreview.com/news ˜ 2 pages. |
Wilson, A et al; Combining Multiple Depth Cameras and Projectors for Interactions on Above, and Between Surfaces; UIST' 2010: http://research.microsoft.com/ ˜ 10 pages. |
Wilson, A.; Using a Depth Camera as a Touch Sensor; ITS 2010: Devices & Algorithms; Nov. 7, 2010; http://research.microsoft.com/ ˜ 4 pages. |
Number | Date | Country | |
---|---|---|---|
20160277719 A1 | Sep 2016 | US |