Promoters From Brassica Napus For Seed Specific Gene Expression

Information

  • Patent Application
  • 20100263088
  • Publication Number
    20100263088
  • Date Filed
    December 15, 2008
    16 years ago
  • Date Published
    October 14, 2010
    14 years ago
Abstract
The present invention is concerned with means and methods for allowing tissue specific and, in particular, seed specific expression of genes. The present invention, accordingly, relates to a polynucleotide comprising an expression control sequence which allows seed specific expression of a nucleic acid of interest being operatively linked thereto. Moreover, the present invention contemplates vectors, host cells, non-human transgenic organisms comprising the aforementioned polynucleotide as well as methods and uses of such a polynucleotide.
Description

The present invention is concerned with means and methods for allowing tissue specific and, in particular, seed specific expression of genes. The present invention, accordingly, relates to a polynucleotide comprising an expression control sequence which allows seed specific expression of a nucleic acid of interest being operatively linked thereto. Moreover, the present invention contemplates vectors, host cells, non-human transgenic organisms comprising the aforementioned polynucleotide as well as methods and uses of such a polynucleotide.


In the field of “green” (agricultural) biotechnology, plants are genetically manipulated in order to confer beneficial traits. These beneficial traits may be yield increase, tolerance increase, reduced dependency on fertilizers, herbicidal, pesticidal- or fungicidal-resitance, or the capability of producing chemical specialties such as nutrients, drugs, oils for food and petrochemistry etc.


In many cases, it is required to express a heterologous gene in the genetically modified plants at a rather specific location in order to obtain a plant exhibiting the desired beneficial trait. One major location for gene expression is the plant seed. In the seeds, many important synthesis pathways, e.g., in fatty acid synthesis, take place. Accordingly, expression of heterologous genes in seeds allow for the manipulation of fatty acid synthesis pathways and, thus, for the provision of various fatty acid derivatives and lipid-based compounds.


However, for many heterologous genes, a seed specific expression will be required. Promoters which allow for a seed specific expression are known in the art. Such promoters include the oilseed rape napin promoter (U.S. Pat. No. 5,608,152), the Vicia faba USP promoter (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), the Arabidopsis oleosin promoter (WO 98/45461), the Phaseolus vulgaris phaseolin promoter (U.S. Pat. No. 5,504,200), the Brassica Bce4 promoter (WO 91/13980) or the legumine B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9), and promoters which bring about the seed-specific expression in monocotyledonous plants such as maize, barley, wheat, rye, rice and the like. Suitable noteworthy promoters are the barley Ipt2 or Ipt1 gene promoter (WO 95/15389 and WO 95/23230) or the promoters from the barley hordein gene, the rice glutelin gene, the rice oryzin gene, the rice prolamine gene, the wheat gliadine gene, the wheat glutelin gene, the maize zeine gene, the oat glutelin gene, the sorghum kasirin gene or the rye secalin gene, which are described in WO 99/16890.


However, there is a clear need for further promoters which allow for a reliable and efficient expression of foreign nucleic acids in seeds.


The technical problem underlying this invention can be seen as the provision of means and methods complying with the aforementioned needs. The technical problem is solved by the embodiments characterized in the claims and herein below.


Accordingly, the present invention relates to a polynucleotide comprising an expression control sequence which allows seed specific expression of a nucleic acid of interest being operatively linked thereto, said expression control sequence being selected from the group consisting of:

    • (a) an expression control sequence having a nucleic acid sequence as shown in any one of SEQ ID NOs: 7 to 12;
    • (b) an expression control sequence having a nucleic acid sequence which hybridizes under stringent conditions to a a nucleic acid sequence as shown in any one of SEQ ID NOs: 7 to 12;
    • (c) an expression control sequence having a nucleic acid sequence which hybridizes to a nucleic acid sequences located upstream of an open reading frame sequence shown in any one of SEQ ID NOs: 1 to 6;
    • (d) an expression control sequence having a nucleic acid sequence which hybridizes to a nucleic acid sequences located upstream of an open reading frame sequence being at least 80% identical to an open reading frame sequence as shown in any one of SEQ ID NOs: 1 to 6;
    • (e) an expression control sequence obtainable by 5′ genome walking from an open reading frame sequence as shown in any one of SEQ ID NOs: 1 to 6; and
    • (f) an expression control sequence obtainable by 5′ genome walking from an open reading frame sequence being at least 80% identical to an open reading frame as shown in any one of SEQ ID NOs: 1 to 6.


The term “polynucleotide” as used herein refers to a linear or circular nucleic acid molecule. It encompasses DNA as well as RNA molecules. The polynucleotide of the present invention is characterized in that it shall comprise an expression control sequence as defined elsewhere in this specification. In addition to the expression control sequence, the polynucleotide of the present invention, preferably, further comprises at least one nucleic acid of interest being operatively linked to the expression control sequence and/or a termination sequence for transcription. Thus, the polynucleotide of the present invention, preferably, comprises an expression cassette for the expression of at least one nucleic acid of interest. Alternatively, the polynucleotide may comprise in addition to the said expression control sequence a multiple cloning site and/or a termination sequence for transcription. In such a case, the multiple cloning site is, preferably, arranged in a manner as to allow for operative linkage of a nucleic acid to be introduced in the multiple cloning site with the expression control sequence. In addition to the aforementioned components, the polynucleotide of the present invention, preferably, could comprise components required for homologous recombination, i.e. flanking genomic sequences from a target locus. However, also preferably, the polynucleotide of the present invention can essentially consist of the said expression control sequence.


The term “expression control sequence” as used herein refers to a nucleic acid which is capable of governing the expression of another nucleic acid operatively linked thereto, e.g. a nucleic acid of interest referred to elsewhere in this specification in detail. An expression control sequence as referred to in accordance with the present invention, preferably, comprises sequence motifs which are recognized and bound by polypeptides, i.e. transcription factors. The said transcription factors shall upon binding recruit RNA polymerases, preferably, RNA polymerase I, II or III, more preferably, RNA polymerase II or III, and most preferably, RNA polymerase II. Thereby the expression of a nucleic acid operatively linked to the expression control sequence will be initiated. It is to be understood that dependent on the type of nucleic acid to be expressed, i.e. the nucleic acid of interest, expression as meant herein may comprise transcription of RNA polynucleotides from the nucleic acid sequence (as suitable for, e.g., anti-sense approaches or RNAi approaches) or may comprises transcription of RNA polynucleotides followed by translation of the said RNA polynucleotides into polypeptides (as suitable for, e.g., gene expression and recombinant polypeptide production approaches). In order to govern expression of a nucleic acid, the expression control sequence may be located immediately adjacent to the nucleic acid to be expressed, i.e. physically linked to the said nucleic acid at its 5′ end. Alternatively, it may be located in physical proximity. In the latter case, however, the sequence must be located so as to allow functional interaction with the nucleic acid to be expressed. An expression control sequence referred to herein, preferably, comprises between 200 and 5,000 nucleotides in length. More preferably, it comprises between 500 and 2,500 nucleotides and, more preferably, at least 1,000 nucleotides. As mentioned before, an expression control sequence, preferably, comprises a plurality of sequence motifs which are required for transcription factor binding or for conferring a certain structure to the polynucletide comprising the expression control sequence. Sequence motifs are also sometimes referred to as cis-regulatory elements and, as meant herein, include promoter elements as well as enhancer elements.


Preferred expression control sequences to be included into a polynucleotide of the present invention have a nucleic acid sequence as shown in any one of SEQ ID NOs: 7 to 12.


Further preferably, an expression control sequence comprised by a polynucleotide of the present invention has a nucleic acid sequence which hybridizes to a nucleic acid sequences located upstream of an open reading frame sequence shown in any one of SEQ ID NOs: 1 to 6, i.e. is a variant expression control sequence. It will be understood that expression control sequences may slightly differ in its sequences due to allelic variations. Accordingly, the present invention also contemplates an expression control sequence which can be derived from an open reading frame as shown in any one of SEQ ID NOs: 1 to 6. Said expression control sequences are capable of hybridizing, preferably under stringent conditions, to the upstream sequences of the open reading frames shown in any one of SEQ ID NOs. 1 to 6, i.e. the expression control sequences shown in any one of SEQ ID NOs.: 7 to 12. Stringent hybridization conditions as meant herein are, preferably, hybridization conditions in 6× sodium chloride/sodium citrate (=SSC) at approximately 45° C., followed by one or more wash steps in 0.2×SSC, 0.1% SDS at 53 to 65° C., preferably at 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C. or 65° C. The skilled worker knows that these hybridization conditions differ depending on the type of nucleic acid and, for example when organic solvents are present, with regard to the temperature and concentration of the buffer. For example, under “standard hybridization conditions” the temperature differs depending on the type of nucleic acid between 42° C. and 58° C. in aqueous buffer with a concentration of 0.1 to 5×SSC (pH 7.2). If organic solvent is present in the abovementioned buffer, for example 50% formamide, the temperature under standard conditions is approximately 42° C. The hybridization conditions for DNA:DNA hybrids are preferably for example 0.1×SSC and 20° C. to 45° C., preferably between 30° C. and 45° C. The hybridization conditions for DNA:RNA hybrids are preferably, for example, 0.1×SSC and 30° C. to 55° C., preferably between 45° C. and 55° C. The abovementioned hybridization temperatures are determined for example for a nucleic acid with approximately 100 by (=base pairs) in length and a G+C content of 50% in the absence of formamide. Such hybridizing expression control sequences are, more preferably, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94% at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the expression control sequences as shown in any one of SEQ ID NOs.: 7 to 12. The percent identity values are, preferably, calculated over the entire nucleic acid sequence region. A series of programs based on a variety of algorithms is available to the skilled worker for comparing different sequences. In this context, the algorithms of Needleman and Wunsch or Smith and Waterman give particularly reliable results. To carry out the sequence alignments, the program PileUp (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or the programs Gap and BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970)) and Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981))], which are part of the GCG software packet [Genetics Computer Group, 575 Science Drive, Madison, Wis., USA 53711 (1991)], are to be used. The sequence identity values recited above in percent (%) are to be determined, preferably, using the program GAP over the entire sequence region with the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 and Average Mismatch: 0.000, which, unless otherwise specified, shall always be used as standard settings for sequence alignments.


Moreover, expression control sequences which allow for seed specific expression can not only be found upstream of the aforementioned open reading frames having a nucleic acid sequence as shown in any one of SEQ ID NOs. 1 to 6. Rather, expression control sequences which allow for seed specific expression can also be found upstream of orthologous, paralogous or homologous genes (i.e. open reading frames). Thus, also preferably, an variant expression control sequence comprised by a polynucleotide of the present invention has a nucleic acid sequence which hybridizes to a nucleic acid sequences located upstream of an open reading frame sequence being at least 70%, more preferably, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94% at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence as shown in any one of SEQ ID NOs: 1 to 6. The said variant open reading shall encode a polypeptide having the biological activity of the corresponding polypeptide being encoded by the open reading frame shown in any one of SEQ ID NOs.: 1 to 6. In this context it should be mentioned that the open reading frame shown in SEQ ID NO: 1 encodes a polypeptide having pectinesterase activity, the open reading frames shown in SEQ ID NO: 2 and 5 encode “late embryogenesis adundant” (LEA) polypeptides, the open reading frame shown in SEQ ID NO: 3 encodes a polypeptide having anthocyanidin reductase activity, the open reading frame shown in SEQ ID NO: 4 encodes a polypeptide having proteinase inhibitor activity, and the open reading frame shown in SEQ ID NO: 6 encodes a polypeptide having lipid transfer activity. These biological activities can be determined by those skilled in the art without further ado.


Also preferably, a variant expression control sequence comprised by a polynucleotide of the present invention is (i) obtainable by 5′ genome walking from an open reading frame sequence as shown in any one of SEQ ID NOs: 1 to 6 or (ii) obtainable by 5′ genome walking from a open reading frame sequence being at least 80% identical to an open reading frame as shown in any one of SEQ ID NOs: 1 to 6. Variant expression control sequences are obtainable without further by the genome walking technology which can be carried out as described in the accompanying Examples by using, e.g., commercially available kits.


Variant expression control sequences referred to in this specification for the expression control sequence shown in SEQ ID NO: 7, preferably, comprise at least 80, at least 90, at least 100, at least 110, at least 120 or all of the sequence motifs recited in Table 1. Variant expression control sequences referred to in this specification for the expression control sequence shown in SEQ ID NO: 8, preferably, comprise at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140 or all of the sequence motifs recited in Table 2. Variant expression control sequences referred to in this specification for the expression control sequence shown in SEQ ID NO: 9, preferably, comprise at least 80, at least 90, at least 100, at least 110 or all of the sequence motifs recited in Table 3. Variant expression control sequences referred to in this specification for the expression control sequence shown in SEQ ID NO: 10, preferably, comprise at least 40, at least 50, at least 60, at least 70 or all of the sequence motifs recited in Table 4. Variant expression control sequences referred to in this specification for the expression control sequence shown in SEQ ID NO: 11, preferably, comprise at least 80, at least 150, at least 200, at least 210, at least 220, at least 230, at least 240 or all of the sequence motifs recited in Table 5. Variant expression control sequences referred to in this specification for the expression control sequence shown in SEQ ID NO: 12, preferably, comprise at least 80, at least 90, at least 100, at least 110, at least 120 or all of the sequence motifs recited in Table 6. Specifically, the following elements are preferably comprised by all variant expression control sequences referred to in accordance with the present invention: CA-rich element, CCAAT box, G-box binding factor 1, RY repeat element, Prolamin box legumin box, Dof box and RITA motif. The specific sequnces for the elements are shown in the Tables, below (marked in bold). These elements are characteristic for seed-specific promoters (Kim 2006, Mol Genet Genomics 276(4):351-368).


The term “seed specific” as used herein means that a nucleic acid of interest being operatively linked to the expression control sequence referred to herein will be predominantly expressed in seeds when present in a plant. A predominant expression as meant herein is characterized by a statistically significantly higher amount of detectable transcription in the seeds with respect to other plant tissues. A statistically significant higher amount of transcription is, preferably, an amount being at least two-fold, three-fold, four-fold, five-fold, ten-fold, hundred-fold, five hundred-fold or thousand-fold the amount found in at least one of the other tissues with detectable transcription. Alternatively, it is an expression in seeds whereby the amount of transcription in non-seed tissues is less than 1%, 2%, 3%, 4% or most preferably 5% of the overall (whole plant) amount of expression. The amount of transcription directly correlates to the amount of transcripts (i.e. RNA) or polypeptides encoded by the transcripts present in a cell or tissue. Suitable techniques for measuring transcription either based on RNA or polypeptides are well known in the art. Seed specific alternatively and, preferably in addition to the above, means that the expression is restricted or almost restricted to seeds, i.e. there is essentially no detectable transcription in other tissues. Almost restricted as meant herein means that unspecific expression is detectable in less than ten, less than five, less than four, less than three, less than two or one other tissue(s). Seed specific expression as used herein includes expression in seed cells or their precursors, such as cells of the endosperm and of the developing embryo.


An expression control sequences can be tested for seed specific expression by determining the expression pattern of a nucleic acid of interest, e.g., a nucleic acid encoding a reporter protein, such as GFP, in a transgenic plant. Transgenic plants can be generated by techniques well known to the person skilled in the art and as discussed elsewhere in this specification. The aforementioned amounts or expression pattern are, preferably, determined by Northern Blot or in situ hybridization techniques as described in WO 02/102970 in Brassica napus plants, most preferably, at 40 days after flowering.


The term “nucleic acid of interest” refers to a nucleic acid which shall be expressed under the control of the expression control sequence referred to herein. Preferably, a nucleic acid of interest encodes a polypeptide the presence of which is desired in a cell or non-human organism as referred to herein and, in particular, in a plant seed. Such a polypeptide may be an enzyme which is required for the synthesis of seed storage compounds or may be a seed storage protein. It is to be understood that if the nucleic acid of interest encodes a polypeptide, transcription of the nucleic acid in RNA and translation of the transcribed RNA into the polypeptide may be required. A nucleic acid of interest, also preferably, includes biologically active RNA molecules and, more preferably, antisense RNAs, ribozymes, micro RNAs or siRNAs. Said biologically active RNA molecules can be used to modify the amount of a target polypeptide present in a cell or non-human organism. For example, an undesired enzymatic activity in a seed can be reduced due to the seed specific expression of an antisense RNAs, ribozymes, micro RNAs or siRNAs. The underlying biological principles of action of the aforementioned biologically active RNA molecules are well known in the art. Moreover, the person skilled in the art is well aware of how to obtain nucleic acids which encode such biologically active RNA molecules. It is to be understood that the biologically active RNA molecules may be directly obtained by transcription of the nucleic acid of interest, i.e. without translation into a polypeptide. It is to be understood that the expression control sequence may also govern the expression of more than one nucleic acid of interest, i.e. at least one, at least two, at least three, at least four, at least five etc. nucleic acids of interest.


The term “operatively linked” as used herein means that the expression control sequence of the present invention and a nucleic acid of interest, are linked so that the expression can be governed by the said expression control sequence, i.e. the expression control sequence shall be functionally linked to said nucleic acid sequence to be expressed. Accordingly, the expression control sequence and the nucleic acid sequence to be expressed may be physically linked to each other, e.g., by inserting the expression control sequence at the 5′ end of the nucleic acid sequence to be expressed. Alternatively, the expression control sequence and the nucleic acid to be expressed may be merely in physical proximity so that the expression control sequence is capable of governing the expression of the at least one nucleic acid sequence of interest. The expression control sequence and the nucleic acid to be expressed are, preferably, separated by not more than 500 bp, 300 bp, 100 bp, 80 bp, 60 bp, 40 bp, 20 bp, 10 by or 5 bp.


As set forth above, the polynucleotide of the present invention, in a preferred embodiment, comprises also a termination sequence for transcription downstream of the nucleic acid of interest. A termination sequence for transcription relates to a nucleic acid sequence which terminates the process of RNA transcription. Suitable termination sequences are well known in the art and comprise, preferably, the SV40-poly-A site, the tk-poly-A site, the nos or ocs terminator from Agrobacterium tumefaciens or the 35S terminator from Cauliflower mosaic virus.


Advantageously, it has been found in the studies underlying the present invention that seed specific expression of a nucleic acid of interest can be achieved by expressing said nucleic acid of interest under the control of an expression control sequence from Brassica napus or a variant expression control sequence as specified above. The expression control sequences provided by the present invention allow for a reliable and highly specific expression of nucleic acids of interest. Thanks to the present invention, it is possible to (i) specifically manipulate biochemical processes in seeds, e.g., by expressing heterologous enzymes or biologically active RNAs, or (ii) to produce heterologous proteins in seeds. In principle, the present invention contemplates the use of the polynucleotide, the vector, the host cell or the non-human transgenic organism for the expression of a nucleic acid of interest. Preferably, the envisaged expression is seed specific. More preferably, the nucleic acid of interest to be used in the various embodiments of the present invention encodes a seed storage protein or is involved in the modulation of seed storage compounds.


As used herein, seed storage compounds include fatty acids and triacylglycerides which have a multiplicity of applications in the food industry, in animal nutrition, in cosmetics and the pharmacological sector. Depending on whether they are free saturated or unsaturated fatty acids or else triacylglycerides with an elevated content of saturated or unsaturated fatty acids, they are suitable for various different applications. More preferably, the polynucleotide of the present invention comprising the expression control sequence referred to above is applied for the manufacture of polyunsaturated fatty acids (PUFAs). For the manufacture of PUFAs in seeds, the activity of enzymes involved in their synthesis, in particular, elongases and desaturases, needs to be modulated. This will be achieved by seed specific expression of the nucleic acids of interest encoding the aforementioned enzymes or by seed specific expression of antisense, ribozyme, RNAi molecules which downregulate the activity of the enzymes by interfering with their protein synthesis. PUFAs are seed storage compounds which can be isolated by a subsequently applied purification process using the aforementioned seeds.


Particularly preferred PUFAs in accordance with the present invention are polyunsaturated long-chain ω-3-fatty acids such as eicosapentaenoic acid (=EPA, C20:5Δ5,8,11,14,17), ω-3 eicostetraenic acid (=ETA, C20:4Δ8,11,14,17), arachidonic acid (=ARA C20:4Δ5,8,11,14) or docosahexaenoic acid (=DHA, C22:6Δ4,7,10,13,16,19). They are important components of human nutrition owing to their various roles in health aspects, including the development of the child brain, the functionality of the eyes, the synthesis of hormones and other signal substances, and the prevention of cardiovascular disorders, cancer and diabetes (Poulos, A Lipids 30:1-14, 14Δ8,11,14,17995; Horrocks, L A and Yeo Y K Pharmacol Res 40:211-225, 1999). There is, therefore, a need for the production of polyunsaturated long-chain fatty acids.


Particular preferred enzymes involved in the synthesis of PUFAs are disclosed in WO 91/13972 (Δ9-desaturase), WO 93/11245 (Δ15-desaturase), WO 94/11516 (Δ12-desaturase), EP A 0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP A 0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 or Huang et al., Lipids 34, 1999: 649-659. Δ6-Desaturases are described in WO 93/06712, U.S. Pat. No. 5,614,393, U.S. Pat. No. 5,614,393, WO 96/21022, WO 00/21557 and WO 99/27111, and also the application for the production in transgenic organisms is described in WO 98/46763, WO 98/46764 and WO 98/46765. Here, the expression of various desaturases is also described and claimed in WO 99/64616 or WO 98/46776, as is the formation of polyunsaturated fatty acids. As regards the expression efficacy of desaturases and its effect on the formation of polyunsaturated fatty acids, it must be noted that the expression of a single desaturase as described to date has only resulted in low contents of unsaturated fatty acids/lipids such as, for example, γ-linolenic acid and stearidonic acid. Furthermore, mixtures of ω-3- and ω-6-fatty acids are usually obtained.


The present invention also relates to a vector comprising the polynucleotide of the present invention.


The term “vector”, preferably, encompasses phage, plasmid, viral or retroviral vectors as well as artificial chromosomes, such as bacterial or yeast artificial chromosomes. Moreover, the term also relates to targeting constructs which allow for random or site-directed integration of the targeting construct into genomic DNA. Such target constructs, preferably, comprise DNA of sufficient length for either homologous or heterologous recombination as described in detail below. The vector encompassing the polynucleotides of the present invention, preferably, further comprises selectable markers for propagation and/or selection in a host. The vector may be incorporated into a host cell by various techniques well known in the art. If introduced into a host cell, the vector may reside in the cytoplasm or may be incorporated into the genome. In the latter case, it is to be understood that the vector may further comprise nucleic acid sequences which allow for homologous recombination or heterologous insertion. Vectors can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. The terms “transformation” and “transfection”, conjugation and transduction, as used in the present context, are intended to comprise a multiplicity of prior-art processes for introducing foreign nucleic acid (for example DNA) into a host cell, including calcium phosphate, rubidium chloride or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, carbon-based clusters, chemically mediated transfer, electroporation or particle bombardment (e.g., “gene-gun”). Suitable methods for the transformation or transfection of host cells, including plant cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) and other laboratory manuals, such as Methods in Molecular Biology, 1995, Vol. 44, Agrobacterium protocols, Ed.: Gartland and Davey, Humana Press, Totowa, N.J. Alternatively, a plasmid vector may be introduced by heat shock or electroporation techniques. Should the vector be a virus, it may be packaged in vitro using an appropriate packaging cell line prior to application to host cells. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host/cells.


Preferably, the vector referred to herein is suitable as a cloning vector, i.e. replicable in microbial systems. Such vectors ensure efficient cloning in bacteria and, preferably, yeasts or fungi and make possible the stable transformation of plants. Those which must be mentioned are, in particular, various binary and co-integrated vector systems which are suitable for the T-DNA-mediated transformation. Such vector systems are, as a rule, characterized in that they contain at least the vir genes, which are required for the Agrobacterium-mediated transformation, and the sequences which delimit the T-DNA (T-DNA border). These vector systems, preferably, also comprise further cis-regulatory regions such as promoters and terminators and/or selection markers with which suitable transformed host cells or organisms can be identified. While co-integrated vector systems have vir genes and T-DNA sequences arranged on the same vector, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. As a consequence, the last-mentioned vectors are relatively small, easy to manipulate and can be replicated both in E. coli and in Agrobacterium. These binary vectors include vectors from the pBIB-HYG, pPZP, pBecks, pGreen series. Preferably used in accordance with the invention are Bin19, pBI101, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use can be found in Hellens et al, Trends in Plant Science (2000) 5, 446-451. Furthermore, by using appropriate cloning vectors, the polynucleotide of the invention can be introduced into host cells or organisms such as plants or animals and, thus, be used in the transformation of plants, such as those which are published, and cited, in: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Fla.), chapter 6/7, pp. 71-119 (1993); F. F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225.


More preferably, the vector of the present invention is an expression vector. In such an expression vector, the polynucleotide comprises an expression cassette as specified above allowing for expression in eukaryotic cells or isolated fractions thereof. An expression vector may, in addition to the polynucleotide of the invention, also comprise further regulatory elements including transcriptional as well as translational enhancers. Preferably, the expression vector is also a gene transfer or targeting vector. Expression vectors derived from viruses such as retroviruses, vaccinia virus, adeno-associated virus, herpes viruses, or bovine papilloma virus, may be used for delivery of the polynucleotides or vector of the invention into targeted cell population. Methods which are well known to those skilled in the art can be used to construct recombinant viral vectors; see, for example, the techniques described in Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. and Ausubel, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y. (1994).


Suitable expression vector backbones are, preferably, derived from expression vectors known in the art such as Okayama-Berg cDNA expression vector pcDV1 (Pharmacia), pCDM8, pRc/CMV, pcDNA1, pcDNA3 (Invitrogene) or pSPORT1 (GIBCO BRL). Further examples of typical fusion expression vectors are pGEX (Pharmacia Biotech Inc; Smith, D. B., and Johnson, K. S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.), where glutathione S-transferase (GST), maltose E-binding protein and protein A, respectively, are fused with the nucleic acid of interest encoding a protein to be expressed. The target gene expression of the pTrc vector is based on the transcription from a hybrid trp-lac fusion promoter by host RNA polymerase. The target gene expression from the pET 11d vector is based on the transcription of a T7-gn10-lac fusion promoter, which is mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is provided by the host strains BL21 (DE3) or HMS174 (DE3) from a resident λ-prophage which harbors a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter. Examples of vectors for expression in the yeast S. cerevisiae comprise pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) and pYES2 (Invitrogen Corporation, San Diego, Calif.). Vectors and processes for the construction of vectors which are suitable for use in other fungi, such as the filamentous fungi, comprise those which are described in detail in: van den Hondel, C. A. M. J. J., & Punt, P. J. (1991) “Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J. F. Peberdy et al., Ed., pp. 1-28, Cambridge University Press: Cambridge, or in: More Gene Manipulations in Fungi (J. W. Bennett & L. L. Lasure, Ed., pp. 396-428: Academic Press: San Diego). Further suitable yeast vectors are, for example, pAG-1, YEp6, YEp13 or pEMBLYe23. As an alternative, the polynucleotides of the present invention can be also expressed in insect cells using baculovirus expression vectors. Baculovirus vectors which are available for the expression of proteins in cultured insect cells (for example Sf9 cells) comprise the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).


The polynucleotides of the present invention can be used for expression of a nucleic acid of interest in single-cell plant cells (such as algae), see Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 and the references cited therein, and plant cells from higher plants (for example Spermatophytes, such as arable crops) by using plant expression vectors. Examples of plant expression vectors comprise those which are described in detail in: Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992) “New plant binary vectors with selectable markers located proximal to the left border”, Plant Mol. Biol. 20:1195-1197; and Bevan, M. W. (1984) “Binary Agrobacterium vectors for plant transformation”, Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 1993, p. 15-38. A plant expression cassette, preferably, comprises regulatory sequences which are capable of controlling the gene expression in plant cells and which are functionally linked so that each sequence can fulfill its function, such as transcriptional termination, for example polyadenylation signals. Preferred polyadenylation signals are those which are derived from Agrobacterium tumefaciens T-DNA, such as the gene 3 of the Ti plasmid pTiACH5, which is known as octopine synthase (Gielen et al., EMBO J. 3 (1984) 835 et seq.) or functional equivalents of these, but all other terminators which are functionally active in plants are also suitable. Since plant gene expression is very often not limited to transcriptional levels, a plant expression cassette preferably comprises other functionally linked sequences such as translation enhancers, for example the overdrive sequence, which comprises the 5′-untranslated tobacco mosaic virus leader sequence, which increases the protein/RNA ratio (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711). Other preferred sequences for the use in functional linkage in plant gene expression cassettes are targeting sequences which are required for targeting the gene product into its relevant cell compartment (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells.


The abovementioned vectors are only a small overview of vectors to be used in accordance with the present invention. Further vectors are known to the skilled worker and are described, for example, in: Cloning Vectors (Ed., Pouwels, P. H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). For further suitable expression systems for prokaryotic and eukaryotic cells see the chapters 16 and 17 of Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.


The present invention also contemplates a host cell comprising the polynucleotide or the vector of the present invention.


Host cells are primary cells or cell lines derived from multicellular organisms such as plants or animals. Furthermore, host cells encompass prokaryotic or eukaryotic single cell organisms (also referred to as micro-organisms). Primary cells or cell lines to be used as host cells in accordance with the present invention may be derived from the multicellular organisms referred to below. Host cells which can be exploited are furthermore mentioned in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Specific expression strains which can be used, for example those with a lower protease activity, are described in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128. These include plant cells and certain tissues, organs and parts of plants in all their phenotypic forms such as anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures which is derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. Preferably, the host cells may be obtained from plants. More preferably, oil crops are envisaged which comprise large amounts of lipid compounds, such as oilseed rape, evening primrose, hemp, thistle, peanut, canola, linseed, soybean, safflower, sunflower, borage, or plants such as maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa, bushy plants (coffee, cacao, tea), Salix species, trees (oil palm, coconut) and perennial grasses and fodder crops. Especially preferred plants according to the invention are oil crops such as soybean, peanut, oilseed rape, canola, linseed, hemp, evening primrose, sunflower, safflower, trees (oil palm, coconut). Suitable methods for obtaining host cells from the multicellular organisms referred to below as well as conditions for culturing these cells are well known in the art.


The micro-organisms are, preferably, bacteria or fungi including yeasts. Preferred fungi to be used in accordance with the present invention are selected from the group of the families Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Demetiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Sacharomycetaceae, Saprolegniaceae, Schizosacharomycetaceae, Sodariaceae or Tuberculariaceae. Further preferred micro-organisms are selected from the group: Choanephoraceae such as the genera Blakeslee, Choanephora, for example the genera and species Blakeslea trispora, Choanephora cucurbitarum, Choanephora infundibuliferavar. cucurbitarum, Mortierellaceae, such as the genus Mortierella, for example the genera and species Mortierella isabellina, Mortierella polycephala, Mortierella ramanniana, Mortierella vinacea, Mortierella zonata, Pythiaceae such as the genera Phytium, Phytophthora for example the genera and species Pythium debaryanum, Pythium intermedium, Pythium irregulare, Pythium megalacanthum, Pythium paroecandrum, Pythium sylvaticum, Pythium ultimum, Phytophthora cactorum, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. parasitica, Phytophthora palmivora, Phytophthora parasitica, Phytophthora syringae, Saccharomycetaceae such as the genera Hansenula, Pichia, Saccharomyces, Saccharomycodes, Yarrowia for example the genera and species Hansenula anomala, Hansenula californica, Hansenula canadensis, Hansenula capsulata, Hansenula ciferrii, Hansenula glucozyma, Hansenula henricii, Hansenula holstii, Hansenula minuta, Hansenula nonfermentans, Hansenula philodendri, Hansenula polymorpha, Hansenula satumus, Hansenula subpelliculosa, Hansenula wickerhamii, Hansenula wingei, Pichia alcoholophila, Pichia angusta, Pichia anomala, Pichia bispora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cellobiosa, Pichia ciferrii, Pichia farinosa, Pichia fermentans, Pichia finlandica, Pichia glucozyma, Pichia guilliermondii, Pichia haplophila, Pichia henricii, Pichia holstii, Pichia jadinii, Pichia lindnerii, Pichia membranaefaciens, Pichia methanolica, Pichia minuta var. minuta, Pichia minuta var. nonfermentans, Pichia norvegensis, Pichia ohmeri, Pichia pastoris, Pichia philodendri, Pichia pini, Pichia polymorpha, Pichia quercuum, Pichia rhodanensis, Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia subpelliculosa, Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylosa, Saccharomyces aceti, Saccharomyces bailii, Saccharomyces bayanus, Saccharomyces bisporus, Saccharomyces capensis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenicus, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces kluyveri, Saccharomyces krusei, Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum, Saccharomycodes ludwigii, Yarrowia lipolytica, Schizosacharomycetaceae such as the genera Schizosaccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis, Schizosaccharomyces malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans, Schizosaccharomyces pombe var. pombe, Thraustochytriaceae such as the genera Althomia, Aplanochytrium, Japonochytrium, Schizochytrium, Thraustochytrium e.g. the species Schizochytrium aggregatum, Schizochytrium limacinum, Schizochytrium mangrovei, Schizochytrium minutum, Schizochytrium octosporum, Thraustochytrium aggregatum, Thraustochytrium amoeboideum, Thraustochytrium antacticum, Thraustochytrium arudimentale, Thraustochytrium aureum, Thraustochytrium benthicola, Thraustochytrium globosum, Thraustochytrium indicum, Thraustochytrium kerguelense, Thraustochytrium kinnei, Thraustochytrium motivum, Thraustochytrium multirudimentale, Thraustochytrium pachydermum, Thraustochytrium proliferum, Thraustochytrium roseum, Thraustochytrium rossii, Thraustochytrium striatum or Thraustochytrium visurgense. Further preferred microorganisms are bacteria selected from the group of the families Bacillaceae, Enterobacteriacae or Rhizobiaceae. Examples of such micro-organisms may be selected from the group: Bacillaceae such as the genera Bacillus for example the genera and species Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus halophilus, Bacillus lentimorbus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis or Bacillus thuringiensis; Enterobacteriacae such as the genera Citrobacter, Edwardsiella, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella or Serratia for example the genera and species Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter genomospecies, Citrobacter gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsiella ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwinia ananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia cancerogena, Erwinia carnegieana, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera, Erwinia carotovora subsp. wasabiae, Erwinia chrysanthemi, Erwinia cypripedii, Erwinia dissolvens, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia nimipressuralis, Erwinia persicina, Erwinia psidii, Erwinia pyrifoliae, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia adecarboxylata, Escherichia anindolica, Escherichia aurescens, Escherichia blattae, Escherichia coli, Escherichia coli var. communior, Escherichia coli-mutabile, Escherichia fergusonii, Escherichia hermannii, Escherichia sp., Escherichia vulneris, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ornithinolytica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella sp., Klebsiella terrigena, Klebsiella trevisanii, Salmonella abony, Salmonella arizonae, Salmonella bongori, Salmonella choleraesuis subsp. arizonae, Salmonella choleraesuis subsp. bongori, Salmonella choleraesuis subsp. cholereasuis, Salmonella choleraesuis subsp. diarizonae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis subsp. salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, Serratia marinorubra, Serratia odorifera, Serratia plymouthensis, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quinivorans or Serratia rubidaea; Rhizobiaceae such as the genera Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium for example the genera and species Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatinovorum, Agrobacterium larrymoorei, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum, Agrobacterium tumefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer kostiensis, Ensifer kummerowiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae, Ensifer xinjiangensis, Rhizobium ciceri Rhizobium etli, Rhizobium fredii, Rhizobium galegae, Rhizobium gallicum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakuii, Rhizobium huautlense, Rhizobium indigoferae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loessense, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium meliloti, Rhizobium mongolense, Rhizobium phaseoli, Rhizobium radiobacter, Rhizobium rhizogenes, Rhizobium rubi, Rhizobium sullae, Rhizobium tianshanense, Rhizobium trifolii, Rhizobium tropici, Rhizobium undicola, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, Sinorhizobium fredii, Sinorhizobium kostiense, Sinorhizobium kummerowiae, Sinorhizobium medicae, Sinorhizobium meliloti, Sinorhizobium morelense, Sinorhizobium saheli or Sinorhizobium xinjiangense.


How to culture the aforementioned micro-organisms is well known to the person skilled in the art.


The present invention also relates to a non-human transgenic organism, preferably a plant or seed thereof, comprising the polynucleotide or the vector of the present invention.


The term “non-human transgenic organism”, preferably, relates to a plant, a plant seed, an non-human animal or a multicellular micro-organism. The polynucleotide or vector may be present in the cytoplasm of the organism or may be incorporated into the genome either heterologous or by homologous recombination. Host cells, in particular those obtained from plants or animals, may be introduced into a developing embryo in order to obtain mosaic or chimeric organisms, i.e. non-human transgenic organisms comprising the host cells of the present invention. Suitable transgenic organisms are, preferably, all organisms which are suitable for the expression of recombinant genes.


Preferred plants to be used for making non-human transgenic organisms according to the present invention are all dicotyledonous or monocotyledonous plants, algae or mosses. Advantageous plants are selected from the group of the plant families Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae, Prasinophyceae or vegetable plants or ornamentals such as Tagetes. Examples which may be mentioned are the following plants selected from the group consisting of: Adelotheciaceae such as the genera Physcomitrella, such as the genus and species Physcomitrella patens, Anacardiaceae such as the genera Pistacia, Mangifera, Anacardium, for example the genus and species Pistacia vera [pistachio], Mangifer indica [mango] or Anacardium occidentale [cashew], Asteraceae, such as the genera Calendula, Carthamus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana, for example the genus and species Calendua officinalis [common marigold], Carthamus tinctorius [safflower], Centaurea cyanus [cornflower], Cichorium intybus [chicory], Cynara scolymus [artichoke], Helianthus annus [sunflower], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrate, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [salad vegetables], Tagetes lucida, Tagetes erecta or Tagetes tenuifolia [african or french marigold], Apiaceae, such as the genus Daucus, for example the genus and species Daucus carota [carrot], Betulaceae, such as the genus Corylus, for example the genera and species Corylus avellana or Corylus colurna [hazelnut], Boraginaceae, such as the genus Borago, for example the genus and species Borago officinalis [borage], Brassicaceae, such as the genera Brassica, Melanosinapis, Sinapis, Arabadopsis, for example the genera and species Brassica napus, Brassica rapa ssp. [oilseed rape], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Melanosinapis communis [mustard], Brassica oleracea [fodder beet] or Arabidopsis thaliana, Bromeliaceae, such as the genera Anana, Bromelia (pineapple), for example the genera and species Anana comosus, Ananas ananas or Bromelia comosa [pineapple], Caricaceae, such as the genus Carica, such as the genus and species Carica papaya [pawpaw], Cannabaceae, such as the genus Cannabis, such as the genus and species Cannabis sativa [hemp], Convolvulaceae, such as the genera Ipomea, Convolvulus, for example the genera and species Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba or Convolvulus panduratus [sweet potato, batate], Chenopodiaceae, such as the genus Beta, such as the genera and species Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva or Beta vulgaris var. esculenta [sugarbeet], Crypthecodiniaceae, such as the genus Crypthecodinium, for example the genus and species Cryptecodinium cohnii, Cucurbitaceae, such as the genus Cucurbita, for example the genera and species Cucurbita maxima, Cucurbita mixta, Cucurbita pepo or Cucurbita moschata [pumpkin/squash], Cymbellaceae such as the genera Amphora, Cymbella, Okedenia, Phaeodactylum, Reimeria, for example the genus and species Phaeodactylum tricornutum, Ditrichaceae such as the genera Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia, for example the genera and species Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon purpureus, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon, purpureus spp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Ceratodon stenocarpus, Chrysoblastella chilensis, Ditrichum ambiguum, Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum heteromallum, Ditrichum lineare, Ditrichum lineare, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lophidion strictus, Pleuridium acuminatum, Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum, Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus or Trichodon cylindricus var. oblongus, Elaeagnaceae such as the genus Elaeagnus, for example the genus and species Olea europaea [olive], Ericaceae such as the genus Kalmia, for example the genera and species Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros or Kalmia lucida [mountain laurel], Euphorbiaceae such as the genera Manihot, Janipha, Jatropha, Ricinus, for example the genera and species Manihot utilissima, Janipha manihot, Jatropha manihot, Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanobasis, Manihot esculenta [manihot] or Ricinus communis [castor-oil plant], Fabaceae such as the genera Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, Soja, for example the genera and species Pisum sativum, Pisum arvense, Pisum humile [pea], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macrophylla, Albizia lebbek, Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [silk tree], Medicago sativa, Medicago falcata, Medicago varia [alfalfa], Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida or Soja max [soybean], Funariaceae such as the genera Aphanorrhegma, Entosthodon, Funaria, Physcomitrella, Physcomitrium, for example the genera and species Aphanorrhegma serratum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathulifolius, Entosthodon tucsoni, Funaria americana, Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calvescens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. arctica, Funaria hygrometrica var. calvescens, Funaria hygrometrica var. convoluta, Funaria hygrometrica var. muralis, Funaria hygrometrica var. utahensis, Funaria microstoma, Funaria microstoma var. obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria plano-convexa, Funaria polaris, Funaria ravenelii, Funaria rubriseta, Funaria serrata, Funaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physcomitrella patens, Physcomitrella readeri, Physcomitrium australe, Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physcomitrium cupuliferum, Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium hookeri, Physcomitrium hookeri var. serratum, Physcomitrium immersum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washingtoniense, Geraniaceae, such as the genera Pelargonium, Cocos, Oleum, for example the genera and species Cocos nucifera, Pelargonium grossularioides or Oleum cocois [coconut], Gramineae, such as the genus Saccharum, for example the genus and species Saccharum officinarum, Juglandaceae, such as the genera Juglans, Wallia, for example the genera and species Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans major, Juglans microcarpa, Juglans nigra or Wallia nigra [walnut], Lauraceae, such as the genera Persea, Laurus, for example the genera and species Laurus nobilis [bay], Persea americana, Persea gratissima or Persea persea [avocado], Leguminosae, such as the genus Arachis, for example the genus and species Arachis hypogaea [peanut], Linaceae, such as the genera Linum, Adenolinum, for example the genera and species Linum usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense or Linum trigynum [linseed], Lythrarieae, such as the genus Punica, for example the genus and species Punica granatum [pomegranate], Malvaceae, such as the genus Gossypium, for example the genera and species Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum or Gossypium thurberi [cotton], Marchantiaceae, such as the genus Marchantia, for example the genera and species Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae, such as the genus Musa, for example the genera and species Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [banana], Onagraceae, such as the genera Camissonia, Oenothera, for example the genera and species Oenothera biennis or Camissonia brevipes [evening primrose], Palmae, such as the genus Elacis, for example the genus and species Elaeis guineensis [oil palm], Papaveraceae, such as the genus Papaver, for example the genera and species Papaver orientale, Papaver rhoeas, Papaver dubium [poppy], Pedaliaceae, such as the genus Sesamum, for example the genus and species Sesamum indicum [sesame], Piperaceae, such as the genera Piper, Artanthe, Peperomia, Steffensia, for example the genera and species Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum, Steffensia elongata [cayenne pepper], Poaceae, such as the genera Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (maize), Triticum, for example the genera and species Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon, Hordeum aegiceras, Hordeum hexastichon, Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum [barley], Secale cereale [rye], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [oats], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, Sorghum miliaceum, Panicum militaceum [millet], Oryza sativa, Oryza latifolia [rice], Zea mays [maize], Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum or Triticum vulgare [wheat], Porphyridiaceae, such as the genera Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodella, Rhodosorus, Vanhoeffenia, for example the genus and species Porphyridium cruentum, Proteaceae, such as the genus Macadamia, for example the genus and species Macadamia intergrifolia [macadamia], Prasinophyceae such as the genera Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, for example the genera and species Nephroselmis olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae such as the genus Cofea, for example the genera and species Cofea spp., Coffea arabica, Coffea canephora or Coffea liberica [coffee], Scrophulariaceae such as the genus Verbascum, for example the genera and species Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum or Verbascum thapsus [mullein], Solanaceae such as the genera Capsicum, Nicotiana, Solanum, Lycopersicon, for example the genera and species Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [pepper], Capsicum annuum [paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuate, Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [tobacco], Solanum tuberosum [potato], Solanum melongena [eggplant], Lycopersicon esculentum, Lycopersicon lycopersicum, Lycopersicon pyriforme, Solanum integrifolium or Solanum lycopersicum [tomato], Sterculiaceae, such as the genus Theobroma, for example the genus and species Theobroma cacao [cacao] or Theaceae, such as the genus Camellia, for example the genus and species Camellia sinensis [tea]. In particular preferred plants to be used as transgenic plants in accordance with the present invention are oil fruit crops which comprise large amounts of lipid compounds, such as peanut, oilseed rape, canola, sunflower, safflower, poppy, mustard, hemp, castor-oil plant, olive, sesame, Calendula, Punica, evening primrose, mullein, thistle, wild roses, hazelnut, almond, macadamia, avocado, bay, pumpkin/squash, linseed, soybean, pistachios, borage, trees (oil palm, coconut, walnut) or crops such as maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa or bushy plants (coffee, cacao, tea), Salix species, and perennial grasses and fodder crops. Preferred plants according to the invention are oil crop plants such as peanut, oilseed rape, canola, sunflower, safflower, poppy, mustard, hemp, castor-oil plant, olive, Calendula, Punica, evening primrose, pumpkin/squash, linseed, soybean, borage, trees (oil palm, coconut). Especially preferred are plants which are high in C18:2- and/or C18:3-fatty acids, such as sunflower, safflower, tobacco, mullein, sesame, cotton, pumpkin/squash, poppy, evening primrose, walnut, linseed, hemp, thistle or safflower. Very especially preferred plants are plants such as safflower, sunflower, poppy, evening primrose, walnut, linseed, or hemp.


Preferred mosses are Physcomitrella or Ceratodon. Preferred algae are Isochrysis, Mantoniella, Ostreococcus or Crypthecodinium, and algae/diatoms such as Phaeodactylum or Thraustochytrium. More preferably, said algae or mosses are selected from the group consisting of: Shewanella, Physcomitrella, Thraustochytrium, Fusarium, Phytophthora, Ceratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Phaeodactylum, Cryphthecodinium, specifically from the genera and species Thallasiosira pseudonona, Euglena gracilis, Physcomitrella patens, Phytophtora infestans, Fusarium graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Muscarioides viallii, Mortierella alpina, Phaeodactylum tricornutum or Caenorhabditis elegans or especially advantageously Phytophtora infestans, Thallasiosira pseudonona and Cryptocodinium cohnii.


Transgenic plants may be obtained by transformation techniques as published, and cited, in: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Fla.), chapter 6/7, pp.71-119 (1993); F. F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225. Preferably, transgenic plants can be obtained by T-DNA-mediated transformation. Such vector systems are, as a rule, characterized in that they contain at least the vir genes, which are required for the Agrobacterium-mediated transformation, and the sequences which delimit the T-DNA (T-DNA border). Suitable vectors are described elsewhere in the specification in detail.


Preferably, a multicellular micro-organism as used herein refers to protists or diatoms. More preferably, it is selected from the group of the families Dinophyceae, Turaniellidae or Oxytrichidae, such as the genera and species: Crypthecodinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustulata, Stylonychia putrina, Stylonychia notophora, Stylonychia sp., Colpidium campylum or Colpidium sp.


The present invention also relates to a method for expressing a nucleic acid of interest in a host cell comprising

    • (a) introducing the polynucleotide or the vector of the present invention into the host cell, whereby the nucleic acid sequence of interest will be operatively linked to the expression control sequence; and
    • (b) expressing the said nucleic acid sequence in said host cell.


The polynucleotide or vector of the present invention can be introduced into the host cell by suitable transfection or transformation techniques as specified elsewhere in this description. The nucleic acid of interest will be expressed in the host cell under suitable conditions. To this end, the host cell will be cultivated under conditions which, in principle, allow for transcription of nucleic acids. Moreover, the host cell, preferably, comprises the exogenously supplied or endogenously present transcription machinery required for expressing a nucleic acid of interest by the expression control sequence. More preferably, the host cell is a plant cell and, most preferably, a seed cell or precursor thereof.


Moreover, the present invention encompasses a method for expressing a nucleic acid of interest in a non-human organism comprising

    • (a) introducing the polynucleotide or the vector of the present invention into the non human organism, whereby the nucleic acid sequence of interest will be operatively linked to the expression control sequence; and
    • (b) expressing the said nucleic acid sequence in said non-human transgenic organism.


The polynucleotide or vector of the present invention can be introduced into the non-human transgenic organism by suitable techniques as specified elsewhere in this description. The non-human transgenic organism, preferably, comprises the exogenously supplied or endogenously present transcription machinery required for expressing a nucleic acid of interest by the expression control sequence. More preferably, the non-human transgenic organism is a plant or seed thereof. It is to be understood that the nucleic acid of interest will be expressed, preferably, seed specific in the said non-human transgenic organism.


In the following tables 1 to 6, the cis-regulatory elements found in the expression control sequences of the present invention are shown.









TABLE 1







cis-regulatory elements of SEQ ID NO: 7



















Opt.








Seq.
Family/

thres
Start
End

Core
Matrix



name
matrix
Further Information
h.
pos.
pos.
Strand
sim.
sim.
Sequence



















SEQ_7
P$TBPF/
Plant TATA box
0.90
4
18
+
1.000
0.930
gtcaTATAta



TATA.02







tatga





SEQ_7
P$TBPF/
Plant TATA box
0.90
5
19

1.000
0.930
gtcaTATAta



TATA.02







tatga





SEQ_7
P$PSRE/
GAAA motif involved in pollen specific
0.83
20
36

1.000
0.886
caaaaGAAAc



GAAA.01
transcriptional activation






tatggaa





SEQ_7
P$GTBX/
SBF-1
0.87
33
49
+
1.000
0.087
tttggagTTA



SBF1.01







Aacgcat





SEQ_7
P$NACF/
Wheat NACdomain DNA binding factor
0.68
60
82
+
1.000
0.680
tatgatttag



TANAC69.01







cTACGtgaca











gaa





SEQ_7
P$GBOX/

Oryza sativa bZIP protein 8

0.84
64
84
+
1.000
0.899
atttagctAC



OSBZ8.01







GTgacaggaa











aa





SEQ_7
P$ABRE/
ABA response elements
0.82
65
81
+
1.000
0.853
tttagctACG



ABRE.01







Tgacaga





SEQ_7
P$OPAQ/
Rice transcription activator-1 (RITA),
0.95
65
81

1.000
0.981
tctgtcACGT



RITA1.01
basic leucin zipper protein, highly






agctaaa




expresses during seed development












SEQ_7
P$OPAQ/
Rice transcription activator-1 (RITA),
0.95
66
82
+
1.000
0.985
ttagctACGT



RITA1.01
basic leucin zipper protein, highly 






gacagaa




expresses during seed development












SEQ_7
P$AREF/
Silencing element binding factor-
0.96
70
82

1.000
0.964
ttcTGTCacg



SEBF.01
transcriptional repressor






tag





SEQ_7
P$TALE/
Homeodomain protein of the Knotted class 1
1.00
73
85
+
1.000
1.000
cgTGACagaa



HVH21.01







aat





SEQ_7
O$RPOA/
Avian C-type LTR PolyA signal
0.71
88
108
+
0.750
0.379
cagatCAAAg



APOLYA.01







tgtcgttttt











t





SEQ_7
0$RPOA/
Avian C-type LTR PolyA signal
0.71
88
108
+
0.750
0.739
tataaAAAAc



APOLYA.01







gacactttga











t





SEQ_7
P$NACF/
Wheat NACdomain DNA binding factor
0.68
93
115

0.812
0.717
ggtctataaa



TANAC69.01







aAACGacact











ttg





SEQ_7
P$TBPF/
Plant TATA box
0.90
101
115

1.000
0.968
ggtcTATAaa



TATA.02







aaacg





SEQ_7
P$AHBP/
Homeodomain protein WUSCHEL
0.94
121
131

1.000
1.000
ttaatTAATg



WUS.01







t





SEQ_7
P$DOFF/
Dof1/MNB1a-single zinc finger transcription
0.98
122
138
+
1.000
0.980
cattaattAA



DOF1.01
factor






AGgataa





SEQ_7
P$MYBS/
MybSt1 (Myb Solanum tuberosum 1) with a
0.90
126
142

1.000
0.983
tactttATCC



MYBST1.01
single myb repeat






tttaatt





SEQ_7
P$1BOX/
Class I GATA factors
0.93
129
145
+
1.000
0.967
taaagGATAa



GATA.01







agtaaga





SEQ_7
P$NCS1/
Nodulin consensus sequence 1
0.85
129
139
+
0.804
0.884
tAAAGgataa



NCS1.01







a





SEQ_7
P$MYCL/
ICE (inducer of CBF expression 1),
0.95
161
179
+
0.954
0.966
aggaaACAAa



ICE.01
AtMYC2(rd22BP1)






tgatttcca





SEQ_7
P$PSRE/
GAAA motif involved in pollen specific
0.83
166
182

1.000
0.842
ttgtgGAAAt



GAAA.01
transcriptional activation






catttgt





SEQ_7
P$AHBP/

Arabidopsis thaliana homeo box protein 1

0.90
167
177
+
0.789
0.900
caaATGAttt



ATHB1.01







c





SEQ_7
P$AHBP/
HDZip class I protein ATHB5
0.89
167
177

0.936
0.936
gaaATCAttt



ATHB5.01







g





SEQ_7
P$NCS1/
Nodulin consensus sequence 1
0.85
167
177
+
0.887
0.904
cAAATgattt



NCS1.01







c





SEQ_7
P$MYBL/
CAACTC regulatory elements, GA-inducible
0.83
192
208

1.000
0.836
attcgaaAGT



CARE.01







Tgattca





SEQ_7
P$DOFF/
Dof1/MNB1a-single zinc finger transcription
0.98
205
221

1.000
0.987
accaaattAA



DOF1.01
factor






AGtattc





SEQ_7
P$WBXF/
Elicitor response element
0.89
213
229

1.000
0.918
tgagctTGAC



ERE.01







caaatta





SEQ_7
O$RVUP/
Upstream element of C-type Long Terminal
0.76
227
247

1.000
0.783
actcacatga



LTRUP.01
Repeats






gTTTCgtgtg











a





SEQ_7
P$LEGB/
Legumin box, highly conserved sequence
0.59
263
289

0.750
0.601
tacatatCCA



LEGB.01
element about 100 by upstream of the TSS






Aatcagaggt




in legumin genes






agaaggc





SEQ_7
P$MYBS/
Rice MYB proteins with single DNA binding
0.82
274
290

1.000
0.850
gtacaTATCc



OSMYBS.01
domains, binding to the amylase element






aaatcag




(TATCCA)












SEQ_7
P$GTBX/
SBF-1
0.87
284
300
+
1.000
0.789
tatgtacTTA



SBF1.01







Aaacact





SEQ_7
P$EINL/
TEIL (tobacco EIN3-like)
0.92
285
293
+
1.000
0.935
aTGTActta



TEIL.01



















acttaaaaca


SEQ_7
O$RVUP/
Upstream element of C-type Long Terminal
0.76
289
309
+
1.000
0.784
cTTTCtgagg



OTRUP.01
Repeats






aa





SEQ_7
P$TELO/

Arabidopsis Telo-box interacting protein

0.85
308
322
+
1.000
0.896
aaacACCCta



ATPURA.01
releated to the conserved animal protein






acgct




Pur-alpha












SEQ_7
P$MIIG/
Maize activator P of flavonoid biosynthetic
0.93
320
334
+
0.966
0.973
gcttGGTTgg



P_ACT.01
genes






tggat





SEQ_7
P$MYBL/
Myb-like protein of Petunia hybrida
0.80
339
355

1.000
0.807
ctaaaattGT



MYBPH3.01







TAtgatg





SEQ_7
O$RPOA/
PolyA signal of D-type LTRs
0.78
348
368

0.750
0.834
aCCAAtaaaa



DTYPEPA.01







aatctaaaat











t





SEQ_7
P$LREM/
Motif involved in carotenoid and toco-
0.85
349
359

1.000
0.990
aaATCTaaaa



ATCTA.01
pherol biosynthesis and in the expression






t




of photosynthesis-related genes












SEQ_7
P$CCAF/
Circadian clock associated 1
0.85
352
366

1.000
0.971
caataaaaAA



CCA1.01







TCtaa





SEQ_7
P$CAAT/
CCAAT-box in plant promoters
0.97
361
369

1.000
0.981
caCCAAtaa



CAAT.01













SEQ_7
P$OPAQ/
Opaque-2 regulatory protein
0.87
363
379

0.794
0.871
aaccacataT



O2.01







CACcaat





SEQ_7
O$RPAD/
Mammalian C-type LTR Poly A downstream
0.87
371
383
+
1.000
0.874
tatGTGGttt



PADS.01
element






tgt





SEQ_7
P$MIIG/
Putative cis-acting element in various PAL
0.81
380
394
+
0.963
0.859
ttGTGGttgg



PALBOXP.01
and 4CL gene promoters






agaag





SEQ_7
O$RPOA/
Lentiviral Poly A signal
0.94
398
418

1.000
0.982
tgaAATAaag



LPOLYA.01







ttattagaac











t





SEQ_7
P$HMGF/
High mobility group WY-like proteins
0.89
408
422
+
1.000
0.895
acttTATTtc



HMG_IY.01







atcat





SEQ_7
P$AHBP/
Sunflower homeodomain leucine-zipper
0.87
415
425
+
1.000
0.940
ttcatcATTA



HAHB4.01
protein Hahb-4






t





SEQ_7
P$SBPD/
SQUA promoter binding proteins
0.88
435
451

1.000
0.902
tactgGTACa



SBP.01







atacagt





SEQ_7
P$GTBX/
Trihelix DNA-binding factor GT-3a
0.83
437
453

0.750
0.839
tatactGGTA



GT3A.01







caataca





SEQ_7
P$MADS/
AGL1, Arabidopsis MADS-domain protein
0.84
440
460

1.000
0.890
gaaTGCCtat



AGL1.01
AGAMOUS-like 1






actggtacaa











t





SEQ_7
P$MADS/
AGL1, Arabidopsis MADS-domain protein
0.84
441
461
+
0.995
0.862
ttgTACCagt



AGL1.01
AGAMOUS-like 1






ataggcattc











t





SEQ_7
P$1BOX/
Class I GATA factors
0.93
461
477
+
1.000
0.937
tcttcGATAa



GATA.01







tacaaat





SEQ_7
P$WBXF/
WRKY plant specific zinc-finger-type
0.92
479
495

1.000
0.971
aagttTTGAc



WRKY.01
factor associated with pathogen defence,






tattata




W box












SEQ_7
P$1BOX/
Class I GATA factors
0.93
495
511

1.000
0.946
tatatGATAa



GATA.01







ttagcaa





SEQ_7
P$AHBP/
Sunflower homeodomain leucine-zipper
0.87
498
508

1.000
0.910
atgataATTA



HAHB4.01
protein Hahb-4






g





SEQ_7
P$NCS1/
Nodulin consensus sequence 1
0.85
516
526

0.878
0.868
cAAATgatgt



NCS1.01







g





SEQ_7
P$L1BX/
L1-specific homeodomain protein ATML1
0.82
528
544

1.000
0.823
taagtaTAAA



ATML1.01
(A. thaliana meristem layer 1)






agtattg





SEQ_7
P$SPF1/
DNA-binding protein of sweet potato that
0.87
529
541
+
1.000
0.923
aaTACTttta



SP8BF.01
binds to the SP8a (ACTGTGTA)and SP8b






tac




(TACTATT) sequences of sporamin and beta-











amylase genes












SEQ_7
P$STKM/
Storekeeper (STK), plant specific DNA binding
0.85
570
584

1.000
0.852
accTAAAtaa



STK.01
protein important for tuber-specific and






tcaaa




sucrose-inducible gene expression












SEQ_7
P$GTBX/
SBF-1
0.87
590
606
+
1.000
0.872
ctcatttTTA



SBF1.01







Atataga





SEQ_7
P$SEF4/
Soybean embryo factor 4
0.98
592
602
+
1.000
0.983
caTTTTtaat



SEF4.01







a





SEQ_7
P$PSRE/
GAAA motif involved in pollen specific
0.83
600
616

1.000
0.872
gtttaGAAAt



GAAA.01
transcriptional activation






tctatat





SEQ_7
P$MYBL/
Myb-like protein of Petunia hybrida
0.80
608
624

0.750
0.845
aaaaaacgGT



MYBPH3.01







TTagaaa





SEQ_7
P$MYBL/
Myb-like protein of Petunia hybrida
0.80
610
626
+
0.750
0.803
tctaaaccGT



MYBPH3.01







TTttttt





SEQ_7
P$MSAE/
M-phase-specific activators (NtmybA1,
0.80
611
625

1.000
0.867
aaaaaAACGg



MSA.01
NtmybA2, NtmybB)






tttag





SEQ_7
P$DOFF/
Prolamin box, conserved in cereal seed
0.75
619
625

0.761
0.802
tgaaatgaAA



PBOX.01
storage protein gene promoters






AAaaaaa





SEQ_7
P$GAPB/
Cis-element in the GAPDH promoters conferring
0.88
621
635

1.000
0.960
tgaaATGAaa



GAP.01
light inducibility






aaaaa





SEQ_7
P$OPAQ/
Opaque-2 regulatory protein
0.87
624
640
+
1.000
0.924
tttttcattT



O2.01







CATcatc





SEQ_7
P$DOFF/
Prolamin box, conserved in cereal seed storage
0.75
635
651

1.000
0.758
tggttagaAA



PBOX.01
protein gene promoters






AGatgat





SEQ_7
P$NCS1/
Nodulin consensus sequence 1
0.85
635
645

1.000
0.963
gAAAAgatga



NCS1.01







t





SEQ_7
P$DOFF/
Prolamin box, conserved in cereal seed storage
0.75
652
668

1.000
0.819
gagactgtAA



PBOX.01
protein gene promoters






AGatgaa





SEQ_7
P$AHBP/
Sunflower homeodomain leucine-zipper protein
0.87
675
685
+
1.000
0.892
tatatgATTA



HAHB4.01
Hahb-4






g





SEQ_7
P$HMGF/
High mobility group WY-like proteins
0.89
684
698
+
1.000
0.905
agttTATTtc



HMG_IY.01







attcg





SEQ_7
P$TBPF/
Plant TATA box
0.90
707
721
+
1.000
0.91
tttcTATAta



TATA.02







ttaaa





SEQ_7
P$AHBP/
Sunflower homeodomain leucine-zipper protein
0.87
730
740

1.000
0.936
tcgattATTA



HAHB4.01
Hahb-4






t





SEQ_7
P$MSAE/
M-phase-specific activators (NtmybA1,
0.80
746
760

0.750
0.803
cttcaAATGg



MSA.01
NtmybA2, NtmybB)






tgata





SEQ_7
P$MYCL/
ICE (inducer of CBF expression 1), AtMYC2
0.95
770
788
+
1.000
0.953
ttgtgACATt



ICE.01
(rd22BP1)






tggcattac





SEQ_7
P$OCSE/
bZIP transcription factor binding to
0.73
773
793
+
0.974
0.811
tgacatttgg



OCSTF.01
OCS-elements






catTACGgga











a





SEQ_7
P$MADS/
Binding sites for AP1, AP3-PI and AG dimers
0.75
794
814
+
1.000
0.765
aggtcCCATg



MADS.01







tatctcaaac











t





SEQ_7
P$EINL/
TEIL (tobacco EIN3-like)
0.92
801
809
+
1.000
0.980
aTGTAtctc



TEIL.01













SEQ_7
P$MADS/
Agamous, required for normal flower
0.80
813
833

0.902
0.825
gttTGCCaca



AG.01
development, similarity to SRF (human) and






tgtgtaagaa




MCM (yeast) proteins


















g





SEQ_7
P$ABRE/
ABA (abscisic acid) inducible transcriptional
0.79
816
832
+
0.750
0.790
cttacACATg



ABF1.01
activator






tggcaaa





SEQ_7
P$OPAQ/
Recognition site for BZIP transcription
0.81
816
832

1.000
0.841
tttgccACAT



O2_GCN4.01
factors that belong to the group of






gtgtaag




Opaque-2 like proteins












SEQ_7
P$DOFF/
Prolamin box, conserved in cereal seed storage
0.75
846
862
+
0.761
0.776
gcacttgtAA



PBOX.01
protein gene promoters






AAtcaaa





SEQ_7
O$RPOA/
Avian C-type LTR PolyA signal
0.71
858
878

1.000
0.816
gtaaaTAAAc



APOLYA.01







taactttttg











a





SEQ_7
P$MYBL/
Myb-like protein of Petunia hybrida
0.76
861
877
+
1.000
0.919
aaaagtTAGT



MYBPH3.02







ttattta





SEQ_7
P$MADS/
Binding sites for AP1, AP3-PI and AG dimers
0.75
867
887

1.000
0.752
acaaaCCATg



MADS.01







taaataaact











a





SEQ_7
P$TBPF/
Plant TATA box
0.88
869
883

0.782
0.886
accaTGTAaa



TATA.01







taaac





SEQ_7
P$OCSE/
bZIP transcription factor binding to
0.73
908
928

0.974
0.753
taacacaaac



OCSTF.01
OCS-elements






aacTACGtag











g





SEQ_7
P$LFYB/
Plant specific floral meristem identity gene
0.93
933
945

0.885
0.962
gGCCAttggt



LFY.01
LEAFY (LFY)






gGCCAttggt





SEQ_7
P$MSAE/
M-phase-specific activators (NtmybA1,
0.80
934
948
+
0.750
0.800
aaaccAATGg



MSA.01
NtmybA2, NtmybB)






ccata





SEQ_7
P$CAAT/
CCAAT-box in plant promoters
0.97
935
943
+
1.000
0.986
aaCCAAtgg



CAAT.01













SEQ_7
P$HEAT/
Heat shock element
0.81
959
973

1.000
0.856
agatatttga



HSE.01







AGAAt





SEQ_7
P$MYCL/
ICE (inducer of CBF expression 1), AtMYC2
0.95
980
998
+
1.000
0.970
ttcatACATa



ICE.01
(rd22BP1)






tgtctaaca





SEQ
P$MYBL/M

0.76
1018
1034

1.000
0.896
cgtggtTAGT


_7
YBPH3.02
Myb-like protein of Petunia hybrida






taataac





SEQ_7
P$OCSE/
OCS-like elements
0.69
1018
1038
+
1.000
0.706
gttattaact



OCSL.01







aaccACGTaa











a





SEQ_7
P$MIIG/
Putative cis-acting element in various PAL and
0.81
1021
1035

0.936
0.855
acGTGGttag



PALBOXP.01
4CL gene promoters






ttaat





SEQ_7
P$GBOX/
bZIP protein G-Box binding factor 1
0.94
1023
1043

1.000
0.972
acatttttAC



GBF1.01







GTggttagtta











a





SEQ_7
P$GBOX/
UPRE (unfolded protein response element)
0.86
1024
1044
+
1.000
0.914
aactaaCCAC



UPRE.01
like motif






gtaaaaatgt











t





SEQ_7
P$OPAQ/
Recognition site for BZIP transcription
0.81
1025
1041

0.951
0.834
atttttACGTg



O2_GCN4.01
factors that belong to the group of






gttagt




Opaque-2 like proteins












SEQ_7
P$ABRE/
ABA response elements
0.82
1026
1042

1.000
0.879
catttttACG



ABRE.01







Tggttag





SEQ_7
O$RPOA/
Mammalian C-type LTR Poly A signal
0.76
1062
1082
+
1.000
0.797
caaaaTAAAc



POLYA.01







cataacaatg











t





SEQ_7
P$TELO/
Arabidopsis Telo-box interacting protein
0.85
1066
1080
+
0.750
0.856
ataaACCAta



ATPURA.01
related to the conserved animal protein






acaat




Pur-alpha












SEQ_7
P$LEGB/
Legumin box, highly conserved sequence
0.59
1070
1096
+
0.750
0.618
accataaCAA



LEGB.01
element about 100 by upstream of the






Tgtgaggata




TSS in legumin genes


















caaatta





SEQ_7
P$DOFF/
Dof1/MNB1a - single zinc finger 
0.98
1088
1104
+
1.000
0.987
tacaaattAA



DOF1.01
transcription factor






AGttaca





SEQ_7
P$GTBX/
Trihelix DNA-binding factor GT-3a
0.83
1093
1109
+
1.000
0.902
attaaaGTTA



GT3A.01







caagttt





SEQ_7
P$GBOX/
UPRE (unfolded protein response element)
0.86
1134
1154

1.000
0.918
atgcaaCCAC



UPRE.01
like motif






gtaagagagt











g





SEQ_7
P$GBOX/
bZIP protein G-Box binding factor 1
0.94
1135
1155
+
1.000
0.973
actctcttAC



GBF1.01







GTggttgcat











a





SEQ_7
P$ABRE/
ABA response elements
0.82
1136
1152
+
1.000
0.836
ctctcttACG



ABRE.01







Tggttgc





SEQ_7
P$OCSE/
bZIP transcription factor binding to
0.73
1140
1160

0.846
0.781
acacgtatgc



OCSTF.01
OCS-elements






aacCACGtaag











g





SEQ_7
P$OCSE/
bZIP transcription factor binding to
0.73
1141
1161
+
0.974
0.793
ttacgtggtt



OCSTF.01
OCS-elements






gcaTACGtgt











g





SEQ_7
P$GBOX/
bZIP protein G-Box binding factor 1
0.94
1147
1167
+
1.000
0.968
ggttgcatAC



GBF1.01







GTgtgtatatg











g





SEQ_7
P$ABRE/
ABA response elements
0.82
1148
1164
+
1.000
0.822
gttgcatACG



ABRE.01







Tgtgtat





SEQ_7
P$OCSE/
OCS-like elements
0.69
1152
1172

1.000
0.708
aaatgcatat



OCSL.01







acacACGTat











g





SEQ_7
P$MYBS/
MYB protein from wheat
0.83
1154
1170

1.000
0.917
atgcATATac



TAMYB80.01







acacgta





SEQ_7
P$MYBS/
MYB protein from wheat
0.83
1159
1175
+
1.000
0.893
gtgtATATgc



TAMYB80.01







atttatg





SEQ_7
P$L1BX/
L1-specific homeodomain protein ATML1
0.82
1163
1179

1.000
0.938
ctctcaTAAA



ATML1.01
(A. thaliana meristem layer 1)






tgcatat





SEQ_7
P$DOFF/
Dof1/MNB1a-single zinc finger transcription
0.98
1174
1190
+
1.000
0.982
tgagagctAA



DOF1.01
factor






AGagtat





SEQ_7
P$MYBS/
Rice MYB proteins with single DNA binding
0.82
1183
1199
+
1.000
0.905
aagagTATCc



OSMYBS.01
domains, binding to the amylase element)






attcatt




(TATCCA)












SEQ_7
P$MYBS/
MYB protein from wheat
0.83
1194
1210

1.000
0.896
aagtATATgc



TAMYB80.01







aaatgaa





SEQ_7
P$L1BX/
L1-specific homeodomain protein ATML1
0.82
1197
1213

0.750
0.827
tgaaagTATA



ATML1.01
(A. thaliana meristem layer 1)






tgcaaat





SEQ_7
P$MYBS/
MYB protein from wheat
0.83
1199
1215
+
1.000
0.909
ttgcATATac



TAMYB80.01







tttcata





SEQ_7
P$OCSE/
OCS-like elements
0.69
1212
1232

1.000
0.692
agagttatat



OCSL.01







ataaACGTat











g





SEQ_7
P$TBPF/
Plant TATA box
0.88
1213
1227

1.000
0.889
tataTATAaa



TATA.01







cgtat





SEQ_7
P$TBPF/
Plant TATA box
0.90
1215
1229

1.000
0.917
gttaTATAta



TATA.02







aacgt





SEQ_7
P$TBPF/
Plant TATA box
0.90
1216
1230
+
1.000
0.937
cgttTATAta



TATA.02







taact





SEQ_7
P$TBPF/
Plant TATA box
0.90
1217
1231

1.000
0.931
gagtTATAta



TATA.02







taaac





SEQ_7
O$RPAD/
Mammalian C-type LTR Poly A downstream
0.87
1242
1254

1.000
0.877
attGTGGttt



PADS.01
element






cat





SEQ_7
P$DOFF/
Prolamin box, conserved in cereal seed






tggattagAA



PBOX.01
storage protein gene promoters






AGtgtat





SEQ_7
P$CAAT/
CCAAT-box in plant promoters
0.97
1267
1275
+
1.000
0.992
atCCAAtaa



CAAT.01













SEQ_7
P$AHBP/

Arabidopsis thaliana homeo box protein 1

0.90
1269
1279

1.000
0.990
agaATTAttg



ATHB1.01







g





SEQ_7
P$AHBP/
HDZip class I protein ATHB5
0.89
1269
1279
+
0.829
0.940
ccaATAAttc



ATHB5.01







t





SEQ_7
P$MYBS/
Rice MYB proteins with single DNA binding
0.82
1277
1293

1.000
0.827
aaaggTATCa



OSMYBS.01
domains, binding to the amylase element






atagaga




(TATCCA)
















TABLE 2





cis-regulatory elements of SEQ ID NO: 8
























SEQ_8
P$MADS/
AGL15, Arabidopsis MADS-domain protein
0.79
16
36
+
1.000
0.822
cagTACTaca



AGL15.01
AGAMOUS-like 15






tttggtatca











a





SEQ_8
P$MYCL/
ICE (inducer of CBF expression 1), AtMYC2 (rd22BP1)
0.95
16
34

1.000
0.988
gtactACATt



ICE.01







tggtatcaa





SEQ_8
P$MADS/
AGL3, MADS Box protein
0.83
17
37
+
0.973
0.929
tgataCCAAa



AGL3.01







tgtagtactg











t





SEQ_8
P$SPF1/
DNA-binding protein of sweet potato that binds to
0.87
30
42
+
1.000
0.883
agTACTgtgg



SP8BF.01
the SP8a (ACTGTGTA) and SP8b (TACTATT) sequences






tgt




of sporamin and beta-amylase genes












SEQ_8
P$DOFF/
Prolamin box, conserved in cereal seed storage
0.75
35
51
+
0.776
0.796
tgtggtgtAA



PBOX.01
protein gene promoters






ATcctct





SEQ_8
P$L1BX/
L1-specific homeodomain protein ATML1 (A. thaliana
0.82
52
68
+
1.000
0.834
gtttacTAAA



ATML1.01
meristem layer 1)






tgcttcc





SEQ_8
P$GTBX/
S1F, site 1 binding factor of spinach rps1 promoter
0.79
58
74

1.000
0.797
ctgtATGGaa



S1F.01







gcattta





SEQ_8
P$MADS/
AGL1, Arabidopsis MADS-domain protein
0.84
103
123

1.000
0.850
ttcTGCCcct



AGL1.01
AGAMOUS-like 1






gtcggaaatg











c





SEQ_8
P$DREB/
C-repeat/dehydration response element
0.89
104
118
+
1.000
0.923
catttCCGAc



CRT_DRE.01







agggg





SEQ_8
P$MADS/
AGL1, Arabidopsis MADS-domain protein
0.84
104
124
+
0.975
0.856
catTTCCgac



AGL1.01
AGAMOUS-like 1






aggggcagaa











c





SEQ_8
P$LEGB/
RY and Sph motifs conserved in seed-specific
0.87
154
180

1.000
0.873
gagacattCA



RY.01
promoters






TGcaccaggc











gggctgt





SEQ_8
P$NCS3/
Nodulin consensus sequence 3
0.89
203
213
+
1.000
0.960
gtCACCctcc



NCS3.01







c





SEQ_8
P$MADS/
AGL2, Arabidopsis MADS-domain protein
0.82
239
259
+
0.763
0.821
caaatCCGTa



AGL
AGAMOUS-like 2






actcgtaaat











a





SEQ_8
P$OCSE/
bZIP transcription factor binding to OCS-elements
0.73
248
268

0.974
0.770
tggcggtagt



OCSTF.01







attTACGagt











t





SEQ_8
P$DREB/

H. vulgare dehydration-response factor 1

0.89
258
272
+
1.000
0.897
tactACCGcc



HVDRF1.01







accgg





SEQ_8
P$CE1F/
ABA insensitive protein 4 (ABI4)
0.87
263
275
+
1.000
0.893
ccgcCACCgg



ABI4.01







cca





SEQ_8
0$RPOA/
Avian C-type LTR PolyA signal
0.71
264
284
−  
0.750
0.754
agaaaAAAAt



APOLYA.01







ggccggtggc











g





SEQ_8
P$MADS/
MADS-box protein SQUAMOSA
0.90
268
288
+
1.000
0.902
accggccATT



SQUA.01







Tttttcttag











a





SEQ_8
P$LREM/
Motif involved in carotenoid and tocopherol
0.85
281
291

1.000
0.926
aaATCTaaga



ATCTA.01
biosynthesis and in the expression of 






a




photosynthesis-related genes












SEQ_8
P$CCAF/
Circadian clock associated 1
0.85
284
298

1.000
0.981
caaaaaaaAA



CCA1.01







TCtaa





SEQ_8
P$NCS1/
Nadulin consensus sequence 1
0.85
298
308

1.000
0.949
aAAAAgattt



NCS1.01







c





SEQ_8
P$CCAF/
Circadian clock associated 1
0.85
312
326

1.000
0.860
gaaaaaaaAA



CCA1.01







TCaga





SEQ_8
P$CCAF/
Circadian clock associated 1
0.85
325
339

1.000
0.855
gaaaaaaaAA



CCA1.01







TCcga





SEQ_8
P$MSAE/
M-phase-specific activators (NtmybA1,
0.80
337
351

1.000
0.854
acacaAACGg



MSA.01
NtmybA2, NtmybB)






gagaa





SEQ_8
P$CARM/
CA-rich element
0.78
343
361

1.000
0.791
tcctcacAAC



CARICH.01







Acacaaacg





SEQ_8
P$MYBL/
CAACTC regulatory elements, GA-inducible
0.83
359
375
+
1.000
0.891
ggaagagAGT



CARE.01







Tgtggga





SEQ_8
P$URNA/
Upstream sequence elements in the promoters of
0.75
363
379

1.000
0.774
catttcCCAC



USE.01
U-snRNA genes of higher plants






aactctc





SEQ_8
P$OCSE/
OCS-like elements
0.69
366
386
+
0.807
0.690
agttgtggga



OCSL.01







aatgACATat











a





SEQ_8
P$OPAQ/
Recognition site for BZIP transcription
0.81
374
390
+
1.000
0.837
gaaatgACAT



O2_GCN4.01
factors that belong to the group of






atatata




Opaque- like proteins












SEQ_8
P$TBPF/
Plant TATA box
0.90
379
393
+
1.000
0.938
gacaTATAta



TATA.02







tagag





SEQ_8
P$TBPF/
Plant TATA box
0.90
380
394

1.000
0.960
tctcTATAta



TATA.02







tatgt





SEQ_8
P$PSRE/
GAAA motif involved in pollen specific
0.83
388
404
+
1.000
0.932
atagaGAAAt



GAAA.01
transcriptional activation






tttcgag





SEQ_8
P$MYBL/
CAACTC regulatory elements, GA-inducible
0.83
396
412
+
1.000
0.588
attttcgAGT



CARE.01







Tgggtag





SEQ_8
P$MIIG/
Maize C1 myb-domain protein
0.92
404
418
+
1.000
0.957
gttggGTAGt



MYBC1.01







tgaaa





SEQ_8
P$MYBL/
CAACTC regulatory elements, GA-inducible
0.83
404
420
+
1.000
0.866
gttgggtAGT



CARE.01







Tgaaata





SEQ_8
P$MYBL/
GA-regulated myb gene from barley
0.91
416
432

1.000
0.924
aaatcgttGT



GAMYB.01







TAtattt





SEQ_8
P$MYBS/
MYB protein from wheat
0.83
432
448

1.000
0.845
taaaATATtc



TAMYB80.01







cttataa





SEQ_8
P$OPAQ/
Recognition site for BZIP transcription
0.81
442
458
+
1.000
0.872
tattttACAT



O2_GCN4.01
factors that belong to the group of






ggatttt




Opaque-2 like proteins












SEQ_8
P$GTBX/
S1F, site 1 binding factor of spinach rpsl
0.79
446
462
+
1.000
0.805
ttacATGGat



S1F.01
promoter






tttacat





SEQ_8
P$OPAQ/
Recognition site for BZIP transcription
0.81
453
469
+
1.000
0.846
gattttACAT



O2_GCN4.01
factors that belong to the group of






ggtttta




Opaque-2 like proteins












SEQ_8
P$GTBX/
S1F, site 1 binding factor of spinach rps1
0.79
457
473
+
1.000
0.807
ttacATGGtt



S1F.01
promoter






ttaacat





SEQ_8
P$NACF/
Wheat NACdomain DNA binding factor
0.68
483
505
+
0.812
0.688
aacgacttta



TANAC69.01







cGACGaaatt











agg





SEQ_8
P$MADS/
Agamous, required for normal flower development,
0.80
490
510

1.000
9,834
actTACCtaa



AG.01
sililarity to SRF (human) and MCM (yeast)






tttcgtcgta




proteins






a





SEQ_8
P$GTBX/
GT1-Box binding factors with a trihelix DNA-
0.85
499
515
+
0.968
0.907
aattagGTAA



GT1.01
binding domain






gttaaag





SEQ_8
P$DOFF/
Dof2-single zinc finger transcription factor
0.98
504
520
+
1.000
0.993
ggtaagttAA



DOF2.01







AGcacat





SEQ_8
P$L1BX/
L1-specific homeodomain protein ATML1
0.82
513
529

1.000
0.838
gtgtatTAAA



ATML1.01
(A. thaliana meristem layer 1)






tgtgctt





SEQ_8
P$GBOX/
bZIP protein G-Box binding factor 1
0.94
519
539

1.000
0.956
aggtgaaaAC



GBF1.01







GTgtattaaa











t





SEQ_8
P$OCSE/OCS
OCS-like elements
0.69
525
545

1.000
0.777
atatttaggt



OCSL.01







gaaaACGTgt











a





SEQ_8
P$GTBX/
Trihelix DNA-binding factor GT-3a
0.83
538
554

1.000
0.839
gttaccGTTA



GT3A.01







tatttag





SEQ_8
P$MYBL/
Myb-like protein of Petunia hybrida
0.80
540
556

1.000
0.837
atgttaccGT



MYBPH3.01







TAtattt





SEQ_8
P$MSAE/
M-phase-specific activators (NtmybA1,
0.80
541
555
+
1.000
0.942
aatatAACGg



MSA.01
NtmybA2, NtmybB)






taaca





SEQ_8
P$GTBX/
Trihelix DNA-binding factor GT-3a
0.83
544
560

1.000
0.876
aagcatGTTA



GT3A.01







ccgttat





SEQ_8
P$NACF/
Wheat NACdomain DNA binding factor
0.68
573
595
+
1.000
0.692
gatgtaatga



TANAC69.01







tTACGacgta











ttt





SEQ_8
P$AHBP/
HD-ZIP class III protein ATHB9
0.77
576
586
+
1.000
1.000
gtaATGAtta



ATHB9.01







c





SEQ_8
P$AHBP/
Sunflower homeodomain leucine-zipper
0.87
576
586

1.000
0.981
gtaatcATTA



HAHB4.01
protein Hahb-4






c





SEQ_8
P$GBOX/
Anaerobic basic leucine zipper
0.91
595
615

1.000
0.910
acgaatgtAC



ABZ1.01







GTggaatgag











a





SEQ_8
P$OPAQ/
Opaque-2 regulatory protein
0.87
598
614
+
1.000
0.901
cattCCACgt



O2.02







acattcg





SEQ_8
P$EINL/
TEIL (tobacco EIN3-like)
0.92
603
611

1.000
0.941
aTGTAcgtg



TEIL.01













SEQ_8
P$NACF/
Wheat NACdomain DNA binding factor
0.68
627
649
+
0.812
0.681
aaggagttta



TANAC69.01







cGACGaaacc











agt





SEQ_8
P$DOFF/
Prolamin box, conserved in cereal seed storage
0.75
654
670

0.776
0.768
cgccatgtAA



PBOX.01
protein gene promoters






ATttacg





SEQ_8
P$GBOX/

Oryza sativa bZIP protein 8

0.84
655
675
+
0.750
0.843
gtaaatttAC



OSBZ8.01







ATggcgttta











c





SEQ_8
P$LREM/
Motif involved in carotenoid and tocopherol
0.85
681
691

1.000
0.900
gaATCTaact



ATCTA.01
biosynthesis and in the expression of






t




photosynthesis-related genes












SEQ_8
P$DOFF/
Dof3-single zinc finger transcription factor
0.99
700
716
+
1.000
0.995
ttcgttgtAA



DOF3.01







AGcccat





SEQ_8
P$ERSE/
ERSE I (ER stress-response element I)-like
0.79
712
730
+
0.750
0.791
cccatgtaaa



ERSE_I.01
motif






tttacGACG





SEQ_8
P$MYBL/
Myb-like protein of Petunia hybrida
0.76
746
762
+
0.778
0.761
aaatgtTCGT



MYBPH3.02







tgttatg





SEQ_8
P$MYBL/
GA-regulated myb gene from barley
0.91
749
765
+
1.000
0.946
tgttcgttGT



GAMYB.01







TAtgggc





SEQ_8
P$GTBX/
S1F, site 1 binding factor of spinach rpsl
0.79
756
772
+
1.000
0.795
tgttATGGgc



S1F.01
promoter






acgtttt





SEQ_8
P$GBOX/

Oryza sativa bZIP protein 8

0.84
757
777

1.000
0.865
acaagaaaAC



OSBZ8.01







GTgcccataa











c





SEQ_8
P$MYCL/
Myc recognition sequences
0.93
758
776

1.000
0.940
caagaaaACG



MYCRS.01







Tgcccataa





SEQ_8
P$ABRE/
ABA (abscisic acid) inducible transcriptional
0.82
760
776

1.000
0.892
caagaaaaCG



ABF1.03
activator






TGcccat





SEQ_8
P$OCSE/
OCS-like elements
0.69
763
783

1.000
0.691
atcactacaa



OCSL.01







gaaaACGTgc











c





SEQ_8
P$AHBP/

Arabidopsis thaliana homeo box protein 1

0.90
795
805
+
1.000
0.989
aaaATTAtta



ATHB1.01







a





SEQ_8
P$AHBP/
HDZip class I protein ATHB5
0.89
795
805

0.829
0.902
ttaATAAttt



ATHB5.01







t





SEQ_8
P$GTBX/
SBF-1
0.87
795
811
+
1.000
0.886
aaattaTTAA



SBF1.01







aaaaaa





SEQ_8
P$NCS1/
Nadulin consensus sequence 1
0.85
807
817
+
1.000
0.990
aAAAAgatta



NCS1.01







a





SEQ_8
P$AHBP/
Homeodomain protein WUSCHEL
0.94
811
821

1.000
0.963
gttctTAATc



WUS.01







t





SEQ_8
P$MADS/
AGL3, MADS Box protein
0.83
824
844

0.973
0.854
ttatcCCAAa



AGL3.01







tactgattta











g





SEQ_8
P$MYBS/
MybSt1 (Myb Solanum tuberosum 1) with a single
0.90
832
848

1.000
0.957
atcattATCC



MYBST1.01
myb repeat






caaatac





SEQ_8
P$1BOX/
Class I GATA factors
0.93
835
851
+
1.000
0.932
tttggGATAa



GATA.01







tgatgct





SEQ_8
P$AHBP/
Sunflower homeodomain leucine-zipper
0.87
841
851

1.000
0.937
agcatcATTA



HAHB4.01
protein Hahb-4






t





SEQ_8
P$MADS/
Agamous, required for normal flower
0.80
845
865

1.000
0.808
ctaTACCtaa



AG.01
development, similarity to SRF (human)






taagagcatc




and MCM (yeast) proteins


















a





SEQ_8
P$MIIG/
Maize C1 myb-domain protein
0.92
871
885
+
1.000
0.980
cgttgGTAGt



MYBC1.01







tgcat





SEQ_8
P$MYBL/
CAACTC regulatory elements, GA-inducible
0.83
871
887
+
1.000
0.844
cgttggtAGT



CARE.01







Tgcattg





SEQ_8
P$NCS1/
Nadulin consensus sequence 1
0.85
889
899

0.878
0.909
cAAATgatga



NCS1.01







t





SEQ_8
P$GBOX/
HBP-1a, suggested to be involved in the cell
0.88
896
916

1.000
0.919
tgcatgcCAC



HBP1A.01
cycle-dependent expression






Gttgaatcaa











a





SEQ_8
P$GBOX/

Oryza sativa bZIP protein 8

0.84
897
917
+
1.000
0.941
ttgattcaAC



OSBZ8.01







GTggcatgca











g





SEQ_8
P$ABRE/
ABA response elements
0.82
898
914
+
1.000
0.939
tgattcaACG



ABRE.01







Tggcatg





SEQ_8
P$LEGB/
RY and Sph motifs conserved in seed-specific
0.87
903
929
+
1.000
0.884
caacgtggCA



RY.01
promoters






TGcagttcat











tggctaa





SEQ_8
P$EPFF/
Member of the EPF family of zinc finger
0.75
904
926
+
1.000
0.751
aacgtggcat



ZPT22.01
transcription factors






gCAGTtcatt











ggc





SEQ_8
P$CAAT/
CCAAT-box in plant promoters
0.97
919
927

1.000
0.978
agCCAAtga



CAAT.01













SEQ_8
P$GTBX/
Trihelix DNA-binding factor GT-3a
0.83
926
942
+
1.000
0.884
ctaattGTTA



GT3A.01







cacatct





SEQ_8
P$AHBP/
Sunflower homeodomain leucine-zipper protein
0.87
953
963

1.000
0.913
cgtataATTA



HAHB4.01
Hahb-4






g





SEQ_8
P$GBOX/
bZIP protein G-Box binding factor 1
0.94
953
973
+
1.000
0.956
ctaattatAC



GBF1.01







GTggtggtga











g





SEQ_8
P$ABRE/
ABA response elements
0.82
954
970
+
1.000
0.874
taattatACG



ABRE.01







Tggtggt





SEQ_8
P$SALT/
Zinc-finger protein in alfalfa roots, regulates
0.95
958
972
+
1.000
0.955
tatacgtGGT



ALFIN1.02
salt tolerance






Ggtga





SEQ_8
P$NACF/
Wheat NACdomain DNA binding factor
0.68
963
985
+
1.000
0.747
gtggtggtga



TANAC69.01







gTACGtagtt











caa





SEQ_8
P$MYBS/
Rice MYB proteins with single DNA binding domains,
0.82
1009
1025

1.000
0.842
aaaagTATCc



OSMYBS.01
binding to the amylase element (TATCCA)






accaaaa





SEQ_8
O$RVUP/
Upstream element of C-type Long Terminal Repeats
0.76
1025
1045
+
0.761
0.805
tgcataatca



LTRUP.01







gTTTTgattg











t





SEQ_8
P$LREM/
Motif involved in carotenoid and tocopherol
0.85
1049
1059
+
1.000
0.990
atATCTaaat



ATCTA.01
biosynthesis and in the expression of 






c




photosynthesis-related genes












SEQ_8
P$LREM/
Motif involved in carotenoid and tocopherol
0.85
1055
1065
+
1.000
0.874
aaATCTacgt



ATCTA.01
biosynthesis and and in the expression of






g




photosynthesis-related genes












SEQ_8
P$GBOX/TGA

Arabidopsis leucine zipper protein TGA1

0.90
1058
1078
+
0.818
0.901
tctacgTGAT



TGA1.01







gtaacgaccg











a





SEQ_8
P$GTBX/
Trihelix DNA-binding factor GT-3a
0.83
1071
1087
+
0.750
0.852
acgaccGATA



GT3A.01







caataaa





SEQ_8
0$RPOA/
Lentiviral Poly A signal
0.94
1079
1099
+
1.000
0.941
tacAATAaac



LPOLYA.01







aattctgatt











g





SEQ_8
P$STKM/
Storekeeper (STK), plant specific DNA binding
0.85
1081
1095
+
1.000
0.902
caaTAAAcaa



STK.01
protein important for tuber-specific and






ttctg




sucrose-inducible gene expression












SEQ_8
0$RPOA/
Avian C-type LTR PolyA signal
0.71
1097
1117
+
0.750
0.742
ttgaaTATAt



APOLYA.01







atccatatga











t





SEQ_8
P$GTBX/
S1F, site 1 binding factor of spinach rps1
0.79
1100
1116

1.000
0.811
tcatATGGat



S1F.01
promoter






atatatt





SEQ_8
P$MYBS/
Rice MYB proteins with single DNA binding domains,
0.82
1101
1117
+
1.000
0.882
atataTATCc



OSMYBS.01
binding to the amylase element (TATCCA)






atatgat





SEQ_8
P$MADS/
AGL15, Arabidopsis MADS-domain protein
0.79
1104
1124

1.000
0.793
tcaTACTatc



AGL15.01
AGAMOUS-like 15






atatggatat











a





SEQ_8
P$ERSE/
ERSE I (ER stress-response element I)-like motif
0.79
1138
1156
+
1.000
0.842
caactatggt



ERSE_1.01







gttgcCACG





SEQ_8
P$NACF/
Wheat NACdomain DNA binding factor
0.68
1142
1164
+
0.895
0.687
tatggtgttg



TANAC69.01







cCACGtaacg











acc





SEQ_8
P$GBOX/
bZIP protein G-Box binding factor 1
0.94
1145
1165

1.000
0.973
tggtcgttAC



GBF1.01







GTggcaacac











c





SEQ_8
P$GBOX/
HBP-la, suggested to be involved in the cell
0.88
1146
1166
+
1.000
0.952
gtgttgcCAC



HBP1A.01
cycle-dependent expression






Gtaacgacca











t





SEQ_8
P$OPAQ/
Rice transcription activator-1 (RITA), basic
0.95
1147
1163

1.000
0.981
gtcgttACGT



RITA1.01
leucin zipper protein, highly expressed






ggcaaca




during seed development












SEQ_8
P$ABRE/
ABA (abscisic acid) inducible transcriptional
0.82
1148
1164

1.000
0.897
ggtcgttaCG



ABF1.03
activator






TGgcaac





SEQ_8
P$OPAQ/
Rice transcription activator-1 (RITA), basic
0.95
1148
1164
+
1.000
0.985
gttgccACGT



RITA1.01
leucin zipper protein, highly expressed






aacgacc




during seed development












SEQ_8
P$MYBL/
Anther-specific myb gene from tobacco
0.96
1152
1168

1.000
0.974
agatggtcGT



NTMYBAS1.01







TAcgtgg





SEQ_8
0$RPOA/
Lentiviral Poly A signal
0.94
1156
1176

1.000
0.989
gttAATAaag



LPOLYA.01







atggtcgtta











c





SEQ_8
P$MADS/

0.75
1158
1178
+
1.000
0.768
aacgaCCATc



MADS.01
Binding sites for AP1, AP3-PI and AG dimers






tttattaacc











a





SEQ_8
P$DOFF/
Dof1/MNB1a-single zinc finger transcription factor
0.98
1162
1178

1.000
0.984
tggttaatAA



DOF1.01







AGatggt





SEQ_8
P$GTBX/
SBF-1
0.87
1166
1182

1.000
0.894
gtcatggTTA



SBF1.01







Ataaaga





SEQ_8
P$GBOX/
Wheat bZIP transcription factor HBP1B (histone
0.83
1172
1192

1.000
0.943
gttgcggcAC



HBP1B.01
gene binding protein 1b)






GTcatggtta











a





SEQ_8
P$GBOX/

Arabidopsis leucine zipper protein TGA1

0.90
1173
1193
+
1.000
0.971
taaccaTGAC



TGA1.01







gtgccgcaac











c





SEQ_8
P$ABRE/
ABA (abscisic acid) inducible transcriptional
0.82
1174
1190
+
1.000
0.863
aaccatgaCG



ABF1.03
activator






TGccgca





SEQ_8
P$ERSE/
ERSE I (ER stress-response element I)-like motif
0.79
1183
1200

1.000
0.804
cctctgtggt



ERSE_1.01







tgcggCACG





SEQ_8
P$IDDF/
Maize INDETERMINATE1 zinc finger protein
0.92
1196
1208

1.000
0.927
gttgTTGTcc



ID1.01







tct





SEQ_8
P$MYBL/
GA-regulated myb gene from barley
0.91
1197
1213

0.884
0.911
tatgtgttGT



GAMYB.01







GTcctc





SEQ_8
0$LTUP/
Lentiviral TATA upstream element
0.71
1213
1235
+
1.000
0.725
acagcatcga



TAACC.01







gaAACCgcat











act





SEQ_8
P$MADS/
AGL15, Arabidopsis MADS-domain protein
0.79
1229
1249
+
1.000
0.808
gcaTACTaac



AGL15.01
AGAMOUS-like 15






actcgcaaag











t





SEQ_8
P$CARM/
CA-rich element
0.78
1245
1263
+
1.000
0.812
aaagtgcAAC



CARICH.01







Acccaaaac





SEQ_8
O$MINI/MUS
Muscle Initiator Sequence
0.86
1290
1308
+
1.000
0.860
gcaacaCCAC



MUSCLE_IN1.02







gcagctata





SEQ_8
P$OCSE/
OCS-like elements
0.69
1296
1316
+
1.000
0.690
ccacgcagct



OCSL.01







atacACGTat











c





SEQ_8
P$GBOX/
bZIP protein G-Box binding factor 1
0.94
1301
1321

1.000
0.967
tagaagatAC



GBF1.01







GTgtatagct











g





SEQ_8
P$OCSE/
OCS-like elements
0.69
1307
1327

1.000
0.737
ttagcataga



OCSL.01







agatACGTgt











a





SEQ_8
P$GARP/
Type-B response regulator (ARR10), member of the
0.97
1309
1317

1.000
0.985
AGATacgtg



ARR10.01
GARP-family of plant myb-related DNA binding











motifs












SEQ_8
P$GBOX/
bZIP protein G-Box binding factor 1
0.94
1320
1340

1.000
0.976
gacatgacAC



GBF1.01







GTgttagcat











a





SEQ_8
P$GBOX/
bZIP protein G-Box binding factor 1
0.94
1321
1341
+
1.000
0.977
atgctaacAC



GBF1.01







GTgtcatgtc











t





SEQ_8
P$MYCL/
ICE (inducer of CBF expression 1), AtMYC2
0.95
1321
1339

0.954
0.966
acatgACACg



ICE.01
(rd22BP1)






tgttagcat





SEQ_8
P$ABRE/
ABA response elements
9.82
1322
1338
+
1.000
0.951
tgctaacACG



ABRE.01







Tgtcatg





SEQ_8
P$CE3S/
Coupling element 3 (CE3), non-ACGT ABRE
0.77
1322
1340
+
0.750
0.806
tgctaaCACG



CE3.01







tgtcatgtc





SEQ_8
P$MYCL/
Rice bHLH protein
0.85
1322
1340
+
1.000
0.901
tgctaaCACG



OSBHLH66.01







tgtcatgtc





SEQ_8
P$ABRE/
ABA response elements
0.82
1323
1339

1.000
0.897
acatgacACG



ABRE.01







Tgttagc





SEQ_8
P$DPBF/
bZIP factors DPBF-1 and 2 (Dc3 promoter binding
0.89
1326
1336
+
1.000
0.920
aACACgtgtc



DPBF.01
factor-1 and 2)






a





SEQ_8
P$DREB/
C-repeat/dehydration response element
0.89
1341
1355
+
1.000
0.904
ttgaaCCGAc



CRT_DRE.01







caaga





SEQ_8
P$MYCL/
ICE (inducer of CBF expression 1), AtMYC2
0.95
1356
1374

1.000
0.965
tcgatACATt



ICE.01
(rd22BP1)






tgtagtgtg





SEQ_8
O$LDPS/
Lentiviral Poly A downstream element
0.89
1384
1398

1.000
0.900
gtGTGTatgg



LDSPOLYA.01







tcttc





SEQ_8
P$MADS/
AGL15, Arabidopsis MADS-domain protein
0.79
1398
1418

0.850
0.823
tgtTGCTgtg



AGL15.01
AGAMOUS-like 15






taaagaaagt











g





SEQ_8
P$DOFF/
Prolamin box, conserved in cereal seed storage
0.75
1399
1415

1.000
0.882
tgctgtgtAA



PBOX.01
protein gene promoters






AGaaagt





SEQ_8
P$MADS/
AGL15, Arabidopsis MADS-domain protein
0.79
1399
1419
+
0.925
0.882
actTTCTtta



AGL15.01
 AGAMOUS-like 15






cacagcaaca











t





SEQ_8
P$RAV5/
5′-part of bipartite RAV1 binding site,
0.96
1412
1422
+
1.000
0.967
agcAACAtac



RAV1-5.01
interacting with AP2 domain






a





SEQ_8
P$DOFF/
Dof2-single zinc finger transcription factor
0.98
1431
1447

1.000
0.983
aattatatAA



DOF2.01







AGctttt





SEQ_8
P$TBPF/
Plant TATA box
0.88
1432
1446

1.000
0.892
attaTATAaa



TATA.01







gcttt





SEQ_8
P$TBPF/
Plant TATA box
0.90
1434
1448

1.000
0.921
taatTATAta



TATA.02







aagct





SEQ_8
P$AHBP/
Sunflower homeodomain leucine-zipper protein
0.87
1439
1449
+
1.000
0.902
tatataATTA



HAHB4.01
Hahb-4






t





SEQ_8
P$1BOX/
Class I GATA factors
0.93
1439
1455

1.000
0.946
gaaatGATAa



GATA.01







ttatata





SEQ_8
P$AHBP/
Sunflower homeodomain leucine-zipper protein
0.87
1442
1452

1.000
0.910
atgataATTA



HAHB4.01
Hahb-4






t





SEQ_8
P$AHBP/
HD-ZIP class III protein ATHB9
0.77
1445
1455

1.000
0.775
gaaATGAtaa



ATHB9.01







t





SEQ_8
P$NCS1/
Nodulin consensus sequence 1
0.85
1445
1455

0.878
0.915
gAAATgataa



NCS1.01







t
















TABLE 3





cis-regulatory elements of SEQ ID NO: 9
























SEQ_9
P$CGCG/ATSR1.01

Arabidopsis thaliana signal-responsive

0.84
2
18

1.000
0.859
ccaCGCGtgcc




gene1, Ca2+/ calmodulin binding protein






ctatagcgac




homolog to NtER1 (tobacco early ethylene-











responsive gene)












SEQ_9
P$CE3S/CE3.01
Coupling element 3 (CE3), non-ACGT ABRE
0.77
3
21

1.000
0.905
caCGCGtgccc











tata





SEQ_9
P$CGCG/ATSR1.01

Arabidopsis thaliana signal-responsive

0.84
9
25
+
1.000
0.856
gcaCGCGtggt




gene1, Ca2+/ calmodulin binding protein






cgacgg




homolog to NtER1 (tobacco early ethylene-











responsive gene)












SEQ_9
P$MIIG/P_ACT.01
Maize activator P of flavonoid
0.93
30
44
+
0.966
0.983
ggctGGTTggt




biosynthetic genes






aaaa





SEQ_9
P$GBOX/ROM.01
Regulator of MAT (ROM1, ROM2)
0.85
39
59
+
1.000
0.891
gtaaaaCCACc











tcagcctccg





SEQ_9
P$GBOX/
bZIP transcription factor from
0.84
44
64

0.750
0.855
tgaatcggagg



BZIP910.02

Antirrhinum majus







cTGAGgtggt





SEQ_9
O$RVUP/LTRUP.01
Upstream element of C-type Long Terminal
0.76
55
75
+
1.000
0.804
ctccgattcag




Repeats






TTTCtggatc





SEQ_9
P$GBOX/
bZIP transcription factor from
0.76
107
127

0.750
0.765
cggcggAGACt



BZIP911.02

Antirrhinum majus







tgtccttctt





SEQ_9
P$DREB/HVDRF1.01

H. vulgare dehydration-response factor 1

0.89
117
131
+
0.782
0.900
agtctccgccg











ccgg





SEQ_9
P$MADS/AGL1.01

Arabidopsis MADS-domain protein

0.84
130
150
+
0.761
0.860
ggcAACCAaat




AGAMOUS-like 1






cgggaacgaa





SEQ_9
P$E2FF/E2F.01
E2F class I sites
0.82
136
150

1.000
0.825
ttcgTTCCcga











tttg





SEQ_9
P$TCPF/
TCP class I transcription factor
0.94
150
162
+
1.000
0.944
agcgGCCCagc



ATTCP20.01
(Arabidopsis)






ga





SEQ_9
P$CGCG/OSCBT.01
Oryza sativa CaM-binding transcription
0.78
201
217

0.817
0.783
cttCGAGtctt




factor






cgccga





SEQ_9
P$IDRE/IDE1.01
Iron-deficiency-responsive element 1
0.77
213
227

0.777
0.805
caGCAGgcttc











ttcg





SEQ_9
P$DOFF/DOF3.01
Dof3 - single zinc finger transcription
0.99
223
239

1.000
0.979
gtctctgaAAA




factor






Gcagca





SEQ_9
P$WBXF/ZAP1.01

Arabidopsis thaliana Zinc-dependent

0.84
237
253
+
0.750
0.840
gactgTGGAcc




Activator Protein-1 (ZAP1)






gaggac





SEQ_9
O$RVUP/LTRYOP.01
Upstream element of C-type Long Terminal
0.76
275
295
+
1.000
0.769
ggcatgatcga




Repeats






TTTCaagaag





SEQ_9
P$MYBS/HVMCB1.01

Hordeum vulgare Myb-related CAB-promoter-

0.93
288
304

1.000
0.957
ccccgtATCCt




binding protein 1






tcttga





SEQ_9
P$OSCE/OCSTF/01
bZIP transcription factor binding to OCS-
0.73
313
333
+
0.846
0.739
ttacgacgaca




elements






ccAACGctta





SEQ_9
P$MSAE/MSA.01
M-phase-specific activators (NtmybA1,
0.80
321
335
+
1.000
0.802
acaccAACGct




NtmybA2, NtmybB)






tact





SEQ_9
O$LTUP/TAACC.01
Lentiviral TATA upstream element
0.71
360
382

1.000
0.718
ctggttcttgc











tAACCtcaaag











c





SEQ_9
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
360
376
+
1.000
0.914
gctttgagGTT











Agcaag





SEQ_9
P$MYBS/MYBST1.01
MybSt1 (Myb Solanum tuberosum 1) with a
0.90
381
397

1.000
0.958
aagcttATCCa




single myb repeat






tgaact





SEQ_9
P$GTBX/S1F.01
S1F, site 1 binding factor of spinach
0.79
382
398
+
1.000
0.811
gttcATGGata




rps1 promoter






agctta





SEQ_9
P$IBOX/GATA.01
Class I GATA factors
0.93
384
400
+
1.000
0.945
tcatgGATAag











cttagg





SEQ_9
P$CARM/CARICH.01
CA-rich element
0.78
393
411

0.750
0.866
ttcttcaAACT











cctaagct





SEQ_9
P$MIIG/
Cis-acting element conserved in various
0.80
439
453

1.000
0.818
tgaggcttGGT



PALBOXL.01
PAL and 4CL promoters






Gaaa





SEQ_9
P$REM/ATCTA.01
Motif involved in carotenoid and toco-
0.85
465
475

1.000
0.897
caATCTataag




pherol biosynthesis and in the expression











of photosynthesis-related genes












SEQ_9
P$GTBX/GT1.01
GT1-Box binding factors with a trihelix
0.85
471
487
+
0.968
0.852
gattgtGTAAg




DNA-binding domain






tctata





SEQ_9
P$MSAE/MSA.01
M-phase-specific activators (NtmybA1,
0.80
513
527
+
1.000
0.968
agtccAACGgc




NtmybA2, NtmybB)






aaga





SEQ_9
P$NCS2/NCS2.01
Nodulin consensus sequence 2
0.79
538
552
+
1.000
0.795
ggttgtCTCTg











tgaa





SEQ_9
P$LFYB/LFY.01
Plant specific floral meristem identity
0.93
580
592
+
0.914
0.948
tCCCAatggta




gene LEAFY (LFY)






aa





SEQ_9
P$MSAE/MSA.01
M-phase-specific activators (NtmybA1,
0.80
587
601
+
1.000
0.890
ggtaaAACGgt




NtmybA2, NtmybB)






tgat





SEQ_9
P$MYBL/MYBPH3.01
Myb-like protein of Petunia hybrida
0.80
588
604
+
0.750
0.831
gtaaaacgGTT











Gatgat





SEQ_9
P$GBOX/
bZIP transcription factor from
0.76
604
624
+
1.000
0.804
tggtggTGACa



BZIP911.02

Antirrhinum majus







tgtatgattg





SEQ_9
P$OPAQ/O2.01
Opaque-2 regulatory protein
0.87
605
621

0.794
0.901
tcatacatgTC











ACcacc





SEQ_9
P$OPAQ/
Recognition site for BZIP transcription
0.81
606
622
+
1.000
0.941
gtggtgACATg



O2_GCN4.01
factors that belong to the group of






tatgat




Opaque-2 like proteins












SEQ_9
P$CAAT/CAAT.01
CCAAT-box in plant promoters
0.97
619
627

1.000
0.984
aaCCAAtca





SEQ_9
P$MIIG/P_ACT.01
Maize activator P of flavonoid bio-
0.93
695
709
+
0.966
0.969
tggaGGTTggt




synthetic genes






cccg





SEQ_9
P$IBOX/IBOX.01
I-Box in rbcS genes and other light
0.81
729
745
+
0.750
0.811
ttgaaGAGAag




regulated genes






gttaag





SEQ_9
P$CARM/CARICH.01
CA-rich element
0.78
739
757

1.000
0.803
ggcctgcAACA











tcttaacc





SEQ_9
P$RAV5/RAV1-5.01
5′-part of bipartite RAV1 binding site,
0.96
770
780

1.000
0.979
tgcAACAcaaa




interacting with AP2 domain












SEQ_9
P$LEGB/RY.01
RY and Sph motifs conserved in seed-
0.87
782
808

1.000
0.895
ggtgacttCAT




specific promoters






Gcaaaatctca











gtctt





SEQ_9
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
787
801

1.000
0.945
tcatgcaaAAT











Ctca





SEQ_9
P$OCSE/OCSL.01
OCS-like elements
0.69
798
818

0.769
0.706
caatcaaagag











gtgACTTcat





SEQ_9
P$LREM/ATCTA.01
Motif involved in carotenoid and toco-
0.85
824
834
+
1.000
0.916
gcATCTaagaa




pherol biosynthesis and in the expression











of photosynthesis-related genes












SEQ_9
O$RPOA/
PolyA signal of D-type LTRs
0.78
838
858
+
1.000
0.797
gCCATtagaat



DTYPEPA.01







gattgatttg





SEQ_9
P$AHBP/ATHB5.01
HDZip class I protein ATHB5
0.89
844
854
+
0.829
0.904
agaATGAttga





SEQ_9
P$AHBP/ATHB5.01
HDZip class I protein ATHB5
0.89
844
854

0.936
0.977
tcaATCAttct





SEQ_9
P$LREM/ATCTA.01
Motif involved in carotenoid and toco-
0.85
857
867
+
1.000
0.854
tgATCTacggt




pherol biosynthesis and in the expression











of photosynthesis-related genes












SEQ_9
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting protein

0.85
857
871

0.750
0.863
tgaaACCGtag




related to the conserved animal protein






atca




Pur-alpha












SEQ_9
P$PSRE/GAAA.01
GAAA motif involved in pollen specific
0.83
859
875

1.000
0.843
gcattGAAAcc




transcriptional activation






gtagat





SEQ_9
P$GTBX/GT3A.01
Trihelix DNA-binding factor GT-3a
0.83
860
876
+
0.750
0.839
tctacgGTTTc











aatgcc





SEQ_9
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting protein

0.85
905
919

0.750
0.854
aaaaATCCtaa




related to the conserved animal protein






gttg




Pur-alpha












SEQ_9
P$SPF1/SP8BF.01
DNA-binding protein of sweet potato that
0.87
917
929
+
1.000
0.872
ttTACTttttc




binds to the SP8a (ACTGTGTA) and SP8b






tt




(TACTATT) sequences of sporamin and beta-











amylase genes












SEQ_9
P$SPF1/SP8BF.01
Motif involved in carotenoid and toco-
0.85
936
946
+
1.000
0.859
tgATCTactta




pherol biosynthesis and in the expression











of photosynthesis-related genes












SEQ_9
O$LDPS/
Lentiviral Poly A downstream element
0.89
945
959
+
0.980
0.901
taCTGTgtaat



LDSPOLYA.01







tttt





SEQ_9
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML1
0.82
961
977

1.000
0.838
gccatcTAAAt




(A. thaliana meristem layer 1)






gaacca





SEQ_9
P$LREM/ATCTA.01
Motif involved in carotenoid and toco-
0.85
966
976

1.00
0.960
ccATCTaaatg




pherol biosynthesis and in the expression











of photosynthesis-related genes












SEQ_9
P$MADS/AGL15.01
AGL15, Arabidopsis MADS-domain protein
0.79
976
996
+
0.925
0.796
gctTTCTctca




AGAMOUS-like 15






tatgaaactc





SEQ_9
P$EINL/TEIL.01
TEIL (tobacco EIN3-like)
0.92
988
996
+
0.964
0.24
aTGAAactc





SEQ_9
P$CAAT/CAAT.01
CCAAT-box in plant promoters
0.97
1001
1009

1.000
0.983
atCCAAtat





SEQ_9
P$LREM/ATCTA.01
Motif involved in carotenoid and toco-
0.85
1017
1027
+
1.000
0.902
taATCTataat




pherol biosynthesis and in the expression











of photosynthesis-related genes












SEQ_9
P$GTBX/GT1.01
GT1-Box binding factors with a trihelix
0.85
1020
1036

1.000
0.866
tattgtGTTAt




DNA-binding domain






tataga





SEQ_9
P$IBOX/IBOX.01
I-Box in rbcS genes and other light
0.81
1034
1050
+
0.750
0.843
ataaaAATAag




regulated genes






attact





SEQ_9
P$SPF1/SP8BF.01
DNA-binding protein of sweet potato that
0.87
1045
1057
+
1.000
0.881
atTACTgtcaa




binds to the SP8a (ACTGTGTA) and SP8b






tt




(TACTATT) sequences of sporamin and beta-











amylase genes












SEQ_9
P$MYBL/
Anther-specific myb gene from tobacco
0.96
1065
1081
+
1.000
1.000
ctaaggcaGTT



NTMYBAS1.01







Aggtga





SEQ_9
P$MIIG/PALBOXL.01
Cis-acting element conserved in various
0.80
1069
1083
+
1.000
0.827
ggcagttaGGT




PAL and 4CL promoters






Gaca





SEQ_9
P$AREF/ARE.01
Auxin Response Element
0.93
1074
1086

1.000
0.932
ataTGTCacct











aa





SEQ_9
P$MADS/AGL2.01
AGL2, Arabidopsis MADS-domain protein
0.82
1091
1111

1.000
0.847
ttcgaCCATag




AGAMOUS-like 2






ctaggatcta





SEQ_9
P$GARP/ARR10.01
Type-B response regulator (ARR10), member
0.97
1092
1100
+
1.000
0.970
AGATcctag




of the GARP-family of plant myb-related











DNA binding motifs












SEQ_9
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML1
0.82
1123
1139
+
0.750
0.834
ttttatGAAAt




(A. thaliana meristem layer 1)






gtaggt





SEQ_9
P$GTBX/GT1.01
GT1-Box binding factors with a trihelix
0.85
1132
1148
+
0.968
0.877
atgtagGTAAg




DNA-binding domain






tattgg





SEQ_9
P$CAAT/CAAT.01
CCAAT-box in plant promoters
0.97
1142
1150

1.000
0.977
aaCCAAtac





SEQ_9
P$GTBX/SBF1.01
SBF-1
0.87
1183
1199
+
1.000
0.878
tttgtgtTTAA











tcaaat





SEQ_9
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
1186
1196
+
1.000
0.963
gtgttTAATca





SEQ_9
P$DOFF/PBOX.01
Prolamin box, conserved in cereal seed
0.75
1205
1221
+
0.761
0.793
tgttctgaAAA




storage protein gene promoters






Attcaa





SEQ_9
P$HEAT/HSE.01
Heat shock element
0.81
1206
1220

1.000
0.870
tgaatttttcA











GAAc





SEQ_9
P$NCS1/NCS1.01
Nadulin consensus sequence 1
0.85
1224
1234
+
1.000
0.966
aAAAAgatcaa





SEQ_9
P$MYBL/MYBPH3.02
Myb-like protein of Petunia hybrida
0.76
1234
1250
+
0.778
0.791
aaaattTGGTt











aaagaa





SEQ_9
P$GTBX/GT1.01
GT1-Box binding factors with a trihelix
0.85
1236
1252
+
1.000
0.867
aatttgGTTAa




DNA-binding domain






agaaga





SEQ_9
P$DOFF/DOF1.01
Doff/MNB1a-single zinc finger trans-
0.98
1237
1253
+
1.000
0.981
atttggttAAA




cription factor






Gaagac





SEQ_9
P$OCSE/OCSL.01
OCS-like elements
0.69
1238
1258
+
0.807
0.720
tttggttaaag











aagACGAact





SE_9
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1257
1271
+
1.000
0.923
cttacaaaAAT











Cttg





SEQ_9
P$MYBL/MYBPH3.02
Myb-like protein of Petunia hybrida
0.76
1274
1290
+
1.000
0.866
ataactTAGTt











aaatga





SEQ_9
P$AHBP/ATHB9.01
HD-ZIP class III protein ATHB9
0.77
1284
1294
+
1.000
0.757
taaATGAtaac





SEQ_9
P$IBOX/GATA.01
Class I GATA factors
0.93
1284
1300
+
1.000
0.963
taaatGATAac











aaatct





SEQ_9
P$NCS1/NCS1.01
Nadulin consensus sequence 1
0.85
1284
1294
+
0.878
0.909
tAAATgataac





SEQ_9
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
1286
1302

1.000
0.949
gcagatttGTT











Atcatt





SEQ_9
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1288
1302
+
1.000
0.861
tgataacaAAT











Ctgc





SEQ_9
P$OCSE/OCSL.01
OCS-like elements
0.69
1305
1325
+
0.807
0.701
gtcaataaaaa











gttACGAgtc





SEQ_9
P$MYBL/MYBPH3.01
Myb-like protein of Petunia hybrida
0.80
1308
1324
+
1.000
0.810
aataaaaaGTT











Acgagt





SEQ_9
P$GTGX/GT3A.01
Trihelix DNA-binding factor GT-3a
0.83
1310
1326
+
1.000
0.876
taaaaaGTTAc











gagtct





SEQ_9
P$MYBL/MYBPH3.02
Myb-like protein of Petunia hybrida
0.76
1372
1388
+
1.000
0.926
acaagtTAGTt











gagtca





SEQ_9
P$OPAQ/GCN4.01
GCN4, conserved in cereal seed storage
0.81
1377
1393
+
1.000
0.880
ttagtTGAGtc




protein gene promoters, similar to yeast






acgtgc




GCN4 and vertebrate AP-1












SEQ_9
P$GBOX/CPRF.01
Common plant regulatory factor (CPRF)
0.95
1379
1399

1.000
0.975
aggtaagcACG




from parsley






Tgactcaact





SEQ_9
P$GBOX/CPRF.01
Common plant regulatory factor (CPRF)
0.95
1380
1400
+
1.000
0.966
gttgagtcACG




from parsley






Tgcttacctt





SEQ_9
P$MCL/
Rice bHLH protein
0.85
1380
1398

1.000
0.933
ggtaagCACGt



OSBHLH66.01







gactcaac





SEQ_9
P$MYCL/MY CRS.01
Myc recognition sequences
0.93
1381
1399
+
1.000
0.990
ttgagtcACGT











gcttacct





SEQ_9
P$OPAQ/RITA1.01
Rice transcription activator-1 (RITA),
0.95
1381
1397

1.000
0.970
gtaagcACGTg




basic leucin zipper protein, highly






actcaa




expressed during seed development












SEQ_9
P$ABRE/ABRE.01
ABA response elements
0.82
1382
1398

1.000
0.832
ggtaagcACGT











gactca





SEQ_9
O$RPOA/APOLYA.01
Avian C-type LTR PolyA signal
0.71
1397
1417
+
1.000
0.797
ccttcTAAAaa











gcctttttga





SEQ_9
P$DOFF/DOF3.01
Dof3-single zinc finger transcription
0.99
1397
1413
+
1.000
0.969
ccttctaaAAA




factor






Gccttt





SEQ_9
O$RPOA/APOLYA.01
Avian C-type LTR PolyA signal
0.71
1401
1421

0.750
0.720
ttgatCAAAaa











ggctttttag





SEQ_9
P$LFYB/LFY.01
Plant specific floral meristem identity
0.93
1414
1426

0.914
0.938
aACCAttgatc




gene LEAFY (LFY)






aa





SEQ_9
P$SBPD/SBP.01
SQUA promoter binding proteins
0.88
1419
1435

1.000
0.895
atttgGTACaa











ccattg





SEQ_9
P$SBPD/SBP.01
SQUA promoter binding proteins
0.88
1422
1438
+
1.000
0.902
tggttGTACca











aatgag





SEQ_9
P$MADS/AG.01
Agamous, required for normal flower
0.80
1425
1445
+
1.000
0.808
ttgTACCaaat




development, similarity to SRF (human)






gagaagagag




and MCM (yeast) proteins












SEQ_9
P$GAGA/BPC.01
Basic pentacysteine proteins
1.00
1436
1460
+
1.000
1.000
gagaagAGAGa











ctataagcgtt











gca





SEQ_9
P$SPF1/SP8BF.01
DNA-binding protein of sweet potato that
0.87
1464
1476
+
1.000
0.872
ttTACTtttac




binds to the SP8a (ACTGTGTA) and SP8b






tt




(TACTATT) sequences of sporamin and beta-











amylase genes












SEQ_9
P$SPF1/SP8BF.01
DNA-binding protein of sweet potato that
0.87
1470
1482
+
1.000
0.872
ttTACTtttac




binds to the SP8a (ACTGTGTA) and SP8b






tt




(TACTATT) sequences of sporamin and beta-











amylase genes












SEQ_9
P$TBPF/TATA.02
Plant TATA box
0.90
1481
1495
+
1.000
0.940
ttccTATAtaa











aaag





SEQ_9
P$TBPF/TATA.01
Plant TATA box
0.88
1483
1497
+
1.000
0.954
cctaTATAaaa











agtc





SEQ_9
P$OCSE/OCSL.01
OCS-like elements
0.69
1500
1520

1.000
0.708
tgttatgaggt











ttaACGTctt





SEQ_9
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
1511
1527

1.000
0.954
atttgtttGTT











Atgagg





SEQ_9
P$TBPF/TATA.02
Plant TATA box
0.90
1523
1537
+
1.000
0.914
caaaTATAaat











ttct





SEQ_9
P$TBPF/TATA.02
Plant TATA box
0.90
1545
1559

1.000
0.911
atatTATAaat











tctt
















TABLE 4





cis-regulatory elements of SEQ ID NO: 10
























SEQ_10
P$PSRE/GAAA.01
GAAA motif involved in pollen specific
0.83
3
191
+
1.000
0.881
tgatgGAAAtcgt




transcriptional activation






atcg





SEQ_10
P$MIIG/P_ACT.01
Maize activator P of flavonoid bio-
0.93
99
13
+
0.966
0.983
agctGGTTggtac




synthetic genes






ga





SEQ_10
P$SBPD/SBP.01
SQUA promoter binding proteins
0.88
001
161

1.000
0.914
ttatcGTACcaa











ccagc





SEQ_10
P$1BOX/GATA.01
Class I GATA factors
0.93
071
231
+
1.000
0.958
ggtacGATAataa











tgta





SEQ_10
P$AHBP/HAHB4.01
Sunflower homeodomain leucine-zipper
0.87
131
231

1.000
0.909
tacattATTAt




protein Hahb-4












SEQ_10
P$OPAQ/
Recognition site for BZIP transcription
0.81
271
431
+
0.829
0.818
tgcatcACCTgct



O2_GCN4.01
factors that belong to the group of






taaa




Opaque-like proteins












SEQ_10
P$STKM/STK.01
Storekeeper (STK), plant specific DNA
0.85
391
531

0.833
0.863
accCAAActattt




binding protein important for tuber






aa




specific and sucrose-inducible gene











expression












SEQ_10
P$CARM/CARICH.01
CA-rich element
0.78
451
631

1.000
0.832
tgaaacaAACAcc











caaact





SEQ_10
P$AREF/ARE.01
Auxin Response Element
0,93
821
942
+
1.000
0.951
ttaTGTCtcagtt





SEQ_10
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
842
002
+
1.000
0.915
atgtctcaGTTAt











atct





SEQ_10
P$OPAQ/
Recognition site for BZIP transcription
0.81
012
172

0.829
0.821
gaaattACTTggt



O2_GCN4.01
factors that belong to the group of






ttac




Opaque-like proteins












SEQ_10
P$CARM/CARICH.01
CA-rich element
0.78
122
302

1.000
0.790
gtgaacgAACAcc











gaaatt





SEQ_10
P$GBOX/HBP1B.01
Wheat bZIP transcription factor HBP1B
0.83
342
542

1.000
0.834
actttgggACGTa




(histone gene binding protein 1b)






agtaatat





SEQ_10
P$DOFF/DOF2.01
Dof-single zinc finger transcription
0.98
562
722
+
1.000
0.995
atatctatAAAGc




factor






aagt





SEQ_10
P$LREM/ATCTA.01
Motif involved in carotenoid and toco-
0.85
562
662
+
1.000
0.922
atATCTataaa




pherol biosynthesis and in the expression











of photosynthesis-related genes












SEQ_10
P$TBPF/TATA.01
Plant TATA box
0.88
572
712
+
1.000
0.882
tatcTATAaagca











ag





SEQ_10
P$OPAQ/
Recognition site for BZIP transcription
0.81
622
782

0.829
0.846
cagatcACTTgct



O2_GCN4.01
factors that belong to the group of






ttat




Opaque-like proteins












SEQ_10
O$RPAD/PADS.01
Mammalian C-type LTR Poly A downstream
0.87
68
80
+
0.883
0.876
caaGTGAtctgat




element












SEQ_10
P$MYBS/HVMCB1.0

Hordeum vulgare Myb-related CAB-promoter-

0.93
752
912
+
1.000
0.952
tctgatATCCtat




binding protein






gaaa





SEQ_10
P$GAPB/GAP.01
Cis-element in the GAPDH promoters
0.88
823
963
+
1.000
0.917
tcctATGAaaatc




conferring light inducibility






aa





SEQ_10
P$GTBX/GT1.0
GT1-Box binding factors with a trihelix
0.85
353
513
+
1.000
0.855
cagaggGTTAatt




DNA-binding domain






aaaa





SEQ_10
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting protein

0.85
474
614
+
0.750
0.868
taaaACGCtaaat




related to the conserved animal protein






ca




Pur-alpha












SEQ_10
P$TBPF/TATA.01
Plant TATA box
0,88
324
464

1.000
0.985
ttcaTATAaatat











at





SEQ_10
P$AHBP/ATHB5.01
HDZip class I protein ATHB5
0.89
434
534
+
0.829
0.904
tgaATGAttga





SEQ_10
P$AHBP/ATHB5.01
HDZip class I protein ATHB3
0.89
434
534

0.936
0.977
tcaATCAttca





SEQ_10
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
514
614

1.000
0.963
tctttTAATca





SEQ_10
P$PSRE/GAAA.01
GAAA motif involved in pollen specific
0.83
554
714
+
1.000
0.876
taaaaGAAAtgtt




transcriptional activation






caaa





SEQ_10
P$MYBL/MYBPH3.01
Myb-like protein of Petunia hybrida
0.80
724
885

0.750
0.833
aagaaacgCTTAt











acat





SEQ_10
P$PSRE/GAAA.01
GAAA motif involved in pollen specific
0.83
88
04
+
1.000
0.837
tctgaGAAAattt




transcriptional activation






acaa





SEQ_10
P$GTBX/GT1.0
GT1-Box binding factors with a trihelix
0.85
492
408

0.968
0.891
aattttGTAAatt




DNA-binding domain






ttct





SEQ_10
P$OPAQ/
Recognition site for BZIP transcription
0.81
155
315

1.000
0.855
ctgtgtACATggc



O2_GCNr.01
factors that belong to the group of






taaa




Opaque-like proteins












SEQ_10
P$EREF/ANT.01
ANT (Arabidopsis protein AINTEGUMEN),
0.81
415
575

1.000
0.820
agaatatTCCCaa




member of the plant-specific family of






tgct




AP2/EREBP-transcription factors












SEQ_10
P$MYBS/
MYB protein from wheat
0.83
425
585

1.000
0.987
gagaATATtccca




TAMYB80.01






atgc




















SEQ_10
P$MYBS/
MYB protein from wheat
0.83
475
635
+
1.000
0.941
gggaATATtctct




TAMYB8001







tcac






SEQ_10
P$HEAT/HSE.01
Heat shock element
0.81
675
815

1.000
0.835
tgaaagaaaaAGA












At






SEQ_10
P$IBOX/GATA.01
Class I factors
0.93
785
946

1.000
0.947
gcataGATAatgt












tgaa






SEQ_10
P$DOFF/DOF3.01
Dof3-single zinc finger transcription
0.99
895
056

1.000
0.997
aaatttcaAAAGc





factor






atag






SEQ_10
P$PREM/
Promoter elements involved in MgProto
0.77
925
226

1.000
0.778
ccatCGACaacaa




MGPROTORE.01
(Mg-protoporphyrin IX) and light-mediated






gttaaaatttcaa





induction






aagca






SEQ_10
P$PSRE/GAAA.01
GAAA motif involved in pollen specific
0.83
946
106
+
1.000
0.837
cttttGAAAtttt





transcriptional activation






aact






SEQ_10
P$IDDF/ID1.01
Maize INDETERMINATE1 zinc finger protein
0.92
096
216
+
1.000
0.939
cttgTTGTcgatg






SEQ_10
P$MYBS/

Hordeum vulgare Myb-related CAB-promoter-

0.93
146
306

1.000
0.945
aagcatATCCatc




HVMCB1.01
binding protein






gaca






SEQ_10
P$MYBS/
MYB protein from wheat
0.83
196
356
+
1.000
0.907
atggATATgctta




TAMYB80.01







gaga






SEQ_10
P$PSRE/GAAA.01
GAAA motif involved in pollen specific
0.83
296
456
+
1.000
0.956
ttagaGAAAtttt





transcriptional activation






caaa






SEQ_10
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
636
736
+
1.000
0.963
aacatTAATca






SEQ_10
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
646
746

1.000
1.000
ttgatTAATgt






SEQ_10
P$1BOX/GATA.01
Class I factors
0.93
706
867
+
1.000
0.971
atcaaGATAagct












agca






SEQ_10
P$PALA/
Putative cis-acting element on various
0.84
987
167
+
0.825
0.588
tgactgtCCATcc




PALBOXA.01
PAL and 4CL gene promoters






aatata






SEQ_10
P$CAAT/CAAT.01
CCAAT-box in plant promoters
0.97
077
157
+
1.000
0.983
atCCAAtat






SEQ_10
O$RPOA/APOLYA.01
Avian C-type LTR PolyA signal
0.71
407
607
+
0.750
0.765
tataaTATAtcga












caattttt






SEQ_10
P$GTBX/SBF1.01
SBF
0.87
537
697

1.000
0.885
cgttttcTTAAaa












attg






SEQ_10
P$MSAE/MSA.01
M-phase-specific activators (NtmybA1,
0.80
617
757
+
1.000
0.871
aagaaAACGgtat





NtmybA2, NtmybB)






aa






SEQ_10
O$RVUP/LTRUP.01
Upstream element of C-type Long Terminal
0.76
66
86
+
1.000
0.809
aacggtataacTT





Repeats






TCaaagct






SEQ_10
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML1
0.82
791
807
+
1.000
0.830
ggtttaTAAAtgt





(A. thaliana meristem layer 1)






caaa






SEQ_10
P$TBPF/TATA.02
Plant A box
0.90
917
058
+
1.000
0.914
ggttTATAaatgt












ca






SEQ_10
P$OPAQ/
Recognition site for BZIP transcription
0.81
937
098

1.000
0.858
cctttgACATtta




O2_GCN4.01
factors that belong to the group of






taaa





Opaque-like proteins













SEQ_10
P$WBXF/WRKY.01
WRKY plant specific zinc-finger-type
0.92
958
118

1.000
0.936
gtcctTTGAcatt





factor associated with pathogen defence,






tata





W box













SEQ_10
P$MYBL/MYBPH3.01
Myb-like protein of Petunia hybrida
0.80
188
348
+
1.000
0.908
tcaaacccGTTAg












tcaa






SEQ_10
P$MSAE/MSA.01
M-phase-specific activators (NtmybA1,
0.80
198
338

1.000
0.854
tgactAACGggtt





NtmybA2, NtmybB)






tg






SEQ_10
P$MYBL/MYBPH3.02
Myb-like protein of Petunia hybrida
0.76
228
388
+
1.000
0.764
acccgtTAGTcaa












ggtt






SEQ_10
P$OCSE/OCSL.01
OCS-like elements
0.69
508
708
+
0.769
0.705
atacacaagcact












cACCTact






SEQ_10
P$MIIG/
Cis-acting element conserved in various
0.80
608
748

1.000
0.851
gtgtagtaGGTGa




PALBOXL.01
PAL and 4CL promoters






gt






SEQ_10
P$DREB/
C-repeat/dehydration response element
0.89
698
838
+
1.000
0.923
ctacaCCGAcact




CRT_DRE.01







ga






SEQ_10
P$OCSE/OCSTF.01
bZIP transcription factor binding to
0.73
75
95
+
1.000
0.773
cgacactgacatt





OCS-elements






GACGtctc






SEQ_10
P$GBOX/HBP1B.01
Wheat bZIP transcription factor HBP1B
0.83
880
900

1.000
0.891
aatcagagACGTc





(histone gene binding protein 1b)






aatgtcag






SEQ_10
P$GBOX/TGA1.01

Arabidopsis leucine zipper protein TGA1

0.90
818
019
+
1.000
0.953
tgacatTGACgtc












tctgattc






SEQ_10
P$MADS/SQUA.01
MADS-box protein SQUAMOSA
0.90
958
159

1.000
0.904
gagtccaATTTat












agaatcag






SEQ_10
P$MADS/L15.01
AGL15, Arabidopsis MADS-domain protein
0.79
968
169
+
0.925
0.873
tgaTTCTataaat





AGAMOUS-like 15






tggactca






SEQ_10
P$TBPF/TATA.02
Plant A box
0.90
989
129
+
1.000
0.937
attcTATAaattg












ga






SEQ_10
P$DOFF/DOF1.01
Dof/MNB1a-single zinc finger
0.98
169
329
+
1.000
0.984
agattcctAAAGa





transcription factor






cgag






SEQ_10
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
309
469

1.000
0.929
atgtatttGTTAt












gctc






SEQ_10
P$DOFF/PBOX.01
Prolamin box, conserved in cereal seed
0.75
509
669
+
1.000
0.843
agcactgcAAAGa





storage protein gene promoters






taaa






SEQ_10
P$IBOX/GATA.01
Class I factors
0.93
569
729
+
1.000
0.975
gcaaaGATAaaaa












aaaa






SEQ_10
P$DOFF/PBF.01
PBF (MPBF)
0.97
62
78
+
1.000
0.979
ataaaaaaAAAGg












ggta
















TABLE 5





cis-regulatory elements of SEQ ID NO: 11
























SEQ_11
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
9
19
+
1.000
1.000
tccctTAATgg





SEQ_11
P$GTBX/SBF1.01
SBF-1
0.87
15
32
+
1.000
0.886
atggagcTTAAac











tctt





SEQ_11
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML
0.82
331
47

1.000
0.835
ttgtatTAAAttc




(A. thaliana meristem layer 1)






agaa





SEQ_11
P$MYBL/MYBOH3.02
Myb-like protein of Petunia hybrida
0.76
44
60
+
0.778
0.832
acaagtTGGTttg











atca





SEQ_11
P$WBXF/ERE.01
Elicitor response element
0.89
91
107

1.000
0.903
ttattcTGACcat











tgta





SEQ_11
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
100
116

1.000
0.919
ttttctttGTTAt











tctg





SEQ_11
P$GTBX/GT1.01
GT1-Box binding factors with a tri-
0.85
110
126

0.968
0.858
attgtaGTAAttt




helix DNA-binding domain






tctt





SEQ_11
P$NCS1/NCS1.01
Nodulin consensus sequence 1
0.85
135
145
+
0.804
0.882
aAAACgatttg





SEQ_11
P$GBOX/UPRE.01
UPRE (unfolded protein response
0.86
137
157

1.000
0.950
tacttaCCACgtc




element) like motif






aaatcgtt





SEQ_11
P$GBOX/GBF1.01
bZIP protein G-Box binding factor 1
0.94
138
158
+
1.000
0.987
acgatttgACGTg











gtaagtat





SEQ_11
P$WBXF/WRKY.01
WRKY plant specific zinc-finger-type
0.92
138
154
+
1.000
0.937
acgatTTGAcgtg




factor associated with pathogen defence,






gtaa




W box












SEQ_11
P$ABRE/ABRE.01
ABA response elements
0.82
139
155
+
1.000
0.875
cgatttgACGTgg











taag





SEQ_11
P$OPAQ/O2.02
Opaque-regulatory protein
0.87
139
155

1.000
0.909
cttaCCACgtcaa











atcg





SEQ_11
P$GAPB/GAP.01
Cis-element in the GAPDH promoters
0.88
154
168

1.000
0.881
gccaATGAaaata




conferring light inducibility






ct





SEQ_11
P$CAAT/CAAT.01
CCAAT-box in plant promoters
0.97
161
169

1.000
0.978
agCCAAtga





SEQ_11
P$GBOX/GBF1.01
. bZIP protein G-Box binding factor 1
0.94
170
190

1.000
0.967
cttgttatACGTg











tgagaact





SEQ_11
P$ABRE/ABRE.01
ABA response elements
0.82
173
189

1.000
0.880
ttgttatACGTgt











gaga





SEQ_11
P$AHBP/HAHB4.01
Sunflower homeodomain leucine-zipper
0.87
192
202

1.000
0.902
catataATTAg




protein Hahb-4












SEQ_11
O$LTUP/TAACC.01
Lentiviral TATA upstream element
0.81
262
284

1.000
0.722
tactctaagtccA











ACCcaaacag





SEQ_11
P$CGCG/ATSR1.01

Arabidopsis thaliana signal-responsive

0.84
296
312

1.000
0.941
cccCGCGtaattt




gene1, Ca2+/ calmodulin binding






ccga




protein homolog to NtER1 (tobacco











early ethylene-responsive gene)












SEQ_11
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
311
321

1.000
0.963
ccaatTAATcc





SEQ_11
P$CAAT/CAAT.01
CCAAT-box in plant promoters
0.97
315
323

1.000
0.976
ccCCAAtta





SEQ_11
O$RPOA/POLYA.01
Mammalian C-type LTR Poly A signal
0.76
318
338

1.000
0.807
tgcaaTAAAacta











atccccaa





SEQ_11
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML
0.82
332
348

0.750
0.855
tagttaTATAtgc




(A. thaliana meristem layer 1)






aata





SEQ_11
O$RPOA/
PolyA signal of D-type LTRs
0.78
337
357

0.750
0.852
aCCCTtaaatagt



DTYPEPA.01







tatatatg





SEQ_11
P$MYBL/MYBPH3.02
Myb-like protein of Petunia hybrida
0.76
338
354

1.000
0.773
cttaaaTAGTtat











atat





SEQ_11
P$MADS/AGL3.02
AGL3, MADS Box protein
0.80
340
360

0.790
0.853
ataacCCTTaaat











agttatat





SEQ_11
P$SPF1/SP8B
DNA-binding protein of sweet potato
0.87
342
354
+
0.777
0.893
atAACTatttaag




that binds to the SP8a (ACTGTGTA) and











SP8b (TACTATT) sequences of sporamin











and beta-amylase genes












SEQ_11
P$TEFB/TEF1.01
TEF cis acting elements in both RNA
0.76
351
371
+
1.000
0.778
taAGGGttatata




polymerase II-dependent promoters and






ggacatat




rDNA spacer sequences












SEQ_11
P$OCSE/OCSL.01
OCS-like elements
0.69
352
372
+
0.807
0.691
aagggttatatag











gACATatg





SEQ_11
P$TBPF/TATA.02
Plant A box
0.90
353
367

1.000
0.903
gtccTATAtaacc











ct





SEQ_11
P$MYCL/ICE..01
ICE (inducer of CBF expression 1), AtMYC2
0.95
360
378

1.000
0.959
gtttcACATatgt




(rd22BP1)






cctata





SEQ_11
P$MYBL/MYBPH3.02
Myb-like protein of Petunia hybrida
0.76
375
391

1.000
0.819
tatcgtTAGTtta











gttt





SEQ_11
P$IBOX/GATA.01
Class I factors
0.93
383
399
+
1.000
0.944
ctaacGATAattc











gtgg





SEQ_11
O$RPAD/PADS.01

Mammalian C-type LTR Poly A downstream

0.87
393
405
+
1.000
0.895
ttcGTGGtctagt




element












SEQ_11
P$CE3S/CE3.01
Coupling element 3 (CE3), non-ACGT ABRE
0.77
428
446

0.750
0.800
ttgtaaCCCGtgt











cctatg





SEQ_11
P$NCS1/NCS1.01
Nodulin consensus sequence 1
0.85
464
474

1.000
0.858
aAAAAgttgaa





SEQ_11
P$MYBL/MYBPH3.02
Myb-like protein of Petunia hybrida
0.76
475
491

1.000
0.872
taaactTAGTtaa











aaaa





SEQ_11
P$DOFF/DOF2.01
Dof-single zinc finger transcription
0.98
487
503
+
1.000
1.000
gtttaattAAAGc




factor






aaaa





SEQ_10
P$IDDF/ID1.01
Maize INDETERMINATE1 zinc finger
0.92
501
513

1.000
0.963
atttTTGTcattt




protein












SEQ_11
P$NCS1/NCS1.01
Nadulin consensus sequence 1
0.85
512
522

1.000
0.855
gAAAAgaatat





SEQ_11
P$DOFF/DOF3.01
Dof-single zinc finger transcription
0.99
549
565

1.000
0.998
aaagtgaaAAAGc




factor






ggcc





SEQ_11
P$HEAT/HSE.01
Heat shock element
0.81
575
589

1.000
0.857
aaaaacatcaAGA











Aa





SEQ_11
P$GBOX/
bZIP transcription factor from
0.76
595
615
+
0.750
0.783
ataagtTGATgtg



BZIP911.02

Antirrhinum majus







aacatata





SEQ_11
P$OPAQ/O2.01
Opaque-regulatory protein
0.87
569
612

0.852
0.889
atgttcacaTCAA











ctta





SEQ_11
P$NCS1/NCS1.01
Nodulin consensus sequence 1
0.85
658
668

0.804
0.882
aAAACgattgt





SEQ_11
P$PREM/
Promoter elements involved in MgProto
0.77
697
727

1.000
0.806
caatccgtggcga



MGPROTORE.01
(Mg-protoporphyrin IX) and light-






tttgcact




mediated induction












SEQ_11
P$HOCT/HOCT.01
Octamer motif found in plant histone H4
0.76
706
722

1.000
0.799
gacggcaATCCgt




genes






ggcg





SEQ_11
P$DOFF/DOF3.01
Dof-single zinc finger transcription
0.99
726
742

1.000
1.000
tcgccggaAAAGc




factor






gcga





SEQ_11
P$CGCG/ATSR1.01
Arabidopsis thaliana signal-responsive
0.84
748
764

1.000
0.904
aaCGCGttcgcgg




gene1, Ca2+/ calmodulin binding






tcg




protein homolog to NtER1 (tobacco











early ethylene-responsive gene)












SEQ_11
P$CGCG/ATSR1.01

Arabidopsis thaliana signal-responsive

0.84
755
771
+
1.000
0.896
gaaCGCGttttcg




gene1, Ca2⇄/ calmodulin binding






aaaa




protein homolog to NtER1 (tobacco











early ethylene-responsive gene)












SEQ_11
P$SEF3/SEF3.01
SEF3, Soybean embryo factor 3
0.87
767
781

1.000
0.905
tttaaACCCattt











tc





SEQ_11
P$MYBS/OSMYBS.01
Rice MYB proteins with single DNA binding
0.82
794
810

1.000
0.861
agaagTATCcaga




domains, binding to the amylase






caac




element (TATCCA)












SEQ_11
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML1
0.82
811
827
+
1.000
0.827
atatttTAAAagt




(A. thaliana meristem layer 1)






attt





SEQ_11
P$SPF1/SP8BF.01
DNA-binding protein of sweet potato
0.87
814
826

1.000
0.928
aaTACTtttaaaa




that binds to the SP8a (ACTGTGTA) and
SP8b










(TACTATT) sequences of sporamin and











beta-amylase genes












SEQ_11
P$DOFF/PBOX.01
Prolamin box, conserved in cereal seed
0.75
877
893
+
1.000
0.771
taactggtAAAGa




storage protein gene promoters






atat





SEQ_11
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
891
901
+
1.000
1.000
tatttTAATga





SEQ_11
P$GTBX/GT1.01
GT1-Box binding factors with a
0.85
920
936
+
0.843
0.881
tctgtgGTGAatg




trihelix DNA-binding domain






atta





SEQ_11
P$AHBP/ATHB5.01
HDZip class I protein ATHB5
0.89
927
937

0.936
0.939
ttaATCAttca





SEQ_11
P$AHBP/HAHB4.01
Sunflower homeodomain leucine-zipper
0.87
927
937
+
1.000
0.945
tgaatgATTAa




protein Hahb-4












SEQ_11
P$GTBX/SBF1.01
SBF-1
0.87
927
943
+
1.000
0.913
tgaatgaTTAAat











tcac





SEQ_11
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML
0.82
929
945
+
1.000
0.840
aatgatTAAAttc




(A. thaliana meristem layer 1)






acca





SEQ_11
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
931
941

1.000
0.963
gaattTAATca





SEQ_11
P$GTBX/GT1.01
1-Box binding factors with a trihelix
0.85
933
949

0.843
0.919
agtgtgGTGAatt




DNA-binding domain






taat





SEQ_11
P$DOFF/PBF.01
PBF (MPBF)
0.97
943
959

1.000
0.984
ggttatgaAAAGt











gtgg





SEQ_11
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
950
966

1.000
0.919
tttgattgGTTAt











gaaa





SEQ_11
P$CAAT/CAAT.01
CCAAT-box in plant promoters
0.97
956
964
+
1.000
0.984
aaCCAAtca





SEQ_11
P$GTBX/SBF1.01
SBF-1
0.87
977
993
+
1.000
0.949
ggagtagTTAAaa











aaga





SEQ_11
P$NCS2/NCS2.01
Nodulin consensus sequence 2
0.79
984
998

0.750
0.846
tattgtCTTTttt











aa





SEQ_11
P$HMGF/HMG_IY.02
High mobility group I/Y-like protein
1.00
994
1008

1.000
1.000
atttTATTtttat




isolated from pea






tg





SEQ_11
P$HMGF/HMG_IY.01
High mobility group I/Y-like proteins
0.89
999
1013

1.000
0.924
ttttTATTttatt











tt





SEQ_11
P$MADS/SQUA.01
MADS-box protein SQUAMOSA
0.90
1001
1021

1.000
0.950
ttcagctATTTtt











attttatt





SEQ_11
P$SEF4/SEF4.01
Soybean embryo factor 4
0.98
1005
1015

1.000
0.985
taTTTTtattt





SEQ_11
P$CE1F/AB14.01
ABA insensitive protein 4 (ABI4)
0.87
1026
1038
+
1.000
0.891
acaaCACCgacat





SEQ_11
P$DREB/
C-repeat/dehydration response element
0.89
1027
1041
+
1.000
0.962
caacaCCGAcatt



CRT_DRE.01







ga





SEQ_11
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
1039
1049

1.000
0.963
gacgtTAATca





SEQ_10
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1053
1067
+
0.750
0.863
taaaAACCtagac




protein related to the conserved






ta




animal protein Pur-alpha












SEQ_11
P$TBPF/TATA.02
Plant TATA box
0.90
1062
1076
+
1.000
0.924
agacTATAaaacc











at





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1068
1082
+
0.750
0.868
taaaACCAtaaat




protein related to the conserved





cc





animal protein Pur-alpha












SEQ_11
O$RPOA/POLYA.01
Mammalian C-type LTR Poly A signal
0.76
1071
1091
+
1.000
0.804
aaccaTAAAtcct











aaatctga





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1075
1089
+
0.750
0.860
ataaATCCtaaat




protein related to the conserved






ct




animal protein Pur-alpha












SEQ_11
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1077
1091
+
1.000
0.868
aaatcctaAATCt











ga





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1089
1103
+
0.750
0.858
tgaaACACtaaac




protein related to the conserved






ca




animal protein Pur-alpha












SEQ_11
O$RPOA/POLYA.01
Mammalian C-type LTR Poly A signal
0.76
1092
1112
+
1.000
0.807
aacacTAAAccat











aaatctca





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1096
1110
+
0.750
0.862
ctaaACCAtaaat




protein related to the conserved






ct




animal protein Pur-alpha












SEQ_11
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1098
1112
+
1.000
0.905
aaaccataAATCt











ca





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1116
1130
+
0.750
0.857
ctaaACTCtaaac




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1123
1137
+
1.000
0.985
ctaaACCCtaaat




protein related to the conserved






ct




animal protein Pur-alpha












SEQ_11
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1125
1139
+
1.000
0.892
aaaccctaAATCt











ta





SEQ_11
P$DOFF/PBOX.01
Prolamin box, conserved in cereal seed
0.75
1137
1153

1.000
0.782
ttgggtttAAAGt




storage protein gene promoters






ttaa





SEQ_11
P$GTBX/SBF1.01
SBF-1
0.87
1138
1154

1.000
0.880
tttgggtTTAAag











ttta





SEQ_11
P$SEF3/SEF3.01
SEF3, Soybean embryo factor 3
0.87
1143
1157
+
1.000
0.886
tttaaACCCaaac











tc





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1144
1158
+
1.000
0.862
ttaaACCCaaact




protein related to the conserved






ct




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1150
1164
+
0.750
0.859
ccaaACTCtaaac




protein related to the conserved






aa




animal protein Pur-alpha












SEQ_11
P$STKM/STK.01
Storekeeper (STK), plant specific DNA
0.85
1155
1169
+
1.000
0.862
ctcTAAAcaataa




binding protein important for tuber-






ac




specific and sucrose-inducible gene











expression












SEQ_11
O$RPOA/LPOLYA.01
Lentiviral Poly A signal
0.94
1160
1180
+
1.000
0.941
aacAATAaacctt











aaatccta





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1164
1178
+
0.750
0.860
ataaACCTtaaat




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1171
1185
+
0.750
0.850
ttaaATCCtaaaa




protein related to the conserved






tc




animal protein Pur-alpha












SEQ_11
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1174
1188
+
1.000
0.938
aatcctaaAATCt











aa





SEQ_11
P$LREM/ATCTA.01
Motif involved in carotenoid and
0.85
1181
1191
+
1.000
0.970
aaATCTaaacc




tocopherol biosynthesis and in the











expression of photosynthesis-related











genes












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1185
1199
+
1.000
0.980
ctaaACCCtaaac




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/RPBX.01
Ribosomal protein box, appears unique
0.84
1192
1206
+
0.755
0.847
ctaaaCCCAaagc




to plant RP genes and genes






ta




associated with gene expression












SEQ_11
P$LEGB/LEGB.01
Legumin box, highly conserved sequence
0.59
1197
1223
+
0.750
0.607
cccaaagCTATaa




element about 100 bp upstream of the






accataaaccata




TSS in legumin genes






a





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1206
1220
+
0.750
0.855
ataaACCAtaaac




protein related to the conserved






ca




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1213
1227
+
0.750
0.852
ataaACCAtaaaa




protein related to the conserved






tc




animal protein Pur-alpha












SEQ_11
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1216
1230
+
1.000
0.950
aaccataaAATCt











aa





SEQ_11
O$RPOA/
PolyA signal of D-type LTRs
0.78
1217
1237
+
1.000
0.852
aCCATaaaatcta



DTYPEPA.01







aaccctaa





SEQ_11
O$LTUP/TAACC.01
Lentiviral A upstream element
0.71
1218
1240
+
1.000
0.713
ccataaaatctaA











ACCctaaatc





SEQ_11
P$LREM/ATCTA.01
Motif involved in carotenoid and
0.85
1223
1233
+
1.000
0.970
aaATCTaaacc




tocopherol biosynthesis and in the











expression of photosynthesis-related











genes












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1227
1241
+
1.000
0.985
ctaaACCCtaaat




animal protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1234
1248
+
0.750
0.862
ctaaATCCtaaat




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1241
1255
+
0.750
0.857
ctaaATCCtaaac




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1248
1262
+
1.000
0.980
ctaaACCCtaaac




protein related to the conserved






tt




animal protein Pur-alpha












SEQ_11
P$NCS1/NCS1.01
Nodulin consensus sequence 1
0.85
1255
1265

1.000
0.895
aAAAAgtttag





SEQ_11
P$GTBX/SBF1.01
SBF-1
0.87
1262
1278

1.000
0.889
tttagggTTAAaa











aaaa





SEQ_11
P$TELO/RPBX.01
Ribosomal protein box, appears unique
0.84
1267
1281
+
1.000
0.898
tttaaCCCTaaac




to plant RP genes and genes






tc




associated with gene expression












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1293
1307
+
0.750
0.855
tcaaATCCtaaac




protein related to the conserved





tc





animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1300
1314
+
0.750
0.857
ctaaACTCtaaac




protein related to the conserved





cc





animal protein Pur-alpha












SEQ_11
P$SEF3/SEF3.01
SEF3, Soybean embryo factor 3
0.87
1306
1320
+
1.000
0.891
tctaaACCCaaaa











ct





SEQ_11
P$TELO/RPBX.01
Ribosomal protein box, appears unique
0.84
1307
1321
+
0.755
0.858
ctaaaCCCAaaac




to plant RP genes and genes






tt




associated with gene expression












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1321
1335
+
0.750
0.855
tcaaATCCtaaac




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1328
1342
+
1.000
0.861
ctaaACCCaaac




protein related to the conserved






ctc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1342
1356
+
1.000
0.980
ctaaACCCtaaac




protein related to the conserved





ct





animal protein Pur-alpha












SEQ_11
P$MYBL/MYBPH3.02
Myb-like protein of Petunia hybrida
0.857
1357
1373
+
1.000
0.808
atctgcTAGTtaa











taag





SEQ_11
P$OCSE/OCSL.01
OCS-like elements
0.69
1370
1390
+
0.769
0.706
taagattaaggtt











tACGGttt





SEQ_11
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
1372
1382

1.000
0.963
aacctTAATct





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1378
1392

0.750
0.857
ctaaACCGtaaac




protein related to the conserved






ct




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1392
1406

1.000
0.859
ataaACCCaaacc




protein related to the conserved






tc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1399
1413

0.750
0.855
ataaACCAtaaac




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1413
1427

1.000
0.988
ccaaACCCtaaat




protein related to the conserved






ca




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1419
1433

1.000
0.857
ttaaACCCaaacc




protein related to the conserved






ct




animal protein Pur-alpha












SEQ_11
P$CCAF/CCA1
Circadian clock associated 1
0.85
1431
1445

1.000
0.872
aaactttaAATCt











ta





SEQ_11
P$TELO/RPBX.01
Ribosomal protein box, appears unique
0.84
1440
1454

0.755
0.858
ctaaaCCCAaaac




to plant RP genes and genes






tt




associated with gene expression












SEQ_11
P$SEF3/SEF3.01
_SEF3, Soybean embryo factor 3
0.87
1441
1455

1.000
0.872
cctaaACCCaaaa











ct





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1447
1461

1.000
0.980
ctaaACCCtaaac




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1454
1468

0.750
0.857
ctaaATCCtaaac




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1461
1475

0.750
0.862
ctaaACTCtaaat




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$LREM/ATCTA.01
Motif involved in carotenoid and
0.85
1469
1479

1.000
0.970
aaATCTaaact




tocopherol biosynthesis and in the











expression of photosynthesis-related











genes












SEQ_11
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1472
1486

1.000
0.938
aatcctaaAATCt











aa





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1475
1489

0.750
0.854
ctaaATCctaaaa




protein related to the conserved






tc




animal protein Pur-alpha












SEQ_11
O$RPOA/POLYA.01
Mammalian C-type LTR Poly A signal
0.76
1480
1500

0.750
0.762
cacaaTAAGccct











aaatccta





SEQ_11
P$TELO/RPBX.01
Ribosomal protein box, appears unique
0.84
1482
1496

1.000
0.926
ataagCCCTaaat




to plant RP genes and genes






cc




associated with gene expression












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1502
1516

1.000
0.866
ctaaACCCaaact




protein related to the conserved






ct




animal protein Pur-alpha












SEQ_11
P$SEF3/SEF3.01
SEF3, Soybean embryo factor 3
0.87
1503
1517

1.000
0.890
cctaaACCCaaac











tc





SEQ_11
P$TELO/RPBX.01
Ribosomal protein box, appears unique
0.84
1509
1523

1.000
0.977
ttaaaCCCTaaac




to plant RP genes and genes






cc




associated with gene expression












SEQ_11
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1521
1535

1.000
0.901
aaaccataAATCt











ta





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1523
1537

0.750
0.862
ctaaACCAtaaat




protein related to the conserved






ct




animal protein Pur-alpha












SEQ_11
P$LREM/ATCT
Motif involved in carotenoid and
0.85
1531
1541

1.000
0.970
aaATCTaaacc




tocopherol biosynthesis and in the











expression of photosynthesis-related











genes












SEQ_11
P$CCAF/CCA1.01
Circadian clock associated 1
0.85
1534
1548

1.000
0.938
aatcctaaAATCt











aa





SEQ_11
O$RPOA/POLYA.01
Mammalian C-type LTR Poly A signal
0.76
1541
1561

1.000
0.784
aaccaTAAAtccc











aatcctaa





SEQ_11
O$RPOA/POLYA.01
Mammalian C-type LTR Poly A signal
0.76
1548
1568

1.000
0.768
aacacTAAAccat











aaatccca





SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1550
1564

0.750
0.862
ctaaACCAtaaat




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1557
1571

0.750
0.867
caaaACACtaaac




protein related to the conserved






ca




animal protein Pur-alpha












SEQ_11
P$TELO/RPBX.01
Ribosomal protein box, appears unique
0.84
1571
1585

1.000
0.989
ataaaCCCTaaat




to plant RP genes and genes






cc




associated with gene expression












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1578
1592

0.750
0.863
taaaACCAtaaac




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1586
1600

0.750
0.854
ctaaACTCtaaaa




protein related to the conserved






cc




animal protein Pur-alpha












SEQ_11
P$TELO/ATPURA.01

Arabidopsis Telo-box interacting

0.85
1593
1607

0.750
0.863
taaaAACCtaaac




protein related to the conserved






tc




animal protein Pur-alpha












SEQ_11
P$HOCT/HOC
Octamer motif found in plant histone
0.857
1618
1634

1.000
0.838
tagcgcgATCCgc




H3 and H4 genes






aaaa





SEQ_11
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
1632
1642
+
1.000
1.000
ctaatTAATgt





SEQ_11
P$DREB/
C-repeat/dehydration response element
0.89
1636
1650

1.000
0.965
caacaCCGAcatt



CRT_DRE.01







aa





SEQ_11
P$CE1F/ABI4.01
ABA insensitive protein (ABI4)
0.87
1639
1651

1.000
0.891
acaaCACCgacat





SEQ_11
P$HMGF/HMG_IY.02
High mobility group I/Y-like protein
1.00
1649
1663
+
1.000
1.000
tgttTATTttttt




isolated from pea






ag





SEQ_11
P$STKM/STK.01
Storekeeper (STK), plant specific DNA
0.85
1651
1665

1.000
0.877
agcTAAAaaaata




binding protein important for tuber-






aa




specific and sucrose-inducible gene











expression












SEQ_11
P$OCSE/OCSL.01
OCS-like elements
0.69
1664
1684
+
0.769
0.726
ctatttaattttt











tACTTtta





SEQ_11
P$STKM/STK.01
Storekeeper (STK), plant specific DNA
0.85
1667
1681

1.000
0.886
aagTAAAaaatta




binding protein important for tuber-






aa




specific and sucrose-inducible gene











expression












SEQ_11
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML1
0.82
1674
1690

1.000
0.846
aaacaaTAAAagt




(A. thaliana meristem layer 1)






aaaa





SEQ_11
P$SPF1/SP8BF.01
DNA-binding protein of sweet potato that
0.87
1675
1687
+
1.000
0.877
ttTACTtttattg




binds to the SP8a (ACTGTGTA) and SP8b











(TACTATT) sequences of sporamin and











beta-amylase genes












SEQ_11
P$STKM/STK.01
Storekeeper (STK), plant specific DNA
0.85
1691
1705
+
1.000
0.872
tttTAAActattt




binding protein important for tuber-






at




specific and sucrose-inducible gene











expression












SEQ_11
P$MADS/SQUA.01
MADS-box protein SQUAMOSA
0.90
1693
1713
+
1.000
0.942
ttaaactATTTat











atatgaca





SEQ_11
P$TBPF/TATA.02
Plant A box
0.90
1696
1710

1.000
0.956
cataTATAaatag











tt





SEQ_11
P$TBPF/TATA.02
Plant A box
0.90
1698
1712

1.000
0.913
gtcaTATAtaaat











ag





SEQ_11
P$LEGB/LEGB.01
Legumin box, highly conserved sequence
0.59
1704
1730

0.750
0.607
ttcataaCCAAcc




element about 100 bp upstream of the TSS






aaaatgtcatata




in legumin genes






t





SEQ_11
P$MIIG/P_ACT
Maize activator P of flavonoid bio-
0.93
1714
1728
+
0.966
0.973
ttttGGTTggtta




synthetic genes






g





SEQ_11
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
1715
1731
+
1.000
0.943
tttggttgGTTAt











gaaa





SEQ_11
P$GAPB/GAP.01
Cis-element in the GAPDH promoters
0.88
1722
1736
+
1.000
0.933
ggttATGAaaagt




conferring light inducibility






ac





SEQ_11
P$GTBX/GT1.01
GT1-Box binding factors with a tri-
0.85
1732
1748
+
0.843
0.889
agtacgGTGAatt




helix DNA-binding domain






taac





SEQ_11
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML1
0.82
1736
1752

1.000
0.823
gaatgtTAAAttc




(A. thaliana meristem layer 1)






accg





SEQ_11
P$GTBX/SBF1.01
SPF-1
0.87
1738
1754

1.000
0.894
gtgaatgTTAAat











tcac





SEQ_11
P$GTBX/GT1.01
GT1-Box binding factors with a tri-
0.85
1744
1760

0.843
0.889
cctacgGTGAatg




helix DNA-binding domain






ttaa





SEQ_11
O$RPOA/
PolyA signal of D-type LTRs
0.78
1771
1791

0.750
0.834
aCAATtaaaatat



aacaatac







aacaatac





SEQ_11
O$RPOA/APOLYA.01
Avian C-type LTR PolyA signal
0.71
1798
1818

0.750
0.717
aacaaTCAAacat











cacttgga





SEQ_11
P$CARM/CARICH.01
CA-rich element
0.78
1807
1825

1.000
0.785
cttgtcaAACAat











caaaca





SEQ_11
P$WBXF/WRKY.01
WRKY plant specific zinc-finger-type
0.92
1813
1829
+
1.000
0.964
attgtTTGAcaag




factor associated with pathogen defence,






gtca




W box












SEQ_10
P$LEGB/RY.01
RY and Sph motifs conserved in seed-
0.87
1825
1851

1.000
0.939
ggttgtaaCATGc




specific promoters






atgtttccgtgac











c





SEQ_11
P$IDRE/IDE1.01
Iron-deficiency-responsive element
0.77
1828
1842

1.000
0.786
atGCATgtttccg











tg





SEQ_10
P$LEGB/RY.01
Y and Sph motifs conserved in seed-
0.87
1828
1854
+
1.000
0.939
cacggaaaCATGc




specific promoters






atgttacaaccga











t





SEQ_10
P$OPAQ/
Recognition site for BZIP trans-
0.81
1834
1850

1.000
0.838
gttgtaACATgca



O2_GCN4.01
cription factors that belong to the






tgtt




group of Opaque-2 like proteins












SEQ_11
P$GTBX/GT3A.01
Trihelix DNA-binding factor GT-3a
0.83
1837
1853
+
1.000
0.843
atgcatGTTAcaa











ccga





SEQ_11
P$GTBX/GT3A.01
Trihelix DNA-binding factor GT-3a
0.83
1846
1862
+
0.750
0.852
acaaccGATAcaa











tgat





SEQ_11
P$GBOX/GBF1.01
bZIP protein G-Box binding factor 1
0.94
1914
1934

1.000
0.961
tgcttgctACGTg











tcaacacc





SEQ_11
P$GBOX/HBP1A.01
HBP-1a, suggested to be involved in
0.88
1915
1935
+
1.000
0.899
gtgttgaCACGta




the cell cycle-dependent expression






gcaagcat





SEQ_11
P$ABRE/ABRE.01
ABA response elements
0.82
1916
1932
+
1.000
0.980
tgttgacACGTag











caag





SEQ_11
P$ABRE/ABRE.01
ABA response elements
0.82
1917
1933

1.000
0.950
gcttgctACGTgt











caac





SEQ_11
P$OPAQ/RITA1.01
Rice transcription activator-1
0.95
1917
1933
+
1.000
0.966
gttgacACGTagc




(RITA), basic leucin zipper protein,






aagc




highly expressed during seed











development












SEQ_11
P$IDRE/IDE1.01
Iron-deficiency-responsive element 1
0.77
1926
1940
+
0.777
0.831
taGCAAgcatctt











tc





SEQ_11
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
1934
1950
+
1.000
0.928
atctttcaGTTAa











ccat





SEQ_11
P$OCSE/OCSL.01
OCS-like elements
0.69
1938
1958
+
1.000
0.747
ttcagttaaccat











aACGTgtc





SEQ_11
P$MYBS/OSMYBS.01
Rice MYB proteins with single DNA
0.82
1939
1955
+
0.750
0.829
tcagtTAACcata




binding domains, binding to the






acgt




amylase element (TATCCA)












SEQ_11
P$GBOX/HBP1B.01
Wheat bZIP transcription factor HBP1B
0.83
1943
1963

1.000
0.840
gtcgtgacACGTt




(histone gene binding protein 1b)






atggttaa





SEQ_11
P$GBOX/GBF1.01
bZIP protein G-Box binding factor 1
0.94
1944
1964
+
1.000
0.973
taaccataACGTg











tcacgaca





SEQ_11
P$ABRE/ABF1.03
ABA (abscisic acid) inducible trans-
0.82
1945
1961
+
1.000
0.872
aaccataaCGTGt




criptional activator






cacg





SEQ_11
P$GBOX/
bZIP transcription factor from
0.77
1950
1970

0.750
0.779
ctgtgtTGTCgtg



BZ1P910.01

Antirrhinum majus







acacgtta





SEQ_11
P$ABRE/ABF1.03
ABA (abscisic acid) inducible trans-
0.852
1953
1969

1.000
0.853
tgtgttgtCGTGa




criptional activator






cacg





SEQ_11
P$ERSE/ERSE_I.01
ERSE I (ER stress-response element
0.79
1953
1971

1.000
0.822
cctgtgttgtcgt




I)-like motif






gaCACG





SEQ_10
P$IDDF/ID1.01
Maize INDETERMINE1 zinc finger
0.92
1957
1969

1.000
0.927
tgtgTTGTcgtga




protein












SEQ_11
O$LDPS/
Lentiviral Poly A downstream element
0.89
1958
1972

0.980
0.904
tcCTGTgttgtcg



LDSPOLYA.01







tg





SEQ_11
O$RPAD/PADS.01
Mammalian C-type LTR Poly A down-
0.87
1959
1971

0.906
0.892
cctGTGTtgtcgt




stream element












SEQ_11
P$MYBS/MYBST1.01
MybSt1 (Myb Solanum tuberosum 1)
0.90
1963
1979

1.000
0.938
cgtgttATCCtgt




with a single myb repeat






gttg





SEQ_11
P$IBOX/GATA.01
Class I GATA factors
0.93
1966
1982
+
1.000
0.970
cacagGATAacac











gtac





SEQ_11
P$GBOX/GBF1.01
bZIP protein G-Box binding factor 1
0.94
1968
1988

1.000
0.949
gatcttgtACGTg











ttatcctg





SEQ_11
P$ABRE/ABRE.01
ABA response elements
0.82
1971
1987

1.000
0.865
atcttgtACGTgt











tatc





SEQ_11
P$MADS/AGL15.01
AGL15, Arabidopsis MADS-domain protein
0.79
1977
1997
+
0.775
0.802
acgTACAagatcg




AGAMOUS-like 15






agaaaccg





SEQ_11
O$LTUP/TAACC.01
Lentiviral TATA upstream element
0.71
1981
2003
+
1.000
0.710
acaagatcgagaA











ACCgcatata





SEQ_11
P$MYBS/
MYB protein from wheat
0.83
1990
2006

1.000
0.913
tagtATATgcggt



TAMYB80.01







ttct





SEQ_11
P$MYBS/
MYB protein from wheat
0.83
1995
2011
+
1.000
0.911
ccgcATATactaa



TAMYB80.01







acac





SEQ_11
P$LFYB/LFY.01
Plant specific floral meristem
0.93
2004
2016

0.885
0.950
tGCCAgtgtttag




identity gene LEAFY (LFY)












SEQ_11
P$DOFF/DOF2.01
Dof2-single zinc finger transcription
0.98
2045
2061

1.000
0.981
ggagattaAAAGc




factor






taat





SEQ_11
P$GTBX/SBF1.01
SBF-1
0.87
2047
2063

1.000
0.897
gtggagaTTAAaa











gcta





SEQ_11
P$AHBP/WUS.01
Homeodomain protein WUSCHEL
0.94
2049
2059
+
1.000
0.963
gctttTAATct





SEQ_11
P$MIIG/
Putative cis-acting element in various
0.81
2058
2072

0.936
0.865
gcGTGGtgtgtgg



PALBOXP.01
PAL and 4CL gene promoters






ag





SEQ_11
O$MINI/
Muscle Initiator Sequence
0.86
2061
2079
+
1.000
0.879
cacacaCCACgca



MUSCLE_INI.02







gctata





SEQ_11
P$GBOX/GBF1.01
bZIP protein G-Box binding factor 1
0.94
2072
2092

1.000
0.976
tagaagacACGTg











tatagctg





SEQ_11
P$GBOX/CPRF.01
Common plant regulatory factor (CPRF)
0.95
2073
2093
+
1.000
0.985
agctatacACGTg




from parsley






tcttctat





SEQ_11
P$MYCL/MYCRS.01
Myc recognition sequences
0.93
2073
2091

1.000
0.965
agaagacACGTgt











atagct





SEQ_11
P$ABRE/ABRE.01
ABA response elements
0.82
2074
2090
+
1.000
0.884
gctatacACGTgt











cttc





SEQ_11
P$CE3S/CE3.01
Coupling element 3 (CE3), non-ACGT ABRE
0.77
2074
2092
+
0.750
0.783
gctataCACGtgt











cttcta





SEQ_11
P$MYCL/ICE.01
ICE (inducer of CBF expression 1),
0.95
2074
2092
+
0.954
0.955
tctatACACgtgt




AtMYC2 (rd22BP1)






cttcta





SEQ_11
P$ABRE/ABF1.01
ABA (abscisic acid) inducible trans-
0.79
2075
2091

1.000
0.824
agaagACACgtgt




criptional activator






atag





SEQ_11
P$DPBF/DPBF.01
bZIP factors DPBF-1 and 2 (Dc3
0.89
2078
2088
+
1.000
0.908
tACACgtgtct




promoter binding factor-1 and 2)












SEQ_11
P$CGCG/OSCBT.01

Oryza sativa CaM-binding transcription

0.78
2079
2095
+
0.906
0.804
acaCGTGtcttct




factor






atgc





SEQ_11
P$GBOX/CPRF.01
Common plant regulatory factor (CPRF)
0.95
2091
2111

1.000
0.968
aacaaggcACGTg




from parsley






ttggcata





SEQ_11
P$GBOX/CPRF.01
Common plant regulatory factor (CPRF)
0.95
2092
2112
+
1.000
0.968
atgccaacACGTg




from parsley






ccttgttc





SEQ_11
P$MYCL/
Rice bHLH protein
0.85
2092
2110

1.000
0.937
acaaggCACGtgt



OSBHLH66.01







tggcat





SEQ_11
P$ABRE/ABF1.01
ABA (abscisic acid) inducible trans-
0.79
2093
2109
+
1.000
0.852
tgccaACACgtgc




criptional activator






cttg





SEQ_11
P$CE3S/CE3.01
Coupling element 3 (CE3), non-ACGT
0.77
2093
2111
+
0.750
0.776
tgccaaCACGtgc




ABRE






cttgtt





SEQ_11
P$MYCL/
Rice bHLH protein
0.85
2093
2111
+
1.000
0.950
tgccaaCACGtgc



OSBHLH66.01







cttgtt





SEQ_11
P$MIIG/
Cis-acting element conserved in
0.80
2113
2127

0.785
0.806
ccttggtcGGTTt



PALBOXL.01
various PAL and 4CL promoters






ga





SEQ_11
P$TBPF/TATA.02
Plant TATA box
0.90
2129
2143
+
1.000
0.943
acacTATAaatgt











ct





SEQ_11
P$MYBS/MYBST1.01
MybSt1 (Myb Solanum tuberosum 1)
0.90
2146
2162

1.000
0.943
attgttATCCaga




with a single myb repeat






ccat





SEQ_11
P$IBOX/GATA.01
Class I factors
0.93
2149
2165
+
1.000
0.949
gttctgGATAaca











ataca





SEQ_11
P$MYBL/GAMYB.01
GA-regulated myb gene from barley
0.91
2151
2167

1.000
0.916
tgtgtattGTTAt











ccag





SEQ_11
O$LDPS/
Lentiviral Poly A downstream element
0.89
2156
2170

0.980
0.910
aaCTGTgtattgt



LDSPOLYA.01







ta





SEQ_11
P$MYBL/MYBPH3.02
Myb-like protein of Petunia hybrida
0.76
2175
2191

0.778
0.761
aaatgtTCGTtgc











tgtg





SEQ_11
P$GTBX/GT1.01
GT1-Box binding factors with a tri-
0.85
2183
2199

0.968
0.876
ttttctGTAAatg




helix DNA-binding domain






ttcg





SEQ_11
P$DOFF/DOF1.10
Dof1/MNB1a single zinc finger trans-
0.98
2197
2213

1.000
0.984
tgaaagttAAAGc




cription factor






tttt





SEQ_11
P$L1BX/ATML1.01
L1-specific homeodomain protein ATML1
0.82
2207
2223

0.750
0.823
aaatagGAAAtga




(A. thaliana meristem layer 1)






aagt





SEQ_11
P$MADS/AG.01
Agamous, required for normal flower
0.80
2212
2232
+
0.962
0.810
catTTCCtatttg




development, similarity to SRF






cgcatttg




(human) and MCM (yeast) proteins
















TABLE 6





cis- regulatory elements of SEQ ID NO: 12























SEQ_12
P$DOFF/PB
Prolamin box, conserved in cereal seed
0.75
6
  22 + 1.000
0.759
tcacaagcA-




OX.01
storage protein gene promoters




AAGagaaa





SEQ_12
O$LTUP/TA
Lentiviral TATA upstream element
0.71
9
  31 + 1.00
0.737
caagcaaagaga-



ACC.01





AACCctaatac





SEQ_12
P$PSRE/GA
GAAA motif involved in pollen
0.83
14
  30 + 1.00
0.833
aaagaGA-



AA.01
specific transcriptional activation





AAccctaata





SEQ_12
P$TELO/RP
Ribosomal protein box, appears unique
0.84
18
  30 + 1.000
0.993
agaaaCCC-



BX.01
to plant RP genes and genes associated





Taatacg




with gene expression





SEQ_12
P$MYBL/MY
Myb-like protein of Petunia hybrida
0.80
37
  53 + 0.750
0.845
aaaaaacgAT-



BPH3.01





TAatgat





SEQ_12
P$NCS1/NC
Nodulin consensus sequence 1
0.85
39
  49 + 0.804
0.924
aAAACgattaa



S1.01





aAAACgattaa





SEQ_12
P$AHBP1WU
Homeodomain protein WUSCHEL
0.94
42
  52 +1.000
1.000
acgatTAATga



S.01





SEQ_12
P$AHBP1WU
Homeodomain protein WUSCHEL
0.94
43
  53 −1.000
0.963
atcat-



S.01





TAATcg





SEQ_12
P$AHBP/HA
Sunflower homeodomain leucine-zipper
0.87
46
  56 − 1.000
0.940
tttatcATTAa



HB4.01
protein Hahb-4





SEQ_12
P$DOFF/DO
Dof2-single zinc finger transcription
0.98
46
  62 + 1.000
0.986
ttaatgatA-



F2.01
factor




AAGctggt





SEQ_12
P$1BOX/GAT
Class I GATA factors
0.93
46
  62 + 1.000
0.960
ttaatGATA-



A.01





aagctggt





SEQ_12
P$MADS/AG
AGL3, MADS Box protein
0.83
77
  97 − 0.973
0.900
tccttCCAAat-



L3.01





gaagaaggca





SEQ_12
P$GAPB/GA
Cis-element in the GAPDH promoters
0.88
78
  92 − 1.000
0.926
ccaaATGAa-



P.01
conferring light inducibility





gaaggc





SEQ_12
P$MADS/AG
AGL15, Arabidopsis MADS-domain protein
0.79
78
  98 + 0.925
0.807
gccTTCTtcattt



L15.01
AGAMOUS-like 15





ggaaggag





SEQ_12
P$E2FF/E2F.
E2F class I sites
0.82
92
 106 − 1.000
0.832
tttcTTCCctcctt



01





c





SEQ_12
P$GTBX/GT
Trihelix DNA-binding factor GT-3a
0.83
157
 173 + 0.750
0.839
atcaacCTTAc-



3A.01





cattac





SEQ_12
P$1BOX/IBO
I-Box in rbcS genes and other light
0.81
157
 173 − 0.750
0.822
gtaatGG-



X.01
regulated genes




TAaggttgat





SEQ_12
P$NCS1/NC
Nadulin consensus sequence 1
0.85
178
 188 + 1.000
0.852
aAAAAgttaaa



S1.01





SEQ_12
O$RPOA/PP
Mammalian C-type LTR Poly A signal
0.76
188
 208 + 1.000
0.820
aggagTAA-



LYA.01





Aaccttaccatta





SEQ_12
P$GTBX/GT
Trihelix DNA-binding factor GT-3a
0.83
193
 209 + 0.750
0.820
taaaacCTTAc-



3A.01





cattac





SEQ_12
P$1BOX/IBO
I-Box in rbcS genes and other light
0.81
193
 209 − 0.750
0.829
gtaatGG-



X.01
regulated genes




TAaggtttta





SEQ_12
P$CARM/CA
CA-rich element
0.78
222
 240 + 1.000
0.785
gtcctgaAACA-



RICH.01





aataaaac





SEQ_12
P$TBPF/TAT
Plant TATA box
0.90
238
 252 + 1.000
0.915
aacaTATAta-



A.02





aactg





SEQ_12
P$TBPF/TAT
Plant TATA box
0.88
240
 254 + 1.000
0.892
cataTATA-



A.01





aactgat





SEQ_12
P$MYBL/GA
GA-regulated myb gene from barley
0.91
272
 288 − 1.000
0.975
attggtttGTTA-



MYB.01





taagg





SEQ_12
P$CAAT/CA
CCAAT-box in plant promoters
0.97
282
 290 + 1.000
0.975



AT.01





aaCCAAtct





SEQ_12
P$AHBP/AT
HD-ZIP class III protein ATHB9
0.77
284
 294 − 0.750
0.780



HB9.01





gtaAAGAttgg





SEQ_12
P$DOFF/PB
Prolamin box, conserved in cereal seed
0.75
284
 300 − 1.000
0.777
ataactgtAAA-



OX.01
storage protein gene promoters





Gattgg





SEQ_12
P$MYBL/AT
R2R3-type myb-like transcription factor
0.87
288
 304 + 1.000
0.889
tctttaCAGTta-



MYB77.01
(I-type binding site)





tagtg





SEQ_12
P$NACF/TA
Wheat NACdomain DNA binding factor
0.68
306
 328 − 0.812
0.749
gaggtataaca-



NAC69.01





GACGatagtata





SEQ_12
P$MYBL/GA
GA-regulated myb gene from barley
0.91
311
 327 + 1.000
0.936
tatcgtctGTTA-



MYB.01





tacct





SEQ_12
P$1DDF/ID1.
Maize INDETERMINATE1 zinc finger protein
0.92
326
 338 + 1.000
0.953
ctctTTGTcggg



01





g





SEQ_12
P$TCPF/PC
TCP class II transcription factor
0.95
332
 344 − 0.869
0.970
tgtgGACCcc-



F5.01





gac





SEQ_12
P$DOFF/PB
PBF (MPBF)
0.97
358
 374 + 1.000
0.984
aagtctgaAAA-



F.01





Gagaag





SEQ_12
P$MADS/SQ
MADS-box protein SQUAMOSA
0.90
377
 397 − 1.000
0.936
gtcttctATTTt-



UA.01





tactccttt





SEQ_12
P$GTBX/SB
SBF-1
0.87
437
 453 − 1.000
0.940
catgttgTTAAa-



F1.01





taccc





SEQ_12
P$HEAT/HS
Heat shock element
0.81
470
 484 − 1.000
0.829
tgattcctgaA-



E.01





GAAg





SEQ_12
P$HEAT/HS
Heat shock element
0.81
478
 492 + 0.826
0.838
47 49
0.80.8 ggaatcatatG-



E.01





GAAc





SEQ_12
P$CCAF/CC
Circadian clock associated 1
0.85
505
 519 + 1.000
0.863
cttcaaa-



A1.01





gAATCtca





SEQ_12
0$RPOA/P0
Mammalian C-type LTR Poly A signal
0.76
517
 537 − 1.000
0.777
ataaaTAA-



LYA.01





Aatccatgagtga





SEQ_12
P$GTBX/S1F
S1F, site 1 binding factor of spinach
0.79
519
 535 + 1.000
0.838
actcATGGattt-



.01
rps1 promoter




tattt





SEQ_12
P$TBPF/TAT
Plant TATA box
0.90
528
 542 − 1.000
0.984
ctgcTATAaa-



A.02





taaaa





SEQ_12
P$MYBL/AT
R2R3-type myb-like transcription factor
0.87
564
 580 + 0.857
0.876
tccggaCCGTtt



MYB77.01
(I-type binding site)



cacaa





SEQ_12
P$MSAE/MS
M-phase-specific activators
0.80
565
 579 − 1.000
0.873
tgtga-



A.01
(NtmybA1, NtmybA2, NtmybB)




AACGgtccgg





SEQ_12
P$GBOX/HB
Wheat bZIP transcription factor HBP1B
0.83
595
 615 − 1.000
0.989
aattttttACGT-



P1B.01
(histone gene binding protein 1b)




caggtagaa





SEQ_12
P$GBOX/TG

Arabidopsis leucine zipper protein TGA1

0.90
596
 616 + 1.000
0.989
tctaccTGACg-



A1.01





taaaaaattg





SEQ_12
P$OCSE/OC
OCS-like elements
0.69
601
 621 − 1.000
0.695
caaaacaattttt-



SL.01





tACGTcag





SEQ_12
O$RVUP/LT
Upstream element of C-type Long Terminal
0.76
603
 523 − 0.761
0.775
ttcaaaa-



RUP.01
Repeats




caatTTTT_









tacgtc





SEQ_12
P$STKM/ST
Storekeeper (STK), plant specific DNA
0.85
604
 618 + 1.000
0.864
acgTAAAa-



K.01
binding protein important for tuber-





aattgtt




specific and sucrose-inducible gene




expression





SEQ_12
P$STKM/ST
Storekeeper (STK), plant specific DNA
0.85
609
 623 − 0.785
0.889
ttcAAAAcaattttt



K.01
binding protein important for tuber-




specific and sucrose-inducible gene




expression





SEQ_12
P$AHBP/AT
HD-ZIP class III protein ATHB9
0.77
621
 631 + 1.000
0.775
gaaATGAtcaa



HB9.01





SEQ_12
P$NCS1/NC
Nodulin consensus sequence 1
0.85
621
 631 + 0.878
0.933
gAAATgatcaa



S1.01





SEQ_12
P$URNA/US
Upstream sequence elements in the
0.75
634
 650 + 0.750
0.772
aaagtaTCACa-



E.01
promoters of U-snRNA genes of higher




tagaaa




plants





SEQ_12
P$TBPF/TAT
Plant TATA box
0.90
649
 663 + 1.000
0.904
aaacTATAca-



A.02





aataa





SEQ_12
P$PSRE/GA
GAAA motif involved in pollen specific
0.83
652
 668 + 0.750
0.845
ctataCAAAtaa-



AA.01
transcriptional activation




tatct





SEQ_12
P$MADS/SQ
MADS-box protein SQUAMOSA
0.90
662
 682 + 1.000
0.925
aatatctATTTttt-



UA.01





tacataa





SEQ_12
P$LREM/AT
Motif involved in carotenoid and
0.85
663
 673 + 1.000
0.858
atATCTatttt



CTA.01
tocopherol biosynthesis and in the




expression of photosynthesis-related genes





SEQ_12
P$AHBP/AT
HDZip class I protein ATHB5
0.89
679
 689 + 0.936
0.939
ataATCAttgt



HB5.01





SEQ_12
P$AHBP/HA
Sunflower homeodomain leucine-zipper
0.87
679
 689 − 1.000
0.966
acaatgAT-



HB4.01
protein Hahb-4




TAt





SEQ_12
P$NCS2/NC
Nodulin consensus sequence 2
0.79
687
 701 − 1.000
0.796
aatagaCTCT-



S2.01





taaca





SEQ_12
P$GAPB/GA
Cis-element in the GAPDH promoters
0.88
694
 708 − 1.000
0.902
aaatATGAata-



P.01
conferring light inducibility




gact





SEQ_12
P$1DDF/ID1.
Maize INDETERMINATE1 zinc finger protein
0.92
716
 728 − 1.000
0.935
gaatTTGTcca-



01





ca





SEQ_12
P$AHBP/HA
Sunflower homeodomain leucine-zipper
0.87
728
 738 + 1.000
0.921
cgtattATTAc



HB4.01
protein Hahb-4





SEQ_12
P$SPF1/SP8
DNA-binding protein of sweet potato that
0.87
734
 746 + 1.000
0.894
atTACTtttcttg



BF.01
binds to the SP8a (ACTGTGTA) and SP8b




(TACTATT) sequences of sporamin and beta-




amylase genes





SEQ_12
P$SEF4/SEF
Soybean embryo factor 4
0.98
745
 755 + 1.000
0.982
tgTTTTtgttt



4.01





SEQ_12
P$NCS1/NC
Nodulin consensus sequence 1
0.85
765
 774 − 0.878
0.865
aAAATgatagt



S1.01





SEQ_12
P$DOFF/PB
Prolamin box, conserved in cereal seed
0.75
770
 786 − 0.776
0.771
tgaaatctAAA-



OX.01
storage protein gene promoters




Taaaat





SEQ_12
P$LREM/AT
Motif involved in carotenoid and
0.85
774
 784 − 1.000
0.980
aaATCTaaata



CTA.01
tocopherol biosynthesis and in the




expression of photosynthesis-related genes





SEQ_12
P$CCAF/CC
Circadian clock associated 1
0.85
777
 791 − 1.000
0.868
acatatga-



A1.01





AATCtaa





SEQ_12
P$OPAQ/02_
Recognition site for BZIP transcription
0.81
780
 796 + 0.756
0.826
gatttcATATgtt-



GCN4.01
factors that belong to the group of




taat




Opaque-2 like proteins





SEQ_12
P$DOFF/PB
Prolamin box, conserved in cereal seed
0.75
802
 818 − 0.776
0.805
tattttgtAAATa-



OX.01
storage protein gene promoters




gaaa





SEQ_12
P$MADS/SQ
MADS-box protein SQUAMOSA
0.90
821
 840 + 1.000
0.950
gacagctATTTt-



UA.01





tatatttaa





SEQ_12
P$TBPF/TAT
Plant TATA box
0.88
826
 840 − 1.000
0.945
taaaTATAaa-



A.01





aatag





SEQ_12
P$GTBX/SB
SBF-1
0.87
831
 847 + 1.000
0.880
tttatatT-



F1.01





TAAttttgg





SEQ_12
P$SPF1/SP8
DNA-binding protein of sweet potato that
0.87
852
 864 − 1.000
0.900
acTACTgtga-



BF.01
binds to the SP8a (ACTGTGTA) and SP8b




taa




(TACTATT) sequences of sporamin and beta-




amylase genes





SEQ_12
P$AREF/
Silencing element binding factor-
0.96
859
 871 − 1.000
0.976
accTGTCac-



BF.01
transcriptional repressor




tact





SEQ_12
P$TALE/KN1_
KNOTTED1 (KN1) and KNOTTED interacting
0.88
862
 874 + 1.000
0.982
agtGACAggta-



KIP.01
protein (KIP) are TALE class homeodomain



ta




proteins. The KN1-KIP complex binds this




DNA motif with high affinity.





SEQ_12
P$MYBL/GA
GA-regulated myb gene from barley
0.91
887
 903 + 1.000
0.929
tttgttttGTTAact



MYB.01





tt





SEQ_12
P$MYBS/MY
MybSt1 (Myb Solanum tuberosum 1) with a
0.90
899
 915 − 1.000
0.943
atagttATCCa-



BST1.01
single myb repeat




gaaagt





SEQ_12
P$1BOX/GAT
Class I GATA factors
0.93
902
 918 + 1.000
0.935
ttctgGATAac-



A.01





tataaa





SEQ_12
P$TBPF/TAT
Plant TATA box
0.90
909
 923 + 1.000
0.931
taacTATAaat-



A.02





tatt





SEQ_12
P$AHBP/AT

Arabidopsis thaliana homeo box protein 1

0.90
915
 925 + 1.000
0.989
taaATTAtttg



HB1.01





SEQ_12
P$AHBP/AT

Arabidopsis thaliana homeo box protein 1

0.90
915
 925 − 0.789
0.900
caaATAAttta



HB1.01





SEQ_12
P$SPF1/SP8
DNA-binding protein of sweet potato that
0.87
942
 954 − 0.777
0.872
atAACTattgtga



BF.01
binds to the SP8a (ACTGTGTA) and SP8b




(TACTATT) sequences of sporamin and beta-




amylase genes





SEQ_12
P$LREM/AT
Motif involved in carotenoid and tocopherol
0.85
950
 960 − 1.000
0.922
atATCTa-



CTA.01
biosynthesis and in the expression of photosynthesis-



taac




related genes





SEQ_12
P$PSRE/GA
GAAA motif involved in pollen specific
0.83
951
 967 + 0.750
0.834
ttataGATA-



AA.01
transcriptional activation




tattctac





SEQ_12
P$MYBL/GA
GA-regulated myb gene from barley
0.91
974
 990 + 1.000
0.929
tttgttttGTTAact



MYB.01





tt





SEQ_12
P$MYBS/MY
MybSt1 (Myb Solanum tuberosum 1) with a
0.90
986
1002 − 1.000
0.943
gtagttATCCa-



BST1.01
single myb repeat




gaaagt





SEQ_12
P$1BOX/GAT
Class I GATA factors
0.93
989
1005 + 1.000
0.935
ttctgGATAac-



A.01





tacaaa





SEQ_12
P$MYBL/GA
GA-regulated myb gene from barley
0.91
991
1007 − 1.000
0.957
gatttgtaGT-



MYB.01





TAtccag





SEQ_12
P$AHBP/AT

Arabidopsis thaliana homeo box protein 1

0.90
1002
1012 − 0.789
0.900
caaATGAtttg



HB1.01





SEQ_12
P$AHBP/AT
HDZip class I protein ATHB5
0.89
1002
1012 + 0.936
0.936
caaATCAtttg



HB5.01





SEQ_12
P$NCS1/NC
Nadulin consensus sequence 1
0.85
1002
1012 − 0.878
0.904
cAAATgatttg



S1.01





SEQ_12
P$DOFF/PB
Prolamin box, conserved in cereal seed
0.75
1003
1019 − 0.776
0.757
tgatatgcAAAT-



OX.01
storage protein gene promoters




gattt





SEQ_12
P$STKM/ST
Storekeeper (STK), plant specific DNA
0.85
1016
1030 − 1.000
0.917
cccTAAAa-



K.01
binding protein important for tuber-




aattgat




specific and sucrose-inducible gene




expression





SEQ_12
O$RVUP/LT
Upstream element of C-type Long Terminal
0.76
1024
1044 − 1.000
0.779
tacagcac-



RUP.01
Repeats




taaTTTCccta-









aa





SEQ_12
P$DOFF/PB
Prolamin box, conserved in cereal seed
0.75
1036
1052 + 0.776
0.781
agtgctgtA-



OX.01
storage protein gene promoters




AATtttca





SEQ_12
P$GTBX/GT
GT1-Box binding factors with a trihelix
0.85
1036
1052 + 0.968
0.881
agtgctGTA-



1.01
DNA-binding domain




Aattttca





SEQ_12
P$CCAF/CC
Circadian clock associated 1
0.85
1051
1065 + 1.000
0.973
caaaaaaa-



A1.01





ATCtat





SEQ_12
P$LREM/AT
Motif involved in carotenoid and
0.85
1058
1068 + 1.0
0.897



CTA.01
tocopherol biosynthesis andin the




aaATCTataga




expression of photosynthesis-related genes





SEQ_12
P$TBPF/TAT
Plant TATA box
0.90
1059
1073 + 1.000
0.918
aatcTATAga-



A.02





taatc





SEQ_12
P$LREM/AT
Motif involved in carotenoid and tocopherol
0.85
1061
1071 − 1.000
0.897
ttATCTataga



CTA.01
biosynthesis and in the expression of




photosynthesis-related genes





SEQ_12
P$CCAF/CC
Circadian clock associated 1
0.85
1062
1076 + 1.000
0.858
ctatagatAATC-



A1.01





tat





SEQ_12
P$L1BX/ATM
L1-specific homeodomain protein ATML1
0.82
1073
1089 − 0.750
0.833
aaaccaT-



L1.01
(A. thalian ameristem layer 1)




CAAtgcatag





SEQ_12
0$RPOA/P0
Mammalian C-type LTR Poly A signal
0.76
1075
1095 − 1.000
0.801
cataaTAAAc-



LYA.01





catcaatgcat





SEQ_12
P$EINL/TEIL
TEIL (tobacco EIN3-like)
0.92
1093
1101 + 0.964
0.922



.01





aTGAAcata





SEQ_12
P$DOFF/DO
Dof1/MNB1a-single zinc finger
0.98
1107
1123 − 1.000
0.984
taactagtAAA-



F1.01
transcription factor




Gaatga





SEQ_12
P$GTBX/SB
SBF-1
0.87
1114
1130 + 1.000
0.888
ttactagTTAAa-



F1.01





tatta





SEQ_12
P$WBXF1WR
WRKY plant specific zinc-finger-type
0.92
1189
1205 + 1.000
0.978
ttgctTTGAcca-



KY.01
factor associated with pathogen defence,




aaaaa




W box





SEQ_12
P$OCSE/OC
OCS-like elements
0.69
1203
1223 + 0.807
0.692
aaaaagaattgc-



SL.01





taACATgta





SEQ_12
P$OPAQ/02_
Recognition site for BZIP transcription
0.81
1211
1227 + 1.000
0.882
ttgctaACATg-



GCN4.01
factors that belong to the group of





tatcaa




Opaque-2 like proteins





SEQ_12
P$MADS/AG
AGL2, Arabidopsis MADS-domain protein
0.82
1219
1239 − 0.869
0.822
tacatCCA-



L2.01
AGAMOUS-like 2




Gattttgatacat





SEQ_12
P$CCAF/CC
Circadian clock associated 1
0.85
1220
1234 + 1.000
0.899
tgtatcaa-



A1.01





AATCtgg





SEQ_12
P$OCSE/OC
OCS-like elements
0.69
1233
1253 + 0.807
0.719
ggatgtatggata-



SL.01





tACATatc





SEQ_12
P$MYBS/TA
MYB protein from wheat
0.83
1234
1250 − 1.000
0.896
atgtATATcca-



MYB80.01





tacatc





SEQ_12
P$MYBS/TA
MYB protein from wheat
0.83
1239
1255 + 1.000
0.905
atggATATaca-



MYB80.01





tatctt





SEQ_12
P$AHBP/AT

Arabidopsis thaliana homeo box protein 1

0.90
1256
1266 − 1.000
0.989



HB1.01





gtaATTAttat





SEQ_12
P$AHBP/HA
Sunflower homeodomain leucine-zipper
0.87
1256
1266 + 1.000
0.957
ataataAT-



HB4.01
protein Hahb-4




TAc





SEQ_12
P$GTBX/GT
GT1-Box binding factors with a trihelix
0.85
1256
1272 − 0.968
0.923
actttgGTAAt-



1.01
DNA-binding domain




tattat





SEQ_12
P$GTBX/GT
Trihelix DNA-binding factor GT-3a
0.83
1265
1281 − 1.000
0.889
aggtatGT-



3A.01





TActttggt





SEQ_12
P$MYBS/OS
Rice MYB proteins with single DNA binding
0.82
1280
1296 − 1.000
0.825
tttcgTATC-



MYBS.01
domains, binding to the amylase element




tatgtgag




(TATCCA)





SEQ_12
P$GARP/AR
Type-B response regulator (ARR10), member
0.97
1287
1295 + 1.000
0.985
AGATacgaa



R10.01
of the GARP- family of plant myb-related




DNA binding motifs





SEQ_12
P$NCS1/NC
Nodulin consensus sequence 1
0.85
1293
1303 + 1.000
0.893
gAAAAgcttac



S1.01





SEQ_12
P$WBXF1WR
WRKY plant specific zinc-finger-type
0.92
1298
1314 − 1.000
0.975
aatttTTGActg-



KY.01
factor associated with pathogen defence,




taagc




W box





SEQ_12
P$NCS2/NC
Nodulin consensus sequence 2
0.79
1312
1326 − 0.750
0.812
tagtgtATCTt-



S2.01





gaat





SEQ_12
P$GBOX/TG

Arabidopsis leucine zipper protein TGA1

0.90
1325
1345 − 1.000
0.982
gagggcT-



A1.01





GACgtttttaggta





SEQ_12
P$GBOX/HB
Wheat bZIP transcription factor HBP1B
0.83
1326
1346 + 1.000
0.938
acctaaa-



P1B.01
(histone gene binding protein 1b)




aACGT-









cagccctct





SEQ_12
P$GBOX/BZ1
bZIP transcription factor from Antirrhinum
0.84
1331
1351 − 1.000
0.952
ttgtaagagggcT-



P910.02

majus





GACgtttt





SEQ_12
P$OCSE/OC
OCS-like elements
0.69
1331
1351 − 1.000
0.727
ttgtaagagggct-



SL.01





gACGTttt





SEQ_12
P$LREM/AT
Motif involved in carotenoid and
0.85
1367
1377 + 1.000
0.882
ccATCTata-



CTA.01
tocopherol biosynthesis and in the




ta




expression of photosynthesis-related genes





SEQ_12
0$LTUP/TA
Lentiviral TATA upstream element
0.71
1382
1404 + 1.000
0.769
cttgactatca-



ACC.01





gAACCtcaaaat





SEQ_12
P$OCSE/OC
OCS-like elements
0.69
1393
1413 + 0.769
0.701
gaacctcaaaat-



SL.01





taACTTctc





SEQ_12
P$GTBX/SB
SBF-1
0.87
1398
1414 − 1.000
0.883
tgagaagT-



F1.01





TAAttttga





SEQ_12
P$PSRE/GA
GAAA motif involved in pollen specific
0.83
1411
1427 − 1.000
0.896
tctgaGA-




transcriptional activation




AAtgtttgag





SEQ5_12
P$GCCF/ER
Ethylene-responsive elements (ERE) and
0.85
1450
1462 + 1.000
0.924
aagagtCGC-



E_JERE.01
jasmonate-and elicitor-responsive elements




Caag




(JERE)









All references cited in this specification are herewith incorporated by reference with respect to their entire disclosure content and the disclosure content specifically mentioned in this specification.





The Figures Show:



FIG. 1: Gas chromtogram of a transgenic line transformed with binary vector pSUN-BN3.





The invention will now be illustrated by the following Examples which are not intended, whatsoever, to limit the scope of this application.


EXAMPLE 1
General Cloning Methods

General Cloning Methods including enzymatic digestion by restriction enzymes, agarous gel electrophoresys, purification of DNA fragments, transfer of nucleic acids to nitrocellulose on nylon membranes, maligation of DNA fragments, transformation of E. coli bacteria as well as culture of bacteria and sequence analysis of recombinant DNA have been carried out as described in Sambrook et al. (1989, Cold Spring Harbour Laboratory Press. ISBN 0-87969-309-6).


EXAMPLE 2
Cloning of Promotor Elements from Brassica napus

For the analysis of potentially seeds specific expressed genes in Brassica napus, three different seed stages have been investigated. To this end, Brassica napus cv. Westar plants were raised under standard conditions (Moloney et al. 1992, Plant Cell Reports 8: 238-242). The seeds have been harvested 20 days, 25 days and 40 days after flowering. The seeds were used for the preparation of RNA (RNAeasy, Qiagen) according to the manufactures manual. In parallel, plant material from roots, leaves and stipes has been used for preparation of RNA. The said RNA was mixed and used as a control for the further experiments. RNA from the seed stages as well as control RNA were treated by the one-color gene expression kit (Agilent) for microarray-analysis. The Arapidopsis whole genome chip (Agilent) was hybridized with the treated RNA. Based on different labelled RNAs, the genes from Brassica napus could be identified which are expressed in the seeds solely but not in other organs or tissues. Six genes from Arabidopsis thaliana have been identified which hybridized with the probes from Brassica napus (Table 7).









TABLE 7








Arabidopsis genes which were capable of hybridizing



the seeds specific probes from Brassica napus:










Arabidopsis sequence

Protein function
Expression pattern





At1g23200
pectinesterase
seed


At1g52690
LEA gene
seed


At1g61720
anthocyanidin reductase
seed


At2g38900
Proteinase inhibitor
seed


At3g15670
LEA gene
seed


At5g38170
Lipid transfer protein
seed









Based on the gene sequences from Arabidopsis thaliana, homologs have been identified in Brassica napus cDNA libraries. For all six Arabidopsis genes, homologous coding sequences in Brassica napus could be identified (Table 8).









TABLE 8







Homology sequence from Brassica napus corresponding


to the Arabidopsis sequence shown in Table 7.











Brassica napus



Arabidopsis




sequence
SEQ ID NO:
homolog
Protein function





BN1
1
At1g23200
pectinesterase


BN2
2
At1g52690
LEA gene


BN3
3
At1g61720
anthocyanidin





reductase


BN4
4
At2g38900
Proteinase inhibitor


BN6
5
At3g15670
LEA gene


BN8
6
At5g38170
Lipid transfer protein









From leaf material of Brassica napus cv. Westar, genomic DNA has been isolated using the DNAeasy kit (Qiagen) according to the manufacturer's manual. Culture conditions for the Brassica napus cv. Westar were as discussed above. Based on the genomic DNA, a genomic DNA library was established using the Genome Walker kit (Clontech). The following primer sequences were derived from Brassica napus cDNA sequences in order to isolate upstream sequences of the Brassica napus genomic sequences (Table 9).









TABLE 9







Primer sequences for the implication


of 5 prime upstream sequences in com-


bination with AP1/ AP2 (Clontech).










Brassica napus





sequence
Primer sequence 5′-3′
SEQ ID NO:





BN1
ATTGGTATAATATATTTGG
14





BN2
GTTTCTGTGTAGAGAAACTG
15





BN3
CTGATTAAATTCTTAAGACCAG
16





BN4
CCAAAATTACCAG CACATTC
17





BN6
GTTGCTGTGTATAAACTGTG
18





BN8
TCTGAGAAATGTTTGAGAAG
19









The indicated primers were used in combination with the AP1 and AP2 primers according to the manufacturer's manual of the Genome Walker kit in a PCR. PCR conditions were as follows:


Primary PCR:


7 cycles 94° C., 25 seconds, 72° C., 4 minutes,


32 cycles 94° C., 25 seconds 67° C. 4 minutes,


final cycle 67° C., 4 minutes.


Secondary PCR


5 cycles 94° C., 25 seconds, 72° C. 4 minutes,


22 cycles 94° C., 25 seconds, 67° C., 4 minutes,


final cycle 67° C., 4 minutes.


Using the former specific primers, specific fragments for the primer combinations were obtained. These fragments were cloned into the pGEM-T (Pomega) vector using the manufacturer's manual and sequenced by standard techniques (laser fluorescent DNA-sequenceing, ABI according to the method of Sanger et al. 1977 Proc. Natl. Acad. Sci. USA 74, 5463-5467). The following Brassica napus sequences have been obtained (Table 10).









TABLE 10







Genomic five prime upstream sequences from


the Brassica napus cDNA sequences.










Brassica napus

genomic 5′ sequence in



Sequence
bp
SEQ ID NO:












BN1
1336
7


BN2
1532
8


BN3
1612
9


BN4
1767
10


BN6
2281
11


BN8
1490
12









The analysis of the 5′ upstream sequences using Genomatix software GemsLauncher showed that the sequences comprised promoter elements. This was confirmed by the presence of a TATA-Box which is required for transcription by RNA-polymerases. Also in the isolated fragments elements specific for seed-transcription factors (e.g. Prolamin-box, legumin box, RITA etc.) were found.


EXAMPLE 3
Production of Test Constructs for Demonstrating Promoter Activity

For the testing of the promoter elements in a first step promoter terminator cassettes were generated. To this end, fusion PCRs have been used wherein via two PCR steps a CaMV35S terminator was linked with promoter elements. In a further step, a multiple cloning site was introduced in between the promoter and terminator elements. The primers used are shown in Table 11.










TABLE 11







Primer pairs used for the generation of



promoter-terminated-cassettes via Fusion-PCR.












Brassica napus







Promoter/Termin
Primer pair 1.
Primer pair 1.
Primer pair 2.


ator cassette
PCR Promoter
PCR Terminator
PCR





p-BN1_t-35S
5′-
5′-
5′-




acctgcaggttaggccggc-
ccatggacttaggccttagcttaat-
acctgcaggttaggccggc-



cacttgtcatatatatatgac
taactaagtcgacaagctc-
cacttgtcatatatatatgac



(SEQ ID NO: 20)
gagtttctccataataatg
(SEQ ID ID NO:24)



3′-
(SEQ ID NO: 22)
3′gaattaattcggcgttaattcaggg



tcacaaacctcccgatgtttataca-
3′gaattaattcggcgttaattcaggg
cgcc



caccatggacttaggccttagct-
cgcc
(SEQ ID NO: 25)



taattaactaagtcgacaagctc-
(SEQ ID NO: 23)



gag



(SEQ ID NO: 21)





p-BN2_t-35S
5′-
5′-
5′-



acctgcaggttaggccggcca-
ccatggacttaggccttagcttaat-
acctgcaggttaggccggcca-



taaccctctccatgttgatac
taactaagtcgacaagctc-
taaccctctccatgttgatac



(SEQ ID NO: 26)
gagtttctccataataatg
(SEQ ID NO: 30)



3′-
(SEQ ID NO: 28)
3′gaattaattcggcgttaattcaggg



cctttgaagaaaagaaaccatg-
3′gaattaattcggcgttaattcaggg
cgcc



gacttaggccttagcttaattaac-
cgcc
(SEQ ID NO: 31)



taagtcgacaagctcgag
(SEQ ID NO: 29)



(SEQ ID NO: 27)





p-BN3_t-35S
5′-
5′-
5′-



acctgcaggttaggccggccacta-
ccatggacttaggccttagcttaat-
acctgcaggttaggccggccacta-



tagggcacgcgtggtcg
taactaagtcgacaagctc-
tagggcacgcgtggtcg (SEQ ID



(SEQ ID NO: 32)
gagtttctccataataatg
(SEQ ID NO: 36)



3′-
(SEQ ID NO: 34)
3′gaattaattcggcgttaattcaggg



gcgttaagaatttataatatatcagc-
3′gaattaattcggcgttaattcaggg
cgcc



catggacttaggccttagcttaat-
cgcc
(SEQ ID NO: 37)



taactaagtcgacaagctcgag
(SEQ ID NO: 35)



(SEQ ID NO: 33)





p-BN4_t-35S
5′-
5′-
5′-



acctgcaggttaggccggccgtt-
ccatggacttaggccttagcttaat-
acctgcaggttaggccggccgtt-



gatggaaatcgtatcgtcg
taactaagtcgacaagctc-
gatggaaatcgtatcgtcg (SEQ



(SEQ ID NO: 38)
gagtttctccataataatg
(SEQ ID ID NO: 42)



3′-
(SEQ ID NO: 40)
3′gaattaattcggcgttaattcaggg



ctgcaaagataaaaaaaaagggg-
3′gaattaattcggcgttaattcaggg
cgcc



tagcaacccatggacttaggcct-
cgcc
(SEQ ID NO: 41)



tagcttaattaactaagtcga-
(SEQ ID NO: 41)



caagctcgag



(SEQ ID NO: 39)





p-BN6_t-35S
5′-
5′-
5′-



acctgcaggttaggccggccttg-
ccatggacttaggccttagcttaat-
acctgcaggttaggccggccttg-



tactctcccttaatggag
taactaagtcgacaagctc-
tactctcccttaatggag (SEQ ID



(SEQ ID NO: 44)
gagtttctccataataatg
(SEQ ID NO:48)



3′-
(SEQ ID NO: 46)
3′gaattaattcggcgttaattcaggg



cctatttgcgcatttgaagaaagaa-
3′gaattaattcggcgttaattcaggg
cgcc



aaccatggacttaggccttagct-
cgcc
(SEQ ID NO: 49)



taattaactaagtcgacaagctc-
(SEQ ID NO: 47)



gag



(SEQ ID NO: 45)


p-BN8_t-35S
5′-
5′-
5′-



acctgcaggttaggccggccgt-
ccatggacttaggccttagcttaat-
acctgcaggttaggccggccgt-



gaatcacaagcaaagag
taactaagtcgacaagctc-
gaatcacaagcaaagag (SEQ



(SEQ ID NO:50)
gagtttctccataataatg
(SEQ ID ID NO: 54)



3′-
(SEQ ID NO: 52)
3′gaattaattcggcgttaattcaggg



gagtcgccaagcttacaaaacc-
3′gaattaattcggcgttaattcaggg
cgcc



catggacttaggccttagcttaat-
cgcc
(SEQ ID NO: 55)



taactaagtcgacaagctcgag
(SEQ ID NO: 53)



(SEQ ID NO: 51)









The promoter-terminator cassettes were cloned into the pGEMT (Promega vector) according to the manufacturer's manual and subsequently sequenced. Via the restriction site of Sbf1-EcoRV (New England Biolabs), cassettes were transferred into the vector pENTRB (Invitrogen) according to standard techniques. In a further step, the delta 6


Desaturase Gene (SEQ ID NO: 13) was introduced via the Nco1-Pac1 restriction sites into the generated pENTRB vectors pENTRB-p-BN1_t-35S, pENTRB-p-BN2_t-35S, pENTRB-p-BN3_t-35S, pENTRB-p-BN4_t-35S, pENTRB-p-BN6_t-35S, pENTRB-p-BN813 t-35S.


The resulting vectors were subsequently used for Gateway (Invitrogen) reactions together with the binary plasmid pSUN to generate binary vectors for the production of transgenic plants. The promoter activity in the transgenic plant seeds was measured based on the expression of delta 6 Desaturase and an observed modification in the lipid pattern of the seeds.


EXAMPLE 4
Production of Transgenic Plants

a) Generation of Transgenic Rape Seed Plants (Amended Protocol According to Moloney et al. 1992, Plant Cell Reports, 8:238-242)


For the generation of transgenic rapeseed plants, the binary vectors were transformed into Agrobacterium tumefaciens C58C1:pGV2260 (Deblaere et al. 1984, Nucl. Acids. Res. 13: 4777-4788). For the transformation of rapeseed plants (Var. Drakkar, NPZ Norddeutsche Pflanzenzucht, Hohenlieth, Deutschland) a 1:50 dilution of an overnight culture of positive transformed acrobacteria colonies grown in Murashige-Skoog Medium (Murashige and Skoog 1962 Physiol. Plant. 15, 473) supplemented by 3% saccharose (3MS-Medium) was used. Petiols or Hypocotyledones of sterial rapeseed plants were incubated in a petri dish with a 1:50 acrobacterial dilusion for 5-10 minutes. This was followed by a tree day co-incubation in darkness at 25° C. on 3MS-Medium with 0.8% bacto-Agar. After three days the culture was put on to 16 hours light/8 hours darkness weekly on MS-medium containing 500 mg/l Claforan (Cefotaxime-Natrium), 50 mg/l Kanamycine, 20 mikroM Benzylaminopurin (BAP) and 1.6 g/l Glucose. Growing sprouts were transferred to MS-Medium containing 2% saccharose, 250 mg/l Claforan and 0.8% Bacto-Agar. Even after three weeks no root formation was observed, a growth hormone 2-Indolbutyl acid was added to the medium for enhancing root formation.


Regenerated sprouts have been obtained on 2MS-Medium with Kanamycine and Claforan and were transferred to the green house for sprouting. After flowering, the mature seeds were harvested and analysed for expression of the Desaturase gene via lipid analysis as described in Qui et al. 2001, J. Biol. Chem. 276, 31561-31566.


b) Production of Transgenic Flax Plants


The production of transgenic flax plants can be carried out according to the method of Bell et al., 1999, In Vitro Cell. Dev. Biol. Plant 35(6):456-465 using particle bombardment. Acrobacterial transformation could be carried out according to Mlynarova et al. (1994), Plant Cell Report 13: 282-285.


c) Production of Transgenic Arabidopsis Plants


Transgenic Arabidopsis plants were generated according to the protocol of Bechthold et al. 1993 (Bechthold, N., Ellis, J., Pelletier, G. (1993) In planta Agrobacterium-mediated gene transfer by infiltration of Arabidopsis thaliana plants. C.R. Acad. Sci. Ser. III Sci. Vie., 316, 1194-1199). Arabidopsis plants of the ecotype Col0fae1 were grown on soil after a vernalisation of the seeds for 3 days at 4° C. After plants started to flower, they were dipped into an Agrobacterium tumefaciens solution containing Agrobacterium strain pMP90 transformed with the binary plamsids as described in Example 3 and following other components: ½ MS pH 5.7, 5% (w/v) Sacharose, 4.4 μM Benzylaminopurin, 0.03% Silwet L-77 (Lehle Seeds, Round Rock, Tex., USA). Agrobacterium solution was diluted to a final concentration of OD54 0.8. Plants were dipped two times into above described solution and keep 4-6 weeks for normal growth and seed formation. Dried seeds were harvested and and subjected to selective growth based on the tolerance against the herbicide Pursuit (BASF). Seeds of this generation of selected plants were then subjected to lipid analysis.


EXAMPLE 5
Lipid Extraction

Lipids can be extracted as described in the standard literature including Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) “Applications of HPLC in Biochemistry” in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Bio-technology, Bd. 3, Kapitel III: “Product recovery and purification”, S. 469-714, VCH: Weinheim; Belter, P. A., et al. (1988) Bioseparations: downstream processing for Bio-technology, John Wiley and Sons; Kennedy, J. F., und Cabral, J. M. S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J. A., und Henry, J. D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F. J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.


Alternatively, extraction will be carried out as described in Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145. Quantitative and qualitative analysis of lipids or fatty acids are described in Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide—Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); “Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952)-16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.


Based on the analysed lipids, the expression of the Desaturase were determined since the lipid pattern of successfully transformed plant seeds are differing from the pattern of control plant seeds.


Analysis of Promoter BN3:


Seeds from different Arabidopsis plants containing the T-DNA of binary vector pSUN-BN3 (see Example 3) were subjected to lipid analysis as described above (Tab. 12 and FIG. 1). Compared to the non-transgenic control plants (WT), plants containing pSUN-BN3 produced in addition to the fatty acids found in the control plants a novel fatty acid, γ-linolenic acid (18:3Δ6,9,12). The synthesis of this novel fatty acid is subject to the enzyme Δ6-desaturase, which gene is behind the BN3 promoter. The fact that the novel fatty acid can be detected in significant amounts in the seeds of Arabidopsis plants containing the T-DNA of binary vector pSUN-BN3 is explained by the functional expression of the gene Δ6-desaturase from Pythium irregulare. According to the identification of the novel generated fatty acid γ-linolenic acid, the promoter BN3 is enabling the functional expression of the respective gene.


Therefore the promoter BN3 is a functional promoter, driving expression of genes in seeds.


Other parts of the transgenic Arabidopsis plants were also subjected to gas chromatographic analysis, but no other fatty acids than in the non-transgenic Arabidopsis plants were observed.


Therefore, the promoter BN3 is driving functional expression in a seed-specific manner, thereby only allowing the transcription of attached genes in seeds.









TABLE 12







Gas chromatographic analysis of seeds from different



Arabidopsis plants either being non-transgenic controls



(WT) or transgenic lines containing the T-DNA of plasmid


pSUN-BN3 derived from chromatograms as shown in FIG. 1.


The respective fatty acids are given in chemical nomeclature


(16:0 palmitic acid, 18:0 stearic acid, 18:1-n-9 oleic acid,


18:2n-6 linoleic acid, 18:3n-6 γ-linolenic acid,


18:3n-3 α-linolenic acid). The fatty acid 18:3n-6 is a


product of the enzymatic reaction of the Δ6-


desaturase from Pyhtium irregulare, which is not


observed in the non-transgenic control lines.













sample name
16:0
18:0
18:1n-9
18:2n-6
18:3n-6
18:3n-3
















WT








WT
13.03
3.68
27.65
35.37
0.00
20.27


WT
14.04
3.51
25.16
42.81
0.00
14.49


WT
9.63
2.66
36.85
35.07
0.00
15.80


WT
10.16
2.80
37.84
35.35
0.00
13.86


WT
8.94
3.02
31.66
36.93
0.00
19.44


WT
9.52
2.93
29.74
37.15
0.00
20.66


pSUN-BN3_1
13.19
2.82
35.20
25.31
12.20
11.28


pSUN-BN3_2
14.23
5.25
44.38
14.58
14.57
7.00


pSUN-BN3_3
13.27
3.45
46.13
18.62
9.86
8.67


pSUN-BN3_4
11.76
2.08
43.63
29.17
3.97
9.39


pSUN-BN3_5
12.26
1.76
42.01
25.92
8.12
9.94


pSUN-BN3_6
10.25
3.22
35.82
26.64
10.43
13.65


pSUN-BN3_7
10.65
3.78
34.04
23.74
14.62
13.17








Claims
  • 1. A polynucleotide comprising an expression control sequence which allows seed specific expression of a nucleic acid of interest being operatively linked thereto, said expression control sequence being selected from the group consisting of: (a) an expression control sequence having a nucleic acid sequence as shown in any one of SEQ ID NOs: 7 to 12;(b) an expression control sequence having a nucleic acid sequence which hybridizes under stringent conditions to a nucleic acid sequence as shown in any one of SEQ ID NOs: 7 to 12;(c) an expression control sequence having a nucleic acid sequence which hybridizes to a nucleic acid sequences located upstream of an open reading frame sequence shown in any one of SEQ ID NOs: 1 to 6;(d) an expression control sequence having a nucleic acid sequence which hybridizes to a nucleic acid sequences located upstream of an open reading frame sequence being at least 80% identical to an open reading frame sequence as shown in any one of SEQ ID NOs: 1 to 6;(e) an expression control sequence obtainable by 5′ genome walking from an open reading frame sequence as shown in any one of SEQ ID NOs: 1 to 6; and(f) an expression control sequence obtainable by 5′ genome walking from an open reading frame sequence being at least 80% identical to an open reading frame as shown in any one of SEQ ID NOs: 1 to 6.
  • 2. The polynucleotide of claim 1, wherein said expression control sequence comprises at least 1,000 nucleotides.
  • 3. The polynucleotide of claim 1, wherein said polynucleotide further comprises a nucleic acid of interest being operatively linked to the expression control sequence.
  • 4. The polynucleotide of claim 1, wherein said polynucleotide further comprises a termination sequence which allows for termination of the transcription of a nucleic acid of interest.
  • 5. A vector comprising the polynucleotide of claim 1.
  • 6. The vector of claim 5, wherein said vector is an expression vector.
  • 7. A host cell comprising the polynucleotide of claim 1 or a vector comprising said polynucleotide.
  • 8. The host cell of claim 7, wherein said host cell is a plant cell.
  • 9. A non-human transgenic organism comprising the polynucleotide of claim 1 or a vector comprising said polynucleotide.
  • 10. The non-human transgenic organism of claim 9, wherein said organism is a plant or a seed thereof.
  • 11. A method for expressing a nucleic acid of interest in a host cell comprising (a) introducing the polynucleotide of claim 1 or a vector comprising said polynucleotide into a host cell, whereby the nucleic acid sequence of interest will be operatively linked to the expression control sequence; and(b) expressing said nucleic acid sequence in said host cell.
  • 12. The method of claim 11, wherein said host cell is a plant cell.
  • 13. A method for expressing a nucleic acid of interest in a non-human organism comprising (a) introducing the polynucleotide of claim 1 or a vector comprising said polynucleotide into a non-human organism, whereby the nucleic acid sequence of interest will be operatively linked to the expression control sequence; and(b) expressing said nucleic acid sequence in said non-human transgenic organism.
  • 14. The method of claim 13, wherein said non-human transgenic organism is a plant or seed thereof.
  • 15. The method of claim 13, wherein said nucleic acid of interest is expressed seed-specific.
  • 16-17. (canceled)
  • 18. The polynucleotide of any one of claim 1, wherein said nucleic acid of interest encodes a seed storage protein or is involved in the modulation of seed storage compounds.
Priority Claims (1)
Number Date Country Kind
07150029.2 Dec 2007 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP08/67492 12/15/2008 WO 00 6/11/2010