The present disclosure relates to computer-implemented distributed database systems. More specifically, the example embodiment(s) described below relate to computer-implemented techniques for complete deletion of data across replicated or related datasets or data storage systems.
The approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
In many kinds of computer systems, issuing a command to delete a data value, record, file or other dataset does not actually result in destruction, obliteration, or over-writing the dataset. Instead, the dataset is marked as deleted using a flag or other metadata, and an operating system or other access control logic makes the unit unavailable to programs or processes acting at a particular logical level. However, the dataset remains available to administrative systems or other programs or processes that have special access privileges, at least until the dataset is actually overwritten by the normal operation of the computer system.
However, the legal systems of certain jurisdictions require enterprises that store data, in response to certain kinds of requests to delete or remove data, to provide assurance that all copies of the data have been actually erased, overwritten, obliterated, removed or otherwise made totally inaccessible. Compliance with such a requirement is difficult when enterprises use distributed database systems with redundant data storage, fault-tolerant devices, tiered or hierarchical data architectures, or storage of subsets of data in different locations.
Furthermore, some databases observe the property of object immutability, meaning that stored data objects cannot be modified once they are created. These databases have a total data size that is constantly growing and may include many outdated datasets that once had usefulness but later merely occupy space and have limited value. Achieving assured deletion of data in these architectures is a significant challenge.
Thus, there is a need for a computer system that is capable of actual deletion of all copies of data in a distributed system, wherever they are stored.
The appended claims may serve to summarize the disclosure.
In the drawings:
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be apparent, however, that embodiments may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present disclosure.
Embodiments are described in sections below according to the following outline:
GENERAL OVERVIEW
DISTRIBUTED DATABASE SYSTEM OVERVIEW
EXAMPLE PROCESS OF PROPAGATED ASSURED DATA DELETION
IMPLEMENTATION EXAMPLE—HARDWARE OVERVIEW
IMPLEMENTATION EXAMPLE—BASIC SOFTWARE SYSTEM
EXTENSIONS AND ALTERNATIVES
Techniques for propagation of deletion operations among a plurality of related datasets are described herein. In an embodiment, a data processing method comprises, using a distributed database system that is programmed to manage a plurality of different raw datasets and a plurality of derived datasets that have been derived from the raw datasets based on a plurality of derivation relationships that link the raw datasets to the derived datasets: from a first dataset that is stored in the distributed database system, determining a subset of records that are candidates for propagated deletion of specified data values; determining one or more particular raw datasets that contain the subset of records; deleting the specified data values from the particular raw datasets; based on the plurality of derivation relationships and the particular raw datasets, identifying one or more particular derived datasets that have been derived from the particular raw datasets; generating and executing a build of the one or more particular derived datasets to result in creating and storing the one or more particular derived datasets without the specified data values that were deleted from the particular raw datasets; repeating the generating and executing for all derived datasets that have derivation relationships to the particular raw datasets; wherein the method is performed using one or more processors.
In an embodiment, a distributed computing system comprises a server computer (“server”) 110 that is coupled via network 120 to a host computing device 130. The distributed computing system can be within one or more data centers, virtual computing facilities or other hosting facilities; other embodiments can be within a networked home, office, or campus.
Network 120 broadly represents a combination of one or more local area networks, wide area networks and internetworks and may include the public internet. The network 120 can connect one or more instances of the host 130, server 110 and an external computer 138 together within the distributed computing environment. Network 120 can be composed of multiple sub-networks that are coupled. For example, the network 120 can be an Internet Protocol Version 4-based and/or an Internet Protocol Version 6-based wired or wireless network or a combination of multiple such networks.
Host computing device 130 broadly represents one or many computers and the number of hosts 130 in the system at a given time may vary in different embodiments and any number may be used. In an embodiment, a host 130 can be a single computing device such as computing device 400 that is described below with respect to
Regardless if a single computing device or a single virtual computer instance, a host 130 can be configured with an operating system (e.g., UNIX, LINUX, MACOS, WINDOWS) as illustrated, for example, by operating system 510 described below with respect to
Services that execute as processes on hosts in the distributed computing environment may be configured using the distributed configuration platform described herein or in application Ser. No. 14/284,959, filed Oct. 4, 2016, the entire contents of which is hereby incorporated by reference as if fully set forth herein.
In an embodiment, host 130 comprises an application instance 132 which allows one or more services to be deployed on host 130 from one or more server computing devices, such as server 110. In an embodiment, application instance 132 comprises propagated deletion instructions 134, a front-end graphical interface 140 or a command-line interface (CLI) 142 that may interoperate to provide the functions that are described further herein. In an embodiment, the front-end interface 140 and CLI 142 are programmed or configured to interact with one or more server-side functional units of server computer 110 as further described. Host computing device 130 also manages one or more deletion requests 136 using processes that are further described in other sections.
A service that application instance 132 facilitates or hosts can be a single instance of a software product or software application installed on at least one of the hosts 130. For example, a service might be a database server instance, a web server instance, or any other instance of a software product or a software application installed on one or more of the hosts 130. Multiple different services may be installed on the hosts 130 including multiple different services on the same host 130. For example, a service may be installed on multiple of the hosts 130 in a distributed, clustered, load balanced, or failover computing arrangement.
In some embodiments, the external computer 138 is associated with an account or user unrelated to the host computing device 130 and/or server computing system 110. For example, host computing device 130 may represent a computer that is associated with an administrative user of an enterprise that also owns and operates the server 110, and external computer 138 may be associated with an independent party.
In an embodiment, server 110 comprises an application programming interface (API) 150, a core resilient distributed dataset (RDD) processor 160, one or more worker processes 170, and a distributed data storage system 180 that stores, for example, datasets 202, 204, 220 as further described. In an embodiment, API 150 is programmed or configured to receive electronic digital messages that define database operations according to a structured query language, parse the messages to determine the operations, and instruct the core RDD processor 160 to execute the operations. Typically execution of the operations causes instructing one or more worker processes 170 to execute builds of derived datasets, based on raw datasets, with distributed data storage system 180. In this context, a dataset may be termed a raw dataset when data in the dataset has been originally created by a service, or received from a source of data prior to any filtering, joining or other transformation. An example is daily web log data for web services. A dataset may be deemed raw in the sense that a program or transformation operation is not executed to produce versions or transformations of the dataset. In contrast, if a program or process computes a join between datasets A and B, resulting in dataset C, then dataset C is a derived dataset because it is derived from one or more other dataset versions. Joins, filters, calculations resulting in updates of fields or records, or other modifications or transformations to result in derived datasets may be performed in a database system, an Apache Spark system, a data repository that is programmed to perform merges, or any other program or system. In one implementation, API 150 comprises an executable instance of SPARK SQL; the core RDD processor 160 is an executable instance of the SPARK Core; and distributed database system 180 may be an executable instance of a HADOOP file system or a hierarchical distributed database server that implements object immutability.
In general, API 150 provides a flexible and efficient way to indirectly specify rows in a database to be acted upon, with the security of not explicitly transmitting row identifiers across a network connection, but its use is optional and other ways of specifying or identifying rows could be used in other embodiments. For example, as an alternative to an SQL query, a set of explicit row identifiers may be cryptographically hashed using SHA-256 or another hash algorithm and the resulting hash strings may be transmitted in a request to the processor 160. The processor 160 then may command worker process 170 to compare the hash string values to an index of previously prepared hash string values of rows of datasets in the distributed data storage system 180, and then delete rows where a hash match is found. Both the SQL approach and hash approach have the benefit of avoiding transmission of an explicit row identifier, which could be recorded in a log file or otherwise stored in an unanticipated manner.
In an embodiment, each of the propagated deletion instructions 116, API 150, core RDD processor 160, worker process 170, and distributed data storage system 180 comprises a set of one or more pages of main memory, such as RAM, in the host computer 130 or server 110 into which executable instructions have been loaded and which when executed cause each respective computer to perform the functions or operations that are described herein with reference to those functional units. For example, the propagated deletion instructions 116 may comprise a set of pages in RAM that contain instructions which when executed cause performing the hard delete functions that are further described herein.
The instructions may be in machine executable code in the instruction set of a CPU and may have been compiled based upon source code written in JAVA, C, C++, OBJECTIVE-C, or any other human-readable programming language or environment, alone or in combination with scripts in JAVASCRIPT, other scripting languages and other programming source text. The term “pages” is intended to refer broadly to any region within main memory and the specific terminology used in a system may vary depending on the memory architecture or processor architecture.
In another embodiment, each of the aforementioned instructions also may represent one or more files or projects of source code that are digitally stored in a mass storage device such as non-volatile RAM or disk storage, in the server 110 or a separate repository system, which when compiled or interpreted cause generating executable instructions which when executed cause the server 110 to perform the functions or operations that are described herein with reference to those modules. The specific manner in which programmers or software developers organize and arrange source code for later compilation into an executable, or interpretation into bytecode or the equivalent, for execution by the server 110 or host computing device 130, is not critical.
In the example of
In an embodiment, the propagated deletion instructions 134 are programmed or configured to cause receiving and processing a deletion request 136, through the front-end graphical interface 140 or CLI 142, and to instruct, message or signal the API 150 with data that is sufficient to define how to obtain or retrieve one or more raw datasets 202, 204 and/or derived datasets 220 using distributed data storage system 180. The propagated deletion instructions 134 are further programmed to cause the API 150 to perform specified update operations on the raw datasets that result in deletion of specified datasets, rows, columns or cells, and to instruct the core RDD processor to initiate one or more build operations that automatically cause propagating the updates and deletions downstream to derived datasets 220 that have the raw datasets 202, 204 as sources.
Each of
The process of
Referring
In block 304, the process is programmed to analyze the request, access a relevant dataset, and apply one or more filter functions to yield a subset of candidate records for propagated deletion. Propagated deletion or hard deletion refers, in this disclosure, to automatic computer-implemented processes to delete specified data items from raw datasets, from all derived datasets that are based on the raw datasets, and from all historical or related builds of the derived datasets. Hard deletion of data may mean that the information represented within the data is not physically or electronically recoverable. Accessing a relevant dataset may comprise receiving input at the host computing device 130 that specifies opening or viewing a named dataset that is maintained in distributed data storage system 180. To obtain the view, the front-end interface 140 may transmit a SQL query to the API 150 and receive a result set of records.
Applying filter functions may be performed via user manipulation of GUI widgets, providing keyboard input, and other commands in the front-end graphical interface 140. For example, input may specify adding a first filter that identifies personal information for a specified person, and adding a second filter that specifies a date range. Collectively, applying these filters results in forming a subset of candidate records for hard deletion and may also cause displaying a table view or row view of the candidate records.
In block 306, the process is programmed to mark the subset of candidate records to indicate that propagated deletion is activated. In one embodiment, marking records to activate propagated deletion comprises selecting a set of records that are displayed in the GUI of front-end graphical interface 140 using a pointing device, and selecting a GUI switch widget. For example, the display may provide a HARD DELETE GUI widget with an ON and OFF position that can be selected to indicate applying propagated deletion to the selected records.
In block 308, the process is programmed to add the subset to a deletion list. In one embodiment, using front-end graphical interface 140, the subset may be associated with a name or label value and then added to a deletion list consisting of a set of such names or label values. The use of a deletion list provides a way to associate a batch of relatively smaller or discrete propagated deletion requests into a larger job or group that is capable of concurrent review in an approval workflow. Thus, the deletion list acts as a queue or shopping cart of multiple subsets of different candidate records. The deletion list may be maintained at the host computing device 130 and managed by the propagated deletion instructions 134 or in storage of server computer 110.
At block 310, the process is programmed to optionally provide access to a unitary view of all records of all sets in the deletion list. For example, in one embodiment, front-end graphical interface 140 is programmed to enable displaying all records of all subsets that are named, labeled or otherwise represented in the deletion list. This approach provides a way to rapidly re-check different subsets of records that have been selected and added to the deletion list.
At block 312, the process is programmed to submit the deletion list for approval to another computer, account or user, as part of a defined workflow for approval of hard deletion operations. The second administrator computer or account may be associated with a person who has authority to approve hard deletion of the records specified in the deletion list. In an embodiment, front-end graphical interface 140 displays a SUBMIT button, icon or widget which, when selected, causes transmitting a message or notification to another computer indicating that the deletion list is ready for review.
In block 314, the process is programmed to receive a message, signal or other indication that the deletion list is approved, and initiation of a propagated deletion operation as a specified kind of build operation. Control may transfer to the process of
At block 316, the process is programmed to optionally allow verification that a propagated deletion occurred correctly, and to respond to the requesting account or computer. In an embodiment, the effect of the hard delete operation can be assessed by accessing the database to apply the same filters as before, which now will yield zero results. Furthermore, front-end graphical interface 140 may provide an interface to an e-mail system or other messaging system that allows transmitting an acknowledgment, confirmation or other message to the external computer 138 if it was the source of the deletion request 136. Alternatively, a programmatic response to a calling process may be provided, if such a process was the source of the deletion request 136. Or, an e-mail message may be sent within an organization that includes both the host computing device 130 and the server computer 110 to specify that the deletion completed.
Referring now to
At block 322, the process is programmed to delete the specified records from all the raw datasets that were identified at block 320. In one embodiment, deleting data from raw datasets may involve operations on files that are external to database 180, such as deleting rows in CSV files from which data was imported. In an embodiment, propagated deletion instructions 134 form and transmit one or more SQL queries to API 150 that specify updates to the raw datasets that were identified. The API 150 transforms these queries into instructions to the core RDD processor 160, which instructs the worker process 170 to perform updates to the raw datasets at the distributed data storage system 180. Or, when raw datasets are in an external database source such as a HADOOP (HDFS) store, block 322 can comprise generating and transmitting a programmatic call with sufficient credentials to authenticate or authorize the call, or to log in to the external system, and accomplish a deletion there. In still another alternative, deletion can comprise requesting the worker process 170 to contact an elastic search system to update an index in cases in which data was exported to those systems, as specified in metadata.
In an embodiment, using SPARK SQL, the API 150 and core RDD processor 160 accept arbitrary changes to any number of raw datasets, as specified by requests from clients such as interface 140 or CLI 142. This enables the system to carry out deletions and edits at the dataset level, row level, column level or cell level.
In block 324, the process is programmed, based on provenance metadata that is managed in the distributed database system, to traverse relationships that link the raw datasets to one or more derived datasets, reaching each derived dataset associated with the raw datasets. In some embodiments, the provenance metadata is maintained within a derived dataset. That is, a derived dataset may specify, in metadata, which raw datasets it is based on, so that traversal may comprise searching the metadata or loading successive derived datasets based on name, timestamp or other values until a relationship to a raw dataset is identified. Or, the provenance data may be managed in separate metadata tables or files. As an example of its use, once the raw datasets containing the “36” records have been identified, propagated deletion instructions 134 may transmit other SQL queries to the server 110 to retrieve identifying information for all derived datasets that have derivation relationships to the raw datasets.
As a derived dataset is identified via the relationships in response to the queries, at block 326 the process is programmed to generate and execute a build of each derived dataset. A “build” operation, in this context, may mean a software process or thread, which can execute in parallel with many other similar operations, that causes interpreting a set of deletion instructions. A build may comprise re-materializing derived tables. A build, with this approach, avoids potentially creating tables with null values that cannot be resolved after prior deletion of a related row. The build operation reaches a complete state when all relevant records are deleted. For example, based on result messages that identify a derived dataset, the propagated deletion instructions 134 are programmed to form further update queries to API 150 that cause the core RDD processor 160 and worker process 170 to initiate new builds of the derived dataset from the raw dataset from which data has just been deleted. Consequently, upon completion of a build, the new derived dataset omits the data that was just deleted from the raw dataset from which the derived dataset has been built. Therefore, the result of executing such builds is to propagate deletions that occurred in the raw datasets to each derived dataset, automatically under program control, creating derived datasets that also lack the data that was deleted in the raw datasets.
As seen at block 328, these operations are repeated for all derived datasets in the graph. Block 328 may represent programmatic tests to identify the next derived dataset via metadata in the distributed data storage system 180 that represents a graph like that of
Furthermore, as in the case of deleting data from raw datasets at block 322, processing derived datasets at blocks 324, 326 also may include determining from the provenance metadata that operations outside the database system 180 are required, for example using flat CSV files in a filesystem or HDFS records. In an embodiment, as part of blocks 324, 326, 328, inspection of metadata and relationships of raw or derived datasets may indicate that a particular raw dataset or derived dataset was exported outside the distributed database system 180. For example, a particular dataset may have been transmitted in native format to another instance of the system, or exported as a comma-separated value (CSV) file to a host computer, or otherwise transformed into a different format and copied out of the system. When metadata indicates an export, the process of
In yet another variation, at any of block 322 to block 328 inclusive, the process may be programmed to identify two or more different versions of particular datasets, based upon version identifiers or version metadata in the datasets or in other sources, and to perform similar delete operations on all the versions that are identified. Thus, the process of
At block 330, the process is programmed to delete any historical builds of the same derived datasets if they exist and any other metadata relating to these that might contain traces of the candidate records. Historical builds consist of derived datasets that are similarly named or tagged, but have a timestamp indicating creation in the past.
Therefore, the embodiment of
Embodiments may be used effectively and efficiently in relational database systems that feature tables and materialized views of the tables, as well as raw datasets and derived datasets as described herein, with or without systems of record such as POSTGRES.
Various embodiments may implement log or notification recording functions to create metadata specifying which account, computer or user requested, created, approved or executed a deletion request or deletion operation. For example, in
According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, portable computer systems, handheld devices, networking devices or any other device that incorporates hard-wired and/or program logic to implement the techniques.
For example,
Computer system 400 also includes a main memory 406, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 402 for storing information and instructions to be executed by processor 404. Main memory 406 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 404. Such instructions, when stored in non-transitory storage media accessible to processor 404, render computer system 400 into a special-purpose machine that is customized to perform the operations specified in the instructions.
Computer system 400 further includes a read only memory (ROM) 408 or other static storage device coupled to bus 402 for storing static information and instructions for processor 404. A storage device 410, such as a magnetic disk, optical disk, or solid-state drive is provided and coupled to bus 402 for storing information and instructions.
Computer system 400 may be coupled via bus 402 to a display 412, such as a cathode ray tube (CRT), for displaying information to a computer user. An input device 414, including alphanumeric and other keys, is coupled to bus 402 for communicating information and command selections to processor 404. Another type of user input device is cursor control 416, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 404 and for controlling cursor movement on display 412. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.
Computer system 400 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 400 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 400 in response to processor 404 executing one or more sequences of one or more instructions contained in main memory 406. Such instructions may be read into main memory 406 from another storage medium, such as storage device 410. Execution of the sequences of instructions contained in main memory 406 causes processor 404 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.
The term “storage media” as used herein refers to any non-transitory media that store data and/or instructions that cause a machine to operate in a specific fashion. Such storage media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical disks, magnetic disks, or solid-state drives, such as storage device 410. Volatile media includes dynamic memory, such as main memory 406. Common forms of storage media include, for example, a floppy disk, a flexible disk, hard disk, solid-state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge.
Storage media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between storage media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 402. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 404 for execution. For example, the instructions may initially be carried on a magnetic disk or solid-state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 400 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 402. Bus 402 carries the data to main memory 406, from which processor 404 retrieves and executes the instructions. The instructions received by main memory 406 may optionally be stored on storage device 410 either before or after execution by processor 404.
Computer system 400 also includes a communication interface 418 coupled to bus 402. Communication interface 418 provides a two-way data communication coupling to a network link 420 that is connected to a local network 422. For example, communication interface 418 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 418 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links may also be implemented. In any such implementation, communication interface 418 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
Network link 420 typically provides data communication through one or more networks to other data devices. For example, network link 420 may provide a connection through local network 422 to a host computer 424 or to data equipment operated by an Internet Service Provider (ISP) 426. ISP 426 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 428. Local network 422 and Internet 428 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 420 and through communication interface 418, which carry the digital data to and from computer system 400, are example forms of transmission media.
Computer system 400 can send messages and receive data, including program code, through the network(s), network link 420 and communication interface 418. In the Internet example, a server 430 might transmit a requested code for an application program through Internet 428, ISP 426, local network 422 and communication interface 418.
The received code may be executed by processor 404 as it is received, and/or stored in storage device 410, or other non-volatile storage for later execution.
Software system 500 is provided for directing the operation of computing device 400. Software system 500, which may be stored in system memory (RAM) 406 and on fixed storage (e.g., hard disk or flash memory) 410, includes a kernel or operating system (OS) 510.
The OS 510 manages low-level aspects of computer operation, including managing execution of processes, memory allocation, file input and output (I/O), and device I/O. One or more application programs, represented as 502A, 502B, 502C . . . 502N, may be “loaded” (e.g., transferred from fixed storage 410 into memory 406) for execution by the system 500. The applications or other software intended for use on device 500 may also be stored as a set of downloadable computer-executable instructions, for example, for downloading and installation from an Internet location (e.g., a Web server, an app store, or other online service).
Software system 500 includes a graphical user interface (GUI) 515, for receiving user commands and data in a graphical (e.g., “point-and-click” or “touch gesture”) fashion. These inputs, in turn, may be acted upon by the system 500 in accordance with instructions from operating system 510 and/or application(s) 502. The GUI 515 also serves to display the results of operation from the OS 510 and application(s) 502, whereupon the user may supply additional inputs or terminate the session (e.g., log off).
OS 510 can execute directly on the bare hardware 520 (e.g., processor(s) 404) of device 400. Alternatively, a hypervisor or virtual machine monitor (VMM) 530 may be interposed between the bare hardware 520 and the OS 510. In this configuration, VMM 530 acts as a software “cushion” or virtualization layer between the OS 510 and the bare hardware 520 of the device 400.
VMM 530 instantiates and runs one or more virtual machine instances (“guest machines”). Each guest machine comprises a “guest” operating system, such as OS 510, and one or more applications, such as application(s) 502, designed to execute on the guest operating system. The VMM 530 presents the guest operating systems with a virtual operating platform and manages the execution of the guest operating systems.
In some instances, the VMM 530 may allow a guest operating system to run as if it is running on the bare hardware 520 of device 400 directly. In these instances, the same version of the guest operating system configured to execute on the bare hardware 520 directly may also execute on VMM 530 without modification or reconfiguration. In other words, VMM 530 may provide full hardware and CPU virtualization to a guest operating system in some instances.
In other instances, a guest operating system may be specially designed or configured to execute on VMM 530 for efficiency. In these instances, the guest operating system is “aware” that it executes on a virtual machine monitor. In other words, VMM 530 may provide para-virtualization to a guest operating system in some instances.
The above-described basic computer hardware and software is presented for purpose of illustrating the basic underlying computer components that may be employed for implementing the example embodiment(s). The example embodiment(s), however, are not necessarily limited to any particular computing environment or computing device configuration. Instead, the example embodiment(s) may be implemented in any type of system architecture or processing environment that one skilled in the art, in light of this disclosure, would understand as capable of supporting the features and functions of the example embodiment(s) presented herein.
In the foregoing specification, embodiments have been described with reference to numerous specific details that may vary from implementation to implementation. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the disclosure, and what is intended by the applicants to be the scope of the disclosure, is the literal and equivalent scope of the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction.
This application claims the benefit under 35 U.S.C. 119(e) of provisional application 62/518,421, filed Jun. 12, 2017, the entire contents of which are hereby incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
5109399 | Thompson | Apr 1992 | A |
5329108 | Lamoure | Jul 1994 | A |
5632009 | Rao et al. | May 1997 | A |
5670987 | Doi et al. | Sep 1997 | A |
5781704 | Rossmo | Jul 1998 | A |
5798769 | Chiu et al. | Aug 1998 | A |
5818737 | Orr et al. | Oct 1998 | A |
5845300 | Comer | Dec 1998 | A |
6057757 | Arrowsmith et al. | May 2000 | A |
6091956 | Hollenberg | Jul 2000 | A |
6094653 | Li et al. | Jul 2000 | A |
6134543 | Witkowski | Oct 2000 | A |
6161098 | Wallman | Dec 2000 | A |
6167405 | Rosensteel, Jr. et al. | Dec 2000 | A |
6219053 | Tachibana et al. | Apr 2001 | B1 |
6232971 | Haynes | May 2001 | B1 |
6247019 | Davies | Jun 2001 | B1 |
6279018 | Kudrolli et al. | Aug 2001 | B1 |
6289338 | Stoffel et al. | Sep 2001 | B1 |
6341310 | Leshem et al. | Jan 2002 | B1 |
6366933 | Ball et al. | Apr 2002 | B1 |
6369835 | Lin | Apr 2002 | B1 |
6430305 | Decker | Aug 2002 | B1 |
6456997 | Shukla | Sep 2002 | B1 |
6463404 | Appleby | Oct 2002 | B1 |
6523172 | Martinez-Guerra et al. | Feb 2003 | B1 |
6539538 | Brewster et al. | Mar 2003 | B1 |
6549752 | Tsukamoto | Apr 2003 | B2 |
6549944 | Weinberg et al. | Apr 2003 | B1 |
6560620 | Ching | May 2003 | B1 |
6581068 | Bensoussan et al. | Jun 2003 | B1 |
6594672 | Lampson et al. | Jul 2003 | B1 |
6631496 | Li et al. | Oct 2003 | B1 |
6640231 | Andersen et al. | Oct 2003 | B1 |
6642945 | Sharpe | Nov 2003 | B1 |
6643613 | McGee et al. | Nov 2003 | B2 |
6714936 | Nevin, III | Mar 2004 | B1 |
6748481 | Parry et al. | Jun 2004 | B1 |
6775675 | Nwabueze et al. | Aug 2004 | B1 |
6820135 | Dingman | Nov 2004 | B1 |
6828920 | Owen et al. | Dec 2004 | B2 |
6839745 | Dingari et al. | Jan 2005 | B1 |
6877137 | Rivette et al. | Apr 2005 | B1 |
6976210 | Silva et al. | Dec 2005 | B1 |
6978419 | Kantrowitz | Dec 2005 | B1 |
6980984 | Huffman et al. | Dec 2005 | B1 |
6985950 | Hanson et al. | Jan 2006 | B1 |
7013313 | LaRue | Mar 2006 | B1 |
7027974 | Busch et al. | Apr 2006 | B1 |
7028223 | Kolawa et al. | Apr 2006 | B1 |
7036085 | Barros | Apr 2006 | B2 |
7043702 | Chi et al. | May 2006 | B2 |
7055110 | Kupka et al. | May 2006 | B2 |
7089541 | Ungar | Aug 2006 | B2 |
7117430 | Maguire et al. | Oct 2006 | B2 |
7139800 | Bellotti et al. | Nov 2006 | B2 |
7158878 | Rasmussen et al. | Jan 2007 | B2 |
7162475 | Ackerman | Jan 2007 | B2 |
7168039 | Bertram | Jan 2007 | B2 |
7171427 | Witowski et al. | Jan 2007 | B2 |
7194680 | Roy et al. | Mar 2007 | B1 |
7237192 | Stephenson et al. | Jun 2007 | B1 |
7240330 | Fairweather | Jul 2007 | B2 |
7269786 | Malloy et al. | Sep 2007 | B1 |
7278105 | Kitts | Oct 2007 | B1 |
7290698 | Poslinski et al. | Nov 2007 | B2 |
7333998 | Heckerman et al. | Feb 2008 | B2 |
7370047 | Gorman | May 2008 | B2 |
7379811 | Rasmussen et al. | May 2008 | B2 |
7379903 | Caballero et al. | May 2008 | B2 |
7426654 | Adams et al. | Sep 2008 | B2 |
7451397 | Weber et al. | Nov 2008 | B2 |
7454466 | Bellotti et al. | Nov 2008 | B2 |
7467375 | Tondreau et al. | Dec 2008 | B2 |
7487139 | Fraleigh et al. | Feb 2009 | B2 |
7502786 | Liu et al. | Mar 2009 | B2 |
7525422 | Bishop et al. | Apr 2009 | B2 |
7529727 | Arning et al. | May 2009 | B2 |
7529734 | Dirisala | May 2009 | B2 |
7533069 | Fairweather | May 2009 | B2 |
7558677 | Jones | Jul 2009 | B2 |
7574409 | Patinkin | Aug 2009 | B2 |
7574428 | Leiserowitz et al. | Aug 2009 | B2 |
7579965 | Bucholz | Aug 2009 | B2 |
7596285 | Brown et al. | Sep 2009 | B2 |
7614006 | Molander | Nov 2009 | B2 |
7617232 | Gabbert et al. | Nov 2009 | B2 |
7620628 | Kapur et al. | Nov 2009 | B2 |
7627812 | Chamberlain et al. | Dec 2009 | B2 |
7634717 | Chamberlain et al. | Dec 2009 | B2 |
7685083 | Fairweather | Mar 2010 | B2 |
7703021 | Flam | Apr 2010 | B1 |
7706817 | Bamrah et al. | Apr 2010 | B2 |
7712049 | Williams et al. | May 2010 | B2 |
7716077 | Mikurak | May 2010 | B1 |
7725530 | Sah et al. | May 2010 | B2 |
7725547 | Albertson et al. | May 2010 | B2 |
7730082 | Sah et al. | Jun 2010 | B2 |
7730109 | Rohrs et al. | Jun 2010 | B2 |
7739246 | Mooney et al. | Jun 2010 | B2 |
7756843 | Palmer | Jul 2010 | B1 |
7761407 | Stern | Jul 2010 | B1 |
7770100 | Chamberlain et al. | Aug 2010 | B2 |
7805457 | Viola et al. | Sep 2010 | B1 |
7809703 | Balabhadrapatruni et al. | Oct 2010 | B2 |
7814084 | Hallett et al. | Oct 2010 | B2 |
7818658 | Chen | Oct 2010 | B2 |
7870493 | Pall et al. | Jan 2011 | B2 |
7877421 | Berger et al. | Jan 2011 | B2 |
7894984 | Rasmussen et al. | Feb 2011 | B2 |
7899611 | Downs et al. | Mar 2011 | B2 |
7899796 | Borthwick et al. | Mar 2011 | B1 |
7917376 | Bellin et al. | Mar 2011 | B2 |
7920963 | Jouline et al. | Apr 2011 | B2 |
7933862 | Chamberlain et al. | Apr 2011 | B2 |
7941321 | Greenstein et al. | May 2011 | B2 |
7962281 | Rasmussen et al. | Jun 2011 | B2 |
7962495 | Jain et al. | Jun 2011 | B2 |
7962848 | Bertram | Jun 2011 | B2 |
7970240 | Chao et al. | Jun 2011 | B1 |
7971150 | Raskutti et al. | Jun 2011 | B2 |
7984374 | Caro et al. | Jul 2011 | B2 |
8001465 | Kudrolli et al. | Aug 2011 | B2 |
8001482 | Bhattiprolu et al. | Aug 2011 | B2 |
8010545 | Stefik et al. | Aug 2011 | B2 |
8015487 | Roy et al. | Sep 2011 | B2 |
8024778 | Cash et al. | Sep 2011 | B2 |
8036632 | Cona et al. | Oct 2011 | B1 |
8036971 | Aymeloglu et al. | Oct 2011 | B2 |
8046283 | Burns | Oct 2011 | B2 |
8054756 | Chand et al. | Nov 2011 | B2 |
8103543 | Zwicky | Jan 2012 | B1 |
8117022 | Linker | Feb 2012 | B2 |
8132149 | Shenfield et al. | Mar 2012 | B2 |
8134457 | Velipasalar et al. | Mar 2012 | B2 |
8145703 | Frishert et al. | Mar 2012 | B2 |
8185819 | Sah et al. | May 2012 | B2 |
8196184 | Amirov et al. | Jun 2012 | B2 |
8214361 | Sandler et al. | Jul 2012 | B1 |
8214490 | Vos et al. | Jul 2012 | B1 |
8214764 | Gemmell et al. | Jul 2012 | B2 |
8225201 | Michael | Jul 2012 | B2 |
8229902 | Vishniac et al. | Jul 2012 | B2 |
8229947 | Fujinaga | Jul 2012 | B2 |
8230333 | Decherd et al. | Jul 2012 | B2 |
8271461 | Pike et al. | Sep 2012 | B2 |
8271948 | Talozi et al. | Sep 2012 | B2 |
8280880 | Aymeloglu et al. | Oct 2012 | B1 |
8290838 | Thakur et al. | Oct 2012 | B1 |
8290926 | Ozzie et al. | Oct 2012 | B2 |
8290942 | Jones et al. | Oct 2012 | B2 |
8301464 | Cave et al. | Oct 2012 | B1 |
8301904 | Gryaznov | Oct 2012 | B1 |
8302855 | Ma et al. | Nov 2012 | B2 |
8312367 | Foster | Nov 2012 | B2 |
8312546 | Alme | Nov 2012 | B2 |
8332354 | Chatterjee et al. | Dec 2012 | B1 |
8352881 | Champion et al. | Jan 2013 | B2 |
8368695 | Howell et al. | Feb 2013 | B2 |
8397171 | Klassen et al. | Mar 2013 | B2 |
8412707 | Mianji | Apr 2013 | B1 |
8418085 | Snook et al. | Apr 2013 | B2 |
8447722 | Ahuja et al. | May 2013 | B1 |
8452790 | Mianji | May 2013 | B1 |
8463036 | Ramesh et al. | Jun 2013 | B1 |
8473454 | Evanitsky et al. | Jun 2013 | B2 |
8484115 | Aymeloglu et al. | Jul 2013 | B2 |
8489331 | Kopf et al. | Jul 2013 | B2 |
8489623 | Jain et al. | Jul 2013 | B2 |
8489641 | Seefeld et al. | Jul 2013 | B1 |
8510743 | Hackborn et al. | Aug 2013 | B2 |
8514082 | Cova et al. | Aug 2013 | B2 |
8515207 | Chau | Aug 2013 | B2 |
8554579 | Tribble et al. | Oct 2013 | B2 |
8554653 | Falkenborg et al. | Oct 2013 | B2 |
8554709 | Goodson et al. | Oct 2013 | B2 |
8560494 | Downing | Oct 2013 | B1 |
8577911 | Stepinski et al. | Nov 2013 | B1 |
8589273 | Creeden et al. | Nov 2013 | B2 |
8595234 | Siripuapu et al. | Nov 2013 | B2 |
8601326 | Kirn | Dec 2013 | B1 |
8620641 | Farnsworth et al. | Dec 2013 | B2 |
8639757 | Zang et al. | Jan 2014 | B1 |
8646080 | Williamson et al. | Feb 2014 | B2 |
8676857 | Adams et al. | Mar 2014 | B1 |
8688573 | Ruknoic et al. | Apr 2014 | B1 |
8689108 | Duffield et al. | Apr 2014 | B1 |
8689182 | Leithead et al. | Apr 2014 | B2 |
8713467 | Goldenberg et al. | Apr 2014 | B1 |
8726379 | Stiansen et al. | May 2014 | B1 |
8739278 | Varghese | May 2014 | B2 |
8742934 | Sarpy et al. | Jun 2014 | B1 |
8744890 | Bernier | Jun 2014 | B1 |
8745516 | Mason et al. | Jun 2014 | B2 |
8781169 | Jackson et al. | Jul 2014 | B2 |
8787939 | Papakipos et al. | Jul 2014 | B2 |
8799799 | Cervelli et al. | Aug 2014 | B1 |
8799867 | Peri-Glass et al. | Aug 2014 | B1 |
8812960 | Sun et al. | Aug 2014 | B1 |
8830322 | Nerayoff et al. | Sep 2014 | B2 |
8832594 | Thompson et al. | Sep 2014 | B1 |
8838556 | Reiner et al. | Sep 2014 | B1 |
8855999 | Elliot | Oct 2014 | B1 |
8868537 | Colgrove et al. | Oct 2014 | B1 |
8903717 | Elliot | Dec 2014 | B2 |
8917274 | Ma et al. | Dec 2014 | B2 |
8924388 | Elliot et al. | Dec 2014 | B2 |
8924389 | Elliot et al. | Dec 2014 | B2 |
8924872 | Bogomolov et al. | Dec 2014 | B1 |
8930897 | Nassar | Jan 2015 | B2 |
8937619 | Sharma et al. | Jan 2015 | B2 |
8938434 | Jain et al. | Jan 2015 | B2 |
8938686 | Erenrich et al. | Jan 2015 | B1 |
8949164 | Mohler | Feb 2015 | B1 |
8954410 | Chang et al. | Feb 2015 | B2 |
9009171 | Grossman et al. | Apr 2015 | B1 |
9009827 | Albertson et al. | Apr 2015 | B1 |
9021260 | Falk et al. | Apr 2015 | B1 |
9021384 | Beard et al. | Apr 2015 | B1 |
9043696 | Meiklejohn et al. | May 2015 | B1 |
9043894 | Dennison et al. | May 2015 | B1 |
9069842 | Melby | Jun 2015 | B2 |
9092482 | Harris et al. | Jul 2015 | B2 |
9100428 | Visbal | Aug 2015 | B1 |
9116975 | Shankar et al. | Aug 2015 | B2 |
9129219 | Robertson et al. | Sep 2015 | B1 |
9146954 | Boe et al. | Sep 2015 | B1 |
9201920 | Jain et al. | Dec 2015 | B2 |
9208159 | Stowe et al. | Dec 2015 | B2 |
9223773 | Isaacson | Dec 2015 | B2 |
9229952 | Meacham et al. | Jan 2016 | B1 |
9230060 | Friedlander et al. | Jan 2016 | B2 |
9230280 | Maag et al. | Jan 2016 | B1 |
9280532 | Cicerone | Mar 2016 | B2 |
9576015 | Tolnay et al. | Feb 2017 | B1 |
9921918 | Yellapragada | Mar 2018 | B1 |
9946738 | Meacham et al. | Apr 2018 | B2 |
20010056522 | Satyanarayana | Dec 2001 | A1 |
20020033848 | Sciammarella et al. | Mar 2002 | A1 |
20020065708 | Senay et al. | May 2002 | A1 |
20020091707 | Keller | Jul 2002 | A1 |
20020095360 | Joao | Jul 2002 | A1 |
20020095658 | Shulman | Jul 2002 | A1 |
20020103705 | Brady | Aug 2002 | A1 |
20020116120 | Ruiz et al. | Aug 2002 | A1 |
20020147805 | Leshem et al. | Oct 2002 | A1 |
20020174201 | Ramer et al. | Nov 2002 | A1 |
20020194058 | Eldering | Dec 2002 | A1 |
20020194119 | Wright et al. | Dec 2002 | A1 |
20030028560 | Kudrolli et al. | Feb 2003 | A1 |
20030036848 | Sheha et al. | Feb 2003 | A1 |
20030039948 | Donahue | Feb 2003 | A1 |
20030074187 | Ait-Mokhtar et al. | Apr 2003 | A1 |
20030088438 | Maughan et al. | May 2003 | A1 |
20030126102 | Borthwick | Jul 2003 | A1 |
20030130993 | Mendelevitch et al. | Jul 2003 | A1 |
20030140106 | Raguseo | Jul 2003 | A1 |
20030144868 | MacIntyre et al. | Jul 2003 | A1 |
20030163352 | Surpin et al. | Aug 2003 | A1 |
20030171942 | Gaito | Sep 2003 | A1 |
20030172053 | Fairweather | Sep 2003 | A1 |
20030177112 | Gardner | Sep 2003 | A1 |
20030225755 | Iwayama et al. | Dec 2003 | A1 |
20030229848 | Arend et al. | Dec 2003 | A1 |
20040032432 | Baynger | Feb 2004 | A1 |
20040034570 | Davis | Feb 2004 | A1 |
20040044992 | Muller et al. | Mar 2004 | A1 |
20040064256 | Barinek et al. | Apr 2004 | A1 |
20040083466 | Dapp et al. | Apr 2004 | A1 |
20040085318 | Hassler et al. | May 2004 | A1 |
20040095349 | Bito et al. | May 2004 | A1 |
20040103124 | Kupkova | May 2004 | A1 |
20040111410 | Burgoon et al. | Jun 2004 | A1 |
20040111480 | Yue | Jun 2004 | A1 |
20040117387 | Civetta et al. | Jun 2004 | A1 |
20040126840 | Cheng et al. | Jul 2004 | A1 |
20040143602 | Ruiz et al. | Jul 2004 | A1 |
20040143796 | Lerner et al. | Jul 2004 | A1 |
20040153418 | Hanweck | Aug 2004 | A1 |
20040153837 | Preston et al. | Aug 2004 | A1 |
20040163039 | Gorman | Aug 2004 | A1 |
20040193600 | Kaasten et al. | Sep 2004 | A1 |
20040205524 | Richter et al. | Oct 2004 | A1 |
20040221223 | Yu et al. | Nov 2004 | A1 |
20040236688 | Bozeman | Nov 2004 | A1 |
20040260702 | Cragun et al. | Dec 2004 | A1 |
20040267746 | Marcjan et al. | Dec 2004 | A1 |
20050010472 | Quatse et al. | Jan 2005 | A1 |
20050027705 | Sadri et al. | Feb 2005 | A1 |
20050028094 | Allyn | Feb 2005 | A1 |
20050039119 | Parks et al. | Feb 2005 | A1 |
20050065811 | Chu et al. | Mar 2005 | A1 |
20050078858 | Yao et al. | Apr 2005 | A1 |
20050080769 | Gemmell | Apr 2005 | A1 |
20050086207 | Heuer et al. | Apr 2005 | A1 |
20050091420 | Snover et al. | Apr 2005 | A1 |
20050102328 | Ring et al. | May 2005 | A1 |
20050125715 | Di Franco et al. | Jun 2005 | A1 |
20050143602 | Yada et al. | Jun 2005 | A1 |
20050154628 | Eckart et al. | Jul 2005 | A1 |
20050154769 | Eckart et al. | Jul 2005 | A1 |
20050162523 | Darrell et al. | Jul 2005 | A1 |
20050166144 | Gross | Jul 2005 | A1 |
20050180330 | Shapiro | Aug 2005 | A1 |
20050182793 | Keenan et al. | Aug 2005 | A1 |
20050183005 | Denoue et al. | Aug 2005 | A1 |
20050203933 | Chaudhuri | Sep 2005 | A1 |
20050210409 | Jou | Sep 2005 | A1 |
20050246327 | Yeung et al. | Nov 2005 | A1 |
20050251786 | Citron et al. | Nov 2005 | A1 |
20060026120 | Carolan et al. | Feb 2006 | A1 |
20060059139 | Robinson | Mar 2006 | A1 |
20060074881 | Vembu et al. | Apr 2006 | A1 |
20060080619 | Carlson et al. | Apr 2006 | A1 |
20060095521 | Patinkin | May 2006 | A1 |
20060106847 | Eckardt et al. | May 2006 | A1 |
20060129746 | Porter | Jun 2006 | A1 |
20060129992 | Oberholtzer et al. | Jun 2006 | A1 |
20060139375 | Rasmussen et al. | Jun 2006 | A1 |
20060142949 | Helt | Jun 2006 | A1 |
20060143034 | Rothermel | Jun 2006 | A1 |
20060143075 | Carr et al. | Jun 2006 | A1 |
20060143079 | Basak et al. | Jun 2006 | A1 |
20060149596 | Surpin et al. | Jul 2006 | A1 |
20060161558 | Tamma et al. | Jul 2006 | A1 |
20060184889 | Molander | Aug 2006 | A1 |
20060203337 | White | Sep 2006 | A1 |
20060209085 | Wong et al. | Sep 2006 | A1 |
20060218405 | Ama et al. | Sep 2006 | A1 |
20060218637 | Thomas et al. | Sep 2006 | A1 |
20060241974 | Chao et al. | Oct 2006 | A1 |
20060242040 | Rader | Oct 2006 | A1 |
20060242630 | Koike et al. | Oct 2006 | A1 |
20060271277 | Hu et al. | Nov 2006 | A1 |
20060271838 | Carro | Nov 2006 | A1 |
20060279630 | Aggarwal et al. | Dec 2006 | A1 |
20070000999 | Kubo et al. | Jan 2007 | A1 |
20070011150 | Frank | Jan 2007 | A1 |
20070011304 | Error | Jan 2007 | A1 |
20070016363 | Huang et al. | Jan 2007 | A1 |
20070038646 | Thota | Feb 2007 | A1 |
20070038962 | Fuchs et al. | Feb 2007 | A1 |
20070057966 | Ohno et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070078832 | Ott et al. | Apr 2007 | A1 |
20070078872 | Cohen | Apr 2007 | A1 |
20070083541 | Fraleigh et al. | Apr 2007 | A1 |
20070094389 | Nussey et al. | Apr 2007 | A1 |
20070112714 | Fairweather | May 2007 | A1 |
20070150369 | Zivin | Jun 2007 | A1 |
20070150801 | Chidlovskii et al. | Jun 2007 | A1 |
20070156673 | Maga | Jul 2007 | A1 |
20070174760 | Chamberlain et al. | Jul 2007 | A1 |
20070185850 | Walters et al. | Aug 2007 | A1 |
20070185867 | Maga | Aug 2007 | A1 |
20070192265 | Chopin et al. | Aug 2007 | A1 |
20070198571 | Ferguson et al. | Aug 2007 | A1 |
20070208497 | Downs et al. | Sep 2007 | A1 |
20070208498 | Barker et al. | Sep 2007 | A1 |
20070208736 | Tanigawa et al. | Sep 2007 | A1 |
20070233709 | Abnous | Oct 2007 | A1 |
20070240062 | Christena et al. | Oct 2007 | A1 |
20070266336 | Nojima et al. | Nov 2007 | A1 |
20070284433 | Domenica et al. | Dec 2007 | A1 |
20070294643 | Kyle | Dec 2007 | A1 |
20080034327 | Cisler et al. | Feb 2008 | A1 |
20080040275 | Paulsen et al. | Feb 2008 | A1 |
20080040684 | Crump | Feb 2008 | A1 |
20080051989 | Welsh | Feb 2008 | A1 |
20080052142 | Bailey et al. | Feb 2008 | A1 |
20080069081 | Chand et al. | Mar 2008 | A1 |
20080077597 | Butler | Mar 2008 | A1 |
20080077642 | Carbone et al. | Mar 2008 | A1 |
20080103996 | Forman et al. | May 2008 | A1 |
20080104019 | Nath | May 2008 | A1 |
20080104060 | Abhyankar et al. | May 2008 | A1 |
20080104407 | Horne et al. | May 2008 | A1 |
20080126951 | Sood et al. | May 2008 | A1 |
20080140387 | Linker | Jun 2008 | A1 |
20080148398 | Mezack et al. | Jun 2008 | A1 |
20080155440 | Trevor et al. | Jun 2008 | A1 |
20080162616 | Gross et al. | Jul 2008 | A1 |
20080195417 | Surpin et al. | Aug 2008 | A1 |
20080195608 | Clover | Aug 2008 | A1 |
20080201339 | McGrew | Aug 2008 | A1 |
20080215546 | Baum et al. | Sep 2008 | A1 |
20080222295 | Robinson et al. | Sep 2008 | A1 |
20080228467 | Womack et al. | Sep 2008 | A1 |
20080243711 | Aymeloglu et al. | Oct 2008 | A1 |
20080249983 | Meisels et al. | Oct 2008 | A1 |
20080255973 | El Wade et al. | Oct 2008 | A1 |
20080263468 | Cappione et al. | Oct 2008 | A1 |
20080267107 | Rosenberg | Oct 2008 | A1 |
20080276167 | Michael | Nov 2008 | A1 |
20080278311 | Grange et al. | Nov 2008 | A1 |
20080281580 | Zabokritski | Nov 2008 | A1 |
20080288306 | MacIntyre et al. | Nov 2008 | A1 |
20080301643 | Appleton et al. | Dec 2008 | A1 |
20080313132 | Hao et al. | Dec 2008 | A1 |
20090002492 | Velipasalar et al. | Jan 2009 | A1 |
20090027418 | Maru et al. | Jan 2009 | A1 |
20090030915 | Winter et al. | Jan 2009 | A1 |
20090037417 | Shankar et al. | Feb 2009 | A1 |
20090055251 | Shah et al. | Feb 2009 | A1 |
20090076845 | Bellin et al. | Mar 2009 | A1 |
20090088964 | Schaaf et al. | Apr 2009 | A1 |
20090094166 | Aymeloglu et al. | Apr 2009 | A1 |
20090106178 | Chu | Apr 2009 | A1 |
20090112745 | Stefanescu | Apr 2009 | A1 |
20090119309 | Gibson et al. | May 2009 | A1 |
20090125359 | Knapic | May 2009 | A1 |
20090125369 | Kloosstra et al. | May 2009 | A1 |
20090125459 | Norton et al. | May 2009 | A1 |
20090132921 | Hwangbo et al. | May 2009 | A1 |
20090132953 | Reed et al. | May 2009 | A1 |
20090143052 | Bates et al. | Jun 2009 | A1 |
20090144262 | White et al. | Jun 2009 | A1 |
20090144274 | Fraleigh et al. | Jun 2009 | A1 |
20090150854 | Elaasar et al. | Jun 2009 | A1 |
20090164934 | Bhattiprolu et al. | Jun 2009 | A1 |
20090171939 | Athsani et al. | Jul 2009 | A1 |
20090172511 | Decherd et al. | Jul 2009 | A1 |
20090172669 | Bobak et al. | Jul 2009 | A1 |
20090172821 | Daira et al. | Jul 2009 | A1 |
20090177962 | Gusmorino et al. | Jul 2009 | A1 |
20090179892 | Tsuda et al. | Jul 2009 | A1 |
20090187464 | Bai et al. | Jul 2009 | A1 |
20090187546 | Whyte et al. | Jul 2009 | A1 |
20090187548 | Ji et al. | Jul 2009 | A1 |
20090199047 | Vaitheeswaran et al. | Aug 2009 | A1 |
20090222400 | Kupershmidt et al. | Sep 2009 | A1 |
20090222760 | Halverson et al. | Sep 2009 | A1 |
20090228507 | Jain et al. | Sep 2009 | A1 |
20090234720 | George et al. | Sep 2009 | A1 |
20090240664 | Dinker et al. | Sep 2009 | A1 |
20090249244 | Robinson et al. | Oct 2009 | A1 |
20090254970 | Agarwal et al. | Oct 2009 | A1 |
20090254971 | Herz | Oct 2009 | A1 |
20090271343 | Vaiciulis et al. | Oct 2009 | A1 |
20090281839 | Lynn et al. | Nov 2009 | A1 |
20090282097 | Alberti et al. | Nov 2009 | A1 |
20090287470 | Farnsworth et al. | Nov 2009 | A1 |
20090292626 | Oxford | Nov 2009 | A1 |
20090307049 | Elliott et al. | Dec 2009 | A1 |
20090310816 | Freire et al. | Dec 2009 | A1 |
20090313463 | Pang et al. | Dec 2009 | A1 |
20090319418 | Herz | Dec 2009 | A1 |
20090319891 | MacKinlay | Dec 2009 | A1 |
20090327208 | Bittner et al. | Dec 2009 | A1 |
20100011282 | Dollard et al. | Jan 2010 | A1 |
20100030722 | Goodson et al. | Feb 2010 | A1 |
20100031141 | Summers et al. | Feb 2010 | A1 |
20100042922 | Bradateanu et al. | Feb 2010 | A1 |
20100057622 | Faith et al. | Mar 2010 | A1 |
20100057716 | Stefik et al. | Mar 2010 | A1 |
20100070489 | Aymeloglu et al. | Mar 2010 | A1 |
20100070523 | Delgo et al. | Mar 2010 | A1 |
20100070842 | Aymeloglu et al. | Mar 2010 | A1 |
20100070845 | Facemire et al. | Mar 2010 | A1 |
20100070897 | Aymeloglu et al. | Mar 2010 | A1 |
20100082532 | Shaik et al. | Apr 2010 | A1 |
20100098318 | Anderson | Apr 2010 | A1 |
20100100963 | Mahaffey | Apr 2010 | A1 |
20100103124 | Kruzeniski et al. | Apr 2010 | A1 |
20100114629 | Adler et al. | May 2010 | A1 |
20100114887 | Conway et al. | May 2010 | A1 |
20100122152 | Chamberlain et al. | May 2010 | A1 |
20100125470 | Chisholm | May 2010 | A1 |
20100131457 | Heimendinger | May 2010 | A1 |
20100131502 | Fordham | May 2010 | A1 |
20100161735 | Sharma | Jun 2010 | A1 |
20100162176 | Dunton | Jun 2010 | A1 |
20100191563 | Schlaifer et al. | Jul 2010 | A1 |
20100198684 | Eraker et al. | Aug 2010 | A1 |
20100199225 | Coleman et al. | Aug 2010 | A1 |
20100204983 | Chung et al. | Aug 2010 | A1 |
20100211550 | Daniello et al. | Aug 2010 | A1 |
20100228786 | Torok | Sep 2010 | A1 |
20100228812 | Uomini | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100250412 | Wagner | Sep 2010 | A1 |
20100257015 | Molander | Oct 2010 | A1 |
20100257515 | Bates et al. | Oct 2010 | A1 |
20100262688 | Hussain et al. | Oct 2010 | A1 |
20100280857 | Liu et al. | Nov 2010 | A1 |
20100293174 | Bennett et al. | Nov 2010 | A1 |
20100306285 | Shah et al. | Dec 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100312837 | Bodapati et al. | Dec 2010 | A1 |
20100313119 | Baldwin et al. | Dec 2010 | A1 |
20100318838 | Katano et al. | Dec 2010 | A1 |
20100318924 | Frankel et al. | Dec 2010 | A1 |
20100321399 | Ellren et al. | Dec 2010 | A1 |
20100325526 | Ellis et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20100330801 | Rouh | Dec 2010 | A1 |
20110004498 | Readshaw | Jan 2011 | A1 |
20110029526 | Knight et al. | Feb 2011 | A1 |
20110047159 | Baid et al. | Feb 2011 | A1 |
20110047540 | Williams et al. | Feb 2011 | A1 |
20110060753 | Shaked et al. | Mar 2011 | A1 |
20110061013 | Bilicki et al. | Mar 2011 | A1 |
20110074811 | Hanson et al. | Mar 2011 | A1 |
20110078055 | Faribault et al. | Mar 2011 | A1 |
20110078173 | Seligmann et al. | Mar 2011 | A1 |
20110093327 | Fordyce, III et al. | Apr 2011 | A1 |
20110099133 | Chang et al. | Apr 2011 | A1 |
20110106770 | McDonald | May 2011 | A1 |
20110117878 | Barash et al. | May 2011 | A1 |
20110119100 | Ruhl et al. | May 2011 | A1 |
20110131547 | Elaasar | Jun 2011 | A1 |
20110137766 | Rasmussen et al. | Jun 2011 | A1 |
20110153384 | Horne et al. | Jun 2011 | A1 |
20110153592 | DeMarcken | Jun 2011 | A1 |
20110161096 | Buehler et al. | Jun 2011 | A1 |
20110161132 | Goel et al. | Jun 2011 | A1 |
20110170799 | Carrino et al. | Jul 2011 | A1 |
20110173032 | Payne et al. | Jul 2011 | A1 |
20110173093 | Psota et al. | Jul 2011 | A1 |
20110181598 | O'Neall et al. | Jul 2011 | A1 |
20110185316 | Reid et al. | Jul 2011 | A1 |
20110191672 | Schodl | Aug 2011 | A1 |
20110208565 | Ross et al. | Aug 2011 | A1 |
20110208724 | Jones et al. | Aug 2011 | A1 |
20110213655 | Henkin | Sep 2011 | A1 |
20110213791 | Jain et al. | Sep 2011 | A1 |
20110218934 | Elser | Sep 2011 | A1 |
20110218955 | Tang | Sep 2011 | A1 |
20110219321 | Gonzalez et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225198 | Edwards et al. | Sep 2011 | A1 |
20110238553 | Raj et al. | Sep 2011 | A1 |
20110258158 | Resende et al. | Oct 2011 | A1 |
20110258216 | Supakkul et al. | Oct 2011 | A1 |
20110270604 | Qi et al. | Nov 2011 | A1 |
20110270705 | Parker | Nov 2011 | A1 |
20110270834 | Sokolan et al. | Nov 2011 | A1 |
20110289397 | Eastmond et al. | Nov 2011 | A1 |
20110289407 | Naik et al. | Nov 2011 | A1 |
20110289420 | Morioka et al. | Nov 2011 | A1 |
20110291851 | Whisenant | Dec 2011 | A1 |
20110295649 | Fine | Dec 2011 | A1 |
20110295795 | Venkatasubramanian et al. | Dec 2011 | A1 |
20110310005 | Chen et al. | Dec 2011 | A1 |
20110314007 | Dassa et al. | Dec 2011 | A1 |
20110314024 | Chang et al. | Dec 2011 | A1 |
20120004904 | Shin et al. | Jan 2012 | A1 |
20120011238 | Rathod | Jan 2012 | A1 |
20120011245 | Gillette et al. | Jan 2012 | A1 |
20120019559 | Siler et al. | Jan 2012 | A1 |
20120022945 | Falkenborg et al. | Jan 2012 | A1 |
20120036013 | Neuhaus et al. | Feb 2012 | A1 |
20120036434 | Oberstein | Feb 2012 | A1 |
20120050293 | Carlhian et al. | Mar 2012 | A1 |
20120054284 | Rakshit | Mar 2012 | A1 |
20120059853 | Jagota | Mar 2012 | A1 |
20120066166 | Curbera et al. | Mar 2012 | A1 |
20120066296 | Appleton et al. | Mar 2012 | A1 |
20120072825 | Sherkin et al. | Mar 2012 | A1 |
20120075324 | Cardno et al. | Mar 2012 | A1 |
20120079363 | Folting et al. | Mar 2012 | A1 |
20120084117 | Tavares et al. | Apr 2012 | A1 |
20120084118 | Bai et al. | Apr 2012 | A1 |
20120084287 | Lakshminarayan et al. | Apr 2012 | A1 |
20120106801 | Jackson | May 2012 | A1 |
20120117082 | Koperda et al. | May 2012 | A1 |
20120123989 | Yu et al. | May 2012 | A1 |
20120124179 | Cappio et al. | May 2012 | A1 |
20120131512 | Takeuchi et al. | May 2012 | A1 |
20120137235 | Ts et al. | May 2012 | A1 |
20120144335 | Abeln et al. | Jun 2012 | A1 |
20120159307 | Chung et al. | Jun 2012 | A1 |
20120159362 | Brown et al. | Jun 2012 | A1 |
20120159399 | Bastide et al. | Jun 2012 | A1 |
20120170847 | Tsukidate | Jul 2012 | A1 |
20120173381 | Smith | Jul 2012 | A1 |
20120173985 | Peppel | Jul 2012 | A1 |
20120191446 | Binsztok et al. | Jul 2012 | A1 |
20120196557 | Reich et al. | Aug 2012 | A1 |
20120196558 | Reich et al. | Aug 2012 | A1 |
20120197651 | Robinson et al. | Aug 2012 | A1 |
20120203708 | Psota et al. | Aug 2012 | A1 |
20120208636 | Feige | Aug 2012 | A1 |
20120215784 | King et al. | Aug 2012 | A1 |
20120221511 | Gibson et al. | Aug 2012 | A1 |
20120221553 | Wittmer et al. | Aug 2012 | A1 |
20120221580 | Barney | Aug 2012 | A1 |
20120226523 | Weiss | Sep 2012 | A1 |
20120245976 | Kumar et al. | Sep 2012 | A1 |
20120246148 | Dror | Sep 2012 | A1 |
20120254129 | Wheeler et al. | Oct 2012 | A1 |
20120284345 | Costenaro et al. | Nov 2012 | A1 |
20120290527 | Yalamanchilli | Nov 2012 | A1 |
20120290879 | Shibuya et al. | Nov 2012 | A1 |
20120296907 | Long et al. | Nov 2012 | A1 |
20120304150 | Leithead et al. | Nov 2012 | A1 |
20120311684 | Paulsen et al. | Dec 2012 | A1 |
20120323888 | Osann, Jr. | Dec 2012 | A1 |
20120330973 | Ghuneim et al. | Dec 2012 | A1 |
20130006426 | Healey et al. | Jan 2013 | A1 |
20130006725 | Simanek et al. | Jan 2013 | A1 |
20130006916 | McBride et al. | Jan 2013 | A1 |
20130006947 | Akinyemi et al. | Jan 2013 | A1 |
20130016106 | Yip et al. | Jan 2013 | A1 |
20130018796 | Kolhatkar et al. | Jan 2013 | A1 |
20130024268 | Manickavelu | Jan 2013 | A1 |
20130024731 | Shochat et al. | Jan 2013 | A1 |
20130046635 | Grigg et al. | Feb 2013 | A1 |
20130046842 | Muntz et al. | Feb 2013 | A1 |
20130050217 | Armitage | Feb 2013 | A1 |
20130054306 | Bhalla | Feb 2013 | A1 |
20130057551 | Ebert et al. | Mar 2013 | A1 |
20130060742 | Chang et al. | Mar 2013 | A1 |
20130060786 | Serrano et al. | Mar 2013 | A1 |
20130061169 | Pearcy et al. | Mar 2013 | A1 |
20130073377 | Heath | Mar 2013 | A1 |
20130073454 | Busch | Mar 2013 | A1 |
20130078943 | Biage et al. | Mar 2013 | A1 |
20130086482 | Parsons | Apr 2013 | A1 |
20130091084 | Lee | Apr 2013 | A1 |
20130096988 | Grossman et al. | Apr 2013 | A1 |
20130097130 | Bingol et al. | Apr 2013 | A1 |
20130097482 | Marantz et al. | Apr 2013 | A1 |
20130101159 | Chao et al. | Apr 2013 | A1 |
20130110746 | Ahn | May 2013 | A1 |
20130110822 | Ikeda et al. | May 2013 | A1 |
20130110877 | Bonham et al. | May 2013 | A1 |
20130111320 | Campbell et al. | May 2013 | A1 |
20130117011 | Ahmed et al. | May 2013 | A1 |
20130117651 | Waldman et al. | May 2013 | A1 |
20130124193 | Holmberg | May 2013 | A1 |
20130150004 | Rosen | Jun 2013 | A1 |
20130151148 | Parundekar et al. | Jun 2013 | A1 |
20130151388 | Falkenborg et al. | Jun 2013 | A1 |
20130151453 | Bhanot et al. | Jun 2013 | A1 |
20130157234 | Gulli et al. | Jun 2013 | A1 |
20130166348 | Scotto | Jun 2013 | A1 |
20130166480 | Popescu et al. | Jun 2013 | A1 |
20130166550 | Buchmann et al. | Jun 2013 | A1 |
20130176321 | Mitchell et al. | Jul 2013 | A1 |
20130179420 | Park et al. | Jul 2013 | A1 |
20130185245 | Anderson | Jul 2013 | A1 |
20130185307 | El-Yaniv et al. | Jul 2013 | A1 |
20130198565 | Mancoridis et al. | Aug 2013 | A1 |
20130224696 | Wolfe et al. | Aug 2013 | A1 |
20130225212 | Khan | Aug 2013 | A1 |
20130226318 | Procyk | Aug 2013 | A1 |
20130226879 | Talukder et al. | Aug 2013 | A1 |
20130226953 | Markovich et al. | Aug 2013 | A1 |
20130238616 | Rose et al. | Sep 2013 | A1 |
20130246170 | Gross et al. | Sep 2013 | A1 |
20130246316 | Zhao et al. | Sep 2013 | A1 |
20130246537 | Gaddala | Sep 2013 | A1 |
20130246560 | Feng et al. | Sep 2013 | A1 |
20130246597 | Iizawa et al. | Sep 2013 | A1 |
20130251233 | Yang et al. | Sep 2013 | A1 |
20130262527 | Hunter et al. | Oct 2013 | A1 |
20130263019 | Castellanos et al. | Oct 2013 | A1 |
20130267207 | Hao et al. | Oct 2013 | A1 |
20130268520 | Fisher et al. | Oct 2013 | A1 |
20130275446 | Jain et al. | Oct 2013 | A1 |
20130279757 | Kephart | Oct 2013 | A1 |
20130282696 | John et al. | Oct 2013 | A1 |
20130290011 | Lynn et al. | Oct 2013 | A1 |
20130290825 | Arndt et al. | Oct 2013 | A1 |
20130297619 | Chandrasekaran et al. | Nov 2013 | A1 |
20130304770 | Boero et al. | Nov 2013 | A1 |
20130311375 | Priebatsch | Nov 2013 | A1 |
20140012796 | Petersen et al. | Jan 2014 | A1 |
20140019423 | Leinsberger et al. | Jan 2014 | A1 |
20140019936 | Cohanoff | Jan 2014 | A1 |
20140032506 | Hoey et al. | Jan 2014 | A1 |
20140033010 | Richardt et al. | Jan 2014 | A1 |
20140040371 | Gurevich et al. | Feb 2014 | A1 |
20140047319 | Eberlein | Feb 2014 | A1 |
20140047357 | Alfaro et al. | Feb 2014 | A1 |
20140058914 | Song et al. | Feb 2014 | A1 |
20140059038 | McPherson et al. | Feb 2014 | A1 |
20140067611 | Adachi et al. | Mar 2014 | A1 |
20140068487 | Steiger et al. | Mar 2014 | A1 |
20140095273 | Tang et al. | Apr 2014 | A1 |
20140095509 | Patton | Apr 2014 | A1 |
20140108068 | Williams | Apr 2014 | A1 |
20140108346 | Pinkney et al. | Apr 2014 | A1 |
20140108380 | Gotz et al. | Apr 2014 | A1 |
20140108985 | Scott et al. | Apr 2014 | A1 |
20140123279 | Bishop et al. | May 2014 | A1 |
20140129261 | Bothwell et al. | May 2014 | A1 |
20140136285 | Carvalho | May 2014 | A1 |
20140143009 | Brice et al. | May 2014 | A1 |
20140149436 | Bahrami et al. | May 2014 | A1 |
20140156527 | Grigg et al. | Jun 2014 | A1 |
20140156617 | Tomkins | Jun 2014 | A1 |
20140157172 | Peery et al. | Jun 2014 | A1 |
20140164502 | Khodorenko et al. | Jun 2014 | A1 |
20140181833 | Bird et al. | Jun 2014 | A1 |
20140189536 | Lange et al. | Jul 2014 | A1 |
20140195515 | Baker et al. | Jul 2014 | A1 |
20140195887 | Ellis et al. | Jul 2014 | A1 |
20140222521 | Chait | Aug 2014 | A1 |
20140222793 | Sadkin et al. | Aug 2014 | A1 |
20140229554 | Grunin et al. | Aug 2014 | A1 |
20140244388 | Manouchehri et al. | Aug 2014 | A1 |
20140258246 | Lo Faro et al. | Sep 2014 | A1 |
20140267294 | Ma | Sep 2014 | A1 |
20140267295 | Sharma | Sep 2014 | A1 |
20140279824 | Tamayo | Sep 2014 | A1 |
20140279979 | Yost et al. | Sep 2014 | A1 |
20140310266 | Greenfield | Oct 2014 | A1 |
20140316911 | Gross | Oct 2014 | A1 |
20140324876 | Konik et al. | Oct 2014 | A1 |
20140333651 | Cervelli et al. | Nov 2014 | A1 |
20140337772 | Cervelli et al. | Nov 2014 | A1 |
20140344230 | Krause et al. | Nov 2014 | A1 |
20140351070 | Christner et al. | Nov 2014 | A1 |
20140358829 | Hurwitz | Dec 2014 | A1 |
20140366132 | Stiansen et al. | Dec 2014 | A1 |
20150012509 | Kirn | Jan 2015 | A1 |
20150019394 | Unser et al. | Jan 2015 | A1 |
20150039886 | Kahol et al. | Feb 2015 | A1 |
20150046481 | Elliot | Feb 2015 | A1 |
20150046870 | Goldenberg et al. | Feb 2015 | A1 |
20150073929 | Psota et al. | Mar 2015 | A1 |
20150073954 | Braff | Mar 2015 | A1 |
20150089353 | Folkening | Mar 2015 | A1 |
20150089424 | Duffield et al. | Mar 2015 | A1 |
20150095773 | Gonsalves et al. | Apr 2015 | A1 |
20150100559 | Nassar | Apr 2015 | A1 |
20150100897 | Sun et al. | Apr 2015 | A1 |
20150100907 | Erenrich et al. | Apr 2015 | A1 |
20150106379 | Elliot et al. | Apr 2015 | A1 |
20150112641 | Faraj | Apr 2015 | A1 |
20150112998 | Shankar et al. | Apr 2015 | A1 |
20150134666 | Gattiker et al. | May 2015 | A1 |
20150135256 | Hoy et al. | May 2015 | A1 |
20150142766 | Jain et al. | May 2015 | A1 |
20150169709 | Kara et al. | Jun 2015 | A1 |
20150169726 | Kara et al. | Jun 2015 | A1 |
20150170077 | Kara et al. | Jun 2015 | A1 |
20150178877 | Bogomolov et al. | Jun 2015 | A1 |
20150186821 | Wang et al. | Jul 2015 | A1 |
20150187036 | Wang et al. | Jul 2015 | A1 |
20150188715 | Castelluci et al. | Jul 2015 | A1 |
20150188872 | White | Jul 2015 | A1 |
20150212663 | Papale et al. | Jul 2015 | A1 |
20150213043 | Ishii et al. | Jul 2015 | A1 |
20150213134 | Nie et al. | Jul 2015 | A1 |
20150242397 | Zhuang | Aug 2015 | A1 |
20150261817 | Harris et al. | Sep 2015 | A1 |
20150261847 | Ducott et al. | Sep 2015 | A1 |
20150324868 | Kaftan et al. | Nov 2015 | A1 |
20150338233 | Cervelli et al. | Nov 2015 | A1 |
20150341467 | Lim et al. | Nov 2015 | A1 |
20150347903 | Saxena et al. | Dec 2015 | A1 |
20150378996 | Kesin et al. | Dec 2015 | A1 |
20150379413 | Robertson et al. | Dec 2015 | A1 |
20160004667 | Chakerian et al. | Jan 2016 | A1 |
20160004764 | Chakerian et al. | Jan 2016 | A1 |
20160034545 | Shankar et al. | Feb 2016 | A1 |
20160062555 | Ward et al. | Mar 2016 | A1 |
20160098173 | Slawinski et al. | Apr 2016 | A1 |
20160125000 | Meacham et al. | May 2016 | A1 |
20160147730 | Cicerone | May 2016 | A1 |
20170039253 | Bond | Feb 2017 | A1 |
20170068698 | Tolnay et al. | Mar 2017 | A1 |
20170083595 | Tolnay et al. | Mar 2017 | A1 |
20170097950 | Meacham et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2014206155 | Dec 2015 | AU |
2014250678 | Feb 2016 | AU |
2666364 | Jan 2015 | CA |
102546446 | Jul 2012 | CN |
103167093 | Jun 2013 | CN |
102054015 | May 2014 | CN |
102014103482 | Sep 2014 | DE |
102014204827 | Sep 2014 | DE |
102014204830 | Sep 2014 | DE |
102014204834 | Sep 2014 | DE |
102014204840 | Sep 2014 | DE |
102014213036 | Jan 2015 | DE |
102014215621 | Feb 2015 | DE |
0652513 | May 1995 | EP |
1566758 | Aug 2005 | EP |
1672527 | Jun 2006 | EP |
1962222 | Aug 2008 | EP |
2221725 | Aug 2010 | EP |
2487610 | Aug 2012 | EP |
2551799 | Jan 2013 | EP |
2560134 | Feb 2013 | EP |
2778913 | Sep 2014 | EP |
2778914 | Sep 2014 | EP |
2778977 | Sep 2014 | EP |
2778986 | Sep 2014 | EP |
2835745 | Feb 2015 | EP |
2835770 | Feb 2015 | EP |
2838039 | Feb 2015 | EP |
2846241 | Mar 2015 | EP |
2851852 | Mar 2015 | EP |
2858014 | Apr 2015 | EP |
2858018 | Apr 2015 | EP |
2863326 | Apr 2015 | EP |
2863346 | Apr 2015 | EP |
2869211 | May 2015 | EP |
2881868 | Jun 2015 | EP |
2884439 | Jun 2015 | EP |
2884440 | Jun 2015 | EP |
2889814 | Jul 2015 | EP |
2891992 | Jul 2015 | EP |
2892197 | Jul 2015 | EP |
2897051 | Jul 2015 | EP |
2911078 | Aug 2015 | EP |
2963595 | Jan 2016 | EP |
2993595 | Mar 2016 | EP |
3018553 | May 2016 | EP |
3128447 | Feb 2017 | EP |
3142027 | Mar 2017 | EP |
3258393 | Dec 2017 | EP |
2366498 | Mar 2002 | GB |
2513007 | Oct 2014 | GB |
2516155 | Jan 2015 | GB |
2517582 | Feb 2015 | GB |
2518745 | Apr 2015 | GB |
2012778 | Nov 2014 | NL |
2013134 | Jan 2015 | NL |
2013306 | Feb 2015 | NL |
2011642 | Aug 2015 | NL |
624557 | Dec 2014 | NZ |
WO 2000009529 | Feb 2000 | WO |
WO 2002035376 | May 2002 | WO |
WO 2002065353 | Aug 2002 | WO |
WO 2003060751 | Jul 2003 | WO |
WO 2005010685 | Feb 2005 | WO |
WO 2005104736 | Nov 2005 | WO |
WO 2005116851 | Dec 2005 | WO |
WO 2008064207 | May 2008 | WO |
WO 2009061501 | May 2009 | WO |
WO 2010000014 | Jan 2010 | WO |
WO 2010030913 | Mar 2010 | WO |
WO 20100098958 | Sep 2010 | WO |
WO 2011017289 | May 2011 | WO |
WO 2011071833 | Jun 2011 | WO |
WO 2012025915 | Mar 2012 | WO |
WO 2012079836 | Jun 2012 | WO |
WO 2013010157 | Jan 2013 | WO |
WO 2013067077 | May 2013 | WO |
WO2013083793 | Jun 2013 | WO |
WO 2013102892 | Jul 2013 | WO |
Entry |
---|
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10. |
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11. |
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14. |
“A Tour of Pinboard,” <http://pinboard.in/tour> as printed May 15, 2014 in 6 pages. |
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21. |
“The FASTA Program Package,” fasta—36.3.4, Mar. 25, 2011, pp. 29. |
Wollrath et al., “A Distributed Object Model for the Java System,” Proceedings of the 2nd Conference on USENEX, Conference on Object-Oriented Technologies (COOTS), Jun. 17, 1996, pp. 219-231. |
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15. |
Kahan et al., “Annotea: an Open RDF Infrastructure for Shared Web Annotations”, Computer Networks, Elsevier Science Publishers B.V., vol. 39, No. 5, dated Aug. 5, 2002, pp. 589-608. |
Palantir, “Extracting and Transforming Data with Kite,” Palantir Technologies, Inc., Copyright 2010, pp. 38. |
Palermo, Christopher J., “Memorandum,” [Disclosure relating to U.S. Appl. No. 13/916,447, filed Jun. 12, 2013, and related applications], Jan. 31, 2014 in 3 pages. |
Palmas et al., “An Edge-Bunding Layout for Interactive Parallel Coordinates” 2014 IEEE Pacific Visualization Symposium, pp. 57-64. |
Vose et al., “Help File for ModelRisk Version 5,” 2007, Vose Software, pp. 349-353. [Uploaded in 2 Parts]. |
Manske, “File Saving Dialogs,” <http://www.mozilla.org/editor/ui_specs/FileSaveDialogs.html>, Jan. 20, 1999, pp. 7. |
Johnson, Maggie, “Introduction to YACC and Bison”. |
Gorr et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-IJ-CX-K005, May 6, 2002, 37 pages. |
Apsalar, “Data Powered Mobile Advertising,” “Free Mobile App Analytics” and various analytics related screen shots <http://apsalar.com> Printed Jul. 18, 2013 in 8 pages. |
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152. |
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf> downloaded May 12, 2014 in 8 pages. |
Morrison et al., “Converting Users to Testers: An Alternative Approach to Load Test Script Creation, Parameterization and Data Corellation,” CCSC: Southeastern Conference, JCSC 28, Dec. 2, 2012, pp. 188-196. |
Yang et al., “HTML Page Analysis Based on Visual Cues”, A129, pp. 859-864, 2001. |
Li et al., “Interactive Multimodal Visual Search on Mobile Device,” IEEE Transactions on Multimedia, vol. 15, No. 3, Apr. 1, 2013, pp. 594-607. |
Gesher, Ari, “Palantir Screenshots in the Wild: Swing Sightings,” The Palantir Blog, Sep. 11, 2007, pp. 1-12, retrieved from the internet https://www.palantir.com/2007/09/palantir-screenshots/ retrieved on Aug. 18, 2015. |
Zaharia et al., “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing” dated 2012, 14 pages. |
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utility,” May 15, 2013, pp. 1-6, retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/. |
Palantir Technologies, “Palantir Labs—Timeline,” Oct. 1, 2010, retrieved from the internet https://www.youtube.com/watch?v=JCgDW5bru9M retrieved on Aug. 19. |
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144. |
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-c553-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015. |
Valentini et al., “Ensembles of Learning Machines”, M. Marinaro and R. Tagliaferri (Eds.): WIRN VIETRI 2002, LNCS 2486, pp. 3-20. |
Anonymous, “BackTult—JD Edwards One World Version Control System,” printed Jul. 23, 2007 in 1 page. |
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/modality/ Jan. 21, 2006, pp. 8. |
“Potential Money Laundering Warning Signs,” snapshot taken 2003, https://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%20LAUNDERING%20TRAINING%20GUIDES.pdf. |
Delicious, <http://delicious.com/> as printed May 15, 2014 in 1 page. |
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page. |
Dean et al., “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004, 13 pages. |
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10. |
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages. |
Pythagoras Communications Ltd., “Microsoft CRM Duplicate Detection,” Sep. 13, 2011, https://www.youtube.com/watch?v=j-7Qis0D0Kc. |
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8. |
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, <http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf> downloaded May 12, 2014 in 10. |
Keylines.com, “KeyLines Datasheet,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf> downloaded May 12, 2014 in 2 pages. |
“HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis,” Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab/ on Sep. 9, 2014, 2 pages. |
Umagandhi et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs,” International Journal of Computer Applications, vol. 80, No. 10, Oct. 1, 2013, pp. 7-18. |
Hogue et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web,” 14th International Conference on World Wide Web, WWW 2005: Chiba, Japan, May 10-14, 2005, pp. 86-95. |
Thompson, Mick, “Getting Started with GEO,” Getting Started with GEO, Jul. 26, 2011. |
Wright et al., “Palantir Technologies VAST 2010 Challenge Text Records—Investigations into Arms Dealing,” Oct. 29, 2010, pp. 1-10, retrieved from the internet http://hcil2.cs.umd.edu/newvarepository/VAST%20Challenge%202010/challenges/MC1%20-%20Investigations%20into%20Arms%20Dealing/entries/Palantir%20Technologies/ retrieved on Aug. 20, 2015. |
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16. |
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” <http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1> printed Aug. 4, 2011 in 1 page. |
Symantec Corporation, “E-Security Begins with Sound Security Policies,” Announcement Symantec, Jun. 14, 2001. |
Google Analytics Official Website—Web Analytics & Reporting, <http://www.google.com/analytics.index.html> Printed Jul. 18, 2013 in 22 pages. |
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30. |
Miklau et al., “Securing History: Privacy and Accountability in Database Systems,” 3 rd Biennial Conference on Innovative Data Systems Research (CIDR), Jan. 7-10, 2007, Asilomar, California, pp. 387-396. |
Wikipedia, “Multimap,” Jan. 1, 2013, https://en.wikipedia.org/w/index.php?title=Multimap&oldid=530800748. |
GIS-NET 3 Public _ Department of Regional Planning. Planning & Zoning Information for Unincorporated LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3_Public/Viewer.html. |
Hansen et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010. |
Glaab et al., “EnrichNet: Network-Based Gene Set Enrichment Analysis,” Bioinformatics 28.18 (2012): pp. i451-i457. |
Piwik—Free Web Analytics Software. <http://piwik.org/> Printed Jul. 19, 2013 in18 pages. |
Geiger, Jonathan G., “Data Quality Management, The Most Critical Initiative You Can Implement”, Data Warehousing, Management and Quality, Paper 098-29, SUGI 29, Intelligent Solutions, Inc., Bounder, CO, pp. 14, accessed Oct. 3, 2013. |
Definition “Identify”, downloaded Jan. 22, 2015, 1 page. |
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, <http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx> as printed Apr. 4, 2014 in 17 pages. |
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show_bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages. |
Jelen, Bill, “Excel 2013 in Depth, Video Enhanced Edition,” Jan. 25, 2013. |
About 80 Minutes, “Palantir in a Number of Parts—Part 6—Graph,” Mar. 21, 2013, pp. 1-6, retrieved from the internet http://about80minutes.blogspot.nl/2013/03/palantir-in-number-of-parts-part-6-. |
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2. |
Localytics—Mobile App Marketing & Analytics, <http://www.localytics.com/> Printed Jul. 18, 2013 in 12 pages. |
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006, LNCS 4297, pp. 277-288, 2006. |
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411. |
Quest, “Toad for ORACLE 11.6—Guide to Using Toad”, pp. 1-162, Sep. 24, 2012. |
Capptain—Pilot Your Apps, <http://www.capptain.com> Printed Jul. 18, 2013 in 6 pages. |
Palantir, “Kite Data-Integration Process Overview,” Palantir Technologies, Inc., Copyright 2010, pp. 48. |
Johnson, Steve, “Access 2013 on demand,” Access 2013 on Demand, May 9, 2013, Que Publishing. |
Rouse, Margaret, “OLAP Cube,” <http://searchdatamanagement.techtarget.com/definition/OLAP-cube>, Apr. 28, 2012, pp. 16. |
Goswami, Gautam, “Quite Writly Said!,” One Brick at a Time, Aug. 21, 2005, pp. 7. |
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008, pp. 15. |
StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, <http://statcounter.com/> Printed Jul. 19, 2013 in 17 pages. |
UserMetrix, <http://usermetrix.com/android-analytics> printed Jul. 18, 2013 in 3 pages. |
Osterweil et al., “Capturing, Visualizing and Querying Scientific Data Provenance”, http://www.mtholyoke.edu/-blerner/dataprovenance/ddg.html, dated May 20, 2015, 3 pages. |
Palantir, https://docs.palantir.com/gotham/3.11.1.0/dataguide/baggage/KiteSchema.xsd printed Apr. 4, 2014 in 4 pages. |
Hardesty, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata,” MIT News on Campus and Around the World, MIT News Office, Jan. 29, 2015, 3 pages. |
Nierman, “Evaluating Structural Similarity in XML Documents”, 6 pages, 2002. |
Cohn, et al., “Semi-supervised clustering with user feedback,” Constrained Clustering: Advances in Algorithms, Theory, and Applications 4.1 (2003): 17-32. |
“A Word About Banks and the Laundering of Drug Money,” Aug. 18, 2012, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/. |
Klemmer et al., “Where Do Web Sites Come From? Capturing and Interacting with Design History,” Association for Computing Machinery, CHI 2002, Apr. 20-25, 2002, Minneapolis, MN, pp. 8. |
Microsoft Office—Visio, “About connecting shapes,” <http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx> printed Aug. 4, 2011 in 6. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com. |
trak.io, <http://trak.io/> printed Jul. 18, 2013 in 3 pages. |
Boyce, Jim, “Microsoft Outlook 2010 Inside Out,” Aug. 1, 2010, retrieved from the internet https://capdtron.files.wordpress.com/2013/01/outlook-2010-inside_out.pdf. |
Wikipedia, “Federated Database System,” Sep. 7, 2013, retrieved from the internet on Jan. 27, 2015 http://en.wikipedia.org/w/index.php?title=Federated database system&oldid=5719542. |
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32. |
Palantir, “Kite,” https://docs.palantir.com/gotham/3.11.1.0/adminreference/datasources.11 printed Aug. 30, 2013 in 2 pages. |
Hur et al., “SciMiner: web-based literature mining tool for target identification and functional enrichment analysis,” Bioinformatics 25.6 (2009): pp. 838-840. |
Flurry Analytics, <http://www.flurry.com/> Printed Jul. 18, 2013 in 14 pages. |
Nivas, Tuli, “Test Harness and Script Design Principles for Automated Testing of non-GUI or Web Based Applications,” Performance Lab, Jun. 2011, pp. 30-37. |
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33. |
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316. |
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases,” Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, Jan. 1, 1990, pp. 70-80. |
TestFlight—Beta Testing on the Fly, <http://testflightapp.com/> Printed Jul. 18, 2013 in 3 pages. |
DISTIMO—App Analytics, <http://www.distimo.com/app-analytics> Printed Jul. 18, 2013 in 5 pages. |
Kontagent Mobile Analytics, <http://www.kontagent.com/> Printed Jul. 18, 2013 in 9 pages. |
Chaudhuri et al., “An Overview of Business Intelligence Technology,” Communications of the ACM, Aug. 2011, vol. 54, No. 8. |
Palantir, “The Repository Element,” https://docs.palantir.com/gotham/3.11.1.0/dataguide/kite_config_file.04 printed August. |
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36. |
Palantir, “Kite Operations,” Palantir Technologies, Inc., Copyright 2010, p. 1. |
Palantir, https://docs.palantir.com/gotham/3.11.1.0/dataguide/baggage/KiteSchema printed Aug. 30, 2013 in 1 page. |
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015. |
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679. |
Countly Mobile Analytics, <http://count.ly/> Printed Jul. 18, 2013 in 9 pages. |
AMNET, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html. |
APPACTS, “Smart Thinking for Super Apps,” <http://www.appacts.com> Printed Jul. 18, 2013 in 4 pages. |
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166. |
Kokossi et al., “D7-Dynamic Ontoloty Management System (Design),” Information Societies Technology Programme, Jan. 10, 2002, pp. 1-27. |
Niepert et al., “A Dynamic Ontology for a Dynamic Reference Work”, Joint Conference on Digital Libraries, pp. 1-10, Vancouver, British Columbia, Jun. 17-22, 2007. |
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286. |
Mixpanel—Mobile Analytics, <https://mixpanel.com/> Printed Jul. 18, 2013 in 13 pages. |
Open Web Analytics (OWA), <http://www.openwebanalytics.com/> Printed Jul. 19, 2013 in 5 pages. |
Zheng et al., “GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis,” Nucleic acids research 36.suppl 2 (2008): pp. W385-W363. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com. |
Palantir, “Write a Kite Configuration File in Eclipse,” Palantir Technologies, Inc., Copyright 2010, pp. 2. |
European Patent Office, “Search Report” in application No. 18175417.7-1217, dated Aug. 13, 2018, 8 pages. |
European Claims in application No. 18175417.7-1217, dated Aug. 2018, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20180357235 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62518421 | Jun 2017 | US |