Promoter enhanced chilled ammonia based system and method for removal of CO2 from flue gas stream

Information

  • Patent Grant
  • 8168149
  • Patent Number
    8,168,149
  • Date Filed
    Thursday, December 2, 2010
    14 years ago
  • Date Issued
    Tuesday, May 1, 2012
    12 years ago
Abstract
A method and system for CO2 capture from flue gas uses an absorber vessel in which a flue gas stream containing CO2 is contacted with an ammoniated solution to remove CO2 from the flue gas, and a regenerator vessel in which CO2 is released from the ammoniated solution. Parasitic energy consumption of the system can be reduced by adding to the ammoniated solution a promoter effective to enhance the formation of ammonium bicarbonate within the ammoniated solution. The amount of ammoniated solution recycled from the regenerator vessel to the absorber vessel is less than that which would be required using the ammoniated solution without the promoter for removal of the same amount of CO2 from the flue gas.
Description
FIELD OF THE INVENTION

The proposed invention relates to a system and method for removing carbon dioxide (CO2) from a process gas stream containing carbon dioxide.


SUMMARY

Embodiments of the present invention provide a system and method for capturing carbon dioxide (CO2) from a process gas stream. Briefly described, in architecture, one embodiment of the system, among others, can be implemented so as to include absorber vessel configured to receive a flue gas stream; absorber vessel further configured to receive a supply of an absorbent solution. The absorber vessel includes a gas to liquid mass transfer device (MTD) configured to place the flue gas stream into contact with the absorbent solution.


Embodiments of the present invention can also be viewed as providing a method for removing CO2 from a flue gas stream. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: combining a promoter with an absorbent ionic solution (ionic solution); contacting the combined promoter and ionic solution with a flue gas stream that contains CO2; and regenerating the combined promoter and ionic solution to release the CO2 absorbed from the flue gas.


Other systems, methods, features, and advantages of the present invention will be or become apparent to those with ordinary skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.


BACKGROUND

In the combustion of a fuel, such as coal, oil, peat, waste, etc., in a combustion plant, such as those associated with boiler systems for providing steam to a power plant, a hot process gas (or flue gas) is generated. Such a flue gas will often contain, among other things, carbon dioxide (CO2) The negative environmental effects of releasing carbon dioxide to the atmosphere have been widely recognised, and have resulted in the development of processes adapted for removing carbon dioxide from the hot process gas generated in the combustion of the above mentioned fuels. One such system and process has previously been disclosed and is directed to a single-stage Chilled Ammonia based system and method for removal of carbon dioxide (CO2) from a post-combustion flue gas stream.


Known Chilled Ammonia based systems and processes (CAP) provide a relatively low cost means for capturing/removing CO2 from a gas stream, such as, for example, a post combustion flue gas stream. An example of such a system and process has previously been disclosed in pending patent application PCT/US2005/012794 (International Publication Number: WO 2006/022885/Inventor: Eli Gal)), filed on 12 Apr. 2005 and titled Ultra Cleaning of Combustion Gas Including the Removal of CO2. In this process the absorption of CO2 from a flue gas stream is achieved by contacting a chilled ammonia ionic solution (or slurry) with a flue gas stream that contains CO2.



FIG. 1A is a diagram generally depicting a flue gas processing system 15 for use in removing various pollutants from a flue gas stream FG emitted by the combustion chamber of a boiler system 26 used in a steam generator system of, for example, a power generation plant. This system includes a CO2 removal system 70 that is configured to remove CO2 from the flue gas stream FG before emitting the cleaned flue gas stream to an exhaust stack 90 (or alternatively additional processing). It is also configured to output CO2 removed from the flue gas stream FG. Details of CO2 removal system 70 are generally depicted in FIG. 1B.


With reference to FIG. 1B, CO2 removal System 70 includes a capture system 72 for capturing/removing CO2 from a flue gas stream FG and a regeneration system 74 for regenerating ionic solution used to remove CO2 from the flue gas stream FG. Details of capture system 72 are generally depicted in FIG. 1C.


With reference to FIG. 1C a capture system 72 of a CO2 capture system 70 (FIG. 1A) is generally depicted. In this system, the capture system 72 is a chilled ammonia based CO2 capture system. In a chilled ammonia based system/method for CO2 removal, an absorber vessel is provided in which an absorbent ionic solution (ionic solution) is contacted with a flue gas stream (FG) containing CO2. The ionic solution is typically aqueous and may be composed of, for example, water and ammonium ions, bicarbonate ions, carbonate ions, and/or carbamate ions. An example of a known CAP CO2 removal system is generally depicted in the diagram of FIG. 10.


With reference to FIG. 1C, an absorber vessel 170 is configured to receive a flue gas stream (FG) originating from, for example, the combustion chamber of a fossil fuel fired boiler 26 (see FIG. 1A). It is also configured to receive a lean ionic solution supply from regeneration system 74 (see FIG. 1B). The lean ionic solution is introduced into the vessel 170 via a liquid distribution system 122 while the flue gas stream FG is also received by the absorber vessel 170 via flue gas inlet 76.


The ionic solution is put into contact with the flue gas stream via a gas-liquid contacting device (hereinafter, mass transfer device, MTD) 111 used for mass transfer and located in the absorber vessel 170 and within the path that the flue gas stream travels from its entrance via inlet 76 to the vessel exit 77. The gas-liquid contacting device 111 may be, for example, one or more commonly known structured or random packing materials, or a combination thereof.


Ionic solution sprayed from the spray head system 121 and/or 122 falls downward and onto/into the mass transfer device 111. The lean ionic solution feeding to the spray head system 122 and the recycled ionic solution feeding to spray head 121 can be combined and sprayed from one spray header. The ionic solution cascades through the mass transfer device 111 and comes in contact with the flue gas stream FG that is rising upward (opposite the direction of the ionic solution) and through the mass transfer device 111.


Once contacted with the flue gas stream, the ionic solution acts to absorb CO2 from the flue gas stream, thus making the ionic solution “rich” with CO2 (rich solution). The rich ionic solution continues to flow downward through the mass transfer device and is then collected in the bottom 78 of the absorber vessel 170. The rich ionic solution is then regenerated via regenerator system 74 (see FIG. 1B) to release the CO2 absorbed by the ionic solution from the flue gas stream. The CO2 released from the ionic solution may then be output to storage or other predetermined uses/purposes. Once the CO2 is released from the ionic solution, the ionic solution is said to be “lean”. The lean ionic solution is then again ready to absorb CO2 from a flue gas stream and may be directed back to the liquid distribution system 122 whereby it is again introduced into the absorber vessel 170.


After the ionic solution is sprayed into the absorber vessel 170 via spray head system 122, it cascades downward onto and through the mass transfer device 111 where it is contacted with the flue gas stream FG. Upon contact with the flue gas stream the ionic solution reacts with CO2 that may be contained in the flue gas stream. This reaction is exothermic and as such results in the generation of heat in the absorber vessel 170. This heat can cause some of the ammonia contained in the ionic solution to change into a gas. The gaseous ammonia then, instead of migrating downward along with the liquid ionic solution, migrates upward through the absorber vessel 170, along with and as a part of the flue gas stream and, ultimately, escaping via the exit 77 of the absorber vessel 170. The loss of this ammonia from the system (ammonia slip) decreases the molar concentration of ammonia in the ionic solution. As the molar concentration of ammonia decreases, so does the R value (NH3—to —CO2 mole ratio).


When a flue gas stream is contacted with the ionic solution, the carbon dioxide contained in the flue gas stream reacts to form bicarbonate ion by reacting with water (H2O) and with hydroxyl ion (OH). These “capture reactions” (Reaction 1 through Reaction 9, shown below) are generally described as follows:

CO2(g)→CO2(aq)  (Reaction 1)
CO2(aq)+2H2O→HCO3(aq)+H3O+  (Reaction 2)
CO2(aq)+OH→HCO3(aq)  (Reaction 3)


The reactions of the NH3 and its ions and CO2 occur in the liquid phase and are discussed below. However, in low temperature, typically below 70-80 F and high ionic strength, typically 2-12M ammonia ions the bicarbonate produced in Reaction (2) and Reaction (3), reacts with ammonium ions and precipitates as ammonium bicarbonate when the ratio NH3/CO2 is smaller than 2.0 according to:

HCO3(aq)+NH4+(aq)→NH4HCO3(s)  (Reaction 4)


Reaction 2 is a slow reaction while Reaction 3 is a faster reaction. At high pH levels such as, for example when pH is greater than 10, the concentration of OH in the ionic solution is high and thus most of the CO2 is captured through reaction (3) and high CO2 capture efficiency can be achieved. At lower pH the concentration of the hydroxyl ion OH is low and the CO2 capture efficiency is also low and is based mainly on reaction (2).


In the Chilled Ammonia Based CO2 Capture system(s)/method(s) the CO2 in the flue gas stream is captured by contacting the flue gas stream with an aqueous ammonia solution allowing the CO2 in the flue gas stream to directly react withthe aqueous ammonia. At low R, typically less than about 2, and pH typically lower than 10, the direct reaction of CO2 with ammonia contained in the ionic solution is the dominant mechanism for CO2 capture. The first step in the CO2 sequence capture is the CO2 mass transfer from the gas phase to the liquid phase of reaction (1). In the liquid phase a sequence of reaction occur between the aqueous CO2 and aqueous ammonia:

CO2(aq)+NH3(aq)→CO2*NH3(aq)  (Reaction 5)
CO2*NH3(aq)+H2O→NH2CO2(aq)+H3O+  (Reaction 6)
NH2CO2(aq)+H2O→NH4+(aq)+CO3(aq)  (Reaction 7)
CO3(aq)+NH4+(aq)→HCO3(aq)+NH3(aq)  (Reaction 8)
CO3(aq)+H3O+→HCO331 (aq)+H2O  (Reaction 9)


As described above the bicarbonate produced in Reaction (8) & Reaction (9) can react with ammonium ions to precipitate as solid ammonium bicarbonate based on Reaction (4), while the ammonia produced in Reaction (8) can react with additional CO2 based on Reaction (5).


The sequence of the chain of reactions (5) through (9) is relatively slow and thus requires a large and expensive CO2 capture device. The slow rate of CO2 absorption is due to: 1) one or more slow reactions in the sequence of capture reactions (Reaction 1 thru Reaction 9); and 2) the accumulation of intermediate species, such as CO2*NH3 and NH2CO2, in the ionic solution. The accumulation of intermediate species slows the CO2 capture process and results in lower CO2 capture efficiency with a power generation facility. Thus, a heretofore unaddressed need exists in the industry to accelerate the rate of the CO2 capture reactions that allows significant reduction in the size and thus the cost of the CO2 capture device and its auxiliary systems.


Further, features of the present invention will be apparent from the description and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views. The invention will now be described in more detail with reference to the appended drawings in which:



FIG. 1A is a diagram generally depicting a flue gas processing system 15 that includes a CO2 removal system 70.



FIG. 1B is a diagram generally depicting further details of a CO2 removal system 70 that includes a capture system 72 and a regeneration system 74.



FIG. 1C is a diagram generally depicting details of a capture system 72.



FIG. 2 is a graph that generally illustrates the capture efficiency of a system in which an ionic solution is used to capture CO2 both with and without a promoter.



FIG. 3 is a diagram generally depicting an embodiment of a capture system 72 that includes an absorber system for contacting an ionic solution+promoter with a flue gas stream.





DISCUSSION

The proposed invention is directed to a chilled ammonia based CO2 capture system and method. More particularly, the proposed invention is directed to chilled ammonia based CO2 capture system and method in which a promoter is used to help accelerate certain capture reactions that occur substantially coincident to and/or as a result of contacting a chilled ammonia based ionic solution with a gas stream that contains CO2.


A system and method for removing CO2 from a gas stream is proposed in which a chilled ammonia based ionic solution is provided that includes a promoter to help accelerate certain chemical reactions that occur between CO2 and ammoniated ionic solution, substantially coincident to and/or as a result of the contacting of the chilled ammonia based ionic solution with a gas stream that contains CO2. In a preferred embodiment, an ionic solution is mixed with a promoter. This ionic solution-promoter mix is then contacted with a flue gas stream via, for example, a CO2 capture absorber/absorber vessel.


The promoter acts to accelerate certain “capture reactions”, namely the following reactions (Reaction 5 through Reaction 9) that take place:

CO2(aq)+NH3(aq)→CO2*NH3(aq)  (Reaction 5)
CO2*NH3(aq)+H2O→NH2CO2(aq)+H3O+  (Reaction 6)
NH2CO2(aq)+H2O→NH4+(aq)+CO3(aq)  (Reaction 7)
CO3(aq)+NH4+(aq)→HCO3(aq)+NH3(aq)  (Reaction 8)
CO3(aq)+H3O+→HCO3(aq)+H2O  (Reaction 9)


By accelerating the capture reactions (5) through (9), the proposed system is able to capture more CO2 from a flue gas stream per unit of time, thereby allowing for more CO2 to be removed from a flue gas stream.


In one embodiment of the proposed invention, the promoter that is used is an amine. This amine is mixed with the ionic solution and subsequently contacted with a flue gas stream containing CO2. An example of a possible amine that may be used as a promoter includes, but is not limited to piperazine (PZ). In a further embodiment, the promoter that is used is an enzyme or enzyme system. In this embodiment the enzyme or enzyme system is mixed with the ionic solution and subsequently contacted with a flue gas stream containing CO2. An example of an enzyme or enzyme system that may be used as a promoter includes, but is not limited to the Carbozyme permeator available from Carbozyme, Inc of 1 Deer Park Drive, Suite H-3, Monmouth Junction, N.J. 08852.


Piperazine is a C4N2H10 cyclical compound and has been used as a promoter for CO2 capture in amine systems. Testing has indicated that piperazine is a very good promoter for use with ammoniated solutions to enhance CO2 capture and the production of ammonium bicarbonate. Adding 0.2-2.0 molar PZ, and preferably 0.4-1.0 molar PZ, to the ionic solution provides a significant increase in CO2 capture efficiency. It also provides an increase in precipitation of ammonium bicarbonate solid particles from the solution. Since the ammonium bicarbonate is richer in CO2 than the solution itself, (the NH3/CO2 ratio of the solid particles is 1.0) the precipitation of the ammonium bicarbonate particles from the solution increases the NH3/CO2 ratio and the pH of the solution resulting in leaner solution that can capture more CO2.


The action of a PZ promoter in accelerating certain capture reactions may allow for a significant reduction, by as much as 50-80%, in the physical size of the CO2 absorber vessel and associated equipment. It also allows for reduction in parasitic power consumption due to resulting reductions in pressure drop and liquid recycle rate in the absorber. In short, it allows for implementation and operation of a useful CO2 capture system at a much lower cost.



FIG. 2 is a graphical representation of the relative CO2 capture efficiency when ionic solution with and without promoter, such as PZ, is used. FIG. 2 shows that there is an increase in CO2 capture efficiency when an ionic solution containing 0.45M PZ is contacted with a flue gas stream via an 11 ft packed absorber vessel as compared to not using PZ.


In FIG. 2, at NH3/CO2 mole ratio R=2.4 the CO2 capture efficiency is 82% with 0.45M PZ and only 51% with no PZ. At R=2.0 efficiency drops to 74% with 0.45M PZ and to only 36% with no PZ. At R=1.8 efficiency is 66% with 0.45M PZ and only 23% with no PZ. At R=1.6 efficiency is still high with 0.45M PZ at 52% while efficiency with no PZ is less than 10% under the operating conditions of the test.


The PZ promoter is stable in both absorption and regeneration conditions and regenerated solution containing PZ performs as well as fresh PZ in multiple CO2 absorption cycles. By using an absorbent ionic solution that includes a chilled ammonia and a promoter, such as, for example piperazine, the CO2 capture efficiency of a chilled ammonia based CO2 capture system may be enhanced dramatically. Piperazine is stable under both low temperature absorption conditions and high pressure and temperature regeneration conditions. Regenerated CO2 lean solution containing piperazine appears to perform as well piperazine that is freshly injected into ammoniated solutions.



FIG. 3 is a diagram generally depicitng an embodiment of a system configured to capture CO2 from a flue gas stream in accordance with the invetion. With reference to FIG. 3, an absorber vessel 370 is configured to receive a flue gas stream (FG) originating from, for example, the combustion chamber of a fossil fuel fired boiler 26 (see FIG. 1A). It is also configured to receive a lean ionic solution+promoter supply from regeneration system 74 (see FIG. 1B). The lean ionic solution+promoter supply is introduced into the vessel 370 via a liquid distribution system 322 while the flue gas stream FG is also received by the absorber vessel 370 via flue gas inlet 76.


The ionic solution+promoter is put into contact with the flue gas stream via a gas-liquid contacting device (hereinafter, mass transfer device, MTD) 311 used for mass transfer and located in the absorber vessel 370 and within the path that the flue gas stream travels from its entrance via inlet 76 to the vessel exit 77. The gas-liquid contacting device 311 may be, for example, one or more commonly known structured or random packing materials, or a combination thereof.


Ionic solution+promoter sprayed from the spray head system 321 and/or 322 falls downward and onto/into the mass transfer device 311. The ionic solution cascades through the mass transfer device 311 and comes in contact with the flue gas stream FG that is rising upward (opposite the direction of the ionic solution+promoter) and through the mass transfer device 311.


Once contacted with the flue gas stream, the ionic solution+promoter acts to absorb CO2 from the flue gas stream, thus making the ionic solution+promoter “rich” with CO2 (rich ionic+promoter solution). The rich ionic solution+promoter continues to flow downward through the mass transfer device and is then collected in the bottom 378 of the absorber vessel 370.


The rich ionic solution+promoter is then regenerated via regenerator system 74 (see FIG. 1B) to release the CO2 absorbed by the ionic solution from the flue gas stream. The CO2 released from the ionic solution+promoter may then be output to storage or other predetermined uses/purposes. Once the CO2 is released from the ionic solution+promoter, the ionic solution+promoter is said to be “lean”. The lean ionic solution+promoter is then again ready to absorb CO2 from a flue gas stream and may be directed back to the liquid distribution system 122 whereby it is again introduced into the absorber vessel 370.


After the ionic solution is sprayed into the absorber vessel 370 via spray head system 322, it cascades downward onto and through the mass transfer device 311 where it is contacted with the flue gas stream FG. Upon contact with the flue gas stream the ionic solution+promoter reacts with the CO2 to thereby capture and remove it from the flue gas stream.


It should be emphasized that the above-described embodiments of the present invention, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) of the invention without departing substantially from the spirit and principles of the invention. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present invention and protected by the following claims.

Claims
  • 1. A method of reducing power consumed by a system for capturing CO2 from flue gas, the method comprising: contacting in a contacting step a flue gas stream containing CO2 with an ammoniated solution lean in CO2 to provide an ammoniated solution rich in CO2;regenerating in a regenerating step the ammoniated solution rich in CO2 to release CO2 from the ammoniated solution, thereby producing the ammoniated solution lean in CO2;recycling the ammoniated solution lean in CO2 from the regenerating step to the contacting step;adding a promoter to the ammoniated solution lean in CO2, the promoter being effective to enhance the formation of ammonium bicarbonate within the ammoniated solution lean in CO2, thereby increasing the CO2 absorption capacity of the ammoniated solution lean in CO2; andreducing the amount of ammoniated solution lean in CO2 that is recycled from the regenerating step to the contacting step, thereby reducing the power consumed by the system.
  • 2. The method of claim 1 wherein the promoter comprises an amine.
  • 3. The method of claim 2 wherein the amine comprises piperazine.
  • 4. The method of claim 3, wherein the promoter includes 0.2-2.0 molar piperazine.
  • 5. The method of claim 4, wherein the promoter includes 0.4-1.0 molar piperazine.
  • 6. The method of claim 1 wherein the promoter includes an enzyme.
  • 7. A method of capturing CO2 from flue gas using system comprising an absorber vessel in which a flue gas stream containing CO2 is contacted with an ammoniated solution to remove CO2 from the flue gas, and a regenerator vessel in which CO2 is released from the ammoniated solution, the method comprising: adding to the ammoniated solution a promoter effective to enhance the formation of ammonium bicarbonate within the ammoniated solution; andrecycling an amount of the ammoniated solution from the regenerator vessel to the absorber vessel to remove an amount of CO2 from the flue gas, the amount of the ammoniated solution being less than that which would be required to remove the amount of CO2 from the flue gas using the ammoniated solution without the promoter.
  • 8. The method of claim 7 wherein the promoter comprises an amine.
  • 9. The method of claim 8 wherein the amine comprises piperazine.
  • 10. The method of claim 9, wherein the promoter includes 0.2-2.0 molar piperazine.
  • 11. The method of claim 10, wherein the promoter includes 0.4-1.0 molar piperazine.
  • 12. The method of claim 7 wherein the promoter includes an enzyme.
  • 13. The method of claim 7, wherein the absorber vessel is reduced from the physical size required for removal of the amount of CO2 from the flue gas using the ammoniated solution without the promoter.
  • 14. The method of claim 13, wherein the absorber vessel is reduced 50-80% from the physical size required for removal of the amount of CO2 from the flue gas using the ammoniated solution without the promoter.
CROSS REFERENCE TO RELATED APPLICATION(S)

This application is a Continuation of U.S. patent application Ser. No. 12/272,953, filed Nov. 18, 2008, which claims the benefit of U.S. provisional application entitled, “Enhanced CO2 Absorption in a Chilled Ammonia Based Post-Combustion Flue Gas Processing System”, having U.S. Ser. No. 60/992,340 filed on Dec. 5, 2007, both of which are incorporated by reference herein in their entireties.

US Referenced Citations (64)
Number Name Date Kind
2106734 Gollmar Feb 1935 A
2043109 McKee et al. Jun 1936 A
2487576 Meyers Nov 1949 A
2608461 Frazier Aug 1952 A
2878099 Breuing et al. Mar 1959 A
3255233 Kunze et al. Jun 1966 A
3923955 Fattinger Dec 1975 A
4336233 Appl et al. Jun 1982 A
4515760 Lang et al. May 1985 A
4729883 Lam et al. Mar 1988 A
4847057 Brugerolle et al. Jul 1989 A
4977745 Heichberger Dec 1990 A
4999031 Gerhardt et al. Mar 1991 A
5067972 Hemmings et al. Nov 1991 A
5137550 Hegarty et al. Aug 1992 A
5186916 Nevels Feb 1993 A
5318758 Fujii Jun 1994 A
5378442 Fujii et al. Jan 1995 A
5427759 Heitmann Jun 1995 A
5453115 Vuletic Sep 1995 A
5462583 Wood et al. Oct 1995 A
5599508 Martinelli et al. Feb 1997 A
5648053 Mimura et al. Jul 1997 A
5700311 Spencer Dec 1997 A
5756058 Watanabe et al. May 1998 A
5832712 Rønning et al. Nov 1998 A
5853680 Iijima et al. Dec 1998 A
5979180 Lebas et al. Nov 1999 A
6027552 Ruck et al. Feb 2000 A
6143556 Trachtenberg Nov 2000 A
6210467 Howard Apr 2001 B1
6348088 Chung Feb 2002 B2
6372023 Kiyono et al. Apr 2002 B1
6458188 Mace Oct 2002 B1
6485547 Iijima Nov 2002 B1
6497852 Chakravarti et al. Dec 2002 B2
6506350 Cooper et al. Jan 2003 B2
6759022 Hammer et al. Jul 2004 B2
6764530 Iijima Jul 2004 B2
7004997 Asprion et al. Feb 2006 B2
7022296 Khang et al. Apr 2006 B1
7083662 Xu et al. Aug 2006 B2
7128777 Spencer Oct 2006 B2
7160456 Jarventie Jan 2007 B2
7255842 Yeh et al. Aug 2007 B1
7596952 Fradette et al. Oct 2009 B2
7641717 Gal Jan 2010 B2
7862788 Gal et al. Jan 2011 B2
20030045756 Mimura et al. Mar 2003 A1
20030140786 Iijima Jul 2003 A1
20040123736 Torres, Jr. et al. Jul 2004 A1
20040126294 Cooper et al. Jul 2004 A1
20050169825 Cadours et al. Aug 2005 A1
20060178259 Schubert et al. Aug 2006 A1
20060204425 Kamijo et al. Sep 2006 A1
20070006565 Fleischer et al. Jan 2007 A1
20080072762 Gal Mar 2008 A1
20080178733 Gal Jul 2008 A1
20080307968 Kang et al. Dec 2008 A1
20090101012 Gal et al. Apr 2009 A1
20090155889 Handagama et al. Jun 2009 A1
20090282977 Koss Nov 2009 A1
20100003177 Aroonwilas et al. Jan 2010 A1
20100092368 Neumann et al. Apr 2010 A1
Foreign Referenced Citations (52)
Number Date Country
648129 Jul 1992 AU
678622 Jun 1995 AU
693998 Oct 1996 AU
704708 Jun 1997 AU
720931 Feb 1998 AU
733148 Mar 1998 AU
748293 Oct 2001 AU
2002300888 Jun 2003 AU
2002300893 Jun 2003 AU
2002325051 Apr 2004 AU
2002348259 Jun 2004 AU
469840 Dec 1928 DE
2832493 Jul 1978 DE
3633690 Apr 1988 DE
10 2005 033837 Jan 2007 DE
0243778 Nov 1987 EP
0502596 Sep 1992 EP
0553643 Aug 1993 EP
0588178 Mar 1994 EP
1759756 Mar 2007 EP
271852 May 1926 GB
871207 Jun 1961 GB
899611 Jun 1962 GB
2331526 May 1999 GB
6317177 May 1977 JP
62-8722487 Apr 1987 JP
16863896 Jul 1996 JP
10 202054 Aug 1998 JP
11 137960 May 1999 JP
2008-508099 Mar 2008 JP
2010-530802 Sep 2010 JP
100703999 Mar 2007 KR
512785 May 1976 SU
1567251 May 1990 SU
9847604 Oct 1998 WO
0209849 Feb 2002 WO
02089958 Nov 2002 WO
03057348 Jul 2003 WO
03089115 Oct 2003 WO
03095071 Nov 2003 WO
2004005818 Jan 2004 WO
2004030795 Apr 2004 WO
2004052511 Jun 2004 WO
2004058384 Jul 2004 WO
2005087351 Sep 2005 WO
2006022885 Mar 2006 WO
2008072979 Jun 2008 WO
2008094777 Aug 2008 WO
2008101293 Aug 2008 WO
2008144918 Dec 2008 WO
2009000025 Dec 2008 WO
2010053683 May 2010 WO
Related Publications (1)
Number Date Country
20110070136 A1 Mar 2011 US
Provisional Applications (1)
Number Date Country
60992340 Dec 2007 US
Continuations (1)
Number Date Country
Parent 12272953 Nov 2008 US
Child 12958816 US