1. Field of the Invention
The invention relates to a prop for a three-dimensional framework with a fastening device for fastening a railing device to the prop as well as to a connecting arrangement for a railing device, which comprises at least one prop for a three-dimensional framework and a railing device, which is fastenable to the prop with the help of a fastening device, and further relates to a method for fastening a railing device to a prop for a three-dimensional framework with the help of a fastening device.
2. The Prior Art
A number of fastening devices for fastening railing devices to props for three-dimensional frameworks, particularly to vertical scaffolding posts, have become known from practice in the past.
A particularly simple fastening construction has become known from, for example, CH-A-439679. This relates to a building scaffolding with vertical support frames, the vertical prop tubes of which are provided with U-shaped insertion eyes, into which insert ends, which are bent over downwardly at right angles, of handrail bars of railing frames are inserted. These railing frames are not secured against lifting up in upward direction, which from safety aspects is not acceptable.
Another railing fastening has become known from FR-A-25 16 141. There, scaffolding frames with vertical posts are provided, to which transverse bolts extending away therefrom are fastened. These have upwardly projecting dogs at the free ends thereof, so that these bolts form a kind of hook. The ends of a double railing or of a railing frame are hung in these hooks, for which purpose the upper two end straps of the double railing or railing frame are provided with downwardly open receiving openings forming a kind of counter-hook. The lower two end straps are provided with slots which extend in vertical direction, of which one slot is securable by a withdrawal securing means, which is pivotable about a horizontal axis, against withdrawal in the direction of the bolt of the associated hook of one of the scaffolding posts. These railings are similarly not secured against lifting off in upward direction. FR-A-25 16 141 also discloses L-shaped longitudinal bars used for connecting and fastening two adjacent scaffolding standing frames, on which L-shaped supports are supported, the supports being provided with a transverse bar on which scaffolding boards of wood can be supported in an intermediate position between the cross beams of adjacent scaffolding standing frames. These L-shaped longitudinal bars have two vertically spaced end limbs at their L-limb and a third end limb at their other end extending perpendicularly away from the L-limb. This third end limb has a downwardly open hook which can be hung in place on an upwardly open hook bolt of the post of one of the standing frames. The third end limb additionally has a hook-shaped pivot shackle which is pivotable about a transverse axis and which, when the third end limb is hung in place at the hook bolt, pivots under the hook bolt due to gravitational force and in this manner makes possible securing against lifting off in vertical direction at this end of the L-shaped longitudinal bar. Apart from the fact that faulty functioning in the case of dirtying can arise with this pivot shackle, which is not acceptable from safety aspects, this means an increased risk of injury at pivot shackles, which are fastened to the end of the L-shaped longitudinal bar, during handling of the L-shaped longitudinal bar.
Due to the aforesaid reasons other solutions have been developed by which it has been sought to avoid the afore-described disadvantages. These solutions can be essentially divided into two main groups.
A first main group relates to constructions in which the railing devices are secured in force-locking manner by clamping forces against lifting-off from the mounts of the supports. For that purpose, U-shaped wedge cases are usually fastened to the vertical scaffolding tube uprights by their limbs, into which straps, which are bent over downwardly at right angles, of railings are inserted and fastened thereat by means of a wedge. This has to be knocked in by a hammer in order to achieve compressing of a strap of a railing against the tubular upright or of two straps, which are hung in the same wedge case, of two railings against one another and against the tubular upright in order to thus fasten the railing or railings to be secure against vertical lifting-off in upward direction. In order to dismantle the scaffolding the wedges have to be knocked out by a suitable tool, so that the assembly and disassembly of scaffolding of that kind is only possible with a comparatively high degree of effort by means of a tool. Constructions of that kind have become known from, for example, DE-A-27 57 189, DE-A-38 32 480, DE-A-31 08 020, DE-A-198 27 284 and DE-U-20 2004 007 550 under the name ‘Layher-Blitz-Gerust-System’. For specific instances of use the wedge cases can also be detachably connectible with the scaffolding posts, as disclosed in, for example, WO 02/066765 A2.
Other clamping connections by which it is sought, by a force-locking connection, to prevent or impede lifting-off of the railing in upward direction have become known from, for example, DE-PS-100 10 229 or DE-PS-199 19 358. However, due to the comparatively limited clamping forces, lifting-off of the railing in upward direction cannot be securely prevented.
Further clamping connections in which, through a frictional clamping of one or two insertion straps, which are inserted into a U-shaped stirrup, of railings to the scaffolding post, a fastening of the railing to the scaffolding post also against vertical lifting-off is achievable have become known from, for example, DE-A-42 34 473 and DE-A-195 04 038. In these constructions the clamping of the railing strips, which are bent over downwardly at right angles, relative to the scaffolding post is achieved with the help of an eccentric lever pivotable about a horizontal transverse axis. In these clamping constructions comparatively large clamping forces have to be applied in order to secure the railings against lifting off in upward direction, which requires correspondingly high operating forces during locking and unlocking. Moreover, the use possibilities of these constructions are confined to horizontal scaffolding attachments in which the railings can be installed only from the same scaffolding tier, which can mean a safety risk.
A second main group of railing fastening constructions concerns solutions in which the railings are connected with the scaffolding posts in purely mechanically positive manner.
In a first subgroup, for this purpose cross bolts onto which the railings provided with matching passage holes are plugged are fastened to the vertical scaffolding props to produce transversely to the longitudinal axes thereof. The first subgroup can be subdivided into two further groups:
In a first group of this first subgroup of the second main group use is made of cylinder bolts which have at the free ends thereof a vertical slot in which a tilt pin strap is arranged to be pivotable about a horizontal transverse axis. For fastening of a railing to the scaffolding posts the tilt pin straps have to be transferred into an unlocking setting enabling introduction of the railing strips, which are provided with matching passage holes, onto the cylinder bolts. After the introduction and plugging on of the apertured railing strips the respective tilt pin strap has to be transferred back into a vertical locking setting, which in principle is achieved by itself with gravitational force assistance. However, if—as frequently occurs in practice—the free ends of the cylinder bolts are contaminated, for example by paint, faulty functions can arise so that the tilt pin straps concerned then have to be laboriously locked again by hand. This means an unacceptably high amount of effort or, for the case of inattention, a significant safety risk. Constructions of that kind have become known from, for example, DE-U-87 11 664, DE-A-31 39 980, DE-A-197 03 558 and DE-A-10 2004 055 394.
A second group of the first subgroup of the second main group concerns similar constructions which are thus based on the same fundamental principle, namely fastening to scaffolding posts transversely protruding bolts onto which railings provided with passage holes are plugged. However, in these constructions, such as have become known from, for example, DE-A-196 33 092 or EP-A-1 262 611, use is not made of pivotable tilt pin straps. In these fastening constructions the inner contour of the passage holes of the railings and the outer contour of the bolts receiving these are formed to be matched to one another in such a manner that plugging of the railings onto the bolts is possible only obliquely from below, i.e. from the scaffolding tier disposed thereunder, in that the railing is plugged from below onto the bolt at an angle of less than 90 degrees relative to the longitudinal axis of the scaffolding post. Subsequently, through pivoting of the railing upwardly into a horizontal use or installation setting a mechanically positive locking of the railing relative to the scaffolding post also in the direction of the longitudinal axis of the plug-on bolt is achieved at the same time. A horizontal mounting of railings from the same scaffolding tier is not possible with these constructions.
An intermediate variant of the second main group has become known from DE-A-10 2004 055 394 already mentioned in the foregoing. In this construction, which is now again provided with tilt pivot straps, the railing ends are provided with slots which extend radially outwardly from the plug-through opening for the cylinder bolts and are arranged at specific angles relative to the longitudinal axis of the railing and which enable insertion of tilt pin straps and plugging-on of the railing end also from the scaffolding tier disposed thereunder. After plugging of the railing from below onto the tilt pin straps and onto the cylinder bolts a mechanically positive locking also in the direction of the transverse bolt is again,achieved by pivoting the railing upwardly into its horizontal use or installation setting.
All these constructions associated with the first subgroup and the intermediate variants of the second main group have, however, the disadvantage that when the ends of two railings are plugged onto the bolts the rearward railing, thus that lying closer to the scaffolding post, cannot be demounted without the front railing, thus that lying further away from the scaffolding post, also being demounted beforehand.
Another construction concerning a railing fastening, which can be associated with a second subgroup of the second main group, in which the railings are similarly connected in purely mechanically positive manner with the scaffolding posts, has become known from DD 90 210 A. In that case a strap is welded to a tubular post which, with formation of a receptacle for railing strips to be inserted vertically, is profiled in L-shaped manner and bent over upwardly as well as open upwardly. In the region of the upper free end of the L-strap this is provided with a vertical slot. Projecting through this vertical slot is a nose of a drop latch which is pivotable about a horizontal pivot axis and which is rotatably mounted on a horizontal pin. The pin is welded to the L-strap with bridging-over of the vertical slot thereof. For the purpose of fastening two railing strips or in a given case also only one railing strip to the tubular post these are or this is introduced, vertically from above, vertically downwardly into the receptacle formed by the L-strap. The nose of the drop latch is thereby pivoted away into a release setting. In the course of a further introduction of the respective railing strip this is introduced vertically downwardly until the nose of the drop latch pivots, under gravitational force, back into its initial setting. Then or thereafter the respective railing strip comes to rest on the lower L-limb of the L-strap. For removal of the two railing strips or in a given case also only one of the railing strips the drop latch has to be manually pivoted upwardly about its pivot axis into a release setting making it possible to pull out the respective railing strip vertically upwardly, whereupon the respective railing strip can be pushed vertically upwardly out of the railing receptacle formed by the L-strap.
In this railing fastening it is necessary, due to the construction, to provide between the upper edges of the railing strips to be secured and the nose—which secures these against vertical lifting-off—of the drop latch an appropriately large gap enabling pivotation of the nose of the drop latch. As a result, the railing strips can be fastened only very loosely and with considerable vertical play, which means a safety risk. Moreover, this construction, due to the drop latch protruding laterally in the locking setting, requires a comparatively large amount of space and the risk exists that persons are caught at the drop latch. Finally, the risk exists that the upwardly open L-strap under the rough conditions in practice twists outwardly away from the tubular post so that then the railing strips are no longer secured against vertical lifting off. This means a significant safety risk.
It is an object of the invention to provide a prop for a three-dimensional framework with a fastening device or with a railing-device fastening device for fastening a railing device to the prop and a connecting arrangement for a railing device, which comprises at least one prop for a three-dimensional framework and a railing device, which with the help of a fastening device or a railing-device fastening device is fastenable to the prop, and also to provide a method of fastening a railing device to a prop, by which or with which, with maintenance of as many as possible of the advantages that have become known from the prior art, the disadvantages described in the foregoing are avoided, particularly by which or with which advantageous possibilities for securing or locking the railing device and/or for mounting and/or for demounting the railing device, as well as for a particularly stable construction, are created. It is further an object of the invention to be able to produce a prop of that kind with a fastening device or with a railing-device fastening device and a connecting arrangement of that kind simply and economically. Moreover, it is an object of the invention to provide a connecting arrangement which can be assembled and disassembled simply and quickly. A further object of the invention is to provide a prop with a fastening device and a connecting arrangement which enable advantageous possibilities for installation and removal of a railing device not only from the same scaffolding tier, but also from below as an advance railing. Finally, it is an object of the invention to provide a connecting arrangement in which demounting of a railing device is possible without requiring demounting of a neighbouring railing device.
This object or these objects are preferably fulfilled by the features according to the invention.
According to a first solution concept or according to a first invention group there can be provided a prop, particularly a vertical post, of metal for scaffolding, particularly for facade scaffolding, a stage, a staircase or like three-dimensional framework, with a fastening device for fastening at least one railing device, particularly a single or double railing, preferably a railing rod, to the prop, wherein the fastening device comprises a mount for the railing device, wherein the mount is fastened, preferably captively, in particular permanently, for example by welding, to the prop, and wherein the mount comprises a rest element, which extends in a first direction transversely, preferably perpendicularly, to the longitudinal axis of the prop away therefrom, with a rest surface, which is horizontal in use setting of the prop, for vertical support of the railing device, wherein the fastening device further comprises a locking element, which is firmly, preferably captively, connected with the prop and preferably formed with or as a locking lever, with a locking surface for mechanically positive locking in a locking setting, preferably free of clamping force, of the railing device against vertical removal thereof in upward direction when the prop is in use setting, wherein the locking element is pivotable, preferably manually, about a pivot axis from an unlocking setting into the locking setting and conversely wherein the locking surface of the locking element in the locking setting lies opposite the rest surface of the rest element and in the locking setting as well as in use setting of the prop is arranged at a vertical spacing above the rest surface of the rest element and/or that the pivot axis in use setting of the prop is arranged at a vertical spacing above the locking surface disposed in the locking setting, preferably also at a vertical spacing above the rest surface of the rest element. For preference, the mount has a passage opening, which is closed or surrounded at the whole circumference or entirely or substantially at the whole circumference, for insertion of an end of the at least one railing device, particularly the railing rod, the opening being bounded by a support element—which extends at a transverse spacing from the prop and preferably parallel to the longitudinal axis of the prop, particularly upwardly in the use setting thereof, and which is connected, preferably integrally, with the rest element—of the mount for lateral support of a rest part of the railing device.
Due to the fact that the mount has a passage opening, which is closed or surrounded at the whole circumference or entirely or substantially at the whole circumference, for insertion of an end of the at least one railing device, particularly the or a railing rod, which opening is bounded by a support element—which extends at a transverse spacing from prop and is preferably parallel to the longitudinal axis of the prop, particularly upwardly in the use setting thereof, and which is connected, preferably integrally, with the rest element—of the mount for lateral support of a rest part of the railing device, there is made possible not only simple and economic production, but also a particularly stable construction of the mount, whereby the locking element is fastenable and storable particularly stably and securely. By a passage opening which is “closed or surrounded at the whole circumference or entirely or substantially at the whole circumference” there can be understood in the sense of this protective right a passage opening bounded by wall parts which form one or more bodies surrounding the passage body at the whole circumference or entirely or substantially at the whole circumference.
According to a second solution concept or according to a second invention group or according to an advantageous embodiment there can be provide a prop, particularly a vertical post, of metal for scaffolding, a stage, a staircase or like three-dimensional framework, with a fastening device for fastening at least one railing device, particularly a single or double railing, preferably a railing rod, to the prop, wherein the fastening device comprises a mount for the railing device, wherein the mount is permanently fastened, preferably by welding, to the prop, and wherein the mount comprises a rest element, which extends in a first direction transversely, preferably perpendicularly, to the longitudinal axis of the prop away therefrom, with a rest surface, which is horizontal in use setting of the prop, for vertical support of the railing device, wherein the fastening device further comprises a locking element, which is firmly, preferably captively, connected with the prop and preferably formed with or as a locking lever, with a locking surface for mechanically positive locking in a locking setting, preferably free of clamping force, of the railing device against vertical removal thereof in upward direction when the prop is in use setting, wherein the locking element is pivotable, preferably manually, about a pivot axis from an unlocking setting into the locking setting and conversely, wherein the locking surface of the locking element in the locking setting lies opposite the rest surface of the rest element and in the locking setting as well as in use setting of the prop is arranged at a vertical spacing above the rest surface of the rest element and wherein on pivotation of the locking element about the pivot axis from an unlocking or open setting into the locking or closed setting the locking surface of the locking element is pivoted downwardly when the prop is in use setting.
Through the foregoing measures a particularly simple or easy and secure locking as well as a particularly simple or easy unlocking or release can be carried out by a user. Moreover, through this measure it is possible to achieve a secure locking or a high degree of security against unintended unlocking.
In both solution concepts or invention groups the locking element can be fastened preferably with the help of a fastening means containing the pivot axis, particularly a rivet or a bolt or a pin, particularly a dowel pin—which is preferably slotted—or a grooved pin, to the prop or to the mount, preferably to the support element, or not to the mount or not to a part of the mount containing the receiving element of the mount or not to a or the support element of the mount for lateral support of a rest part of the railing device, but to the prop or to another part of the prop, preferably to a separate fastening body fastened to the prop, preferably permanently, particularly by welding, and preferably at a spacing from the mount.
According to a further solution concept or according to a third invention group or according to an alternative or additional embodiment there can be provided a prop, particularly a vertical post, of metal for scaffolding, a stage, a staircase or like three-dimensional framework, with a fastening device for fastening at least one railing device, particularly a single or double railing, preferably a railing rod, to the prop, wherein the fastening device comprises a mount for the railing device, wherein the mount is permanently fastened, preferably by welding, to the prop, and wherein the mount comprises a rest element, which extends in a first direction transversely, preferably perpendicularly, to the longitudinal axis of the prop away therefrom, with a rest surface, which is horizontal in use setting of the prop, for vertical support of the railing device, wherein the fastening device further comprises a locking element, which is firmly, preferably captively, connected with the prop and preferably formed with or as a locking lever, with a locking surface for—in a locking setting—mechanically positive locking, preferably free of clamping force, of the railing device against vertical removal thereof in upward direction when the prop is in use setting, wherein the locking element is pivotable, preferably manually, about a pivot axis from an unlocking setting into a locking setting and conversely, wherein the locking surface of the locking element in the locking setting is opposite the rest surface of the rest element and in the locking setting as well as in use setting of the prop is arranged at a vertical spacing above the rest surface of the rest element and wherein the locking element is fastened, preferably with the help of a fastening means containing the pivot axis, particularly a rivet or a bolt or a pin, particularly a—preferably slotted—dowel pin or a grooved pin, not to the mount or not to a part of the mount containing the receiving element of the mount or not to a or the support element of the mount for lateral support of a rest part of the railing device, but to the prop or to another part of the prop, preferably to a separate fastening body fastened, preferably permanently, particularly by welding, and preferably at a spacing from the mount, to the prop.
Through these measures it is possible to achieve a particularly stable construction or fastening possibility for the locking element. A construction of that kind can equally be produced particularly simply and economically. Moreover, advantageous suspension possibilities for the railing device can be achieved by the aforesaid measures.
In the second and/or third solution alternative or in the second and/or third invention group it can be provided that the mount has a passage opening, which is closed or surrounded at the whole circumference or entirely or substantially at the whole circumference, for insertion of an end of the at least one railing device, particularly the railing rod, which is bounded by a support element—which extends at a transverse spacing from the prop and preferably parallel to the longitudinal axis of the prop, particularly upwardly in the use setting thereof, and which is connected, preferably integrally, with the rest element—of the mount for lateral support of the rest part of the railing device. This makes possible not only a simple and economic product ion, but also a particularly stable construction of the mount.
In all three solution alternatives or invention groups, optionally also in combinations of two or all three of these solution alternatives or invention groups, provision can be made for the pivot axis to extend transversely, preferably perpendicularly, to the longitudinal axis of the prop or transversely, preferably perpendicularly, to the first direction.
However, it is of particular advantage if the pivot axis extends transversely, preferably perpendicularly, to the longitudinal axis of the prop and also transversely, preferably perpendicularly, to the first direction.
In addition, it can be provided that the mount is formed with a receiving profile, which is upwardly open in use setting of the prop, for reception of a rest part of the railing device, which is constructed with a support element—which extends at a transverse spacing from the prop and preferably parallel to the longitudinal axis of the prop, particularly upwardly in the use setting thereof, and is connected, preferably integrally, with the rest element and fastened thereto—of the mount for lateral support of the rest part of the railing device, wherein a passage opening for reception of the rest part of the railing device is formed between the support element and the prop.
In that case it is of advantage if the receiving profile is formed as a half U-profile, half C-profile or half V-profile or as a J-profile or as a U-profile, C-profile or V-profile.
Moreover, it is a advantage if the opening edge of the passage opening s pans a vertical opening plane in use setting of the prop.
It is of particular advantage if the passage opening in use setting of the prop is formed as a vertical receiving slot extending in the direction of, preferably parallel to, the longitudinal axis of the prop.
According to a particularly simply and economically producible variant of embodiment it can be provided that the mount is formed with or as a stirrup, preferably of a flat material, which has or bounds a passage opening for reception of a rest part of the railing device.
In that case it can be provided that the stirrup extends in the direction of, preferably parallel to, the longitudinal axis of the prop.
With preference it can be provided that the mount is a punched, cast or forged part of metal.
Moreover, provision can be made for the locking element, which is preferably formed with a locking lever or formed as a locking lever, to be fastened to the prop or to the mount, preferably to the support element.
Furthermore, it can be provided that the locking element or the locking lever is fastened to the prop or to the mount, preferably to the support element, with the help of a fastening means containing the pivot axis, preferably a rivet.
For preference it can be provided that the locking element is formed as or with a locking lever which is manually actuable or to be manually actuated and which preferably consists of plastics material or of metal.
Provision can be made for the locking lever to have an actuating part which, in the locking setting, protrudes beyond the edge of the mount which is lower when the prop is in the use setting. This makes possible a particularly simple opening or unlocking of the locking lever by hand, particularly by a finger of the hand of a user.
Moreover, it can be provided that the locking lever has an actuating part which extends transversely, preferably perpendicularly, away from the pivot axis and which is preferably elongate. This can have a length which is greater, particularly very much greater, than the width of the actuating part or of the locking lever overall. Particularly as a result and, in a given case, in conjunction with a conspicuous coloration of the locking element it is clearly apparent whether the locking lever is disposed in its locking setting and thus whether or not the railing device suspended there is actually secured.
In that case it can be provided that the locking lever has a longitudinal slot, which extends preferably transversely, particularly perpendicularly, to the pivot axis and in which in the locking setting a part of the vertical support element of the mount is received. In this manner the projection beyond the prop and also the risk of injury in the locking setting are minimised.
Moreover, it can be provided that the locking lever and the mount are formed to be so matched to one another that the locking lever in the locking setting is releasably detented at the mount or at a counter-body fastened thereto so that the locking lever is pivotable from the locking setting to an open setting or to the unlocking setting only by application of an increased opening force. As a result, the point from which the locking lever is disposed in a secure locking setting is made particularly clear to the user, this being made noticeable on the one hand in the case of actuation by hand through a diminishing of the closing force and on the other hand by a clearly audible noise on folding closed or locking of the locking lever.
In addition, provision can be made for the locking element to comprise a pressing body which on pivotation of the locking element from the unlocking setting to the locking setting comes into engagement or stands in engagement with a counter-body, which is firmly fastened, preferably permanently, to the prop or to the mount, preferably to the support element, and/or which is formed by a part of the prop, wherein the pressing body and the counter-body are formed to be so matched to one another that on pivotation of the locking element from the unlocking setting to the locking setting a pressing force opposing unintended unlocking of the locking element is formed between the pressing body and the counter-body and/or that in the locking setting a pressing force opposing unintended unlocking of the locking element is formed between the pressing body and the counter-body.
In that case it can be provided that the pressing body and/or the counter-body is or are constructed as an eccentric body.
For preference, provision can be made for the pressing body to be formed as an eccentric body arranged eccentrically to the pivot axis.
In a preferred embodiment it can be provided that the counter-body is formed as a, preferably cylindrical, pin or bolt which is fastened firmly, preferably non-detachably, to the prop or to the mount, preferably to the support element.
In that case it can be provided that the longitudinal axis of the pin or bolt extends transversely, preferably perpendicularly, to the longitudinal axis of the prop or extends transversely, preferably perpendicularly, to the first direction. However, in a particularly advantageous embodiment provision can be made for the longitudinal axis of the pin or bolt to extend transversely, preferably perpendicularly, to the longitudinal axis of the prop and transversely, preferably perpendicularly, to the first direction.
Moreover, it can with advantage be provided that the locking lever has a detent recess in which the pin or bolt, which is fastened to the prop or to the mount, preferably to the support element, engages in detenting manner in the locking setting.
Furthermore, it can be provided that the locking lever on pivotation about its pivot axis is pivotable, preferably upwardly, from the closing or locking setting into an or the open or unlocking setting only through a maximum opening angle which is limited by an abutment and which is smaller than 60 degrees, preferably smaller than or equal to approximately 45 degrees. As a result, the risk of a person being caught at the locking lever protruding in its open or unlocking setting can be reduced.
In that case it can be provided that the abutment is formed with a lug which is provided in the region of the, preferably upper, end of the mount and is connected, preferably integrally, with the mount. This construction can be realised or produced particularly simply and economically.
Moreover, provision can be made for the locking lever in the maximum open or unlocking setting, which is preferably limited by an or the abutment, to not project into a or the passage opening, which serves for insertion of an end of the at least one railing device, of the mount. In other words, it can be provided that—in the maximum open or unlocking setting, which is preferably limited by an or the abutment, of the locking lever—a or the passage opening, which serves for insertion of an end of the at least one railing device, of the mount does not cover or conceal the passage opening or the opening cross-sectional area thereof of the locking lever or of parts of the same. As a result, during insertion or hanging in place and placing as well as during removal and withdrawal or unhanging of the railing device collisions with the locking lever do not occur, which simplifies mounting and demounting of the railing device.
Moreover, it can be provided that the locking lever in the maximum open or unlocking setting, which is preferably limited by an or the abutment, bears by a or the pressing body against a or the counter-body, which is fastened to the mount and preferably formed as a bolt or pin, so that a downward pivotation, which is induced by gravitational force, of the locking lever about its pivot axis is prevented. It is thereby in turn ensured that the passage opening of the mount remains free of the locking lever, which is disposed in the unlocking or open setting, or of parts thereof.
The invention also relates also to a connecting arrangement for a railing device, which comprises at least one prop for scaffolding, particularly facade scaffolding, a stage, a staircase or like three-dimensional framework, according to at least one of claims 1 to 31, and a railing device, which is formed particularly as a single or double railing and is preferably formed with or as a railing rod and which is fastenable to the prop with the help of the fastening device.
It can be characteristic for a connecting arrangement of that kind that the locking surface of the locking element in the locking setting is opposite the rest surface of the rest element and in the locking setting as well as in use setting of the prop is arranged above the rest surface of the rest element at a vertical spacing which is greater than the height of a rest part, which rests on the rest surface of the rest element of the mount, of the railing element and/or that the pivot axis in use setting of the prop is arranged at a vertical spacing above the locking surface—which is disposed in the locking setting—preferably also at a vertical spacing above the rest surface of the rest element, which is greater than the height of a or the rest part, which rests on the rest surface of the rest element of the mount, of the railing device.
The invention further relates to a connecting arrangement for a railing device, which comprises at least one prop, particularly a vertical post, of metal for scaffolding, particularly facade scaffolding, a stage, a staircase or like three-dimensional framework, and at least one railing device, which is formed as, in particular, a single or double railing and preferably formed with or as a railing rod and which is fastenable with the help of a fastening device to the prop, wherein the prop comprises a mount for the railing device, wherein the mount is fastened, preferably captively, in particular permanently, for example by welding, to the prop, and wherein the mount comprises a rest element, which extends in a first direction transversely, preferably perpendicularly, to the longitudinal axis of the prop away therefrom, with a rest surface, which is horizontal in use setting of the prop, for vertical support of the railing device, on which a rest part, which is preferably arranged in the region of an end of the railing device or the railing rod, of the railing device can be supported and wherein the fastening device further comprises a locking element, which is firmly, preferably captively, connected with the prop, with a locking surface for mechanically positive locking, preferably free of clamping force, of the railing device against vertical removal thereof in upward direction when the prop is in use setting, wherein the locking element is pivotable, preferably manually, about a pivot axis from an unlocking setting, in which the railing device can rest on the rest surface of the rest element of the mount or is removable from the mount, into a locking setting and conversely, in which the railing device is locked by means of the locking element against removal from the mount at least in one direction and in which the railing device is secured against removal in any directions from the mount, wherein the locking element is transferrable from a locking setting, in which the railing device is mechanically positively locked, preferably free of clamping force, by means of the locking element against withdrawal from the mount upwardly in the direction of, preferably parallel to, the longitudinal axis of the prop when the prop is in use setting, to an unlocking setting, and conversely, in which the railing device is removable from the mount, without previous lifting off in the first direction from the rest surface of the rest element, at least horizontally in a second direction transversely, preferably perpendicularly, to the longitudinal axis of the prop when the prop is in use setting and also transversely, preferably perpendicularly, to the first direction, preferably after previous lifting off from the rest surface of the rest element in upward direction.
In that case it can be provided that the fastening device and the railing device are formed to be so matched to one another that the railing device, although the locking device is disposed in the locking setting, is placeable from below, particularly obliquely from below, on the rest surface of the rest element of the mount, or can be suspended there, when the prop is in use setting and, starting from this setting, is pivotably upwardly and transferrable to an installation setting in which the railing device is secured against removal from the mount in any directions.
Moreover, it can be provided that the mount is formed with a receiving profile, which is upwardly open in use setting of the prop, for reception of a rest part of the railing device, in which the rest part of the railing device is at least partly received while being supported on the rest surface of the rest element, wherein the receiving profile is formed with a support element, which extends at a transverse spacing from the prop and preferably parallel to the longitudinal axis of the prop, particularly upwardly in the use setting thereof, and which is connected, preferably integrally, with the rest element and fastened thereto, for lateral support of the rest part of the railing device, wherein a passage opening for reception of the rest part of the railing device, which passes horizontally through the passage opening in use setting of the prop, is formed between the support element and the prop.
Furthermore, provision can be made for the mount to have a passage opening, which is closed entirely or substantially at the full circumference, for insertion of an end of the at least one railing device, particularly of the railing rod, through which opening the end of the railing device or of the railing rod is inserted.
Finally, in a preferred embodiment it can be provided that the passage opening in use setting of the prop is formed as a vertical receiving slot, which extends in the direction of, preferably parallel to, the longitudinal axis of the prop and into or through which the rest part of the railing device, preferably the end of the railing device or of the railing rod, is inserted.
In that case it can be provided that the receiving slot has a height which is greater than the width or the height of at least one end of the ends of the railing device or of the railing rod.
Moreover, it can provided that the passage opening has a width which is greater than the thickness or width of the rest part of the railing device. In a preferred embodiment it can be provided that the passage opening has a width which greater than twice the thickness or width of the rest part of the railing device. In this manner at least two railing devices can, by the rest parts thereof, be placed on one and the same mount or hung in one and the same mount.
Furthermore, provision can be made for the ends, which are intended for support on the rest element of the mount of the railing device, which is preferably formed as or with a railing rod, to be formed to be flattened.
Moreover, it can be provided that the railing device has in the region of at least one end of its, preferably flattened, ends an outwardly open first recess, which extends in the direction of, preferably parallel to, the longitudinal axis of the end or of the railing rod and is bounded by the rest part for support on the rest surface of the rest element of the mount and which is bounded by a first wall part, particularly a lug, extending transversely, preferably perpendicularly, to the longitudinal axis of the end or of the railing rod.
In that case provision can be made for at least one wall part of the wall parts, which laterally bound the first recess in the direction of the longitudinal axis of the end or of the railing rod, to be formed on the side of the recess to be radiussed, particularly concavely radiussed, and/or chamfered, for example with an entry chamfer. This enables a better or easier lowering of the railing device.
Moreover, it can be provided that a second recess adjoins the first wall part or the lug in the region of the first recess and is bounded by a rest surface, which extends in the direction of, preferably parallel to, the longitudinal axis of the end or of the railing rod and is deepened relative to the first recess or the rest surface thereof, of the rest part and by two support surfaces, which are preferably parallel and have a support surface spacing from one another and which extend transversely, preferably perpendicularly to the longitudinal axis of the end of the railing device or of the railing rod, wherein the support surface spacing is greater than the width of the rest element of the mount in the region of the rest surface thereof. As a result, a defined detenting and rest position of the railing device on the rest element of the mount is defined and advantageous possibilities for a mechanically positive connection of these elements result.
In that case it can be provided that the support surface spacing is approximately 1.5 to 3 times the width of the rest element in the region of the rest surface thereof. The play of the railing device relative to the rest element of the mount or the rest elements of the mounts can thereby be minimised with consideration of production and assembly tolerances.
In addition, it can be provided that the length of the first recess extending in the direction of the longitudinal axis of the end or of the railing rod is greater than the spacing, measured in the same direction, between the support surface—which is associated with the free end of the railing device or of the railing rod—of the second recess and this free end of the railing device or of the railing rod.
Moreover, it can be provided that the railing rod inclusive of its ends is formed as a straight rod, thus without the ends being bent over and/or angled. This enables a particularly simple and economic production as well as a particularly simple and space-saving storage of a railing rod of that kind.
It is of particular advantage if the spacing between the rest surface of the rest element and the locking surface of the locking element in the locking setting is greater than the spacing, preferably the greatest spacing, between the surface, which faces away from the free end of the railing device or of the railing rod and which bounds the first recess, of the first wall part or the lug and this free end of the railing device or of the railing rod, in particular is greater than the greatest spacing between the support surface, which faces away from the free end of the railing device or of the railing rod and which bounds the second recess, and this free end of the railing device or of the railing rod. As a result, in this way the railing device—even when the locking element is disposed in its locking setting or despite the locking element being disposed in its locking setting—can be placed or hung in place from below, particularly from a scaffolding tier disposed thereunder, at or in the rest element and can be subsequently pivoted upwardly into its horizontal installation or use setting without the locking element having to be transferred from its locking setting to an open or unlocking setting, wherein then in this installation or use setting a fastening of the railing device to the prop with mechanically positive securing against vertical lifting off in upward direction is already guaranteed in any directions without further measures.
The invention also relates to a vertical frame element with at least one prop and/or with at least one connecting arrangement, which is additionally formed in accordance with the subject, in particular according to at least one of the claims, of European Patent Application No 06021346.9 or of German Utility Model Application No 20 2006 015 586.4.
The invention further relates to a scaffolding frame, particularly scaffolding standing frame, with at least one prop and with at least one transverse arm, which is fastened, preferably captively, in particular permanently, for example by welding, at least to the at least one prop.
The invention additionally relates to a scaffolding frame, particularly scaffolding standing frame, with at least one connecting arrangement, wherein at least one transverse element is fastened, preferably captively, in particular permanently, for example by welding, to the at least one prop.
Finally, the invention also relates to scaffolding, particularly building scaffolding, preferably facade scaffolding, with at least four vertical props, at which preferably at least one covering unit, particularly a scaffolding floor, horizontal rod elements and/or at least one diagonal element for stiffening the scaffolding, are mounted, and with at least one prop and/or with at least one connecting arrangement and/or with at least one vertical frame element and/or with at least one scaffolding frame.
The invention also relates to a method of fastening at least one railing device with the help of a fastening device to a prop for scaffolding, particularly facade scaffolding, a stage, a staircase or like three-dimensional framework, wherein the fastening device comprises a mount for the railing device and wherein the mount is fastened, preferably captively, in particular permanently, for example by welding, to the prop, in particular to a vertical post, of metal, and wherein the mount comprises a rest element, which extends in a first direction transversely, preferably perpendicularly, to the longitudinal axis of the prop away therefrom, with a rest surface, which is horizontal in use setting of the prop, for vertical support of the railing device, which is formed in particular as a single or double railing and preferably with or as a railing rod and which preferably forms a part of a connecting arrangement, wherein a rest part, which is preferably arranged in the region of an end of the railing device or of the railing rod, of the railing device can be supported on the rest surface of the rest element, and wherein the fastening device further comprises a locking element, which is firmly, preferably captively, connected with the prop and preferably formed with or as a locking lever, with a locking surface for mechanically positive locking, preferably free of clamping force, of the railing device against vertical removal thereof in upward direction when the prop is in use setting, and wherein the locking element is pivotable, preferably manually, in particular in downward direction in use setting of the prop, about a pivot axis from an unlocking setting, in which the railing device can be placed on the rest surface of the rest element of the mount or removed from the mount, into a locking setting, and conversely, in which the railing device is locked by means of the locking element against removal from the mount at least in one direction and in which the railing device is secured against removal in any directions from the mount, wherein the railing device is placed or plugged—before the locking element has be en transferred into its locking setting, or in unlocking setting—horizontally in a second direction transversely, preferably perpendicularly, to the longitudinal axis of the prop and also transversely, preferably perpendicularly, to the first direction on or onto the rest surface of the rest element of the mount and subsequently the locking element is transferred to its locking setting in which the railing device is mechanically positively locked, preferably free of clamping force, by means of the locking element against removal from the mount upwardly in the direction of, preferably parallel to, the longitudinal axis of the prop when the prop is in use setting.
In an advantageous embodiment of the afore-described method it can be provided that the railing device or the railing rod is initially placed in the region of a rest surface of the first recess of a first end of the ends thereof on the rest surface of the rest element of the mount of a first prop, preferably horizontally in the use setting thereof, wherein the locking element of the fastening device of the first prop is disposed in its unlocking setting and that subsequently the railing device or the railing rod is displaced in the direction of the mount of an adjacent second prop, until the respective rest surface of the respective second recess of the two ends of this railing device or of this railing rod comes to lie on the respectively associated rest surface of the respective rest element of the respective mount with format ion of a mechanically positive connection between the railing device and the two props, and that subsequently the locking elements of the fastening devices of the two props are pivoted into the locking setting thereof.
The invention further relates to a method of fastening at least one railing device with the help of a fastening device to a prop for scaffolding, particularly facade scaffolding, a stage, a staircase or like three-dimensional framework, wherein the fastening device comprises a mount for the railing device and wherein the mount is fastened, preferably captively, in particular permanently, for example by welding, to the prop, in particular to a vertical post, of metal, and wherein the mount comprises a rest element, which extends in a first direction transversely, preferably perpendicularly, to the longitudinal axis of the prop away therefrom, with a rest surface, which is horizontal in use setting of the prop, for vertical support of the railing device, which is formed in particular as a single or double railing and preferably with or as a railing rod and which preferably forms a part of a connecting arrangement, wherein a rest part, which is preferably arranged in the region of an end of the railing device or of the railing rod, of the railing device can be supported on the rest surface of the rest element, and wherein the fastening device further comprises a locking element, which is firmly, preferably captively, connected with the prop and preferably formed with or as a locking lever, with a locking surface for mechanically positive locking, preferably free of clamping force, of the railing device against vertical removal thereof in upward direction when the prop is in use setting, and wherein the locking element is pivotable, preferably manually, in particular in downward direction in use setting of the prop, about a pivot axis from an unlocking setting, in which the railing device can be placed on the rest surface of the rest element of the mount or removed from the mount, into a locking setting, and conversely, in which the railing device is locked by means of the locking element against removal from the mount at least in one direction and in which the railing device is secured against removal in any directions from the mount, wherein the railing device is—when the locking element is disposed in its locking setting and when the prop is in use setting—placed or hung in place on the rest surface of the rest element of the mount from below, particularly obliquely from below, in a direction transverse, preferably perpendicular, to the first direction, preferably approximately in a mounting plane containing a parallel to the longitudinal axis of the prop and a notional normal to the first direction, and is subsequently pivoted upwardly and transferred to a horizontal installation setting in which the railing device is mechanically positively locked, preferably free of clamping force, by means of the locking element against removal from the mount, upwardly in the direction of, preferably parallel to, the longitudinal axis of the prop when the prop is in use setting and in which the railing device is secured against removal in any directions from the mount.
According to a particularly advantageous variant of embodiment of the afore-described method or according to a further independent aspect of the invention there can be provided a method of fastening at least one railing device with the help of a fastening device to a prop for scaffolding, particularly facade scaffolding, a stage, a staircase or like three-dimensional framework, wherein the fastening device comprises a mount for the railing device and wherein the mount is fastened, preferably captively, in particular, permanently, for example by welding, to the prop, in particular to a vertical post, of metal, and wherein the mount comprises a rest element, which extends in a first direction transversely, preferably perpendicularly, to the longitudinal axis of the prop away therefrom, with a rest surface, which is horizontal in use setting of the prop, for vertical support of the railing device, which is formed in particular as a single or double railing and preferably with or as a railing rod and which preferably forms a part of a connecting arrangement, wherein a rest part, which is preferably arranged in the region of an end of the railing device or of the railing rod, of the railing device can be supported on the rest surface of the rest element, and wherein the fastening device further comprises a locking element, which is firmly, preferably captively, connected with the prop and preferably formed with or as a locking lever, with a locking surface for mechanically positive locking, preferably free of clamping force, of the railing device against vertical removal thereof in upward direction when the prop is in use setting, and wherein the locking element is pivotable, preferably manually, in particular in downward direction in use setting of the prop, about a pivot axis from an unlocking setting, in which the railing device can be placed on the rest surface of the rest element of the mount or removed from the mount, into a locking setting, and conversely, in which the railing device is locked by means of the locking element against removal from the mount at least in one direction and in which the railing device is secured against removal in any directions from the mount, wherein the railing device, which rests on the rest surface of the rest element of the mount i n use setting of the prop, is removed from the mount after pivotation of the locking element into an or the unlocking setting, without previous removal of the railing device in the first direction from the rest element, in a second direction transversely, preferably perpendicularly, to the longitudinal axis of the prop and also transversely, preferably perpendicularly, to the first direction, preferably after previous lifting-off upwardly from the rest surface of the rest element.
Further advantages, features and aspects of the invention can be inferred from the following description part, in which a preferred exemplifying embodiment of the invention is described on the basis of the figures, in which:
a to 7d show different three-dimensional views of the locking lever according to the invention in accordance with a first exemplifying embodiment;
a shows a section along the centre longitudinal axis of the locking lever;
b shows a first view of the locking lever obliquely from below;
c shows a second view of the locking lever obliquely from below from a viewing direction different from
d shows a plan view of the locking lever obliquely from above;
a shows an underneath view of the locking lever according to the first exemplifying embodiment;
b shows a side view from the left of the locking lever;
c shows a longitudinal section of the locking lever along the section line A-A in
d shows a top view or plan view of the locking lever;
e shows a view of the locking lever according to
f shows a substantially enlarged view of a detail, which is bounded by a circle, of the longitudinal section of the locking lever according to
a to 12d show different three-dimensional views of the locking lever according to the invention in accordance with a second exemplifying embodiment;
a shows a section along the centre longitudinal axis of the locking lever;
b shows a first view of the locking lever obliquely from below;
c shows a second view of the locking lever obliquely from below from a viewing direction different from
d shows a plan view of the locking lever obliquely from above;
a shows an underneath view of the locking lever in accordance with the second variant of embodiment;
b shows a side view from the left of the locking lever;
c shows a longitudinal section of the locking lever along the section line
d shows a top view or plan view of the locking lever;
e shows a view of the locking lever according to
f shows a strongly enlarged view of a detail, which is bounded by a circle, of the longitudinal section of the locking lever according to
The scaffolding 20 shown in
In the exemplifying embodiments shown in, in particular,
Each prop 32; 32.1, 32.2; 32.4 of the lowermost scaffolding tier or storey 22.1 is here plugged onto a so-called starting member 27, which is usually formed by an upwardly pointing tubular support. The inner diameter of this tubular support is slightly larger than the outer diameter of the lower ends 37.1, 37.2 of the props 32; 32.1, 32.1, 32.4, so that the props 32; 32.1, 32.1, 32.4 can each be plugged into one of these tubular supports of the starting members 27. The starting members 27 are usually provided with a spindle and a spindle nut screwed thereon, whereby setting of the height or level of the props 32; 32.1, 32.1, 32.4 can be achieved. Each starting member 27 here has an apertured disc 30 provided with passages. The latter serve for wedge-fixing to the tubular supports of so-called horizontal rod elements 24, 25, particularly longitudinal rails and transverse rails, provided with connecting heads. These connecting points are also termed connecting junctions 29, 29′. Longitudinal rails 24 and transverse rails 25 are usually used as rod elements. The longitudinal rails 24 and the transverse rails 25 are in that case respectively wedge-fixed in pairs to the tubular supports of the starting members 27 in such a manner that a stable rectangular base frame is constructed from two parallel longitudinal rails 24 and two transverse rails 25, which are arranged perpendicularly thereto, but parallel to one another. Starting from this base frame, which is then constructed in a substantially horizontal plane, the scaffolding 20 is then built up to finished state. The props 32; 32.1, 32.1, 32.4, 32.5 are usually formed as tubes.
Covering units, preferably in the form of scaffolding floors 31, which are provided with tread and/or work surfaces and which horizontally bound the respective storey or scaffolding tier 22.1, 22.2, 22.3, 22.4 in downward direction and upward direction, are mounted on or at the transverse arms 35; 35.1, 35.2, 35.2 of the scaffolding standing frames 21; 21.1, 21.2.
Whilst the railing rods 28.1 and 28.2 offer protection against falling down on a longitudinal side, on the narrow transverse sides side railings 28.3—here extending perpendicularly thereto—are fastened between the props 32.1 and 32.2 of the scaffolding standing frame 21 according to the invention, as shown in
The second scaffolding bay 23.2 shown in
The spacing of the apertured disc 30, which is uppermost in use setting, of the respective post 32.4 from the lower end thereof corresponds with the spacing of the apertured disc 30, which is fastened to the props 32.1 and 32.2 according to the invention of the scaffolding standing frames 21 according to the invention in the region of the upper ends 36.1, 36.2 thereof, from the lower ends 37.1, 37.2 of these props 32.1, 32.1. In this manner it is thus readily possible to connect a scaffolding or a scaffolding bay 23.1, which is formed by scaffolding standing frames 21; 21.1, 21.2 according to the invention or by props 32, 32.1, 32.2 according to the invention, with a scaffolding or a scaffolding bay 23.2 of a modular scaffolding without transition, so that a step-free transition between the covering units or scaffolding floors 31 of the first scaffolding bay 23.1 and the covering units or scaffolding floors 31 of the second scaffolding bay 23.2 is possible.
In the exemplifying embodiment shown in
A first exemplifying embodiment of a scaffolding standing frame 21.1 according to the invention is shown in
The upper ends 36.1, 36.2 of the props 32.1, 32.2 are each formed with a respective tube connector 54.1, 54.2, the outer diameter of which is slightly smaller than the inner diameter of the lower ends 37.1, 37.2 of the props 32.1, 32.2. In this manner several such props 32.1, 32.2 or standing frames 21 can, as shown in
Arranged at the level of the two apertured discs 30 of the two props 32.1, 32.2 of the standing frame 21.1 is a transverse arm 35.1 which is permanently fastened to the props 32.1, 32.2, here by welding, and the longitudinal axis of which extends perpendicularly to the longitudinal axes of the props 32.1, 32.2 in the same plane. This transverse arm 35.1 is here formed by a round tube, which is connected at it two ends, preferably integrally, with connecting heads 75.1 and 75.2 tapering in in wedge shape towards the post and disc centre. These connecting heads or at least one of them is or are preferably produced by deforming the round tube. They have horizontal plug-on slots by which they are plugged onto the respective apertured disc 30 of the respective prop 32.1, 32.2 and then, in this plugged-on position, welded to the respective prop 32.1 and 32.2. This scaffolding standing frame 21.1 is formed by a vertical frame element 105.1 which is formed by one prop 32.1 and the transverse arm 35.1 permanently fixed thereto, preferably by welding. With respect to the constructional details of vertical frame elements of that kind and the scaffolding standing frames and/or scaffoldings able to be constructed therefrom reference can be made for the sake of simplicity to European Patent Application No 06021346.9 and German Utility Model Application No 20 2006 015 586.4, the content of which is for the sake of simplicity adopted in its entirety at this point, so that thus the entire disclosure content of these two protective right applications is equally the subject of the invention described here.
A second exemplifying embodiment of a scaffolding standing frame 21.2 according to the invention is shown in
The transverse arm 35.2 of the scaffolding standing frame 21.2 shown in
Each of the scaffolding standing frames 21; 21.1, 21.2 according to the invention thus comprises at least one prop 32.1 according to the invention of metal, which is designed as, in particular, a vertical post for scaffolding 20, particularly for facade scaffolding, a stage, a staircase or like three-dimensional framework. The prop 32.1 according to the invention has a fastening device 38 according to the invention for fastening at least one railing device 28, particularly a single or double railing, preferably a railing rod 28.1, 28.2, to the prop 32.1. This fastening device 38 comprises a mount 40 for the railing device 28. The mount 40 is connected, here permanently by welding, to the prop 32.1. The mount 40 comprises a rest element 42, which extends in a first direction 41 transversely, preferably perpendicularly, to the longitudinal axis 33 of the prop 32.1 and away therefrom, with a rest surface 43, which is horizontal in use setting 34 of the prop 32.1, for vertical support of the railing device 28.
The fastening device 38 further comprises a locking element 45, which is connected—preferably captively—with the prop 32.1 and here designed with or as a locking lever 70, with a locking surface 46; 46.1, 46.2 for—in a locking setting 47—mechanically positive locking, preferably free of clamping force, of the railing device 28 against vertical lifting-off of the same in upward direction when the prop 32.1 is in use setting 34. The locking element 45 is pivotable, preferably manually, about a pivot axis 50 from an open or unlocking setting 48 (
In the locking setting 47 the locking surface 46 of the locking element 45 is opposite the rest surface 43 of the rest element 42. In both the locking setting 47 and use setting 34 of the prop 32.1 the locking surface 46 is arranged at a vertical spacing 51 above the rest surface 43 of the rest element 42. Alternatively or, as here, additionally the pivot axis 50 in use setting 34 of the prop 32.1 is arranged at a vertical spacing 52 above the locking surface 46, which is disposed in the locking setting 47, and, preferably, here also at a vertical spacing 53 above the rest surface 43 of the rest element 42.
As apparent particularly from
The mount 40 has a passage opening 57, which is closed at the full circumference, for insertion of an end 58.1, 58.2 of the at least one railing device 28, particularly of the railing rod 28.1, 28.2, which is bounded by a support element 44, which here extends parallel to the longitudinal axis 33 of the prop 32.1 in the use setting 34 thereof and here is integrally fastened to the rest element 42, of the mount 40 for lateral support of the rest part 56 of the railing device 28 (see, in particular,
The opening edge 61 of the passage opening 57, which here is formed by the mount 40—which is profiled to be U-shaped and formed as a stirrup 65—on the one hand and the outer surface of the prop 32.1 on the other hand, spans a vertical opening plane, which here contains the longitudinal axis 33 of the prop 32.1, when the prop 32 is in the use setting 34. Accordingly, the passage opening 57 in use setting 34 of the prop 32.1 is here formed as a vertical receiving slot 63 extending in a direction parallel to the longitudinal axis 33 of the prop 32.1. The mount 40 is formed with a stirrup 65 of flat material, which is here a punched part, but which can also be formed as, in particular, a cast part or forged part of metal. This stirrup 65 thus has the passage opening 57, which is formed as a receiving slot 63, for reception of the rest part 56 of the railing device 28 or bounds this passage opening 57. The stirrup 65 is arranged parallel to the longitudinal axis 33 of the prop 32.1 and the limbs thereof are welded to the prop 32.1.
The locking element 45 is here designed with a manually actuable locking lever 70, which here is fastened to the limb, which is upper in use setting 34 of the prop 32.1, of the mount 40 with the help of fastening means which here is formed as a rivet 66 and contains the pivot axis 50. The locking lever 70 is preferably formed from plastics material. As apparent particularly from
The articulation and locking part 62 of the locking lever 70 comprises an opening which in mounting setting contains the pivot axis 50 and through which a part of the rivet 60 is inserted. The articulation and locking part 62 further comprises a pressing body 72 which is formed as an eccentric body 76 and which on pivotation of the locking lever 70 from the unlocking setting 48 into the locking setting 47 goes into engagement or is in engagement with a counter-body 73 which is here formed as a cylindrical pin 77. The counter-body 73 is firmly fastened, preferably permanently, to the support element 44 in such a manner that it extends on both sides of the side surfaces of the stirrup 65 beyond this. In that case the longitudinal axis 78 of the pin 77 is arranged perpendicularly to the longitudinal axis 33 of the prop 32.1 and parallel to the pivot axis 50. The longitudinal axis 78 of the pin 77 further extends perpendicularly to the first direction 41 by which the rest element 42 extends away from the prop 32.1.
The pressing body 72 designed as an eccentric body 76 and the counter-body 73 designed as a cylindrical pin 77 are formed to be matched to one another in such a manner that on pivotation of the locking element 70 from the unlocking setting 48 into the locking setting 47 a pressing force, which hinders unintended unlocking of the locking lever 70, is formed between the pressing body 72 and the counter-body 73. In that case the pressing body 72 of the locking lever 70 is designed as an eccentric body 76 arranged eccentrically with respect to the pivot axis 50.
As apparent from, for example,
The invention also relates to a connecting arrangement for a railing device 28, which comprises at least one prop 32.1 for scaffolding 20, particularly facade scaffolding, a stage, a staircase or like three-dimensional framework and a railing device 28, which is formed particularly as a single or double railing and preferably designed with or as a railing rod 28.1, 28.2 and which is fastenable to the prop 32.1 with the help of the fastening device 38.
In this connecting arrangement 80 the locking surface 46 of the locking element 45 in the locking setting 47 is opposite the rest surface 43 of the rest element 42 and the locking surface 46 is, in the locking setting 47 as well as in use setting 34 of the prop 32.1, arranged at a vertical spacing 51 above the rest surface 43 of the rest element 42 which is greater than the height 67 of the rest part 56, which rests on a rest surface 43 of the rest element 42 of the mount 40, of the railing device 28. In addition, the pivot axis 50 in use setting 34 of the prop 32 is arranged at a vertical spacing 52 above the locking surface 46 disposed in the locking setting 47 and also at a vertical spacing 53 above the rest surface 43 of the rest element 42. This spacing 53 is greater than the height 67 of a or the rest part 56, which rests on the rest surface 43 of the rest element 42 of the mount 40, of the railing device 28.
The invention also comprises a connecting arrangement 80 for a railing device 28, which comprises at least one prop 32.1 according to the invention, particularly a vertical post, of metal, for scaffolding 20, particularly facade scaffolding, a stage, a staircase or like three-dimensional framework and at least one railing device 28, which is formed as, in particular, a single or double railing and preferably formed with or as a railing rod 28.1 and which is fastenable with the help of a fastening device 38 to the prop 32.1, wherein the prop 32.1 comprises a mount 40 for the railing device 28, wherein the mount 40 is connected or fastened, preferably captively, especially permanently, for example by welding, with or to the prop 32 and wherein the mount 40 comprises a rest element 42, which extends in a first direction 41 transversely, preferably perpendicularly, to the longitudinal axis 33 of the prop 32 and away therefrom, with a rest surface 43, which is horizontal in use setting 34 of the prop 32.1, for vertical support of the railing device 28, on which rest surface a rest part 56, which is preferably arranged in the region of an end 58.1, 58.2 of the railing device 28 or of the railing rod 28.1, 28.2, of the railing device 28 can be supported, and wherein the fastening device 38 further comprises a locking element 45, which is firmly connected, preferably captively, with the prop 32, with a locking surface 46 for mechanically positive locking, preferably free of clamping force, of the railing device 28 against vertical removal thereof in upward direction when the prop 32 is in use setting 34, wherein the locking element 45 is pivotable, preferably manually, about a pivot axis 50 from an unlocking setting 48, in which the railing device 28 can be placed on the rest surface 43 of the rest element 42 of the mount 40 or removed from the mount 40, into a locking setting 47, and conversely, in which the railing device 28 is locked by means of the locking element 45 against removal from the mount 40 in at least one direction and in which the railing device 28 is secured against removal from the mount in any directions, wherein the locking element 45 is transferable from a locking setting 47, in which the railing device 28 is mechanically positively locked, preferably free of clamping force, against removal from the mount 40 in—when the prop 32.1 is in use setting 34—upward direction, preferably parallel to the longitudinal axis 53 of the prop 32.1, into an unlocking setting 48, and conversely, in which the railing device 28, without prior lifting-off in the first direction 41 from the rest surface 43 of the rest element 42, is—in use setting 34 of the prop 32—removable from the mount at least horizontally in a second direction 55 transversely, preferably perpendicularly, to the longitudinal axis 33 of the prop 32, and also transversely, preferably perpendicularly, to the first direction 41, preferably after prior vertical lifting-off, in a given case carried out within the limits predetermined by the mount 40 and especially only lightly or slightly, from the rest surface 43 of the rest element 42 in upward direction.
In the exemplifying embodiment the fastening device 38 and the railing device 28 are designed to be matched to one another in such a manner that the railing device 28 can—even though the locking element 45 is disposed in the locking setting 47—when the prop 32 is in use setting 34 be placed from below, particularly obliquely from below, on the rest surface 43 of the rest element 42 of the mount 40 or hung there, and starting from this setting is pivotable upwardly and transferable to an installation setting 49 in which the railing device 28 is secured against removal from the mount 40 in any directions.
As apparent from, for example
The passage opening 57 is, in use setting 34 of the prop 32, formed as a vertical receiving slot 63 which extends parallel to the longitudinal axis 33 of the prop 32 and into or through which the rest part 56 of the railing device 28, here the end 58.1, 58.2 of a railing rod 28.1, 28.2 or the two railing rods 28.1, 28.2, is inserted (
The receiving slot 63 has a height 68 which is greater than the width or the height 67 of at least one end 58.1, 58.2 of the ends 58.1, 58.2 of the railing device 28 or of the railing rod 28.1, 28.2. In addition, the passage opening 57 has a width 59 which is greater than the thickness or width 82 of the rest part 56 of the railing device 28 or of the railing rod 28.1, 28.2. In the exemplifying embodiment the passage opening 57 has a width 59 which is slightly greater than twice the thickness or width 82 of the rest part 56 of the railing device 28 or railing rod 28.1, 28.2, so that up to two railing devices 28, 28 or railing rods 28.1, 28.2 of that kind can thus be hung in the mount 40 and locked by means of the locking lever 40.
The ends 58.1, 58.2, which are intended for support on the rest element 42 of the mount 40, of the railing device 28, which is preferably formed as or with a railing rod 28.1, 28.2, are formed to be flattened.
The detail design of a railing element according to the invention, here a railing rod 28.1 or 28.2 according to the invention, is described in the following with reference to
The railing device 28 has in the region of at least one end 58.1, 58.2, here in the region of its two flattened ends 58.1, 58.2, a respective first recess 86 which extends parallel to the longitudinal axis 83 of the end 58.1, 58.2 or of the railing rod 28.1, 28.2 and is bounded inwardly by the rest part 56 for support on the rest surface 43 of the rest element 42 of the mount 40 and which is open outwardly or transversely or perpendicularly to the longitudinal axis 83 of the railing device 28. This recess is bounded by a first wall part 87, which extends transversely, here approximately perpendicularly, to the longitudinal axis 83 of the end 58.1, 58.2 or of the railing device 28, here the railing rod 28.1, 28.2, and which here is defined in the form of a hook-shaped lug 88.
The first recess 86 is bounded in the direction of the longitudinal axis 83 by two spaced-apart wall parts 87 and 89. The wall part 89 is concavely rounded (at 91) and the wall part 87 bounding the lug 88 is formed with an entry chamfer 92. A second recess 94 adjoins the first wall part 87 or the lug 88 in the region of the first recess 86. This recess 94 is bounded by a rest surface 95, which here extends parallel to the longitudinal axis 83 of the railing device 28 or of the railing rod 28.1, 28.2 and which is deepened by comparison with the first recess 86, of the rest part 56 and two support surfaces 97.1, 97.2 which here are parallel and have a support surface spacing 98 from one another. These support surfaces 97.1, 97.2 here extend perpendicularly t o the longitudinal axis 83 of the end 58.1, 58.2 or of the railing device 28 or of the railing rod 28.1, 28.2. The support surface spacing 98 of these support surfaces 97.1, 97.2 is greater than the width 99 of the rest element 42 of the mount 40 in the region of the rest surface 43 of the rest element 42, so that the railing device 28 or the respective railing rod 28.1, 28.2 can there mechanically positively detent by its second recess 94.
The support surface spacing 98 is preferably approximately 1.5 to 3 times the width 99 of the rest element 42 in the region of the rest surface 43 thereof so as to be able to provide compensation for production and, in particular, assembly tolerances, so that it is always ensured that the railing device 28 or the railing rod 28.1, 28.2 can in every case be reliably and securely hung in the region of its two ends 58.1, 58.2 in a respective mount 40 of a prop 32.1 according to the invention in installed or use setting 49.
The length 93 of the first recess 86 extending in the direction of the longitudinal axis 83 of the end 58.1, 58.2 or of the railing rod 28.1, 28.2 is very much greater than the spacing 100, which is measured in the same direction, between the support surface 97.2, which is associated with the free end 101 of the respective end 58.1, 58.2 of the railing device 28 or of the railing rod 28.1, 28.2, of the second recess 94 and this free end 101 of the railing device or of the railing rod 28.1, 28.2.
A significant feature of the connecting arrangement according to the invention is also that the spacing 51 between the rest surface 43 of the rest element 42 and the locking surface 46 of the locking element 45 in the locking setting 47 is greater than the greater spacing between the surface 90, which faces away from the free end 101 of the railing device 28 or of the railing rod 28.1, 28.2 and which bounds the first recess 86, of the first wall part 87 or of the lug 88 this free end 101 of the railing device 28 or of the railing rod 28.1, 28.2, in particular is greater than the greatest spacing 102 between the support surface 97.2, which faces away from the free end 101 of the railing device 28 or of the railing rod 28.1, 28.2 and which bounds the second recess 94, and this free end 101 of the radial device 28 or of the railing 28.1, 28.2.
A second exemplifying embodiment of a prop or fastening device according to the invention for fastening railing devices is illustrated together with its parts in
The exact form of the locking lever 170, which functions as locking element 145, according to the second exemplifying embodiment is shown in, in particular,
In order to ensure that the locking lever 170 in the open setting 48 shown in
Apart from the afore-described measures, in this second exemplifying embodiment further measures are also provided by which it is ensured that the locking lever 170, considered from its closing or locking setting 47, can be pivoted upwardly about its pivot axis 50 only through a specific maximum opening angle 265. This maximum opening angle 265 is preferably smaller than 60 degrees, particularly smaller than or equal to approximately 45 degrees (see, in particular,
According to the second exemplifying embodiment the locking lever 170 is no longer fastened and mounted on the mount 140 with the help of a rivet functioning as fastening means, but with the help of a pin 166 which similarly functions as fastening means and which here is formed as a dowel pin 166, which—preferably over its entire length—is, in particular, slotted and preferably hollow or sleeve-shaped. This can be seen particularly readily in
A second exemplifying embodiment of a railing device 128; 128.1, 128.2 is illustrated in, in particular,
A further prop according to the invention in shown in
The slot or gap 264 separates the stirrup, which in the first and second exemplifying embodiment is continuous without slotting or interruption, into two parts, namely into a lower element, which comprises the rest element 42 and a lower support element 244.1, and an upper element, which comprises an upper support element 244.2 and a fastening body 192. The mutually opposite ends of the support elements 244.1 and 244.2 have a mutual spacing 243 corresponding with the width of the slot or gap 264. The mount 240 is formed with a lower receiving profile 242, which includes the lower support element 244.1, for reception and support of the railing device 28; 128. The receiving profile 242 is fastened permanently, preferably by welding, to the post 32.1 at the end of the receiving profile facing away from the end of the support element 244.1 bounding the slot or gap 243. The fastening body 192 here integrally connected with the other or upper support element 244.2 is similarly fastened permanently, preferably by welding, to the post 32.1 at the end of the fastening body facing away from the end of the support element 244.2 bounding the slot or gap 243. In this manner the locking lever 170 is, by contrast to the aforesaid exemplifying embodiments of a mount 40, 140, now fastened not to the part of the mount 240 containing the receiving element 24 and also not to a support element of the support elements 244.1, 244.2 of the mount 240, but to a or the separate fastening body 192 here preferably integrally connected with an or the upper support element 244.2. It will be obvious that for a mount designed in accordance with or similar to the third exemplifying embodiment of a mount 240 it is also possible to provide a locking lever 70 designed in accordance with the first exemplifying embodiment or a similarly designed locking lever.
The invention also relates to a scaffolding frame, particularly a standing scaffolding frame 21; 21.1, 21.2, with at least one prop 32.1 according to the invention and with at least one transverse arm 35; 35.1, 35.2, which is fastened, preferably captively, in particular permanently, for example by welding, to the at least one prop 32.1.
The invention further relates to a scaffolding frame, particularly a standing scaffolding frame 21; 21.2, 21.2, with at least one connecting arrangement 80 according to the invention, wherein at least one transverse arm 35; 35.1, 35.2 is fastened, preferably captively, in particular permanently, for example by welding, to the at least one prop 32.1.
The invention also relates to scaffolding 20, particularly building scaffolding, with at least four vertical props 32; 32.1, 32.2; 32.4, 32.5, on which preferably at least one covering unit, for example a scaffolding floor 31, horizontal rod elements 24, 25 and/or at least one diagonal element 26 for stiffening of the scaffolding 20, are mounted, and with at least one prop 32.1, 32.3 according to the invention and/or with at least one connecting arrangement 80 according to the invention and/or with at least one vertical frame element 105.1, 105.2 according to the invention and/or with at least one scaffolding frame according to the invention.
It is a further important feature of the invention that the railing device 28, 128, particularly the railing rods 28.1, 28.2, 128.1, 128.2 can be installed not only from the same scaffolding tier or storey 22.1 to 22.4 as shown in
A method according to the invention for installation of a railing device 28, 128 from the same scaffolding tier can be defined as follows:
Method of fastening at least one railing device 28, 128 with the help of a fastening device 38 to a prop 32.1, 32.3 for scaffolding 20, a stage, a staircase or like three-dimensional framework, wherein the fastening device 38 comprises a mount 40, 140, 240 for the railing device 28, 128 and wherein the mount 40, 140, 240 is connected or fastened, preferably captively, in particular permanently, preferably by welding, with or to the prop 32.1, 32.3, particularly a prop 32.1, 32.3 according to the invention, preferably a vertical post, of metal, which mount comprises a rest element 42, which extends in a first direction 41 transversely, preferably perpendicularly, to the longitudinal axis 33 of the prop 32.1, 32.3 away therefrom, with a rest surface 43 for vertical support of the railing device 28, 128, which is formed in particular as a single or double railing and preferably with or as a railing rod 28.1, 28.2; 128.1, 128.2 and which preferably forms a part of a connecting arrangement 80, particularly a connecting arrangement 80 according to the invention, wherein a rest part 56, 156, which is preferably arranged in the region of an end 58.1, 58.2 of the railing device 28, 128 or of the railing rod 28.1, 28.2; 128.1, 128.2, of the railing device 28, 128 can be supported on the rest surface 43 of the rest element 42, and wherein the fastening device 38 further comprises a locking element 45, 145, which is firmly, preferably captively, connected with the prop 32.1, 32.3 and preferably formed with or as a locking lever 70, 170, with a locking surface 46 for mechanically positive locking, preferably free of clamping force, of the railing device 28, 128 against vertical removal thereof in upward direction when the prop 32.1, 32.3 is in use setting 34, and wherein the locking element 45, 145 is pivotable, preferably manually, in particular in downward direction in use setting 34 of the prop 32, about a pivot axis 50 from an unlocking setting 48, in which the railing device 28, 128 can be placed on the rest surface 43 of the rest element 42 of the mount 40, 140, 240 or removed from the mount 40, 140, 240, into a locking setting 47, and conversely, in which the railing device 28, 128 is locked by means of the locking element 45, 145 against removal from the mount 40, 140, 240 at least in one direction and in which the railing device 28, 128 is secured against removal in any directions from the mount 40, 140, 240, wherein the railing device 28, 128 is placed or plugged—before the locking element 45, 145 has been transferred into its locking setting 47, or in unlocking setting 48—horizontally in a second direction 55 transversely, preferably perpendicularly, to the longitudinal axis 33 of the prop 32.1, 32.3 and also transversely, preferably perpendicularly, to the first direction 41 on or onto the rest surface 43 of the rest element 42 of the mount 40, 140, 240 and subsequently the locking element 45, 145 is transferred to its locking setting 47 in which the railing device 28, 128 is mechanically positively locked, preferably free of clamping force, by means of the locking element 45 against removal from the mount 40, 140, 240 upwardly in the direction of, preferably parallel to, the longitudinal axis 33 of the prop 32 when the prop 32 is in use setting 34 (see
For installation of the railing device 28, 128 or the railing rods 28.1, 28.2; 128.1, 128.2 from the same scaffolding tier the locking levers 70, 170 at the props 32.1 or at the standing frames 21; 21.1, 21.2 are thus to be opened or transferred to their unlocking setting 48, insofar as this is not the case.
The installation of a railing device 28, 128 at the mounts 40, 140, 240 of two adjacent props 32.1, 32.3 can then be carried out in such a manner that the railing device 28, 128 or the railing rod 28.1, 28.2; 128.1, 128.2 is initially placed in the region of a rest surface 96, 196 of the first recess 86, 186 of a first end 58.1 of its ends 58.1, 58.2 on the rest surface 43 of the rest element 42 of the mount 40, 140, 240 of a first prop 32.1, 32.3, preferably horizontally in the use setting 34 thereof, wherein the locking element 45, 145 of the fastening device 38 of the first prop 32 is disposed in its unlocking setting 48 (see
For installation of the railing device 28, 128 or the railing rods 28.1, 28.2; 128.1, 128.2 from the or a scaffolding tier or story disposed thereunder it does not matter whether the locking lever 70, 170 is disposed in open or unlocked state or in closed or locked state. For introduction or hanging in place of the railing device 28, 128 or of the railing rods 28.1, 28.2; 128.1, 128.2 from below, particularly obliquely from below, it is ensured, when the locking lever 70, 170 is closed, thus disposed in its locking setting 47, that due to the geometry of the cut-outs or recesses, particularly in the region of the second recess 94, 194 of the ends 58.1, 58.2 of the railing device 28, 128 or of the railing rod 28.1, 28.2; 128.1, 128.2 in conjunction with the geometry of the mount 40, 140, 240 and of the locking lever 70, 170, that no collisions occur here, but that the railing device 28, 128 or the railing rods 28.1, 28.2; 128.1, 128.2 can then be readily brought, by way of an upward displacement or upward pivotation, into a level or horizontal position and then also equally secured there (see
The invention also relates to a method of fastening at least one railing device 28, 128 with the help of a fastening device 38 to a prop 32 for scaffolding 20, a stage, a staircase or like three-dimensional framework, wherein the fastening device 38 comprises a mount 40, 140, 240 for the railing device 28, 128 and wherein the mount 40, 140, 240 is connected, preferably captively, in particular permanently, for example by welding, with the prop 32, preferably with a prop 32. 1 according to the invention, in particular with a vertical post, of metal, which mount 40, 140, 240 comprises a rest element 42, which extends in a first direction 41 transversely, preferably perpendicularly, to the longitudinal axis 33 of the prop 32 away therefrom, with a rest surface 43 for vertical support of the railing device 28, 128, which is formed in particular as a single or double railing and preferably with or as a railing rod 28.1, 28.2; 128.1, 128.2 and which preferably forms a part of a connecting arrangement, particularly a part of a connecting arrangement 80 according to the invention, wherein a rest part 56, 156, which is preferably arranged in the region of an end 58.1, 58.2 of the railing device 28, 128 or of the railing rod 28.1, 28.2; 128.1, 128.2, of the railing device 28, 128 can be supported on the rest surface 43 of the rest element 42, and wherein the fastening device 38 further comprises a locking element 45, 145, which is firmly, preferably captively, connected with the prop 32 and preferably formed with or as a locking lever 70, 170, with a locking surface 46 for mechanically positive locking, preferably free of clamping force, of the railing device 28, 128 against vertical removal thereof in upward direction when the prop 32 is in use setting 34, and wherein the locking element 45, 145 is pivotable, preferably manually, in particular in downward direction in use setting 34 of the prop 32, about a pivot axis 50 from an unlocking setting 48, in which the railing device 28, 128 can be placed on the rest surface 43 of the rest element 42 of the mount 40, 140, 240 or removed from the mount 40, 140, 240, into a locking setting 47, and conversely, in which the railing device 28, 128 is locked by means of the locking element 45, 145 against removal from the mount 40, 140, 240 at least in one direction and in which the railing device 28, 128 is secured against removal in any directions from the mount 40, 140, 240, wherein the railing device 28, 128, which rests on the rest surface 43 of the rest element 42 of the mount 40, 140, 240 in use setting 34 of the prop 32; 32.1, 32.3, is removed from the mount 40, 140, 240 after pivotation of the locking element 45, 145 into an or the unlocking setting 48, without previous removal of the railing device 28, 128 in the first direction 41 from the rest element 42, in a second direction 55 transversely, preferably perpendicularly, to the longitudinal axis 33 of the prop 32 and also transversely, preferably perpendicularly, to the first direction 41, preferably after prior vertical lifting-off, in a given case carried out within the limits predetermined by the mount 40, 140 and especially only lightly or slightly, from the rest surface 43 of the rest element 42 in upward direction.
For demounting of the railing devices 28 in the normal case the locking levers 70, 170 are to be opened. The railing devices 28, 128 can then be demounted by lifting upwardly and subsequently by a lateral displacement relative to the mounts 40, 140, 240 of the adjacent props 32.1, 32.3; 32.1, 32.3. However, it is also possible, similarly to the case of the afore-described mounting of the advance railing, to proceed only in reverse sequence. Then, for this purpose in a given case only one of the locking levers 70, 170 of two adjacent props 32.1, 32.1 has to be opened and the other locking lever 70, 170 can remain closed, wherein after a downward pivotation of the railing device 28, 128 or of the railing rod 28.1, 28.2; 128.1, 128.2, this can then be removed from being hung in the mount 40, 140, 240, with the closed locking lever 70, 170.
The preceding description applies in the same manner to the props 32.3 which are provided in the uppermost scaffolding tier or storey 22.4 of the first scaffolding bay 23.1 and which are here plugged onto the props 32.1 of the standing scaffolding frame 21. These props 32.3 can, as shown in
The method illustrated in
One of these scaffolding standing frames 21.3 according to the invention is shown in an enlarged representation in
H standing frames can also be used, in which only one prop or one post of the two props or posts is provided with at least one fastening device according to the invention, preferably with two fastening devices according to the invention.
In order to set up the scaffolding 20 shown in
First, in a manner similar to what was described above in connection with
As illustrated in
Subsequently, an operator or installer 132 can suspend the said railing device 128, which is suspended into the uppermost mount 140 of the fastening device 138 of the first prop 32.6 of the first standing frame 21.3 into the uppermost mount 140 of a second prop 32.6 of a second scaffolding standing frame 21.3 that is horizontally spaced apart from the first. For this purpose, it is practical, for simplified assembly, if the locking element 145 of the fastening device 138 of the second standing frame 21.3 is in its unlocking setting or open setting (not shown in
However, it is understood that during or for suspension of the railing device 128 onto the mount 140 of the second standing frame 21.3, the locking element 145 assigned to this mount 140 can already be or have been changed to its locking setting.
However, it is also possible to leave the locking element 145 of the second standing frame 21.3 in its open or unlocked setting when moving the second standing frame 21.3 upward, together with the railing device 128, and to only lock the locking element 145 of the mount 140 of the second standing frame 21.3 once the railing device 128 is in its horizontal installation setting 49.
Proceeding from the intermediate setting shown in
After the second standing frame 21.3 has been set onto the props 32.5, the railing device 128 suspended on the second standing frame 21.3 and on the first standing frame 21.3 is in a horizontal installation setting 49. In this installation setting 49, the railing device 128 is locked in place with shape fit, preferably without clamping force, by means of the locking element 145 of the first prop 32.6 of the first standing frame 21.3, which is already in its locking setting 47, to prevent removal from its mount 140, in the use setting 34 of the first prop 32.6 of the first standing frame 21.3, upward, in the direction of the longitudinal axis 33 of the first prop 32.6, and in this installation setting 49, the railing device 128 lies on the rest surfaces 43 of the rest elements 42 of the mounts 140 of the props 32.6 of the two standing frames 21.3 with its rest surfaces 195, and is locked in place, by means of the two locking elements 145 of the fastening devices 138 of the props 32.6 of the two standing frames 21.3, which are in their locking setting 47, in such a manner that the railing device 128 is secured to prevent removal in any direction from the mounts 140 of the props 32.6 of the two adjacent standing frames 21.3.
Subsequently, as shown in
Proceeding from this, the scaffolding 20 can be built up further, in the same manner as described above and as is evident from the sequence according to
Proceeding from the scaffolding 20 set up in
For disassembly of the scaffolding 20, the steps can be carried out in the reverse sequence.
20 scaffolding
21 standing scaffolding frame
21.1 standing scaffolding frame
21.2 standing scaffolding frame
21.3 standing scaffolding frame/H-standing frame
22.1 scaffolding tier/storey
22.2 scaffolding tier/storey
22.3 scaffolding tier/storey
22.4 scaffolding tier/storey
23.1 first scaffolding bay
23.2 second scaffolding bay
24 rod element/longitudinal railing
25 rod element/transverse railing
26 diagonal element
27 starting member
28 railing device/means safeguarding against falling down
28.1 railing rod
28.2 railing rod
28.3 side railing
28.4 railing bar
29 connecting junction
29′ connecting junction
29″ connecting junction
30 apertured disc
31 covering unit/scaffolding floor
31.1 covering unit/scaffolding floor
31.2 covering unit/scaffolding floor/pass-through scaffolding floor
32 prop/post
32.1 prop/post
32.2 prop/post
32.3 prop/post
32.4 prop/post
32.5 prop/post
33 longitudinal axis of 32
34 use setting
35 transverse arm/transverse railing
35.1 transverse arm/0-transverse railing/round tube
35.2 transverse arm/U-transverse railing/U-profile tube
36.1 upper end of 32.1
36.2 upper end of 32.2
37.1 lower end of 32.1
37.2 lower end of 32.2
38 fastening device
39 toe board
40 mount
41 first direction
42 rest element
43 rest surface
44 support element
45 locking element
46 locking surface
46.1 locking surface
46.2 locking surface
47 locking setting
48 unlocking setting/open setting
49 installation setting/use setting
50 pivot axis
51 spacing
52 spacing
53 spacing
54.1 tube connector of 32.1
54.2 tube connector of 32.2
55 second direction
56 rest part
57 passage opening
58.1 first end
58.2 second end
59 transverse spacing/width
60 actuating part of 70
61 opening edge
62 articulation and locking part of 70
63 receiving slot
64 direction
65 stirrup
66 fastening means/rivet
67 height
68 height
69 height/width
70 locking lever
71 longitudinal slot
72 pressing body
73 counter-body
74 web
75.1 connecting head
75.2 connecting head
76 eccentric body
77 pin
78 longitudinal axis of 77
79 detent recess
80 connecting arrangement
81 transverse opening
82 width of 56
83 longitudinal axis
84 opening force
85 slot
86 first recess
87 first wall part
88 lug
89 second wall part
90 surface of 87
91 concave rounding
93 length of 86
94 second recess
95 rest surface
96 rest surface
97.1 support surface
97.2 support surface
98 support surface spacing
99 width of 42
100 spacing
101 free end
102 greatest spacing
103 depth of 94
104 depth of 86
105.1 vertical frame element
105.2 vertical frame element
128 railing device/railing rod
128.1 railing rod
128.2 railing rod
130 ladder
131 pass-through opening of 31.2
132 operator/installer
138 fastening device
140 mount
145 locking element
156 rest part
160 actuating part of 170
162 articulation and locking part of 170
163.1 angle
163.2 angle
163.3 angle
163.4 angle
165 stirrup
166 fastening means/pin, dowel pin
170 locking lever
172 pressing body
174 web
175.1 connecting head
175.2 connecting head
186 first recess
187 first wall part
188 lug
189 second wall part
190 surface of 187
191 concave rounding
192 fastening body
194 second recess
195 rest surface
196 rest surface
197.1 support surface
197.2 support surface
198 support surface spacing
203 depth of 194
204 depth of 186
206 lug
207 abutment
208.1 bearing body of 145
208.2 bearing body of 145
209 abutment body
210 recess
211.1 bore
211.2 bore
240 mount
242 receiving profile
243 spacing
244.1 (lower) support element
244.2 (upper) support element
264 slot, gap
265 opening angle
275 connecting head
Number | Date | Country | Kind |
---|---|---|---|
10 2007 018 314.5 | Apr 2007 | DE | national |
Applicant claims priority under 35 U.S.C. 119 of German Application No. 10 2007 018 314.5 filed Apr. 18, 2007. Applicant also claims priority under 35 U.S.C. 120 of International Application No. PCT/DE2008/000538 filed Mar. 27, 2008. This application is a by-pass continuation-in-part application of said International Application No. PCT/DE2008/000538 filed Mar. 27, 2008. The International Application under PCT Article 21(2) was not published in English. The disclosure of the aforesaid International Application and German application are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/DE2008/000538 | Mar 2008 | US |
Child | 12587986 | US |