The present invention relates to virtual reality and augmented reality displays and, in particular, it concerns a projector configuration for such displays in which an overall optical aperture for projection of an image into a light-guide optical element is subdivided into a number of separate smaller apertures.
Many virtual reality and augmented reality displays employ a light-guide optical element (LOE) with two major parallel planar surfaces within which an image propagates by internal reflection. Illumination corresponding to a collimated image is introduced into the LOE at a coupling-in region, typically at one side, and propagates within the LOE by internal reflection until reaching a coupling-out region where it is coupled out of the LOE towards the viewer's eye. Coupling out of the illumination toward the eye may be by use of a set of obliquely angled partially reflective internal surfaces, such as described in U.S. Pat. Nos. 6,829,095, 7,021,777, 7,457,040, 7,576,916, or by use of one or more diffractive optical element, also as known in the art.
Although the LOE guides the illumination by internal reflection in one dimension, the dimension parallel to the plane of the LOE is not guided. As a result, in order to provide a full width of a desired field of view to the viewer, the in-plane dimension of the image projector introducing the image illumination into the coupling-in region needs to be relatively large. This results in a low f-number of the projector optics, often with f<1, and imposes corresponding strict requirements on the optical design and quality of the optical components.
The present invention provides a projector configuration and corresponding optical system for virtual reality and augmented reality head-up displays, particularly useful in near-eye displays, in which an optical aperture of an image projection system is partitioned (subdivided) into several zones, each with its own image generating and/or illumination subsystem.
According to certain implementations of the present invention, this may reduce the overall form factor of an optical engine, and/or may increase the optical performance while maintaining a relatively small number of optical components (lenses).
According to the teachings of the present invention there is provided, an optical system for displaying a projected image to an observer, the optical system comprising: (a) a light-guide optical element having two major parallel surfaces and configured for guiding illumination corresponding to a projected image collimated to infinity by internal reflection at the major parallel surfaces from a coupling-in region to a coupling-out region where at least part of the illumination is coupled out towards an eye of the observer; and (b) a projector configuration associated with the coupling-in region of the light-guide optical element, the projector configuration comprising a plurality of adjacent optical arrangements, each optical arrangement comprising collimating optics deployed for projecting a subset of the illumination, the adjacent optical arrangements cooperating to provide an entirety of the projected image to the coupling-out region.
According to a further feature of an embodiment of the present invention, each of the optical arrangements further comprises a spatial light modulator component generating a partial image corresponding to a part of the image.
According to a further feature of an embodiment of the present invention, the spatial light modulator components of the plurality of adjacent optical arrangements are provided by corresponding regions of a shared spatial light modulator device.
According to a further feature of an embodiment of the present invention, the collimating optics of each of the plurality of optical arrangements comprises at least a first lens and at least a second lens, and wherein the first lenses for the plurality of optical arrangements are integrally formed into a first lens array and the second lenses for the plurality of optical arrangements are integrally formed into a second lens array.
According to a further feature of an embodiment of the present invention, the projector configuration further comprises a baffle arrangement formed with a plurality of opaque baffles, the baffle arrangement being interposed between the first lens array and the second lens array so as to reduce cross-talk between the collimating optics of the plurality of optical arrangements.
According to a further feature of an embodiment of the present invention, the plurality of optical arrangements include respective beam deflecting optical elements so that all of the optical arrangements are arranged with parallel optical axes.
According to a further feature of an embodiment of the present invention, the beam deflecting optical elements comprise a plurality of beam deflecting prisms.
According to a further feature of an embodiment of the present invention, the collimating optics of all of the plurality of optical arrangements are identical.
According to a further feature of an embodiment of the present invention, each of the plurality of optical arrangements has an f-number of at least 2, and preferably at least 4.
According to a further feature of an embodiment of the present invention, the optical system is incorporated into a head-mounted support structure configured to support the optical system in spaced relation to an eye of the observer such that the eye views the light-guide optical element from a range of positions defining an eye-motion box, and wherein the coupling-out region is configured to deliver a field of view to the eye of the observer at all locations within the eye-motion box, and wherein adjacent ones of the optical arrangement project overlapping but non-identical portions of the field of view.
According to a further feature of an embodiment of the present invention, the subset of the illumination corresponds to an entirety of the image projected from a sub-region of the coupling-in region.
According to an alternative feature of an embodiment of the present invention, the subset of the illumination for at least one of the optical arrangements corresponds to only part of the image.
According to a further feature of an embodiment of the present invention, the coupling-out region comprises a plurality of partially-reflective surfaces deployed at an oblique angle to the major parallel surfaces.
According to a further feature of an embodiment of the present invention, the coupling-out region comprises at least one diffractive optical element associated with one of the major parallel surfaces.
There is also provided according to the teachings of an embodiment of the present invention, a projector configuration for delivering illumination corresponding to an image from an effective aperture of length L and width W via a light-guide optical element to an eye of a user, the projector configuration comprising at least three adjacent optical arrangements, each optical arrangement comprising: (a) a spatial light modulator component generating an output image corresponding to at least a part of the image; and (b) collimating optics deployed for projecting the output image as a collimated image via the light-guide optical element to an eye of the user, the collimating optics having an exit aperture, wherein the exit apertures of the optical arrangements cooperate to span the length L of the effective aperture, and to deliver into the light-guide optical element an entirety of the illumination required for displaying the image to the observer.
According to a further feature of an embodiment of the present invention, the output image for at least one of the optical arrangements corresponds to only part of the image to be displayed.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
The present invention provides a projector configuration and corresponding optical system for virtual reality and augmented reality head-up displays, particularly useful in near-eye displays, in which an optical aperture of an image projection system is partitioned (subdivided) into several zones, each with its own image generating and/or illumination subsystem.
The principles and operation of projectors and optical systems according to the present invention may be better understood with reference to the drawings and the accompanying description.
By way of introduction, referring to
The required aperture dimension at the coupling-in aperture of the LOE can be derived by tracing the light rays in the opposite direction, from the EMB via the coupling-out arrangement to the wave-guide entrance aperture. A trace of the most extreme angle rays from the eye box, expanding up towards the entrance aperture, is shown in
The result of this geometry is that the system has a large effective optic aperture 16 in the plane of the LOE. This together with the desire to use short focal length in order to implement a compact projector arrangement results in a low f-number, with consequent demanding optical requirements and reduction in image quality compared to a higher f-number system.
To address this issue, the present invention provides a projector, an optical system and a method for projecting an image in which the optical aperture 16 through which the image is coupled-in to the LOE is subdivided into a plurality of separate apertures, shown here as A1-A5, each having an independent projecting arrangement which projects the corresponding portion of the field of view. This is illustrated schematically in
Thus, regarding the optical system, in general terms, the optical system includes a light-guide optical element (LOE) 10 having two major parallel surfaces and configured for guiding illumination corresponding to a projected image collimated to infinity by internal reflection at the major parallel surfaces from a coupling-in region (effective aperture 16) to a coupling-out region (active area 14) where at least part of the illumination is coupled out towards an eye of the observer, located at an eye motion box (EMB) 12. A projector configuration 23 is associated with the coupling-in region 16 of the light-guide optical element. The projector configuration 23 (
In a basic implementation, each optical subsystem can project the entire FOV from each sub-aperture. However, as pointed out above with reference to
The determination of the field of view for each optical aperture is illustrated in
It will be immediately apparent that the present invention provides a number of advantages compared to an equivalent display system employing a conventional projector to span the entire effective aperture 16. Specifically, by subdividing the aperture into multiple zones of smaller dimensions, the f-number of the optical arrangements is increased by a factor of (dtotal aperture/dzone) where dtotal aperture is the maximum dimension of the overall effective aperture, corresponding to a length L of the coupling-in region, and dzone is the maximum dimension of the separate optical arrangement exit aperture. The f-number of the individual optical arrangements is preferably at least 2, and more preferably at least 4, with certain particularly preferred implementations having an f-number of at least 5. This compares to projectors for conventional LOE-based displays which typically have an f-number of less than 1, and often closer to ½. This increase in f-number leads to a corresponding relaxation of requirements on the properties of the optical arrangements, facilitating high quality image projection using relatively simple and low-cost optical components.
The graphs of
It should be noted that the subdivision of the projector aperture into zones need not be performed with equal subdivisions. For example, considering that a small part of the FOV and a smaller proportion of image intensity is required per unit area in the peripheral apertures, it may be preferred to employ larger apertures towards the periphery of the overall aperture. On the other hand, certain particularly preferred implementations employ identical apertures and identical optical arrangements for all of the optical subsystems, thereby achieving simplification of the structure.
Partitioning of the aperture can be implemented using a range of different optical architectures for the collimating optics module responsible for collimating the light beams exiting from a micro-display into the LOE entrance (coupling-in) aperture. In addition to the Polarizing Beam Splitters collimating optics architecture described for example in U.S. Pat. No. 8,643,948, the increased f-number and reduced optical requirements of the subdivided aperture approach facilitate implementation of a compact architecture based on refractive lenses. The use of refractive lenses allows the lens to be located on or right after the wave guide entrance aperture, thereby avoiding the further expansion of the field which occurs over the distance from the waveguide entrance to the collimating optics in a reflective optics PBS-based design. The proximity of the lens to the aperture allows the use of a lens which is roughly equal in size to the corresponding optical aperture of the assigned zone, resulting in a much more compact design than reflective optics implementation.
The less-stringent optical performance requirements resulting from the subdivision of the overall aperture and the consequent relatively high f-number for each optical arrangement 25 allows the use of relatively simple collimating optics while preserving high quality image output. For example, certain implementations of the invention employ collimating optics for each optical arrangement 25 which includes 4 optical elements arranged as two doublets, such as for example a Petzval lens. An example of such an arrangement is shown in
According to one particularly preferred implementation, the juxtaposed lenses or lens assemblies 24 are integrated into a first lens array which, for device assembly purposes, functions as a single element. Similarly, the juxtaposed lenses or lens assemblies 26 are integrated into a second lens array which, for device assembly purposes, functions as a single element. The lens arrays may advantageously be produced by a molding process, rendering the structure particularly low cost and easy to assemble. Where each lens array provides a doublet lens of the corresponding lens assembly, the component lenses can be molded as two separate arrays which are subsequently assembled to form a doublet array. Alternatively, a two-component molding process may be used to directly produce the doublet lens array, using techniques known in the art of lens manufacture. Preferably, a baffle arrangement formed with a plurality of opaque baffles 32 is interposed between first lens array 24 and second lens array 26 so as to reduce cross-talk between the collimating optics of the plurality of optical arrangements. The baffle arrangement may also serve as a spacer to define and maintain the required spacing between the lens arrays.
It should be appreciated that the aforementioned refractive lens arrangement is only one non-limiting example, and that the present invention can be implemented with a wide range of other lens types and implementations, including but not limited to, spherical, aspherical or freeform refractive lenses formed from glass or plastic, diffractive lenses, Fresnel lenses, reflective lenses, and any combination of the above.
According to a further preferred feature, which may be implemented as part of the above lens array construction or with separate optical arrangements, the spatial light modulator components of a plurality of adjacent optical arrangements are provided by corresponding regions of a shared spatial light modulator device. In some cases, the entire array of spatial light modulator components may be provided by a single elongated spatial light modulator extending the length of the array. In the case of a light emitting spatial light modulator, such as an OLED display element, a backlit LCD panel, a micro LED display or a digital light processing (DLP) chip, the display surface can be directly aligned with the optical arrangements for minimum weight and bulk. If it is desired to use a reflective spatial light modulator, such as an LCOS chip, a beam splitter cube block is typically interposed between the collimating optics and the modulator to allow delivery of illumination to the modulator surface, as is known in the art.
Turning to
Turning to
Turning now to
Throughout the above-described implementations of the present invention, care should be taken to minimize gaps or obscurations at the junctions between adjacent lenses defining the adjacent partial apertures so as to avoid or minimize dark lines and other edge-related distortions. Various design choices, such as the use of high refractive index materials or the use of Fresnel lenses allow implementations with relatively flat or large-radius curvature of the outer surfaces, facilitating extending the optical performance up to the seam between the apertures, and minimizing any “black line” effect.
In certain situations, particularly where a beam deflecting optical element 36 is used, and the exit apertures 24 of the optical arrangements are somewhat set back from the beam deflecting optical elements, certain beam directions adjacent to the seams may be deflected sufficiently by the beam deflector 36 of one optical arrangement to enter the collimating optics 24 of an adjacent optical arrangement. (Here, as elsewhere in the description, the optical properties are analyzed by tracing beams in a reverse direction through the system, as if originating at the EMB and propagating into the projectors.) Although such stray beams could be eliminated by use of baffles or the like, that would still result in black lines in those regions of the display. This effect is illustrated schematically in
To address this issue, it is noted that the location of the stray rays from the adjacent beam deflecting optical element arriving at the plane of the spatial light modulator 28 lie outside the field of view of the projected image for that optical arrangement. As a result, according to a further aspect of the present invention, a marginal region 28A of the spatial light modulator element outside the region 28 used for projecting the primary partial image of the sub-projector is actuated to generate a portion of the image, disjointed from the primary partial image, which supplies the correct image information to ray paths passing through the marginal region of the adjacent beam deflecting optical element. This strip of image, outside the direct FOV of the collimating optics, may be generated on both sides of the display.
The various embodiments of the present invention may be implemented in a wide range of contexts and applications. According to one particularly preferred but non-limiting set of implementations, the optical system is incorporated into a head-mounted support structure, such as an eyeglasses frame configuration or a helmet visor, that supports the optical system in spaced relation to an eye of the observer such that the eye views the light-guide optical element from a position within a range of positions defining an eye-motion box. In some cases, two such systems are provided to provide images to both eyes of the viewer. The coupling-out region is configured to deliver a field of view to the eye of the observer at all locations within the eye-motion box. The multiple optical arrangements cooperate to provide this full field of view, with each either projecting the entire FOV as per
The present invention is applicable to all display devices where the projector delivers illumination corresponding to an image, typically collimated to infinity, from an effective aperture of length L and width W via a light-guide optical element to an eye of a user, where the projector has at least three adjacent optical arrangements, each optical arrangement including a spatial light modulator component generating a projected image corresponding to at least part of the image, and collimating optics deployed for projecting the projected image as a collimated image via the light-guide optical element to an eye of the user. Exit apertures of all of the optical arrangements cooperate to span the length L of the effective aperture, and to deliver into the light-guide optical element an entirety of the illumination required for displaying the image to the observer.
Embodiments of the present invention are applicable to a wide range of applications, particularly with asymmetric apertures such as a coupling-in region of an LOE, and for all types of LOE technology including, but not limited to, LOE's which include a coupling-out region with a plurality of partially-reflective surfaces 13 deployed at an oblique angle to the major parallel surfaces, as shown in
It will be appreciated that display devices employing the optical device of the present invention will include additional electronic components such as at least one processor or processing circuitry to drive the display device, all as is known in the art. Where different spatial light modulators, or different regions of a single spatial light modulator, are driven in parallel to generate similar images, or are driven to generate different partial images, each aligned with the corresponding collimating optics, the necessary driver circuitry, whether implemented as dedicated hardware, an ASIC, a general purpose processor operating under control of suitable software, or any hardware/software/firmware combination, will be readily understood by a person having ordinary skill in the art. Other hardware components, such as power supplies, communication subsystems, illumination subsystems, sensors, input devices etc. are typically added, all in accordance with the device design and intended application, as will be clear to a person having ordinary skill in the art.
It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the scope of the present invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2329001 | Robinson | Sep 1943 | A |
3544190 | Moorhusen | Jan 1970 | A |
5770847 | Olmstead | Jun 1998 | A |
5999836 | Nelson | Dec 1999 | A |
6829095 | Amitai | Dec 2004 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7949252 | Georgiev | May 2011 | B1 |
9039202 | Huang | May 2015 | B2 |
20040084088 | Callies | May 2004 | A1 |
20050073577 | Sudo | Apr 2005 | A1 |
20050180687 | Amitai | Aug 2005 | A1 |
20050225866 | Abu-Ageel | Oct 2005 | A1 |
20060146518 | Dubin | Jul 2006 | A1 |
20060153518 | Abu-Ageel | Jul 2006 | A1 |
20070052929 | Allman et al. | Mar 2007 | A1 |
20070091445 | Amitai | Apr 2007 | A1 |
20080106775 | Amitai et al. | May 2008 | A1 |
20080151379 | Amitai | Jun 2008 | A1 |
20080186604 | Amitai | Aug 2008 | A1 |
20080198471 | Amitai | Aug 2008 | A1 |
20080278812 | Amitai | Nov 2008 | A1 |
20080285140 | Amitai | Nov 2008 | A1 |
20080316606 | Inoguchi et al. | Dec 2008 | A1 |
20090052046 | Amitai | Feb 2009 | A1 |
20090052047 | Amitai | Feb 2009 | A1 |
20090097127 | Amitai | Apr 2009 | A1 |
20090122414 | Amitai | May 2009 | A1 |
20090153437 | Aharoni | Jun 2009 | A1 |
20100171660 | Shyr et al. | Jul 2010 | A1 |
20100290124 | Tohara | Nov 2010 | A1 |
20110050595 | Lunback et al. | Mar 2011 | A1 |
20110191690 | Hang et al. | Aug 2011 | A1 |
20110242661 | Simmonds | Oct 2011 | A1 |
20120062998 | Schultz | Mar 2012 | A1 |
20120179369 | Lapidot et al. | Jul 2012 | A1 |
20130170004 | Futterer | Jul 2013 | A1 |
20130187836 | Cheng | Jul 2013 | A1 |
20130229717 | Amitai | Sep 2013 | A1 |
20130276960 | Amitai | Oct 2013 | A1 |
20130279017 | Amitai | Oct 2013 | A1 |
20140016051 | Kroll | Jan 2014 | A1 |
20140104665 | Popovich | Apr 2014 | A1 |
20140118813 | Amitai et al. | May 2014 | A1 |
20140118836 | Amitai et al. | May 2014 | A1 |
20140118837 | Amitai et al. | May 2014 | A1 |
20140126051 | Amitai et al. | May 2014 | A1 |
20140126052 | Amitai et al. | May 2014 | A1 |
20140126056 | Amitai et al. | May 2014 | A1 |
20140126057 | Amitai et al. | May 2014 | A1 |
20140126175 | Amitai et al. | May 2014 | A1 |
20150138451 | Amitai | May 2015 | A1 |
20150198805 | Mansharof et al. | Jul 2015 | A1 |
20150205140 | Mansharof et al. | Jul 2015 | A1 |
20150205141 | Mansharof et al. | Jul 2015 | A1 |
20150207990 | Ford | Jul 2015 | A1 |
20150247976 | Abovitz | Sep 2015 | A1 |
20150277127 | Amitai | Oct 2015 | A1 |
20150293360 | Amitai | Oct 2015 | A1 |
20150309263 | Abovitz | Oct 2015 | A2 |
20160116743 | Amitai | Apr 2016 | A1 |
20160170212 | Amitai | Jun 2016 | A1 |
20160170213 | Amitai | Jun 2016 | A1 |
20160170214 | Amitai | Jun 2016 | A1 |
20160187656 | Amitai | Jun 2016 | A1 |
20160312913 | Thybo et al. | Oct 2016 | A1 |
20160341964 | Amitai | Nov 2016 | A1 |
20160349518 | Amitai et al. | Dec 2016 | A1 |
20170045744 | Amitai | Feb 2017 | A1 |
20170052376 | Amitai | Feb 2017 | A1 |
20170052377 | Amitai | Feb 2017 | A1 |
20170336636 | Amitai et al. | Nov 2017 | A1 |
20170357095 | Amitai | Dec 2017 | A1 |
20170363799 | Ofir et al. | Dec 2017 | A1 |
20180003862 | Benitez | Jan 2018 | A1 |
20180039082 | Amitai | Feb 2018 | A1 |
20180046859 | Jarven | Feb 2018 | A1 |
20180067315 | Amitai et al. | Mar 2018 | A1 |
20180101087 | Shinohara | Apr 2018 | A1 |
20180157057 | Gelberg | Jun 2018 | A1 |
20180210202 | Danziger | Jul 2018 | A1 |
20180267317 | Amitai | Sep 2018 | A1 |
20180275384 | Danziger et al. | Sep 2018 | A1 |
20180292592 | Danziger | Oct 2018 | A1 |
20180292599 | Ofir et al. | Oct 2018 | A1 |
20180372940 | Ishii et al. | Dec 2018 | A1 |
20180373039 | Amitai | Dec 2018 | A1 |
20180373115 | Brown et al. | Dec 2018 | A1 |
20190011710 | Amitai | Jan 2019 | A1 |
20190056600 | Danziger et al. | Feb 2019 | A1 |
20190064518 | Danziger | Feb 2019 | A1 |
20190155035 | Amitai | May 2019 | A1 |
20190170327 | Eisenfeld et al. | Jun 2019 | A1 |
20190208187 | Danziger | Jul 2019 | A1 |
20190212487 | Danziger et al. | Jul 2019 | A1 |
20190227215 | Danziger et al. | Jul 2019 | A1 |
20190278086 | Ofir | Sep 2019 | A1 |
20190285900 | Amitai | Sep 2019 | A1 |
20190293856 | Danziger | Sep 2019 | A1 |
20190339530 | Amitai | Nov 2019 | A1 |
20190346609 | Eisenfeld | Nov 2019 | A1 |
20190361240 | Gelberg | Nov 2019 | A1 |
20190361241 | Amitai | Nov 2019 | A1 |
20190377187 | Rubin et al. | Dec 2019 | A1 |
20190391408 | Mansharof | Dec 2019 | A1 |
20200033572 | Danziger et al. | Jan 2020 | A1 |
20200041713 | Danziger | Feb 2020 | A1 |
20200089001 | Amitai et al. | Mar 2020 | A1 |
20200110211 | Danziger et al. | Apr 2020 | A1 |
20200120329 | Danziger | Apr 2020 | A1 |
20200133008 | Amitai | Apr 2020 | A1 |
20200150330 | Danziger et al. | May 2020 | A1 |
20200183159 | Danziger | Jun 2020 | A1 |
20200183170 | Amitai et al. | Jun 2020 | A1 |
20200200963 | Eisenfeld et al. | Jun 2020 | A1 |
20200209667 | Sharlin et al. | Jul 2020 | A1 |
20200241308 | Danziger et al. | Jul 2020 | A1 |
20200249481 | Danziger et al. | Aug 2020 | A1 |
20200278547 | Singer | Sep 2020 | A1 |
20200278557 | Greenstein et al. | Sep 2020 | A1 |
20200285060 | Amitai | Sep 2020 | A1 |
20200292417 | Lobachinsky et al. | Sep 2020 | A1 |
20200292744 | Danziger | Sep 2020 | A1 |
20200292819 | Danziger et al. | Sep 2020 | A1 |
20200310024 | Danziger et al. | Oct 2020 | A1 |
20200326545 | Amitai et al. | Oct 2020 | A1 |
20200355924 | Dobschal | Nov 2020 | A1 |
20200371311 | Lobachinsky et al. | Nov 2020 | A1 |
20210003649 | Rasche et al. | Jan 2021 | A1 |
20210018755 | Amitai | Jan 2021 | A1 |
20210033773 | Danziger et al. | Feb 2021 | A1 |
20210033862 | Danziger et al. | Feb 2021 | A1 |
20210033872 | Rubin et al. | Feb 2021 | A1 |
20210055218 | Aldaag et al. | Feb 2021 | A1 |
20210055466 | Eisenfeld | Feb 2021 | A1 |
20210055561 | Danziger et al. | Feb 2021 | A1 |
20210063733 | Ronen | Mar 2021 | A1 |
20210072553 | Danziger et al. | Mar 2021 | A1 |
20210099691 | Danziger | Apr 2021 | A1 |
20210109351 | Danziger et al. | Apr 2021 | A1 |
20210116367 | Gelberg et al. | Apr 2021 | A1 |
20210141141 | Danziger et al. | May 2021 | A1 |
20210157150 | Amitai | May 2021 | A1 |
20210165231 | Gelberg et al. | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
1485692 | Jun 1967 | FR |
2617562 | Jan 1989 | FR |
Number | Date | Country | |
---|---|---|---|
20210055466 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62670886 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16411197 | May 2019 | US |
Child | 17093772 | US |