The present application claims priority from Japanese application serial no. 2003-350467, filed on Oct. 9, 2003, the content of which is hereby incorporated by reference into this application.
The present invention relates to a cathode ray tube, and in particular, to a cathode ray tube for use in a projection type image display apparatus such as a projection type TV receiver and a video projector.
The projection type image display apparatus employs three projection type cathode ray tubes for emitting red, green and blue lights, respectively. Three images on the respective panel portions of the three projection type cathode ray tubes are enlarged by a projection lens and are combined on a screen. In a projection type image display apparatus, since images on a panel portion of 127 mm (5 inches) to 178 mm (7 inches) in diagonal dimension of a projection type cathode ray tube are enlarged and projected onto a screen of 1,016 mm (40 inches), for example, in diagonal dimension, the images formed on the panel portion of the projection type cathode ray tube are required to be highly bright and good in focus characteristics. That is to say, it is necessary to limit degradation in focus characteristics to acceptable amounts even when a beam current is increased to produce a highly bright image on the panel portion.
In the present, a horizontal deflection frequency in the projection type image display apparatus is changed from 15 kHz for the conventional NTSC signals to 30 kHz for the Hivision (the Japanese high-definition television format) signals, and the use of signals capable of higher-resolution display has become the most common in the projection type image display apparatus. Consequently, there is a demand for improvement on focus characteristics of projection type cathode ray tubes so that the projection type image display apparatus can produce higher-resolution images. Focus characteristics can be improved by increasing a diameter of a neck portion of a projection type cathode ray tube from 29 mm to 36 mm, and thereby increasing a diameter of a main lens of an electron gun of the projection type cathode ray tube, but, in view of use in place of conventional projection type cathode ray tubes, it is demanded that focus characteristics should be improved by using projection type cathode ray tubes having a 29 mm-diameter neck portion.
It is an object of the present invention to provide a projection type cathode ray tube having improved focus characteristics without a substantial increase in a diameter of its neck portion.
The following will explain the summary of a representative one of the inventions disclosed in this specification.
In accordance with an embodiment of the present invention there is provided a projection type cathode ray tube comprising: a glass envelope comprising a panel portion, a neck portion, and a funnel portion connecting said panel portion and said neck portion; a phosphor screen formed on an inner surface of said panel portion; and an electron gun housed within said neck portion and emitting an electron beam toward said phosphor screen, wherein said electron gun is provided with an electron beam generating section which comprises a cathode provided with an electron-emissive material, a G1 electrode for controlling said electron beam and a G2 electrode for accelerating said electron beam arranged in the order named, and a main lens which comprises a first cylinder electrode, a second cylinder electrode and a third cylinder electrode arranged in the order named from a cathode side of said main lens and focuses said electron beam from said electron beam generating section on said phosphor screen, wherein said first cylinder electrode and said third cylinder electrode are configured so as to be supplied with a voltage equal to an anode voltage applied to said phosphor screen, and said second cylinder electrode is supplied with a focus voltage lower than said anode voltage, wherein an inside diameter of an opening in an end of said second cylinder electrode on a phosphor screen side thereof is in a range of from 14 mm to 18 mm, and said end of said second cylinder electrode on said phosphor screen side thereof is disposed within said third cylinder electrode, and wherein an aperture diameter D mm in said G1 electrode and an axial length L mm of said second cylinder electrode satisfy the following inequalities: L mm≧60×D mm+27.6 mm, L mm≦−646×D mm+396.3 mm, D mm≧0.44 mm, and L mm≦75 mm.
With the above configuration, the present invention provides an advantage of improving focus characteristics of projection type cathode ray tubes without a substantial increase in a diameter of their neck portion.
In the accompanying drawings, in which like reference numerals designate similar components throughout the figures, and in which:
The following will explain representative embodiments in accordance with the present invention in detail by reference to the drawings by comparing those embodiments with a conventional electron gun. The same reference numerals or characters designate functionally similar parts or portions throughout the figures, and repetition of their explanations is omitted.
Usually, the outside diameter of the neck portion 3 is selected to be 29 mm, considering deflection sensitivity of the deflection yoke 7, sensitivity of a convergence yoke (not shown) for correcting distortions of rasters projected onto a screen (not shown) and errors in registration among three color rasters projected onto the screen, and use of other standard components. The overall length of a PRT is selected to be in a range of from 240 mm to 290 mm since the PRT is incorporated into an ordinary PTV, and consequently, usually a distance Lg4p from an open end of the G4 electrode on its panel portion 1 side to the center of the phosphor screen 11 is selected to be in a range of from 120 mm to 150 mm for the purpose of preventing interference of magnetic fields of the deflection yoke 7. In an example of a conventional electron gun, the distance Lg4p is selected to be 140 mm.
As shown in
Conventionally, a diameter of an aperture in the G1 electrode 64 was in a range of from 0.54 mm to 0.60 mm, a diameter of an aperture in the G2 electrode 65 was approximately equal to that of the G1 electrode 64, and in a range of from 0.54 mm to 0.60 mm. A thickness of the G1 electrode 64 was in a range of from 0.05 mm to 0.15 mm, and that of the G2 electrode 65 was in a range of from 0.2 mm to 0.7 mm. A diameter of an aperture in the G3 electrode 66 on its G2 electrode 65 side was in a range of from 1.0 mm to 3.0 mm, and a length of the G3 electrode 66 in a direction of the axis of the PRT was selected to be in a range of from 15 mm to 25 mm, considering breakdown voltage.
In this electron gun, the open end of the G4 electrode 67 on its panel portion 1 side is disposed within the G5 electrode 68 so that the diameter of the main lens is increased, and so that the focus condition does not change even if a potential of the neck portion 3 varies which is produced by charging up of the inner wall of the neck portion 3. The inside diameter of the G5 electrode 68 was selected to be in a range of from 20 mm to 22.5 mm since the wall thickness of the G5 electrode 68 was in a range of from 0.2 mm to 0.5 mm, considering physical tolerance between the inner wall of the neck portion 3 and the G5 electrode 68 in the manufacture of the PRT. The inside diameter of the open end of the G4 electrode 67 on its panel portion 1 side was selected in a range of from 14 mm to 18 mm since the wall thickness of the G4 electrode 67 was in a range of from 0.2 mm to 0.5 mm, to provide a spacing between the G4 electrode 67 and the G5 electrode 68 which ensures a satisfactory withstand voltage therebetween.
An example of the currently-used system employing the PRT of 29 mm in neck portion diameter is described as a comparison example in Table 1 of “A 16-cm Dual Neck Diameter, Integrated Component, Projection CRT,” the Journal of the Institute of Image Information and Television Engineers, Vol. 57, No. 8, pp. 983-988 (2003). The present invention will be explained in comparison with this example. For the purpose of improving resolution of the PTV, improvements need to be made on focus characteristics of the current electron gun employed in the above-mentioned currently-used system. In the current electron gun, a diameter of an aperture in the G1 electrode 64 is 0.54 mm, a thickness of the G1 electrode 64 is 0.07 mm, a diameter of an aperture in the G2 electrode 65 is 0.55 mm, and a thickness of the G2 electrode 65 is 0.36 mm. In the G3 electrode 66, a diameter of an aperture in the G3 electrode 66 on its G2 electrode 65 side is 2.0 mm, a length of the G3 electrode 66 in a direction of the PRT tube axis is 20 mm. In the G4 electrode 67, a diameter Dg4 of an aperture in the G4 electrode 67 on its panel portion 1 side is 16 mm, a length of the G4 electrode 67 in the direction of the PRT tube axis is 48.7 mm. An inside diameter of the G5 electrode 68 is 22 mm. A distance Lg4p (see
The average cathode current of 1 mA flows in the PRT incorporated in the PTV. Therefore, for the purpose of improving focus characteristics, it is necessary to reduce the beam spot diameter at a cathode current Ik=1 mA. Further, it is difficult to perceive improvement in resolution on the PTV screen if the beam spot diameter is not reduced by 10% or more. Therefore, to achieve the improvement on resolution on the PTV screen, it is necessary to reduce the beam spot diameter Ds1 at the cathode current Ik=1 mA by 10% or more compared with that obtained by the current electron gun.
The beam spot diameter is reduced by using a method of reducing the diameter of an aperture in the G1 electrode as described in Japanese Patent Application Laid-Open No. 2000-250491 Publication. Therefore, the beam spot diameters Ds1 obtained by the diameter of the aperture in the G1 electrode of the current electron gun and the further reduced diameters of the aperture in the G1 electrode are calculated by simulation. In this simulation, the electrode structures other than the aperture diameter in the G1 electrode are the same as those in the above-mentioned specifications of the current electron gun.
First, calculated was a 5%-beam spot diameter Ds1 (a beam spot diameter measured at the 5% point of the beam current density profile, and hereinafter referred to merely as a beam spot diameter also) for a cathode current Ik=1 mA, and the results are shown in
However, a problem arises in that the reduction in the aperture diameter D in the G1 electrode 64 increases load on a cathode and degrades lifetime characteristics. It is thought that lifetime of the PRT needs to be 20,000 hours or more, as described in “Barium-Scandate Dispersed Oxide Cathode for CRT with High Beam Current Density,” IDW '02 CRT5-2, pp. 631-634.
L mm≧60×D mm+27.6 mm (1),
the beam spot diameter Ds1 at a cathode current Ik=1.0 mA can be made equal to or smaller than 0.089 mm.
However, it was found that the following problem arises. When the PTV produces a peak-brightness image, a cathode current Ik=4 mA flows in the PRT. If focus characteristics is degraded at the cathode current Ik=4 mA, resolution of images viewed on the PTV is deteriorated even when focus characteristics at the cathode current Ik=1 mA have been improved. In view of this, the 5%-beam spot diameter Ds4 at the cathode current Ik=4 mA was calculated by simulation on the current electron gun using the above-described specifications for the current electron gun. The beam spot diameter Ds4 for the current electron gun turned out to be 0.256 mm. This indicates that the beam spot diameter Ds4 at the cathode current Ik=4 mA needs to be made equal to or smaller than 0.256 mm.
L mm≦−646×D mm+396.3 mm (2),
the beam spot diameter Ds4 at the cathode current Ik=4 mA can be made equal to or smaller than 0.256 mm which is the beam spot diameter obtainable by the current electron gun.
For the purpose of improving resolution of the PTV, it is necessary that both the inequalities (1) and (2) are satisfied at the same time.
L mm≦60×D mm+27.6 mm (1),
and
L mm≦−646×D mm+396.3 mm (2),
resolution of the PTV can be improved.
By way of example, a 29 mm-diameter neck PRT will be explained which employs a Hi-UPF type electron gun (which incorporates a unipotential electron lens in which a focus electrode is supplied with a high voltage). In this PRT, the aperture diameter D in the G1 electrode 64 is selected to be 0.5 mm, and the axial length L of the G4 electrode 67 is selected to be 59 mm. In this case, an aperture diameter in the G2 electrode 65 is 0.5 mm, an axial length of the G3 electrode 66 is 20 mm, and a diameter Dg4 of an opening in an end of the G4 electrode 67 on its panel portion 1 side is 16 mm. In this example, the beam spot diameter Dsl at the cathode current Ik=1 mA is 0.088 mm, the beam spot diameter Ds4 at the cathode current Ik=4 mA is 0.232 mm, these values satisfy the criteria on which to judge whether the improvement in focus characteristics has been achieved, that is, the beam spot diameter Ds1 at the cathode current Ik=1 mA being 0.089 mm or smaller, the beam spot diameter Ds4 at the cathode current Ik=4 mA being 0.256 mm or smaller, and therefore the improvement in resolution of the PTV has been achieved.
The following will explain the cathode 62. As shown in
As an example of an electron gun using the above-described electron-emissive material 62A, by selecting the aperture diameter D in the G1 electrode 64 to be 0.44 mm or larger and selecting the aperture diameter D in the G1 electrode 64 and the axial length L of the G4 electrode 67 so as to satisfy the above-described inequalities (1) and (2), lifetime of 20,000 hours or more is secured, and the improvement in resolution of the PTV can be achieved.
Further, as a more specific example of an electron gun using the above-described electron-emissive material 62A, the following will explain an electron gun of the Hi-UPF type used in a 29-mm diameter neck PRT in which the aperture diameter D in the G1 electrode 64 is selected to be 0.5 mm, the axial length L of the G4 electrode 67 is selected to be 59 mm, and the dimensions of the remainder of the electrodes are selected to be the same as those in the above-described current electron gun. The beam spot diameter Ds1 at the cathode current Ik=1 mA is 0.088 mm, the beam spot diameter Ds4 at the cathode current Ik=4 mA is 0.232 mm, and lifetime of 30,000 hours can be secured. These results achieves the above-described target of improvement in focus characteristics, in which the beam spot diameter Ds1 at the cathode current Ik=1 mA is 0.089 mm or smaller, the beam spot diameter Ds4 at the cathode current Ik=4 mA is 0.256 mm or smaller, and lifetime is 20,000 hours or longer, and this indicates that the improvement in resolution of the PTV can be accomplished.
Further, the axial length L of the G4 electrode 67 is also related to the dynamic focus voltage dVf explained in connection with
Here, in an electron gun of the Hi-UPF type used in a 29-mm diameter neck PRT in which the aperture diameter D in the G1 electrode 64 is selected to be 0.5 mm, the axial length L of the G4 electrode 67 is selected to be 59 mm, and the dimensions of the remainder of the electrodes are selected to be the same as those in the above-described current electron gun, the dynamic focus voltage dVf is 990 V, the beam spot diameter Ds1 at the cathode current Ik=1 mA is 0.088 mm, the beam spot diameter Ds4 at the cathode current Ik=4 mA is 0.232 mm. Therefore, the dynamic focus voltage dVf is not higher than 1,200 V, and the above results satisfy the conditions for providing a perceptible improvement in focus characteristics that the beam spot diameter Ds1 at the cathode current Ik=1 mA is equal to or smaller than 0.089 mm, the beam spot diameter Ds4 at the cathode current Ik=4 mA is equal to or smaller than 0.256 mm. Consequently, the improvement in resolution of the PTV can be achieved without causing problems with fabrication of a circuit for generating the dynamic focus voltage dVf.
The above explanation has been made only about representative examples of the electrode configurations for the electron gun, but the same advantages as in the case of the above-described representative examples of the electrode configurations can also be obtained in a case where the inside diameter Dg4 of the opening in the end of the G4 electrode 67 on its phosphor screen 11 side is in a range of from 14 mm to 18 mm, the axial length of the G3 electrode 66 is in a range of from 15 mm to 25 mm, the inside diameter of the G5 electrode 68 is in a range of from 20 mm to 22.5 mm, the distance between the end of the G4 electrode 67 on its phosphor screen 11 side and the center of the phosphor screen 11 is in a range of from 120 mm to 150 mm, and the thickness of the G1 electrode 64 is in a range of from 0.05 mm to 0.15 mm.
By adopting the above-described dimensions of the electrodes for an electron gun, the overall length of the projection type cathode ray tube can be limited to a range of from 240 mm to 290 mm.
Number | Date | Country | Kind |
---|---|---|---|
2003-350467 | Oct 2003 | JP | national |