Bacteriophages (phages) are a phylum of viruses that infect bacteria, and are distinct from the animal and plant viruses. Phages can have either a “lytic” life cycle, a “lysogenic” life cycle that can potentially become lytic, or a “non-lytic” life cycle. Phages replicating through the lytic cycle cause lysis of the host target bacterial cell as a normal part of their life cycles. Phages replicating through the lysogenic cycles are called temperate phages, and can either replicate by means of the lytic life cycle and cause lysis of the host bacterium, or they can incorporate their DNA into the host bacterial DNA and become noninfectious prophages. Bacteriophages are bacterial viruses that only infect and multiply within their specific bacterial hosts. Host specificity is generally found at strain level, species level, or, more rarely, at genus level. This specificity allows for directed targeting of dangerous bacteria using phages. The adsorption of bacteriophages onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process.
The natural capability of phages to infect and kill bacteria, together with the specificity of the phage-bacterial interactions, is the basic phenomena on which the concept of phage therapy is built. Therefore, phages that possess lytic life cycle are suitable candidates for phage therapy. The use of phage in food production has recently become an option for the food industry as a novel method for biocontrol of unwanted pathogens, enhancing the safety of especially fresh and ready-to-eat food products.
International Patent Application No WO 00/69269 discloses the use of certain phage strain for treating infections caused by Vancomycin-sensitive as well as resistant strains of Enterococcus faecium, and International Patent Application No. WO 01/93904 discloses the use of bacteriophage, alone or in combination with other anti-microbial means, for preventing or treating gastrointestinal diseases associated with the species of the genus Clostridium.
US Patent Application No. 2001/0026795 describes methods for producing bacteriophage modified to delay inactivation by the host defense system, and thus increasing the time period in which the phage is active in killing the bacteria.
US Patent Application No. 2002/0001590 discloses the use of phage therapy against multi-drug resistant bacteria, specifically methicillin-resistant Staphylococcus aureus, and International Patent Application No. WO 02/07742 discloses the development of bacteriophage having multiple host range.
The use of phage therapy for the treatment of specific bacterial-infectious disease is disclosed, for example, in US Patent Application Nos. 2002/0044922; 2002/0058027 and International Patent Application No. WO 01/93904.
However, commercial scale production of bacteriophage compositions for therapeutic use is still limited. In current techniques, the titer of the phage composition is low, usually in the range of 109-1011 pfu/ml on a laboratory scale, and 107-109 on a commercial scale, whereas the titer typically required for therapeutic use is still limited. In current techniques, the titer of the phage composition is low, usually in the range of 109-1011 pfu/ml on a laboratory scale, and 107-109 on a commercial scale, whereas the titer typically required for phage therapy is 1012 pfu/ml. Additionally, to reach the desirable titer, very large volumes of liquid are required.
US20160333348 describes the use of CRISPR/Cas systems delivered to host target bacterial cells using phage as vectors. In principle, phage can be grown at volume in the cognate host cell using standard bacterial culture techniques and equipment. Growth of such phage or lytic phage in the target host cells may, however, be hampered by host cell killing by the resident phage by lysis and/or by CRISPR/Cas targeting of host DNA or by any other anti-host mechanism or agent encoded by the phage nucleic acid and which is active in host cells.
As bacteriophage use in industrial application grows there is a need for commercial quantities of identified bacteriophage. Therefore, there is a need for a method for production of phage that provides good yield titer and/or reduces manufacturing volume.
The invention provides a solution by providing propagator cells for propagating phage. To this end, the invention provides:—
In a First Configuration
A method of producing a population of phage, wherein the phage are of a first type capable of infecting cells of a first bacterial species or strain (host cells) by binding a cell-surface receptor comprised by bacteria of said species or strain, the method comprising
In a Second Configuration
A cell (propagator cell) for propagating phage, wherein the phage are of a first type capable of infecting cells of a first bacterial species or strain (host cells) by binding a cell-surface receptor comprised by bacteria of said species or strain, the propagator cell comprising the receptor on the surface thereof, wherein the propagator cell is of a second species or strain, wherein the second species or strain is different from the first species or strain, whereby the propagator cell is capable of being infected by phage of said first type for propagation of phage therein.
In a Third Configuration
A population of propagator cells according to the invention, optionally comprised in a fermentation vessel for culturing the propagator cells and propagating phage of said first type.
The invention recognises the advantage of artificially altering receptors expressed by bacterial cells (or selecting cells according to the profile of receptors naturally expressed), for example in the use of cells that can be cultured at scale and are useful for propagating and growing up useful phage populations at scale (eg, commercial scale). Such phage, for example, may encode a HM-crRNA or gRNA as described in US20160333348, which phage are useful for killing host bacterial cells comprised by humans, animals, plants, foodstuffs, beverages, cosmetics, environments (eg, soil, waterway, water reservoir or oil recovery environments), such as those applications described in US20160333348, the disclosure of which is incorporated herein by reference.
Proteinaceous receptors are mainly outer membrane proteins; sugar moieties include those that compose the cell wall, pellicles, teichoic and LTA. The receptor of the invention is, for, example selected from any of these.
Bacteriophage adsorption initiates the infection process. Through a series of interactions between binding proteins of the bacteriophage (phage) and receptors on the bacterial cell surface, the virus recognizes a potentially sensitive host and then positions itself for DNA ejection Phage adsorption is thus not only a crucial step in the infection process, but also represents the initial point of contact between virus and host and dictates host range specificity.
Bacteriophage adsorption generally consists of three steps: initial contact, reversible binding and irreversible attachment (Duckworth 1987). The first step involves random collisions between phage and host caused by Brownian motion, dispersion, diffusion or flow (Kokjohn and Miller 1992). In the reversible step, binding to bacterial surface components is not definitive and the phage can desorb from the host. This process, firstly identified by Garen and Puck (1951) through experimental observations of phage detachment after elution, may serve to keep the phage close to the cell surface as it searches for a specific receptor (Kokjohn and Miller 1992). The specific connection between bacterial receptor and phage-binding domains is sometimes mediated by an enzymatic cleavage. This step triggers conformational rearrangements in other phage molecules that allow the insertion of the genetic material into the host (for further details on the mechanism of phage genome ejection, see the review by Molineux and Panja (2013)).
Numerous review studies have highlighted the extensive range of host-associated receptors (proteins, sugars and cell surface structures) that bacteriophages target during adsorption (Lindberg 1977; Schwartz 1980; Wright, McConnell and Kanegasaki 1980; Heller 1992; Frost 1993; Henning and Hashemolhosseini 1994; Vinga et al. 2006: Rakhuba et al. 2010; Chaturongakul and Ounjai 2014). The nature and location of the host cell receptors recognised by bacteriophages varies greatly depending on the phage and host. They range from peptide sequences to polysaccharide moieties. In fact, bacteriophages have been shown to bind to receptors located in the walls of both Gram-positive (Xia et al. 2011) and Gram-negative bacteria (Marti et al. 2013), in bacterial capsules or slime layers (Fehmel et al 1975), and in appendages [e.g.pili (Guenrero-Ferreira et al. 2011) and flagella (Shin et al 2012)]. This diversity in receptors and structures involved is a testament to the multiplicity of mechanisms developed by phages and hosts to overcome the evolutionary strategies adopted by their counterparts. It is not unexpected to encounter so many possibilities considering the diversity and staggering amount of phages estimated to populate the different environments of the planet (Clokie et al 2011). Nevertheless, in all cases, adsorption has so far been shown to involve either constituents of the bacterial cell wall or protruding structures. In an embodiment, therefore, a receptor in the present invention can be any such receptor mentioned in this paragraph or elsewhere in this disclosure.
Optionally, the receptor comprises lipopolysaccharide (LPS), a heptose moiety, the host's glucosylated cell wall teichoic acid (WTA), YueB, or a receptor recognized by a tail fiber protein of the phage or gp21 of the phage.
Peptidoglycan, or murein, is an important component of the bacterial cell wall and is often involved in bacteriophage adsorption. It is a polymer composed of multiple units of amino acids and sugar derivatives-N-acetylglucosamine and N-acetylmuramic acid. These sugar constituents are connected through glycosidic bonds, forming glycan tetrapeptide sheets that are joined together through the cross-linking of amino acids. The cross-linking occurs through peptide bonds between diaminopimelic acid (an amino acid analog) and D-alanine, or through short peptide interbridges. These interbridges are more numerous in Gram-positive bacteria, leading to their characteristically thicker cell walls.
Another main component of the cell wall of Gram-positive bacteria that can be involved in phage adsorption is teichoic acid-polysaccharides composed of glycerol phosphate or ribitol phosphate and amino acids. They are bonded to the muramic acid of peptidoglycans. When teichoic acids are bonded to the lipids of the plasma membrane, they are called lipoteichoic acids (LTA). Further details of the composition of cell walls of bacteria can be found in Tortora, Funke and Case (2007), Willey, Sherwood and Woolverton (2008), Pommerville (2010) and Madigan et al. (2012).
The majority of the receptors so far identified are associated either with peptidoglycan or teichoic acid structures (Table 1). Out of 30 phages targeting Gram-positive bacteria reported in Table 1, only 10 utilize other structures for adsorption. Among these 10 phages, 9 display interactions with residues of either teichoic acid (phage SPP1) or peptidoglycan (phages 5, 13, c2, h, ml3, kh, L, and p2) for reversible binding. This highlights the important role these structures may play in the adsorption of phage to Gram-positive bacteria.
Optionally, the receptor of the invention is peptidoglycan, murein, teichoic acid or lipoteichoic acid (LTA). Optionally, the phage is a phage of a family listed in Table 1 (and optionally the host is the host for the phage as listed in Table 1 and/or the receptor is the receptor for the phage as listed in Table 1). Optionally, the phage is a phage listed in Table 1 (and optionally the host is the host for the phage as listed in Table 1 and/or the receptor is the receptor for the phage as listed in Table 1). In an embodiment, the host and second cells are gram-positive cells. Optionally the host and/or second cells are of a species or strain listed in Table 1 (where the host and second cell species or strains are different). Preferably when the host is a gram-positive bacteria, the receptor is a peptidoglycan. Alternatively, preferably when the host is a gram-positive bacteria, the receptor is a teichoic acid.
Bacillus
anthracis
Bacillus subtilis
Bacillus subtilis
Bacillus
thuringiensis
Lactobacillus
delbrueckii
Lactobacillus
plantarum
Lactobacillus
plantarum
Lactococcus
lactis
Lactococcus
lactis
Lactococcus
lactis
Listeria
monocytogenes
Listeria
monocytogenes
Listeria
monocytogenes
Staphylococcus
aureus
Staphylococcus
aureus
Staphylococcus
aureus
Staphylococcus
aureus
aMonteville, Ardestani and Geller (1994) noted that since phages can also bind to glucose and galactose moieties in the cell wall, these might, to a lesser extent, be involved in the adsorption mechanism;
bPellicle is a protective polysaccharide layer that covers the cell surface of Lactococcus lactis(Chapot-Chartier et al. 2010).
In Gram-negative bacteria, the peptidoglycan layer is relatively thin and is located inward of the outer membrane, the major component of the cell wall. These two layers are connected by Braun's lipoproteins. The outer membrane is a sophisticated structure composed of a lipid bilayer ornamented with proteins, poly saccharides and lipids; the latter two molecules form the LPS layer. LPSs are complexes that consist of three parts: lipid A, the core polysaccharide and the 0-polysaccharide. Lipid A is, in general, composed of fatty acids attached to glucosamine phosphate disaccharides. The core polysaccharide is connected to the lipid A through a ketodeoxyoctonate linker. The core polysaccharide and the O-polysaccharide (O-chain or O-antigen) contain several units of sugar residues extending outward to the outer membrane Cells that contain all three components of the LPS are denominated as smooth (S) type and those that lack the O-polysaccharide portion are distinguished as rough (R) type. In general, the saccharides composing the O-antigen are highly variable and those of the core polysaccharide are more conserved among species. Because of this, phages specific to only S-type strains tend to target the O-polysaccharide and, thus, have generally a narrower host range when compared to those able to adsorb to R-type cells (Rakhuba el al. 2010).
Table 2(a) compiles Gram-negative bacterial receptors located in the cell wall that interact with phage receptor-binding proteins (RBPs). Interestingly, in coliphages there is no preference for proteinaceous or polysaccharide receptors: some phages adsorb on cell wall proteins, some on sugar moieties and others require both structures for adsorption. In the case of Salmonella phages, the picture is not so different: some use proteins, some sugar moieties and some both types of receptors. On the other hand. Peudomonas phages commonly adsorb onto polysaccharide receptors. Although definitive conclusions cannot be drawn from such a small sample size, it should be noted that Pseudomonas can have two LPS moieties, a short chain LPS named A band and a longer B-band LPS (Beveridge and Graham 1991).
Optionally, the receptor is a host cell wall protein. Optionally, the receptor is a saccharide. Optionally, the receptor comprises O-antigen, LPS lipid A or LPS core polysaccharide. In an example, the receptor is smooth LPS or rough LPS. Optionally, the host cells are S-type bacteria and the receptor comprises O-antigen of the host. Optionally, the host cells are R-type bacteria and the receptor comprises LPS lipid A of the host.
Optionally, the receptor is a host cell wall protein. Optionally, the receptor is a saccharide. Optionally, the receptor comprises O-antigen, LPS lipid A or LPS core polysaccharide. In an example, the receptor is smooth LPS or rough LPS. Optionally, the host cells are S-type bacteria and the receptor comprises O-antigen of the host. Optionally, the host cells are R-type bacteria and the receptor comprises LPS lipid A of the host.
In an example, the host is E. coli and the phage are coliphage, wherein the receptor is a polysaccharide receptor and/or a host cell wall protein receptor. In an example, the second cells are engineered to express E co/h polysaccharide receptor and/or an E. coli cell wall protein receptor, wherein the E. coli is optionally of the same strain as the host cells.
In an example, the host is Salmonella, wherein the receptor is a polysaccharide receptor and/or a host cell wall protein receptor. In an example, the second cells are engineered to express Salmonella polysaccharide receptor and/or a Salmonella cell wall protein receptor, wherein the Salmonella is optionally of the same strain as the host cells.
In an example, the host is Pseudomonas, wherein the receptor is a polysaccharide receptor. In an example, the second cells are engineered to express Pseudomonas as polysaccharide receptor, wherein the Pseudomonas is optionally of the same strain as the host cells.
Optionally, the phage is a phage of a family listed in Table 2 (and optionally the host is the host for the phage as listed in Table 2 and/or the receptor is the receptor for the phage as listed in Table 2). Optionally, the phage is a phage listed in Table 2 (and optionally the host is the host for the phage as listed in Table 2 and/or the receptor is the receptor for the phage as listed in Table 2).
In an embodiment, the host and second cells are gram-negative cells. Preferably, the second cells are E. coli cells. Optionally the host and/or second cells are of a species or strain listed in Table 2 (where the host and second cell species or strains are different).
In an example, the host is E. coli and the phage are coliphage, wherein the receptor is a polysaccharide receptor and/or a host cell wall protein receptor. In an example, the second cells are engineered to express E. coli polysaccharide receptor and/or an E. coli cell wall protein receptor, wherein the E. coli is optionally of the same strain as the host cells.
In an example, the host is Salmonella, wherein the receptor is a polysaccharide receptor and/or a host cell wall protein receptor. In an example, the second cells are engineered to express Salmonella poly saccharide receptor and/or a Salmonella cell wall protein receptor, wherein the Salmonella is optionally of the same strain as the host cells.
In an example, the host is Pseudomonas, wherein the receptor is a polysaccharide receptor. In an example, the second cells are engineered to express Pseudomonas poly saccharide receptor, wherein the Pseudomonas is optionally of the same strain as the host cells.
Optionally, the phage is a phage of a family listed in Table 2 (and optionally the host is the host for the phage as listed in Table 2 and/or the receptor is the receptor for the phage as listed in Table 2). Optionally, the phage is a phage listed in Table 2 (and optionally the host is the host for the phage as listed in Table 2 and/or the receptor is the receptor for the phage as listed in Table 2).
In an embodiment, the host and second cells are gram-negative cells. Preferably, the second cells are E. coli cells. Optionally the host and/or second cells are of a species or strain listed in Table 2 (where the host and second cell species or strains are different).
Table 2(b) reports cases where phages not only adsorb onto bacterial surfaces but also enzymatically degrade the sugar moieties in the O-chain structure. It should be noted that all these phages belong to the Podoviridae family.
Caulobacter
crescentus
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Erwinia
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli K-
Escherichia
coli B
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Escherichia coli
Pseudoalteromonas
Pseudomonas
aeruginosa
Pseudomonas
aeruginosa
Pseudomonas
aeruginosa
Pseudomonas
aeruginosa
Pseudomonas
syringae
Salmonella
Salmonella
Salmonella
Salmonella
Salmonella
Salmonella
Yersinia pestis
Yersinia pestis
Yersinia pestis
Yersinia pestis
Yersinia
pseudotuberculosis
Escherichia coli
Salmonella
Salmonella
Salmonella
Shigella
aSukupolvi (1984) suggested that LPS is also required for adsorption of phage Ox2 on E. coli and S. typhimurium, although the study verified that isolated OmpA is enough to inactivate the phage and that the binding is not increased with the addition of LPS to the protein.
bAccording to Rakhuba et al. (2010), TonB is not a receptor itself, but acts as a mediator of electrochemical potential transmission; Vinga et al. (2006) stated that TonB is a membrane protein required for genome entry; Letellier et al. (2004) explained that TonB is part of a protein complex involved in the energy transduction from the electron transfer chain in the cytoplasmic membrane to the outer membrane receptors and speculated that it possibly might be critical for the genome injection through its interaction with FhuA.
cRhakuba et al. (2010) mentioned proteins FhuA and TonB as the receptors for T7; Molineux (2001) reported that ‘Bayer patches’, described as adhesion sites between the cytoplasmic membrane and the outer envelope of Gram-negative bacteria, are the proposed receptors for T7.
dIn 2010 the same group suggested that the adsorption of the phage on the sugar moieties of the host is an initial interaction, and that the true receptor is a protein molecule or protein complex (Cvirkaite-Krupovic 2010).
eKdo, 2-keto-3-deoxy-octulosonic acid; Ko, D-glycero-D-talo-oct-2-ulosonic acid; Hep, heptulose (ketoheptose); Glc, glucose; Gal, galactose; GlcNAc, N-acetylglucosamine (from Filippov et al. 2011).
In this section, bacterial structures, other than cell wall moieties, that also serve as receptors for phages are discussed. These include structures such as flagella, pili and capsules. They can be found in species from both Gram stains. See Table 3 for examples.
Optionally, the receptor of the invention is a flagellum, pilus or capsule component (eg, a component listed in Table 3 in the listed species or as found in a host that is of a different species to that listed). Optionally, the phage is a phage of a family listed in Table 3 (and optionally the host is the host for the phage as listed in Table 3 and/or the receptor is the receptor for the phage as listed in Table 3). Optionally, the phage is a phage listed in Table 3 (and optionally the host is the host for the phage as listed in Table 3 and/or the receptor is the receptor for the phage as listed in Table 3).
Flagella are long thin helical structures that confer motility to cells. They are composed of a basal body, a flagellar hook and a flagellar filament composed of subunits of flagellin proteins (Willey, Sherwood and Woolverton 2008). Table 3(a) reports phages attaching to flagellal proteins. The adhesion of phages to the filament structure is generally reversible and the flagellum's helical movement causes the phage to move along its surface until they reach the bacterial wall. Irreversible adsorption occurs, then, on receptors located on the surface of the bacterium, near the base of the flagellum (Schade. Adler and Ris 1967: Lindberg 1973; Guerrero-Fenreira et al. 2011). Interestingly, some phages (ϕCbK and ϕCb13) were observed to contain filaments protruding from their capsids that are responsible for reversible binding onto the host's flagellum; irreversible adsorption occurs only when the phage's tails interact with pili portals on the cell pole (Guenero-Ferreira et al. 2011). Because for these phages irreversible adsorption occurs on the pilus, even if they interact with the flagellum, they were reported in Table 3(b), which focuses on phages interacting with receptors in pili and mating pair formation structures.
Pili are rod-shaped filamentous appendages used for bacterial conjugation (Lindberg 1973). They extend from the donor cell and attach to receptors on the wall of the recipient cell. A depolymerization of the pilus causes its retraction, bringing both cells closer to each other. Further adhesion of the cells is achieved through binding proteins on their surfaces, genetic material is transferred through this conjugating junction (Madigan et al. 2012). Adsorption to the pilus structure has been so far associated with phages that belong to orders different from Caudovirales (Table 3b). In fact, according to Frost (1993), the families Cystoviridae and Inoviridae compose the majority of phages that adsorb onto pili structures. Interestingly, phages can be selective towards certain parts of the pili. That is the case for F-type phages, whose adsorption occur only on the tip of the pilus (Click and Webster 1998). In other phages, such as $6, the attachment happens at the sides (shaft) of the structure (Daugelavicius et al. 2005).
Salmonella
Salmonella
Salmonella
Caulobacter
crescentus
Escherichia
coli
Escherichia
coli
Pseudomonas
Pseudomonas
aeruginosa
Pseudomonas
aeruginosa
Pseudomonas
aeruginosa
Escherichia
coli
Klebsiella
Salmonella
Salmonella
Salmonella
Capsules are flexible cementing substances that extend radially from the cell wall. They act as binding agents between bacteria and/or between cells and substrates (Beveridge and Graham 1991). Slime layers are similar to capsules, but are more easily deformed. Both are made of sticky substances released by bacteria, and their common components are polysaccharides or proteins (Madigan et al. 2012). Adsorption of phages to capsules or slime layers is mediated by enzymatic cleavage of the exopolysaccharides that compose the layers. The hydrolysis of the layer is a reversible step, whereas irreversible binding is achieved through bonding of the phage with receptors on the cell wall (Rakhuba et al. 2010). As can be seen in Table 3(c), the few phages identified to have RBP recognizing exopolysaccharides are mostly of Podoviridae morphology.
In an example, the host is Salmonella (eg, S. enterica Serovar Typhimurium) and the receptor is selected from flagella, vitamin B12 uptake outer membrane protein, BtuB and lipopolysaccharide-related O-antigen. In an example the receptor is a flagellum or BtuB and the phage are Siphoviridae phage. In an example the receptor is O-antigen of LPS and the phage are Podoviridae phage. Optionally, the receptor is FliC host receptor or FljB receptor.
Optionally, the host is S. enterica or P. aeruginosa. Optionally, the receptor is the receptor of the host as listed in Table 4.
S. enterica
P. aeruginosa
The O-antigen structure of Salmonella 066 has been established, which reportedly differs from the known O-antigen structure of Escherichia coli 0166 only in one linkage (most likely the linkage between the O-units) and O-acetylation. The O-antigen gene clusters of Salmonella 066 and E. coli O166 were found to have similar organizations, the only exception being that in Salmonella O66, the wzy gene is replaced by a non-coding region. The function of the wzy gene in E. coli O166 was confirmed by the construction and analysis of deletion and trans-complementation mutants. It is proposed that a functional wzy gene located outside the 0-antigen gene cluster is involved in Salmonella O66 O-antigen biosynthesis, as has been reported previously in Salmonellaserogroups A, B and D1. The sequence identity for the corresponding genes between the O-antigen gene clusters of SalmonellaO66 and E. coli O166 ranges from 64 to 70%, indicating that they may originate from a common ancestor. It is likely that after the species divergence, Salmonella O66 got its specific-antigen form by inactivation of the wzy gene located in the O-antigen gene cluster and acquisition of two new genes (a wzy gene and a prophage gene for 0-acetyl modification) both residing outside the O-antigen gene cluster.
In an example, the second cells are engineered to comprise an expressible E. coli (eg, Escherichia coli O166) wzv gene. In an example, the second cells do not comprise an expressible E. coli (eg, Escherichia coli O166) wzv gene. Optionally, the host cells are E. coli or Salmonella (eg, Salmonella O66) cells.
In an example, the phage or particle comprises a phage genome or a phagemid, eg, wherein the genome or phagemid comprises DNA encoding one or more proteins or nucleic acids of interest, such as crRNAs for targeting host cell genomes or antibiotics for killing host cells.
In an alternative, instead of bacteria, the host and second cells (propagator cells) are archaeal cells and the disclosure herein relating to bacteria instead can be read as applying mutatis mutandis to archaea.
Target host strains or species of bacteria may comprise restriction-modification system (R-M system), such as R-M comprising restriction endonucleases, that can recognize and cut or otherwise destroy or degrade invading nucleic acid. Host DNA is protected by the action of methyltransferases that methylate host DNA and protect it from the R-M system. It may be desirable, therefore, to provide second bacterial cells (propagator cells) that do not comprise an R-M system or whose genome is devoid of nucleic acid encoding one or more restriction endonucleases which are encoded by host cells. Additionally or alternatively, the second cells comprise nucleic acid encoding one or more methyltransferases which are encoded by host cells, optionally all or substantially all (eg, at least 50, 60, 70 80 or 90%) of all of the methyltransferases encoded by host cells. Optionally, the second cells comprise nucleic acid encoding 1, 2,3 4, 5, 6, 7, 8, 9 or 10 or (or at least 1, 2,3 4, 5, 6, 7, 8, 9 or 10) methyltransferases encoded by host cells.
Advantageously, to produce phage or transduction particles targeting a specific bacterial host population, it may be beneficial to produce the phage or particles in a strain of bacteria related to the target host strain, for example to produce phage or particle nucleic acid (eg, DNA) that can evade host cell defence mechanisms, such as R-M systems or restriction endonuclease action. Optionally, therefore, the host cells and second cells (propagator cells) are cells of the same species (or the same strain of species except that the second cells comprise one or more genetic modifications that are not found in the genomes of host cells; such modification can be deletion of one or more protospacer sequences, for example wherein the host cells comprise such sequence(s) and the phage or particles express crRNA that recognize the sequences in the host cells to guide Cas and to modify the protospacer sequence(s)). For example, modification of the DNA of the phage or particles by methyltransferases in the second bacteria can be useful to shield the DNA against restriction modification once the phage or particles subsequently infect the target host cells where the latter also comprise methyltranferases in common with the second cells. By adapting (or choosing) the second cells as per the invention to display a surface receptor that is also displayed on the host cells, the invention enables phage or particle production in a strain that may display beneficial DNA modification against restriction modification subsequently by the target host bacteria. Usefully, the protospacer sequence(s) to which (in one embodiment) crRNAs encoded by the phage or particles are targeted in the target host bacteria may be deleted or naturally absent in the genome of the second bacteria, such that Cas-mediated cutting of the second cell genomes does not take place during the production of the phage or particles.
A heterologous methyltransferase (MTase) can be used to confer on a production bacterium (propagator bacterium or second cells herein) a similar methylation pattern as that of a target host bacterium. See, for example, WO2016205276, which incorporated herein by reference, for example to provide illustration of how to provide production strain genomes comprising desirable MTases for use in the present invention). In bacteria and archaea, some DNA methyltransferases can be separated into three distinct classes depending on the location of the modification and type of reaction they catalyze. N6-methyladenine (m6A) and N4-methylcytosine (m4C) result from methylation of the amino moiety of adenine and cytosine, respectively, while 5-methylcytosine (m5C) is the result of methylation at the C5 position of cytosine.
A non-limiting example of a DNA MTase useful with the invention includes LlaPI from phage Φ50, which can be introduced to protect against type II R-M systems in lactococci (Hill et al. J Bacteriol. 173(14):4363-70 (1991)). Optionally, the production bacterium encodes and expresses one or more DNA modification enzymes that catalyse methylation of adenines, eg, to produce N6-methyladenine (m6A). Optionally, the production bacterium encodes and expresses one or more DNA modification enzymes that catalyse methylation of cytosines, eg, to produce N4-methylcytosine (m4C) or 5-methylcytosine (m5C). Optionally, the production bacterium encodes and expresses one or more DNA modification enzymes that catalyse acetimidation of adenine residues. Some R-M systems are sensitive to adenine methylation. Polypeptides that acetimidate the adenine residues in the phage or particle DNA will protect the DNA against such systems. Non-limiting examples of polypeptides that can acetimidate adenine residues in the production host bacteria include the mom gene from phage Mu and the Mu-like prophage sequences (see, Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnmel) and H. influenzae biotype aegyptius ATCC 111 16), which converts adenine residues to N(6)-methyladenine, thereby protecting against adenine sensitive restriction enzymes. The methylation patterns conferred by individual methyltransferases can be assessed using established DNA sequencing technologies such as Pacbio SMRT sequencing (O'Loughlin et al. PLoS One. 2015:e0118533). Once generated, the production strain can be used to produce bacteriophage particles for DNA delivery into the target strain.
Bacterial “restriction-modification systems” (R-M systems) comprise (1) methyltransferases that methylate DNA at specific sequences and/or (2) restriction enzymes that cleave DNA that are unmethylated (Types I, II, and III) or methylated (Type IV). The R-M systems constitute a bacterial defence system wherein DNA with foreign methylation patterns is cleaved in multiple locations by the restriction enzymes of the R-M systems. Most: bacteria comprise more than one R-M system. Roberts, R. J. et al. Nucleic Acids Res. 31, 1805-1812 (2003). Type I methyltransferases require the presence of a compatible specificity protein for functionality. Type II and type III methyltransferases do not require any additional proteins to function. Thus, methyltransferases and restriction enzymes useful with this invention (either as targets for modification or inhibition, or as heterologous polypeptides to be expressed in a production bacterium, thereby modifying the R-M system of the production bacterium) can include any methyltransferase or restriction enzyme comprised in a bacterial restriction-modification system (e.g., Type I, II, III, or IV). Thus, in an example, the genome of the production bacterium (second or propagator cell) encodes a Type I methyltransferase that is also encoded by the host bacterium. Additionally or alternatively, in an example, the genome of the production bacterium (second or propagator cell) encodes a Type II methyltransferase that is also encoded by the host bacterium. Additionally or alternatively, in an example, the genome of the production bacterium (second or propagator cell) encodes a Type III methyltransferase that is also encoded by the host bacterium. Additionally or alternatively, in an example, the genome of the production bacterium (second or propagator cell) encodes a Type IV methyltransferase that is also encoded by the host bacterium.
In an example, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15) nucleic acid sequences encoding enzymes of the endogenous restriction modification system of a production bacterium are disrupted or altered in activity (eg, reduced or eliminated in activity).
A production bacterium (ie, second cell or propagator cell) can be a gram positive or gram negative bacterium. Thus, for example, production bacterium is an Escherichia coli, Bacillus subtilis, Lactobacillus rhamnosus, Salmonella enteria, Streptococcus thermophilus, Listeria, Campylobacter or Staphylococcus aureus bacterium. In an example, the production bacterium is an E. coli strain MG1655. Nissle, BW25113, BL21, TOP10, or MG1655 Δdam Δdcm ΔhsdRWS.
The activity of an enzyme of an endogenous R-M system may be disrupted using methods well known in the art or later developed for disrupting the function and activity of a polypeptide. Such methods can include, but are not limited to, generating point mutations (e.g., missense, or nonsense, or insertions or deletions of single base pairs that result in frame shifts), insertions, deletions, and/or truncations. In some embodiments, a polypeptide inhibitor may be used to disrupt or suppress the activity of an enzyme of a bacterial restriction modification system (R-M system). Such polypeptide inhibitors are known n the art. Polypeptide inhibitors may be encoded, for example, within the phage or particle DNA and/or packaged as proteins in the phage or particle. For example, P1 phage encodes two polypeptide inhibitors that inhibit Type I restriction enzymes found in E. coli (Lobocka et al J. Bacteriol. 186, 7032-7068 (2004)). In some embodiments, an endogenous R-M system may be inhibited or disrupted by the introduction of polypeptide inhibitors, polypeptides that stimulate the activity of the host methylation enzymes to accelerate the methylation and protection of the delivered DNA.
Inhibitors of R-M system enzymes include but are not limited to proteins that degrade a REase (restriction endonuclease), thereby preventing the host R-M enzyme system from cleaving the phage or particle DNA. Non-limiting examples of an R-M enzyme inhibitor that may be used with this invention to disrupt or modify the activity of an endogenous bacterial R-M system enzyme include (a) or f18 from Enterococcus faecalis, which produces the protein ArdA that inhibits all major classes of type I R-M systems; and (b) gp0.3 from bacteriophage T7 produces the protein Ocr that sequesters the type I R-M enzyme EcoKI. Additional non-limiting examples of proteins that may be used to block the activity of an enzyme of an R-M system include masking proteins. Masking proteins are packaged into the phage head and upon DNA injection bind the phage DNA, thereby masking R-M recognition sites. Non-limiting examples of masking proteins useful with this invention include DarA and DarB proteins (lida et al. Virology. 1 57(1): 156-66 (1987)). These proteins are expressed by the P1 bacteriophage during the lytic cycle and are packaged into the head. Upon DNA injection to a host bacterium, they bind and mask the Type I R-M recognition sites.
In addition to or in the alternative, an endogenous R-M system of a production bacterium can be altered/modified through the expression of at least one heterologous methyltransferase. Any methyltransferase that alters the endogenous methylation pattern of a production host bacterium so that the methylation pattern of the production host bacterium is substantially similar to the methylation pattern of the target host bacterium can be used with this invention. The heterologous methyltransferase may be from the same or a different organism as long as it confers a methylation pattern substantially similar to the production host bacterium as the target bacterial strain. A non-limiting example of a DNA MTase useful with the invention includes LlaPI from phage Φ50, which can be introduced to protect against type II R-M systems in lactococci (McGrath et al. Applied Environmental Microbiology 65:1891-1899 (1999)). The methylation patterns conferred by individual methyltransferases are then assessed using established DNA sequencing technologies such as Pacbio SMRT sequencing (O'Loughlin et al. PLoS One. 2015:e0118533). Once generated, the production strain is used to produce phage or particles for DNA delivery into the target host strain.
Further heterologous DNA modification enzymes can be expressed in a production bacterium so that the R-M system of the production bacterium is made substantially similar to the R-M system of the target host bacterium. Examples of such DNA modification enzymes useful for this purpose include those that encode polypeptides that convert the adenine residues in the DNA to acetamidoadenine. Polypeptides that convert the adenine residues in the phage or particle DNA to acetamidoadenine will protect the DNA against restriction enzymes that are sensitive to adenine methylation. Non-limiting examples of polypeptides that can convert the adenine residues in the DNA to acetamidoadenine in the production bacteria include the mom gene from phage Mu and the Mu-like prophage sequences (see, Haemophilus influenzae Rd (FluMu), Neissera meningitidis type A strain Z2491 (Pnme 1) and H. influenzae biotype aegyptius ATCC 1 1116; (Drozdz et al. Nucleic Acids Res. 40(5):2119-30 (2012)), which converts adenine residues to N(6)-methyladenine, thereby protecting against adenine-sensitive restriction enzymes.
In some embodiments, the polynucleotides encoding polypeptide inhibitors and other DNA modification enzymes as described herein can be introduced into the phage or particle genome directly for use in protecting the delivered DNA from the R-M system of the target host bacterium.
Accordingly, in some embodiments, the invention provides a method of increasing the efficiency of introducing a heterologous nucleic acid of interest into a target host bacterium via bacteriophage or transduction particles, comprising introducing at least one heterologous nucleic acid of interest into a phage or particle DNA prior to introduction of a production bacterium, wherein the production host bacterium has been modified to disrupt at least one enzyme of an endogenous R-M system and/or to comprise a polynucleotide encoding at least one heterologous methyltransferase, thereby methylating said phage or particle DNA and producing phage or particle DNA comprising the at least one heterologous nucleic acid of interest having a modified methylation pattern (as compared to phage or particle DNA produced in a production bacterium without said altered methylating activity); producing a phage or particle comprising said recombinant DNA comprising the at least one heterologous nucleic acid of interest; and infecting a target host bacterium with said bacteriophage or particle, wherein the target host bacterium has a methylation pattern (or R-M system(s)) that is identical, similar to or substantially similar to that of the production bacterium, thereby increasing the efficiency of introducing said heterologous nucleic acid of interest into said target host bacterium as compared to introducing said heterologous nucleic acid of interest using a bacteriophage grown in a control production bacterium (wherein the control production host bacterium has not had its methylation activity altered to be identical, similar or substantially similar with that of the target host bacterium). In some aspects, the production bacterium can be modified to alter its R-M system (e.g., disrupt at least one enzyme of an endogenous R-M system and/or to comprise a polynucleotide encoding at least one heterologous methyl transferase) after infection by the phage or particle.
In some embodiments a method of increasing the efficiency of introducing a heterologous nucleic acid of interest into a target host bacterium via a phage or transduction particle is provided, comprising: infecting a production bacterium with a bacteriophage or particle comprising DNA comprising at least one heterologous nucleic acid of interest, wherein the production bacterium has altered methylating activity via disruption of at least one enzyme of an endogenous R-M sy stem and/or expression of at least one heterologous methyltransferase, thereby methylating said DNA; producing a bacteriophage particle comprising bacteriophage or particle DNA having a modified methylation pattern and comprising/encoding the at least one heterologous nucleic acid of interest; and infecting a target host bacterium with said bacteriophage or particle, wherein the target host bacterium has a methylation pattern (or R-M system(s)) that is identical, similar or substantially similar with that of the production host bacterium, thereby increasing the efficiency of introducing said heterologous nucleic acid of interest into said target host bacterium as compared to introducing said heterologous nucleic acid of interest using a bacteriophage or particle produced in a control production bacterium (wherein the control production bacterium has not had its methylation activity altered to be identical, similar substantially similar to that of the target host bacterium as described herein). In some aspects, the production bacterium can be modified to alter its R-M system (e.g., disrupt at least one enzyme of an endogenous R-M system and/or to comprise a polynucleotide encoding at least one heterologous methyltransferase) after infection by the bacteriophage or particle.
In an example, the target host bacterium is chosen on the basis of having a DNA methylation pattern substantially similar to a production host bacterium's restriction-modification system(s) (R-M system).
A methylation pattern is determined by the type of methylation (e.g. m4C) present in the bacterium as well as the particular sequence that is methylated (e.g. GmATC). Thus, the level of similarity (whether it is natural or the result of modifications) between methylation patterns refers to the frequency by which target sites having the appropriate type of methylation. Thus, a substantially similar methylation pattern means having at least about 20% or greater similarity (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45.46, 47, 48, 49.50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or more, or any range or value therein) between the target sites having the appropriate type of methylation as described herein. Thus, in some embodiments, a methylation pattern can be between about 20% to 99% or more similar, about 30% to 99% or more % similar, about 40% to 99% or more similar, about 50% to 99% or more similar, about 60% to 99% or more similar, about 70% to 99% or more similar, about 80% to 99% or more similar, about 85% to 99% or more similar, about 90% to 99% or more similar, or about 95% to 99% or more similar, between host and target bacteria. Substantial similarity between methylation patterns of a target host bacterium and the introduced DNA (bacteriophage or particle DNA that has been modified) means that the introduced DNA is less degraded than that of an introduced DNA that does not share a substantially similar methylation pattern with the target host bacterium. In some embodiments, the methylation pattern of a production bacterium and a target bacterium can be identical.
In some embodiments, the invention provides a bacteriophage or particle comprising DNA that comprise a modified DNA methylation pattern that is identical, similar or substantially similar to a target host bacterium's R-M system(s) and wherein at least one heterologous nucleic acid of interest is integrated into the bacteriophage or particle DNA (genome). Thus, for example, a bacteriophage or transduction particle DNA having a modified methylation pattern (that is substantially similar to a target host bacterium's R-M system(s)) can comprise (1) a polynucleotide encoding a CRISPR array or (2) a Type II CRISPR-Cas system comprising: (a) a polynucleotide encoding a Cas9 poly peptide; (b) a polynucleotide encoding a CRISPR array, and/or c) a tracr nucleic acid. In some embodiments, the polynucleotide encoding a CRISPR array (a) and the tracr nucleic acid (c) can be fused to one another. In additional embodiments, a bacteriophage or particle DNA having a modified methylation pattern (that is identical, similar or substantially similar to a target host bacterium's R-M system(s)) can comprise (1) a polynucleotide encoding a CRISPR array or (2) a recombinant Type I CRISPR-Cas system comprising: (a) a polynucleotide encoding a CRISPR array; and/or (b) at least one polynucleotide encoding one or more Type I CRISPR polypeptides. In some embodiments, the at least one heterologous nucleic acid of interest can be integrated into the bacteriophage or particle DNA (e.g., genome) at a dispensable site of integration or at a complemented site of integration.
As used herein, “dispensable site” means a site in the DNA or genome that is not necessary for maintenance of the bacteriophage or particle genome, the generation of phage or particles, and the delivery of packaged DNA. Thus, any site in a bacteriophage or particle genome that is not required for carrying out such functions can be used as a “landing” site for integrating a nucleic acid of interest. Some exemplary dispensable sites include, but are not limited to, (a) a phage-encoded restriction-modification system (e.g., res/mod in P1 phage), (b) a gene that blocks superinfection (e.g., simABC), (c) an inhibitor of a restriction-modification system (e.g., darA in P1 phage), (d) an insertion sequence element (e.g., IS1 in P1 phage), (e) an addiction system (e.g., phd/doc in P1 phage) or (f) any combination thereof.
A “complemented site” or a “complementable site” as used herein means an
indispensible site in the bacteriophage or particle DNA or genome that is necessary for maintenance of the bacteriophage or particle genome, the generation of phage or particles, and the delivery of packaged DNA but which can be complemented by a complementing polynucleotide encoding the nucleic acid that is disrupted by the integration (complemented site of integration) of the nucleic acid of interest. The complementing polynucleotide can be integrated into the genome of the production bacterium or it can be comprised on a plasmid in the production bacterium. Accordingly, when the nucleic acid of interest is integrated into a complemented site of a bacteriophage or particle DNA, the production bacterium can comprise on a plasmid or in its genome a polynucleotide encoding a complement to the complemented site in the bacteriophage or particle DNA. Exemplary complemented sites can include, but are not limited to, (a) an activator of the lytic cycle (e.g., coi in P1 phage), (b) a lytic gene (e.g., kilA in P1 phage), (c) a tRNA (e.g., tRNA1,2 in P1 phage), (d) a particle component (e.g., cixL and cixR tail fiber genes in P1 phage), or (e) any combination thereof.
In an embodiment, the methylation pattern of a production strain, such as Escherichia coli MG1655 or Bacillus subtilis 168, is altered by deleting its endogenous restriction-modification systems and introducing heterologous methyltransferase genes as follows. The restriction-modification genes are identified through means that are known in the art, such as through the online REBASE database (Roberts et al. Nucleic Acids Res 43:D298-D299. doi.org/10.1093/nar/gkul046). These restriction-modification systems can be deleted using standard recombineering strategies known in the art Once deleted, foreign methyltransferase genes are inserted into replicative plasmids or recombineered into the host genome under the control of a constitutive or inducible promoter. These genes are obtained directly from the target strain using the natural sequence or a sequence codon-optimized for the production host. Alternatively, heterologous methyltransferase genes can be used to confer a similar methylation patterns as the target strain. The methylation patterns conferred by individual methyltransferases are then assessed using established DNA sequencing technologies such as PacBio SMRT sequencing (O'Loughlin et al. PLoS One. 2015:e0118533.). Once generated, the production strain is used to produce bacteriophage or transduction particles for DNA delivery into the target host strain.
Promoters can include, for example, constitutive, inducible, temporally regulated, developmentally regulated, chemically regulated promoters for use in the preparation of recombinant nucleic acid constructs, polynucleotides, expression cassettes and vectors comprising the polynucleotides and recombinant nucleic acid constructs of the invention. These various types of promoters are known in the art.
Thus, in some embodiments, expression herein according to the invention can be made constitutive, inducible, temporally regulated, developmentally regulated, chemically regulated promoters using the recombinant nucleic acid constructs of the invention operatively linked to the appropriate promoter functional in an organism of interest. In representative embodiments, repression can be made reversible using the recombinant nucleic acid constructs of the invention operatively linked to, for example, an inducible promoter functional in an organism of interest.
The choice of promoter will vary depending on the quantitative, temporal and spatial requirements for expression, and also depending on the host cell to be transformed. Promoters for many different organisms are well known in the art. Based on the extensive knowledge present in the art, the appropriate promoter can be selected for the particular host organism of interest. Thus, for example, much is known about promoters upstream of highly constitutively expressed genes in model organisms and such knowledge can be readily accessed and implemented in other systems as appropriate.
Exemplary promoters include useful with this invention include promoters functional in bacteria. A promoter useful with bacteria can include, but is not limited to, L-arabinose inducible (araBAD, PBAD) promoter, any lac promoter, L-rhamnose inducible (rhaPBAD) promoter, T7 RNA polymerase promoter, trc promoter, tac promoter, lambda phage promoter (PLPL-9G-50), anhydrotetracycline-inducible (tetA) promoter, tip, lpp, phoA, recA, proU, cst-1, cadA, nar, lpp-lac, cspA, T7-lac operator, T3-lac operator, T4 gene 32, T5-lac operator, nprM-lac operator, Vhb, Protein A, corynebacterial-E. coli like promoters, thr, hom, diphtheria toxin promoter, sig A, sig B, nusG, SoxS, katb, alpha-amylase (Pamy), Ptms, P43 (comprised of two overlapping RNA polymerase a factor recognition sites, σA, σB), Ptms, P43, rplK-rplA, ferredoxin promoter, and/or xylose promoter. (See, K. Terpe Appl. Microbiol. Biotechnol. 72:211-222 (2006); Hannig et al. Trends in Biotechnology 16:54-60 (1998); and Srivastava Protein Expr Purif 40:221-229 (2005)).
In some embodiments of the invention, inducible promoters can be used. Thus, for example, chemical-regulated promoters can be used to modulate the expression of a gene in an organism through the application of an exogenous chemical regulator. Regulation of the expression of nucleotide sequences of the invention via promoters that are chemically regulated enables the RNAs and/or the polypeptides of the invention to be synthesized only when, for example, an organism is treated with the inducing chemicals. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of a chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. In some aspects, a promoter can also include a light-inducible promoter, where application of specific wavelengths of light induce gene expression (Levskaya et al. 2005. Nature 438:441-442).
Statements
By way of illustration, the invention provides the following Statements.
Preferably, the second cells are bacterial cells. Alternatively, the second cells are archaeal cells, eukaryotic cells, yeast cells. CHO cells or HEK293 cells.
In an embodiment, the receptor comprises a protein that is encoded by an expressible exogenous nucleotide sequence (ie a non wild-type sequence of the second bacteria), wherein the exogenous sequence is comprises by the genome of the second bacteria. For example, the nucleotide sequence is identical to or at least 85, 90, 95 or 98% identical to a nucleotide sequence comprised by host cells.
In another embodiment, the receptor comprises a sugar moiety that is produced by the action of one or more enzymes in the second bacteria, wherein the genome of the second bacteria comprise one or more expressible exogenous nucleotide sequences (ie a non wild-type sequence of the second bacteria) encoding one or more of the enzymes). For example, each nucleotide sequence is identical to or at least 85, 90, 95 or 98% identical to a nucleotide sequence comprised by host cells.
Optionally, the second species or strain do not naturally express the receptor. The host and/or second cells may be engineered cells. The host and/or second cells may be non-naturally-occurring bacterial cells. The host and/or second cells may be non-wild-type cells.
Optionally the host cells comprise an expressible exogenous nucleotide sequence (eg, chromosomally integrated) encoding the receptor.
In an alternative, instead of infecting the second cells with the phage in step (b), phage-encoding DNA is introduced by other means into the second cells, eg, by electroporation. In an example, step (c) comprises culturing the second cells, eg, in a culture vessel, such as a steel fermentation tank.
The second cells comprise cellular machinery operable to replicate DNA encoding the phage.
In an example, the host cells are pathogenic to humans (eg, the host cells are C. difficile cells) and/or the second cells are non-pathogenic to humans or are cells of a gut commensal species (eg, the second cells are Lactobacillus cells, such as L. lactis or reuteri cells). For example, the second cells are carrier cells, eg, as described in US20160333348 (this specific disclosure being incorporated herein by reference). In an example, the invention provides a method of treating or preventing a host cell infection in a human or animal subject (eg, an infection of the gut of the subject), the method comprising administering a population of said second cells to the subject (eg, to populate the gut of the subject) wherein the cells are carrier cells comprising said phage (eg, prophage) of the first type, wherein the phage encode cRNAs or gRNAs that target a protospacer sequence in host cells comprised by the subject (eg, host cells comprised by the gut of the subject), wherein the second cells are carriers for phage that infect host cells in the subject, wherein phage nucleic acid encoding said crRNAs or gRNAs are produced in host cells thereby forming an active CRISPR/Cas system in the host cells, whereby Cas is guided by the crRNAs or gRNAs to a protospacer sequence comprised by the host cells genome to modify (eg, cut) host cell DNA thereby killing host cells or inhibiting host cell growth or proliferation, whereby the infection is treated or prevented. In an embodiment, such a method is for treating or preventing a disease or condition of the subject, wherein the disease or condition is associated or caused by the host cell infection, whereby the disease or condition is treated or prevented. The host cells and/or the second cells can be any such cells disclosed herein.
In an example, the phage comprise a IIM-array or gRNA-encoding nucleotide sequence as disclosed in US20160333348, the specific disclosure of which is incorporated herein by reference.
For example, one or more Cas is repressed, inactivated or knocked-out in the second cells, wherein the second cells comprise a defective CRISPR/Cas system that is not operable with the crRNAs or gRNAs.
In an example, the active CRISPR/Cas system is as disclosed in US20160333348, the specific disclosure of which is incorporated herein by reference.
In an example, the target sequence is as disclosed in US20160333348, the specific disclosure of which is incorporated herein by reference.
In an example, the repeat(s) is (are) as disclosed in US20160333348, the specific disclosure of which is incorporated herein by reference.
In an example, the promoter is constitutively active in the second cells.
For example, the second cells are engineered versions of the host cells, eg, wherein the second cells comprise a defective CRISPR/Cas system as mentioned herein and/or do not comprise a said protospacer sequence and/or do not express a toxin that is expressed by host cells.
In an example, the genome of the propagator cell (second cell in the method of the invention) comprises an exogenous nucleotide sequence that encodes the receptor, wherein wild-type cells of the species or strain of the cell do not comprise said nucleotide sequence.
Concepts
The invention also provides the following Concepts:—
In an example, the nucleic acid comprised by the particles is DNA. In an example, the nucleic acid is RNA. In an example, the phage used to infect the second cells in step (b) are helper phage, optionally that are different from the transduction particles (when the transduction particles are phage). Optionally, the helper phage are defective for self-replication in the second cells.
For example, the DNA comprised by the second cells is comprised by chromosomal DNA of each second cell. In another example, the DNA is comprised by one or more episomes (eg, plasmids) comprised by each second cell.
“Transduction particles” may be phage or smaller than phage and are particles that are capable of transducing nucleic acid (eg, encoding an antibiotic or component thereof, such as a CRISPR array) into host bacterial cells.
The particles comprise phage coat proteins and optionally other phage structural proteins encoded by the phage used in step (b). Examples of structural proteins are phage proteins selected from one, more or all of the major head and tail proteins, the portal protein, tail fibre proteins, and minor tail proteins.
The particles comprise nucleic acid (eg, DNA, such as DNA encoding the array or antibiotic), wherein the nucleic acid comprises a packaging signal sequence operable with proteins encoded by the phage of step (b) to package the nucleic acid or copies thereof into transduction particles that are capable of infecting host cells.
In an example, each transduction particle is a non-self replicative transduction particle. A “non-self replicative transduction particle” refers to a particle, (eg, a phage or phage-like particle; or a particle produced from a genomic island (eg, a S. aureus pathogenicity island (SaPI)) or a modified version thereof) capable of delivering a nucleic acid molecule of the particle (eg, encoding an antibacterial agent or component) into a bacterial cell, but does not package its own replicated genome into the transduction particle.
Optionally, the nucleic acid of each particle comprises a modified genomic island. Optionally, the genomic island is an island that is naturally found in bacterial cells of the host species or strain. In an example, the genomic island is selected from the group consisting of a SaPI, a SaPI1, a SaPI2, a SaPlbov1 and a SaPibov2 genomic island. Optionally, the nucleic acid of each particle comprises a modified pathogenicity island. Optionally, the pathogenicity island is an island that is naturally found in bacterial cells of the first species or strain, eg, a Staphylococcus SaPI or a Vibro PLE or a P. aeruginosa pathogenicity island (eg, a PAPI or a PAGI, eg, PAPI-1, PAGI-5, PAGI-6, PAGI-7, PAGI-8, PAGI-9 or PAGI-10). Optionally, the pathogenicity island is a SaPI (S. aureus pathogenicity island).
Optionally, the transcription of transduction particle nucleic acid is under the control of an inducible promoter, for transcription of copies of the antibacterial agent or component or array in a host cell. This may be useful, for example, to control switching on of the antibacterial activity or production of anti-host cell crRNAs for use against target bacterial cells, such as in an environment (eg, soil or water) or in an industrial culture or fermentation container containing the target cells. For example, the host cells may be useful in an industrial process (eg, for fermentation, eg, in the brewing or dairy industry) and the induction enables the process to be controlled (eg, stopped or reduced) by using the antibacterial agent or crRNAs against the host bacteria.
We engineered a production strain of bacteria (in this case an F coil production strain) to express a phage receptor rendering the strain susceptible to infection by a helper phage. The production bacteria harboured a vector containing a CRISPR array and a phage packaging site so that the vector could be packaged in cells that had been infected by the helper (but not in cells that are not so infected), thereby enabling use of the bacteria as a production strain for phage-like particles encoding crRNAs. We further showed that a lysate produced by such production strain contains phage-like particles that could be used to deliver the CRISPR array to other related E. coli target populations. Here we call the vectors CRISPR Guided Vectors (CGVs™).
Advantageously, to produce CGV-charged phage-like particles (CGV-PLP) targeting a specific bacterial population, it may be beneficial to produce the CGV-PLPs in a strain related to the target strain, for example to produce CGV-PLPs that avoid host defence mechanisms in the target strain. For example, modification of the DNA of CGV-PLPs by methyltransferases in the production bacteria can be useful to shield the DNA against restriction modification once the PLP subsequently infects the target cells where the species or strains of the production and target bacteria are the same or closely related (or at any rate comprise common methyltranferases). By adapting the production strain as per the invention to display a surface receptor, the invention enables PLP production in a strain that may display beneficial DNA modification against restriction modification subsequently by the target bacteria. Usefully, the protospacer sequence(s) to which crRNAs of the PLP are targeted in the target bacteria may be deleted or naturally absent in the genome of the production bacteria, such that Cas-mediated cutting of the production bacteria genomes does not take place during the production of the PLPs.
As a production strain, we used the Escherichia coli strain MG1655 that was transformed with a plasmnid expressing the receptor for helper phage M13KO7 (FIG. 1_X) while a strain line not receiving the receptor (FIG. 1_Y) served as control. The receptor was a F-pilus expressed from the plasmid pCJ105 obtained from New England Biolabs. Both strains were transformed with a CGV (FIG. 1_3) and infected with helper phage M13KO7 for the production of CGV-PLP.
In line X, CGV-PLP lysate was produced due to presence of receptor while in line Y no lysate was produced (FIG. 1_4). The resulting lysate was shown to be able to deliver the CGV to different target populations related to the production strain and harbouring the phage receptor (
Arcobacter butzleri (formerly
Campylobacter butzleri)
Actinobacillus
actinomycetemcomitans
Actinomadura madurae
Actinomadura pelletieri
Actinomyces gerencseriae
Actinomyces israelii
Actinomyces pyogenes
Actinomyces spp
Alcaligenes spp
Arcanobacterium haemolyticum
Arcanobacterium pyogenes (formerly
Actinomyces pyogenes)
Bacillus anthracis
Bacillus cereus
Bacteroides fragilis
Bacteroides spp
Bartonella bacilliformis
Bartonella quintana (Rochalimaea
Bartonella spp (Rochalimaea spp)
Bordetella bronchiseptica
Bordetella parapertussis
Bordetella pertussis
Bordetella spp
Borrelia burgdorferi
Borrelia duttonii
Borrelia recurrentis
Borrelia spp
Brachispira spp (formerly Serpulina
Brucella abortus
Brucella canis
Brucella melitensis
Brucella suis
Burkholderia cepacia
Burkholderia mallei (formerly
Pseudomonas mallei)
Burkholderia pseudomallei (formerly
Pseudomonas pseudomallei)
Campylobacter fetus
Campylobacter jejuni
Campylobacter spp
Cardiobacterium hominis
Chlamydophila pneumoniae
Chlamydophila psittaci (avian strains)
Chlamydophila psittaci (non-avian
Clostridium botulinum
Clostridium perfringens
Clostridium spp
Clostridium tetani
Corynebacterium diphtheriae
Corynebacterium minutissimum
Corynebacterium pseudotuberculosis
Corynebacterium pyogenes
Corynebacterium spp
Corynebacterium ulcerans
Coxiella burnetti
Edwardsiella tarda
Ehrlichia sennetsu (Rickettsia
sennetsu)
Ehrlichia spp
Eikenella corrodens
meningosepticum)
Enterobacter aerogenes/cloacae
Enterobacter spp
Enterococcus spp
Erysipelothrix rhusiopathiae
Escherichia coli (with the exception of
Escherichia coli, verocytotoxigenic
Flavobacterium meningosepticum
Fluoribacter bozemanae (formerly
Legionella)
Francisella tularensis (Type A)
Francisella tularensis (Type B)
Fusobacterium necrophorum
Fusobacterium spp
Gardnerella vaginalis
Haemophilus ducreyi
Haemophilus influenzae
Haemophilus spp
Helicobacter pylori
Klebsiella oxytoca
Klebsiella pneumoniae
Klebsiella spp
Legionella pneumophila
Legionella spp
Leptospira interrogans (all serovars)
Listeria ivanovii
Listeria monocytogenes
Moraxella catarrhalis
Morganella morganii
Mycobacterium africanum
Mycobacterium
avium/intracellulare
Mycobacterium bovis
Mycobacterium bovis (BCG strain)
Mycobacterium chelonae
Mycobacterium fortuitum
Mycobacterium kansasii
Mycobacterium leprae
Mycobacterium malmoense
Mycobacterium marinum
Mycobacterium microti
Mycobacterium paratuberculosis
Mycobacterium scrofulaceum
Mycobacterium simiae
Mycobacterium szulgai
Mycobacterium tuberculosis
Mycobacterium ulcerans
Mycobacterium xenopi
Mycoplasma caviae
Mycoplasma hominis
Mycoplasma pneumoniae
Neisseria gonorrhoeae
Neisseria meningitidis
Nocardia asteroids
Nocardia braziliensis
Nocardia farcinica
Nocardia nova
Nocardia otitidiscaviarum
Pasteurella multocida
Pasteurella spp
Peptostreptococcus anaerobius
Peptostreptococcus spp
Plesiomonas shigelloides
Porphyromonas spp
Prevotella spp
Proteus mirabilis
Proteus penneri
Proteus vulgaris
Providencia alcalifaciens
Providencia rettgeri
Providencia spp
Pseudomonas aeruginosa
Pseudomonas mallei
Pseudomonas pseudomallei
Rhodococcus equi
Rickettsia akari
Rickettsia canada
Rickettsia conorii
Rickettsia montana
Rickettsia
mooseri
Rickettsia prowazekii
Rickettsia rickettsii
Rickettsia sennetsu
Rickettsia spp
Rickettsia tsutsugamushi
Rickettsia typhi (Rickettsia mooseri)
Rochalimaea quintana
Rochalimaea spp
Salmonella arizonae
Salmonella enterica serovar
enteritidis
Salmonella enterica serovar
typhimurium 2
Salmonella paratyphi A
Salmonella paratyphi B/java
Salmonella paratyphi C/Choleraesuis
Salmonella spp
Salmonella typhi
Serpulina spp
Shigella boydii
Shigella dysenteriae (other than Type
Shigella flexneri
Shigella sonnei
Staphylococcus aureus
Streptobacillus moniliformis
Streptococcus agalactiae
Streptococcus dysgalactiaeequisimilis
Streptococcus pneumoniae
Streptococcus pyogenes
Streptococcus spp
Streptococcus suis
Treponema carateum
Treponema pallidum
Treponema pertenue
Treponema spp
Ureaplasma parvum
Ureaplasma urealyticum
Vibrio cholerae (including El Tor)
Vibrio parahaemolyticus
Vibrio spp
Yersinia enterocolitica
Yersinia pestis
Yersinia pseudotuberculosis
Yersinia spp
Abiotrophia defectiva
Acaricomes phytoseiuli
Acetitomaculum ruminis
Acetivibrio cellulolyticus
Acetivibrio ethanolgignens
Acetivibrio multivorans
Acetoanaerobium noterae
Acetobacter aceti
Acetobacter cerevisiae
Acetobacter cibinongensis
Acetobacter estunensis
Acetobacter fabarum
Acetobacter ghanensis
Acetobacter indonesiensis
Acetobacter lovaniensis
Acetobacter malorum
Acetobacter nitrogenifigens
Acetobacter oeni
Acetobacter orientalis
Acetobacter orleanensis
Acetobacter pasteurianus
Acetobacter pornorurn
Acetobacter senegalensis
Acetobacter xylinus
Acetobacterium bakii
Acetobacterium carbinolicum
Acetobacterium dehalogenans
Acetobacterium fimetarium
Acetobacterium malicum
Acetobacterium paludosum
Acetobacterium tundrae
Acetobacterium wieringae
Acetobacterium woodii
Acetofilamentum rigidum
Acetohalobium arabaticum
Acetomicrobium faecale
Acetomicrobium flavidum
Acetonema longum
Acetothermus paucivorans
Acholeplasma axanthum
Acholeplasma brassicae
Acholeplasma cavigenitalium
Acholeplasma equifetale
Acholeplasma granularum
Acholeplasma hippikon
Acholeplasma laidlawii
Acholeplasma modicum
Acholeplasma morum
Acholeplasma multilocale
Acholeplasma oculi
Acholeplasma palmae
Acholeplasma parvum
Acholeplasma pleciae
Acholeplasma vituli
Achtomobacter denitrificans
Achtomobacter insolitus
Achtomobacter piechaudii
Achtomobacter ruhlandii
Achtomobacter spanius
Acidaminobacter
hydrogenoformans
Acidaminococcus fermentans
Acidaminococcus intestini
Acidicaldus organivorans
Acidimicrobium ferrooxidans
Acidiphilium acidophilum
Acidiphilium angustum
Acidiphilium cryptum
Acidiphilium multivorum
Acidiphilium organovorum
Acidiphilium rubrum
Acidisoma sibiricum
Acidisoma tundrae
Acidisphaera rubrifaciens
Acidithiobacillus albertensis
Acidithiobacillus caldus
Acidithiobacillus ferrooxidans
Acidithiobacillus thiooxidans
Acidobacterium capsulatum
Acidocella aminolytica
Acidocella facilis
Acidomonas methanolica
Acidothermus cellulolyticus
Acidovorax anthurii
Acidovorax caeni
Acidovorax cattleyae
Acidovorax citrulli
Acidovorax defluvii
Acidovorax delafieldii
Acidovorax facilis
Acidovorax konjaci
Acidovorax temperans
Acidovorax valerianellae
Acinetobacter baumannii
Acinetobacter baylyi
Acinetobacter bouvetii
Acinetobacter calcoaceticus
Acinetobacter gerneri
Acinetobacter haemolyticus
Acinetobacter johnsonii
Acinetobacter junii
Acinetobacter lwoffi
Acinetobacter parvus
Acinetobacter radioresistens
Acinetobacter schindleri
Acinetobacter soli
Acinetobacter tandoii
Acinetobacter tjernbergiae
Acinetobacter towneri
Acinetobacter ursingii
Acinetobacter venetianus
Acrocarpospora corrugata
Acrocarpospora
macrocephala
Acrocarpospora
pleiomorpha
Actibacter sediminis
Actinoalloteichus
cyanogriseus
Actinoalloteichus
hymeniacidonis
Actinoalloteichus spitiensis
Actinobacillus capsulatus
Actinobacillus delphinicola
Actinobacillus hominis
Actinobacillus indolicus
Actinobacillus lingnieresii
Actinobacillus minor
Actinobacillus muris
Actinobacillus
pleuropneumoniae
Actinobacillus porcinus
Actinobacillus rossii
Actinobacillus scotiae
Actinobacillus seminis
Actinobacillus succinogenes
Actinobacillus suis
Actinobacillus ureae
Actinobaculum massiliense
Actinobaculum schaalii
Actinobaculum suis
Actinomyces urinale
Actinocatenispora rupis
Actinocatenispora
thailandica
Actinocatenispora sera
Actinocorallia aurantiaca
Actinocorallia aurea
Actinocorallia cavernae
Actinocorallia glomerata
Actinocorallia herbida
Actinocorallia libanotica
Actinocorallia longicatena
Actinomadura alba
Actinomadura atramentaria
Actinomadura
bangladeshensis
Actinomadura catellatispora
Actinomadura chibensis
Actinomadura chokoriensis
Actinomadura citrea
Actinomadura coerulea
Actinomadura echinospora
Actinomadura fibrosa
Actinomadura formosensis
Actinomadura hibisca
Actinomadura kijaniata
Actinomadura latina
Actinomadura livida
Actinomadura
luteofluorescens
Actinomadura macra
Actinomadura madurae
Actinomadura oligospora
Actinomadura pelletieri
Actinomadura rubrobrunea
Actinomadura rugatobispora
Actinomadura umbrina
Actinomadura
verrucosospora
Actinomadura vinacea
Actinomadura viridilutea
Actinomadura viridix
Actinomadura yumaensis
Actinomyces bovis
Actinomyces denticolens
Actinomyces europaeus
Actinomyces georgiae
Actinomyces gerencseriae
Actinomyces hordeovulneris
Actinomyces howellii
Actinomyces hyovaginalis
Actinomyces israelii
Actinomyces johnsonii
Actinomyces meyeri
Actinomyces naeslundii
Actinomyces neuii
Actinomyces odontolyticus
Actinomyces oris
Actinomyces radingae
Actinomyces slackii
Actinomyces turicensis
Actinomyces viscosus
Actinoplanes auranticolor
Actinoplanes brasiliensis
Actinoplanes consettensis
Actinoplanes deccanensis
Actinoplanes derwentensis
Actinoplanes digitatis
Actinoplanes durhamensis
Actinoplanes ferrugineus
Actinoplanes globisporus
Actinoplanes humidus
Actinoplanes italicus
Actinoplanes liguriensis
Actinoplanes lobatus
Actinoplanes
missouriensis
Actinoplanes palleronii
Actinoplanes philippinensis
Actinoplanes rectilineatus
Actinoplanes regularis
Actinoplanes
teichomyceticus
Actinoplanes utahensis
Actinopolyspora halophila
Actinopolyspora
mortivallis
Actinosynnema mirum
Actinotalea fermentans
Aerococcus sanguinicola
Aerococcus urinae
Aerococcus urinaeequi
Aerococcus urinaehominis
Aerococcus viridans
Aeromicrobium erythreum
Aeromonas
allosaccharophila
Aeromonas bestiarum
Aeromonas caviae
Aeromonas encheleia
Aeromonas
enteropelogenes
Aeromonas eucrenophila
Aeromonas ichthiosmia
Aeromonas jandaei
Aeromonas media
Aeromonas popoffii
Aeromonas sobria
Aeromonas veronii
Agrobacterium
gelatinovorum
Agrococcus citreus
Agrococcus jenensis
Agromonas oligotrophica
Agromyces fucosus
Agromyces hippuratus
Agromyces luteolus
Agromyces mediolanus
Agromyces ramosus
Agromyces rhizospherae
Akkermansia muciniphila
Albidiferax ferrireducens
Albidovulum inexpectatum
Alcaligenes denitrificans
Alcaligenes faecalis
Alcanivorax borkumensis
Alcanivorax jadensis
Algicola bacteriolytica
Alicyclobacillus
disulfidooxidans
Alicyclobacillus
sendaiensis
Alicyclobacillus vulcanalis
Alishewanella fetalis
Alkalibacillus
haloalkaliphilus
Alkalilimnicola ehrlichii
Alkaliphilus oremlandii
Alkaliphilus transvaalensis
Allochromatium vinosum
Alloiococcus otitis
Allokutzneria albata
Altererythrobacter
ishigakiensis
Altermonas haloplanktis
Altermonas macleodii
Alysiella crassa
Alysiella filiformis
Aminobacter aganoensis
Aminobacter aminovorans
Aminobacter niigataensis
Aminobacterium mobile
Aminomonas paucivorans
Ammoniphilus oxalaticus
Amphibacillus xylanus
Amphritea balenae
Amphritea japonica
Amycolatopsis alba
Amycolatopsis albidoflavus
Amycolatopsis azurea
Amycolatopsis coloradensis
Amycolatopsis lurida
Amycolatopsis mediterranei
Amycolatopsis rifamycinica
Amycolatopsis rubida
Amycolatopsis sulphurea
Amycolatopsis tolypomycina
Anabaena cylindrica
Anabaena flos-aquae
Anabaena variabilis
Anaeroarcus burkinensis
Anaerobaculum mobile
Anaerobiospirillum
succiniciproducens
Anaerobiospirillum thomasii
Anaerococcus hydrogenalis
Anaerococcus lactolyticus
Anaerococcus prevotii
Anaerococcus tetradius
Anaerococcus vaginalis
Anaerofustis stercorihominis
Anaeromusa acidaminophila
Anaeromyxobacter
dehalogenans
Anaerorhabdus furcosa
Anaerosinus glycerini
Anaerovirgula multivorans
Ancalomicrobium adetum
Ancylobacter aquaticus
Aneurinibacillus
aneurinilyticus
Aneurinibacillus migulanus
Aneurinibacillus
thermoaerophilus
Angiococcus disciformis
Angulomicrobium tetraedrale
Anoxybacillus pushchinoensis
Aquabacterium commune
Aquabacterium parvum
Aquaspirillum polymorphum
Aquaspirillum
putridiconchylium
Aquaspirillum serpens
Aquimarina latercula
Arcanobacterium
haemolyticum
Arcanobacterium pyogenes
Archangium gephyra
Arcobacter butzleri
Arcobacter cryaerophilus
Arcobacter halophilus
Arcobacter nitrofigilis
Arcobacter skirrowii
Arhodomonas aquaeolei
Arsenophonus nasoniae
Arthrobacter agilis
Arthrobacter albus
Arthrobacter aurescens
Arthrobacter
chlorophenolicus
Arthrobacter citreus
Arthrobacter crystallopoietes
Arthrobacter cumminsii
Arthrobacter globiformis
Arthrobacter
histidinolovorans
Arthrobacter ilicis
Arthrobacter luteus
Arthrobacter methylotrophus
Arthrobacter mysorens
Arthrobacter nicotianae
Arthrobacter nicotinovorans
Arthrobacter oxydans
Arthrobacter pascens
Arthrobacter
phenanthrenivorans
Arthrobacter
polychromogenes
Atrhrobacter protophormiae
Arthrobacter
psychrolactophilus
Arthrobacter ramosus
Arthrobacter sulfonivorans
Arthrobacter sulfureus
Arthrobacter uratoxydans
Arthrobacter ureafaciens
Arthrobacter viscosus
Arthrobacter woluwensis
Asaia bogorensis
Asanoa ferruginea
Asticcacaulis biprosthecium
Asticcacaulis excentricus
Atopobacter
phocae
Atopobium fossor
Atopobium minutum
Atopobium parvulum
Atopobium rimae
Atopobium vaginae
Aureobacterium barkeri
Aurobacterium liquefaciens
Avibacterium avium
Avibacterium gallinarum
Avibacterium paragallinarum
Avibacterium volantium
Azoarcus indigens
Azoarcus tolulyticus
Azoarcus toluvorans
Azohydromonas australica
Azohydromonas lata
Azomonas agilis
Azomonas insignis
Azomonas macrocytogenes
Azorhizobium caulinodans
Azorhizophilus paspali
Azospirillum brasilense
Azospirillum halopraeferens
Azospirillum irakense
Azotobacter beijerinckii
Azotobacter chroococcum
Azotobacter nigricans
Azotobacter salinestris
Azotobacter vinelandii
Bacteriovorax stolpii
Bacteroides caccae
Bacteroides coagulans
Bacteroides eggerthii
Bacteroides fragilis
Bacteroides galacturonicus
Bacteroides helcogenes
Bacteroides ovatus
Bacteroides pectinophilus
Bacteroides pyogenes
Bacteroides salyersiae
Bacteroides stercoris
Bacteroides suis
Bacteroides tectus
Bacteroides thetaiotaomicron
Bacteroides uniformis
Bacteroides ureolyticus
Bacteroides vulgatus
Balnearium lithotrophicum
Balneatrix alpica
Balneola vulgaris
Barnesiella viscericola
Bartonella alsatica
Bartonella bacilliformis
Bartonella clarridgeiae
Bartonella doshiae
Bartonella elizabethae
Bartonella grahamii
Bartonella henselae
Bartonella rochalimae
Bartonella vinsonii
Bavariicoccus seileri
Bdellovibrio bacteriovorus
Bdellovibrio exovorus
Beggiatoa alba
Beijerinckia derxii
Beijerinckia fluminensis
Beijerinckia indica
Beijerinckia mobilis
Belliella baltica
Bellilinea caldifistulae
Belnapia moabensis
Beutenbergia cavernea
Bibersteinia trehalosi
Bifidobacterium adolescentis
Bifidobacterium angulatum
Bifidobacterium animalis
Bifidobacterium asteroides
Bifidobacterium bifidum
Bifidobacterium boum
Bifidobacterium breve
Bifidobacterium catenulatum
Bifidobacterium choerinum
Bifidobacterium coryneforme
Bifidobacterium cuniculi
Bifidobacterium dentium
Bifidobacterium gallicum
Bifidobacterium gallinarum
Bifidobacterium indicum
Bifidobacterium longum
Bifidobacterium
magnumBifidobacterium
merycicum
Bifidobacterium minimum
Bifidobacterium
pseudocatenulatum
Bifidobacterium
pseudolongum
Bifidobacterium pullorum
Bifidobacterium ruminantium
Bifidobacterium saeculare
Bifidobacterium subtile
Bifidobacterium
thermophilum
Bilophila wadsworthia
Biostraticola tofi
Bizionia argentinensis
Blastobacter capsulatus
Blastobacter denitrificans
Blastococcus aggregatus
Blastococcus saxobsidens
Blastochloris viridis
Blastomonas natatoria
Blastopirellula marina
Blautia coccoides
Blautia hansenii
Blautia producta
Blautia wexlerae
Bogoriella caseilytica
Bordetella avium
Bordetella bronchiseptica
Bordetella hinzii
Bordetella holmesii
Bordetella parapertussis
Bordetella pertussis
Bordetella petrii
Bordetella trematum
Borrelia afzelii
Borrelia americana
Borrelia burgdorferi
Borrelia carolinensis
Borrelia coriaceae
Borrelia garinii
Borrelia japonica
Bosea minatitlanensis
Bosea thiooxidans
Brachybacterium
alimentarium
Brachybacterium faecium
Brachybacterium
paraconglomeratum
Brachybacterium rhamnosum
Brachybacterium
tyrofermentans
Brachyspira alvinipulli
Brachyspira hyodysenteriae
Brachyspira innocens
Brachyspira murdochii
Brachyspira pilosicoli
Bradyrhizobium canariense
Bradyrhizobium elkanii
Bradyrhizobium japonicum
Bradyrhizobium liaoningense
Brenneria alni
Brenneria nigrifluens
Brenneria quercina
Brenneria quercina
Brenneria salicis
Brevibacillus agri
Brevibacillus borstelensis
Brevibacillus brevis
Brevibacillus centrosporus
Brevibacillus choshinensis
Brevibacillus invocatus
Brevibacillus laterosporus
Brevibacillus parabrevis
Brevibacillus reuszeri
Brevibacterium abidum
Brevibacterium album
Brevibacterium aurantiacum
Brevibacterium celere
Brevibacterium epidermidis
Brevibacterium
frigoritolerans
Brevibacterium halotolerans
Brevibacterium iodinum
Brevibacterium linens
Brevibacterium lyticum
Brevibacterium mcbrellneri
Brevibacterium otitidis
Brevibacterium oxydans
Brevibacterium paucivorans
Brevibacterium stationis
Brevinema andersonii
Brevundimonas alba
Brevundimonas aurantiaca
Brevundimonas diminuta
Brevundimonas intermedia
Brevundimonas subvibrioides
Brevundimonas vancanneytii
Brevundimonas variabilis
Brevundimonas vesicularis
Brochothrix campestris
Brochothrix thermosphacta
Brucella canis
Brucella neotomae
Bryobacter aggregatus
Burkholderia ambifaria
Burkholderia andropogonis
Burkholderia anthina
Burkholderia caledonica
Burkholderia caryophylli
Burkholderia cenocepacia
Burkholderia cepacia
Burkholderia cocovenenans
Burkholderia dolosa
Burkholderia fungorum
Burkholderia glathei
Burkholderia glumae
Burkholderia graminis
Burkholderia kururiensis
Burkholderia multivorans
Burkholderia phenazinium
Burkholderia
plantarii
Burkholderia pyrrocinia
Burkholderia silvatlantica
Burkholderia stabilis
Burkholderia thailandensis
Burkholderia tropica
Burkholderia unamae
Burkholderia vietnamiensis
Buttiauxella agrestis
Buttiauxella brennerae
Buttiauxella ferragutiae
Buttiauxella gaviniae
Buttiauxella izardii
Buttiauxella noackiae
Buttiauxella warmboldiae
Butyrivibirio fibrisolvens
Butyrivibirio hungatei
Butyrivibirio proteoclasticus
B. acidiceler
B. acidicola
B. acidiproducens
B. acidocaldarius
B. acidoterrestris
B. aeolius
B. aerius
B. aerophilus
B. agaradhaerens
B. agri
B. aidingensis
B. akibai
B. alcalophilus
B. algicola
B. alginolyticus
B. alkalidiazotrophicus
B. alkalinitrilicus
B. alkalisediminis
B. alkalitelluris
B. altitudinis
B. alveayuensis
B. alvei
B. amyloliquefaciens
B.
a. subsp. amyloliquefaciens
B. a. subsp. plantarum
B. dipsosauri
B. drentensis
B. edaphicus
B. ehimensis
B. eiseniae
B. enclensis
B. endophyticus
B. endoradicis
B. farraginis
B. fastidiosus
B. fengqiuensis
B. firmus
B. flexus
B. foraminis
B. fordii
B. formosus
B. fortis
B. fumarioli
B. funiculus
B. fusiformis
B. galactophilus
B. galactosidilyticus
B. galliciensis
B. gelatini
B. gibsonii
B. ginsengi
B. ginsengihumi
B. ginsengisoli
B. glodisporus (eg, B.
g. subsp. Globisporus; or B.
g. subsp. Marinus)
B. aminovorans
B. amylolyticus
B. andreesenii
B. aneurinilyticus
B. anthracis
B. aquimaris
B. arenosi
B. arseniciselenatis
B. arsenicus
B. aurantiacus
B. arvi
B. aryabhattai
B. asahii
B. atrophaeus
B. axarquiensis
B. azotofixans
B. azotoformans
B. badius
B. barbaricus
B. bataviensis
B. beijingensis
B. benzoevorans
B. beringensis
B. berkeleyi
B. beveridgei
B. bogoriensis
B. boroniphilus
B. borstelensis
B. brevis Migula
B. butanolivorans
B. canaveralius
B. carboniphilus
B. cecembensis
B. cellulosilyticus
B. centrosporus
B. cereus
B. chagannorensis
B.
chitinolyticus
B. chondroitinus
B. choshinensis
B. chungangensis
B. cibi
B. circulans
B. clarkii
B. clausii
B. coagulans
B. coahuilensis
B. cohnii
B. composti
B. curdlanolyticus
B. cycloheptanicus
B. cytotoxicus
B. daliensis
B. decisifrondis
B. decolorationis
B. deserti
B. glucanolyticus
B. gordonae
B. gottheilii
B. graminis
B. halmapalus
B. haloalkaliphilus
B. halochares
B. halodenitrificans
B. halodurans
B. halophilus
B. halosaccharovorans
B. hemicellulosilyticus
B. hemicentroti
B. herbersteinensis
B. horikoshii
B. horneckiae
B. horti
B. huizhouensis
B. humi
B. hwajinpoensis
B. idriensis
B. indicus
B. infantis
B. infernus
B. insolitus
B. invictae
B. iranensis
B. isabeliae
B. isronensis
B. jeotgali
B. kaustophilus
B. kobensis
B. kochii
B. kokeshiiformis
B. koreensis
B. korlensis
B. kribbensis
B. krulwichiae
B. laevolacticus
B. larvae
B. laterosporus
B. lautus
B. lehensis
B. lentimorbus
B. lentus
B. licheniformis
B. ligniniphilus
B. litoralis
B. locisalis
B. luciferensis
B. luteolus
B. luteus
B. macauensis
B. macerans
B. macquariensis
B. macyae
B. malacitensis
B. mannanilyticus
B. marisflavi
B. marismortui
B. marmarensis
B. massiliensis
B. megaterium
B. mesonae
B. methanolicus
B. methylotrophicus
B. migulanus
B. mojavensis
B. mucilaginosus
B. muralis
B. murimartini
B. mycoides
B. naganoensis
B. nanhaiensis
B. nanhaiisediminis
B. nealsonii
B. neidei
B. neizhouensis
B. niabensis
B. niacini
B. novalis
B. oceanisediminis
B. odysseyi
B. okhensis
B. okuhidensis
B. oleronius
B. oryzaecorticis
B. oshimensis
B. pabuli
B. pakistanensis
B. pallidus
B. pallidus
B. panacisoli
B. panaciterrae
B. pantothenticus
B. parabrevis
B. paraflexus
B. pasteurii
B. patagoniensis
B. peoriae
B. persepolensis
B. persicus
B. pervagus
B. plakortidis
B. pocheonensis
B. polygoni
B. polymyxa
B. popilliae
B. pseudalcalophilus
B. pseudofirmus
B. pseudomycoides
B. psychrodurans
B. psychrophilus
B. psychrosaccharolyticus
B. psychrotolerans
B. pulvifaciens
B. pumilus
B. purgationiresistens
B. pycnus
B. qingdaonensis
B. qingshengii
B. reuszeri
B. rhizosphaerae
B. rigui
B. ruris
B. safensis
B. salarius
B. salexigens
B. saliphilus
B. schlegelii
B. sediminis
B. selenatarsenatis
B. selenitireducens
B. seohaeanensis
B. shacheensis
B. shackletonii
B. siamensis
B. silvestris
B. simplex
B. siralis
B. smithii
B. soli
B. solimangrovi
B. solisalsi
B. songklensis
B. sonorensis
B. sphaericus
B. sporothermodurans
B. stearothermophilus
B. stratsphericus
B. subterranueus
B. subtilis (eg, B.
s. subsp. Inaquosorum; or B.
s. subsp. Spizizeni; or B.
s. subsp. Subtilis)
B. taeanensis
B. tequilensis
B. thermantarcticus
B. thermoaerophilus
B. thermoamylovorans
B. thermocatenulatus
B. thermocloacae
B. thermocopriae
B. thermodenitrificans
B. thermoglucosidasius
B. thermolactis
B. thermoleovorans
B. thermophilus
B. thermoruber
B. thermosphaericus
B. thiaminolyticus
B. thioparans
B. thuringiensis
B. tianshenii
B. trypoxylicola
B. tusciae
B. validus
B. vallismortis
B. vedderi
B. velezensis
B. vietnamensis
B. vireti
B. vulcani
B. wakoensis
B. weihenstephanensis
B. xiamenensis
B. xiaoxiensis
B. zhanjiangensis
Caenimonas koreensis
Caldalkalibacillus uzonensis
Caldanaerobacter subterraneus
Caldanaerobius fijiensis
Caldanaerobius
polysaccharolyticus
Caldanaerobius zeae
Caldanaerovirga acetigignens
Caldicellulosiruptor bescii
Caldicellulosiruptor kristjanssonii
Caldicellulosiruptor owensensis
Campylobacter coli
Campylobacter concisus
Campylobacter curvus
Campylobacter fetus
Campylobacter gracilis
Campylobacter helveticus
Campylobacter hominis
Campylobacter hyointestinalis
Campylobacter jejuni
Campylobacter lari
Campylobacter mucosalis
Campylobacter rectus
Campylobacter showae
Campylobacter sputorum
Campylobacter upsaliensis
Capnocytophaga canimorsus
Capnocytophaga cynodegmi
Capnocytophaga gingivalis
Capnocytophaga granulosa
Capnocytophaga haemolytica
Capnocytophaga ochracea
Capnocytophaga sputigena
Cardiobacterium hominis
Carnimonas nigrificans
Carnobacterium
alterfunditum
Carnobacterium divergens
Carnobacterium funditum
Carnobacterium gallinarum
Carnobacterium
maltaromaticum
Carnobacterium mobile
Carnobacterium viridans
Caryophanon latum
Caryophanon tenue
Catellatospora citrea
Catellatospora
methionotrophica
Catenococcus thiocycli
Catenuloplanes atrovinosus
Catenuloplanes castaneus
Catenuloplanes crispus
Catenuloplanes indicus
Catenuloplanes japonicus
Catenuloplanes nepalensis
Catenuloplanes niger
Carnobacterium alterfunditum
Carnobacterium divergens
Carnobacterium funditum
Carnobacterium gallinarum
Carnobacterium maltaromaticum
Carnobacterium mobile
Carnobacterium virdans
Caryophanon latum
Caryophanon tenue
Catellatospora citrea
Catellatospora
methionotrophica
Catenococcus thiocycli
Chryseobacterium balustinum
C. amalonaticus
C. braakii
C. diversus
C. farmeri
C. freundii
C. gillenii
C. koseri
C. murliniae
C. pasteurii
[1]
C. rodentium
C. sedlakii
C. werkmanii
C. youngae
Coccochloris elabens
Corynebacterium flavescens
Corynebacterium variable
Curtobacterium
albidum
Curtobacterium citreus
Clostridium absonum,
Clostridium aceticum,
Clostridium acetireducens,
Clostridium acetobutylicum,
Clostridium acidisoli,
Clostridium aciditolerans,
Clostridium acidurici,
Clostridium aerotolerans,
Clostridium aestuarii,
Clostridium akagii,
Clostridium aldenense,
Clostridium aldrichii,
Clostridium algidicarni,
Clostridium algidixylanolyticum,
Clostridium algifaecis,
Clostridium algoriphilum,
Clostridium alkalicellulosi,
Clostridium aminophilum,
Clostridium aminovalericum,
Clostridium amygdalinum,
Clostridium amylolyticum,
Clostridium arbusti,
Clostridium arcticum,
Clostridium argentinense,
Clostridium asparagiforme,
Clostridium aurantibutyricum,
Clostridium autoethanogenum,
Clostridium baratii,
Clostridium barkeri,
Clostridium bartlettii,
Clostridium beijerinckii,
Clostridium bifermentans,
Clostridium bolteae,
Clostridium bornimense,
Clostridium botulinum,
Clostridium bowmanii,
Clostridium bryantii,
Clostridium butyricum,
Clostridium cadaveris,
Clostridium caenicola,
Clostridium caminithermale,
Clostridium carboxidivorans,
Clostridium carnis,
Clostridium cavendishii,
Clostridium celatum,
Clostridium celerecrescens,
Clostridium cellobioparum,
Clostridium cellulofermentans,
Clostridium cellulolyticum,
Clostridium cellulosi,
Clostridium cellulovorans,
Clostridium chartatabidum,
Clostridium chauvoei,
Clostridium chromiireducens,
Clostridium citroniae,
Clostridium clariflavum,
Clostridium clostridioforme,
Clostridium coccoides,
Clostridium cochlearium,
Clostridium colletant,
Clostridium colicanis,
Clostridium colinum,
Clostridium collagenovorans,
Clostridium cylindrosporum,
Clostridium difficile,
Clostridium diolis,
Clostridium disporicum,
Clostridium drakei,
Clostridium durum,
Clostridium estertheticum,
Clostridium estertheticum estertheticum,
Clostridium estertheticum laramiense,
Clostridium fallax,
Clostridium felsineum,
Clostridium fervidum,
Clostridium fimetarium,
Clostridium formicaceticum,
Clostridium frigidicarnis,
Clostridium frigoris,
Clostridium ganghwense,
Clostridium gasigenes,
Clostridium ghonii,
Clostridium glycolicum,
Clostridium glycyrrhizinilyticum,
Clostridium grantii,
Clostridium haemolyticum,
Clostridium halophilum,
Clostridium hastiforme,
Clostridium hathewayi,
Clostridium herbivorans,
Clostridium hiranonis,
Clostridium histolyticum,
Clostridium homopropionicum,
Clostridium huakuii,
Clostridium hungatei,
Clostridium hydrogeniformans,
Clostridium hydroxybenzoicum,
Clostridium hylemonae,
Clostridium jejuense,
Clostridium indolis,
Clostridium innocuum,
Clostridium intestinale,
Clostridium irregulare,
Clostridium isatidis,
Clostridium josui,
Clostridium kluyveri,
Clostridium lactatifermentans,
Clostridium lacusfryxellense,
Clostridium laramiense,
Clostridium lavalense,
Clostridium lentocellum,
Clostridium lentoputrescens,
Clostridium leptum,
Clostridium limosum,
Clostridium litorale,
Clostridium lituseburense,
Clostridium ljungdahlii,
Clostridium lortetii,
Clostridium lundense,
Clostridium magnum,
Clostridium malenominatum,
Clostridium mangenotii,
Clostridium mayombei,
Clostridium methoxybenzovorans,
Clostridium methylpentosum,
Clostridium neopropionicum,
Clostridium nexile,
Clostridium nitrophenolicum,
Clostridium novyi,
Clostridium oceanicum,
Clostridium orbiscindens,
Clostridium oroticum,
Clostridium oxalicum,
Clostridium papyrosolvens,
Clostridium paradoxum,
Clostridium paraperfringens (Alias: C. welchii),
Clostridium paraputrificum,
Clostridium pascui,
Clostridium pasteurianum,
Clostridium peptidivorans,
Clostridium perenne,
Clostridium perfringens,
Clostridium pfennigii,
Clostridium phytofermentans,
Clostridium piliforme,
Clostridium polysaccharolyticum,
Clostridium populeti,
Clostridium propionicum,
Clostridium proteoclasticum,
Clostridium proteolyticum,
Clostridium psychrophilum,
Clostridium puniceum,
Clostridium purinilyticum,
Clostridium putrefaciens,
Clostridium putrificum,
Clostridium quercicolum,
Clostridium quinii,
Clostridium ramosum,
Clostridium rectum,
Clostridium roseum,
Clostridium saccharobutylicum,
Clostridium saccharogumia,
Clostridium saccharolyticum,
Clostridium saccharoperbutylacetonicum,
Clostridium sardiniense,
Clostridium sartagoforme,
Clostridium scatologenes,
Clostridium schirmacherense,
Clostridium scindens,
Clostridium septicum,
Clostridium sordellii,
Clostridium sphenoides,
Clostridium spiroforme,
Clostridium sporogenes,
Clostridium sporosphaeroides,
Clostridium stercorarium,
Clostridium stercorarium leptospartum,
Clostridium stercorarium stercorarium,
Clostridium stercorarium thermolacticum,
Clostridium sticklandii,
Clostridium straminisolvens,
Clostridium subterminale,
Clostridium sufflavum,
Clostridium sulfidigenes,
Clostridium symbiosum,
Clostridium tagluense,
Clostridium tepidiprofundi,
Clostridium termitidis,
Clostridium tertium,
Clostridium tetani,
Clostridium tetanomorphum,
Clostridium thermaceticum,
Clostridium thermautotrophicum,
Clostridium thermoalcaliphilum,
Clostridium thermobutyricum,
Clostridium thermocellum,
Clostridium thermocopriae,
Clostridium thermohydrosulfuricum,
Clostridium thermolacticum,
Clostridium thermopalmarium,
Clostridium thermopapyrolyticum,
Clostridium thermosaccharolyticum,
Clostridium thermosuccinogenes,
Clostridium thermosulfurigenes,
Clostridium thiosulfatireducens,
Clostridium tyrobutyricum,
Clostridium uliginosum,
Clostridium ultunense,
Clostridium villosum,
Clostridium vincentii,
Clostridium viride,
Clostridium xylanolyticum,
Clostridium xylanovorans
Dactylosporangium aurantiacum
Dactylosporangium fulvum
Dactylosporangium matsuzakiense
Dactylosporangium roseum
Dactylosporangium thailandense
Dactylosporangium vinaceum
Deinococcus aerius
Deinococcus apachensis
Deinococcus aquaticus
Deinococcus aquatilis
Deinococcus caeni
Deinococcus radiodurans
Deinococcus radiophilus
Delftia acidovorans
Desulfovibrio desulfuricans
Diplococcus pneumoniae
Echinicola pacifica
Echinicola vietnamensis
E. aerogenes
E. amnigenus
E. agglomerans
E. arachidis
E. asburiae
E. cancerogenous
E. cloacae
E. cowanii
E. dissolvens
E. gergoviae
E. helveticus
E. hormaechei
E. intermedius
Enterobacter kobei
E. ludwigii
E. mori
E. nimipressuralis
E. oryzae
E. pulveris
E. pyrinus
E. radicincitans
E. taylorae
E. turicensis
E. sakazakii Enterobacter soli
Faecalibacterium prausnitzii
Fangia
hongkongensis
Fastidiosipila
sanguinis
Flavobacterium antarcticum
Flavobacterium aquatile
Flavobacterium
aquidurense
Flavobacterium balustinum
Flavobacterium croceum
Flavobacterium cucumis
Flavobacterium
daejeonense
Flavobacterium defluvii
Flavobacterium
degerlachei
Flavobacterium
denitrificans
Flavobacterium
filum
Flavobacterium
flevense
Flavobacterium
frigidarium
Flavobacterium
mizutaii
Flavobacterium
okeanokoites
Fusobacterium
nucleatum
Gaetbulibacter saemankumensis
Gallibacterium anatis
Gallicola barnesae
Garciella nitratireducens
Geobacillus thermoglucosidasius
Geobacillus stearothermophilus
Geobacter bemidjiensis
Geobacter bremensis
Geobacter chapellei
Geobacter grbiciae
Geobacter hydrogenophilus
Geobacter lovleyi
Geobacter metallireducens
Geobacter pelophilus
Geobacter pickeringii
Geobacter sulfurreducens
Geodermatophilus obscurus
Gluconacetobacter xylinus
Gordonia rubripertincta
Haemophilus aegyptius
Haemophilus aphrophilus
Haemophilus felis
Haemophilus gallinarum
Haemophilus haemolyticus
Haemophilus influenzae
Haemophilus paracuniculus
Haemophilus parahaemolyticus
Haemophilus parainfluenzae
Haemophilus
paraphrohaemolyticus
Haemophilus parasuis
Haemophilus pittmaniae
Hafnia alvei
Hahella ganghwensis
Halalkalibacillus halophilus
Helicobacter pylori
Ideonella azotifigens
Idiomarina abyssalis
Idiomarina baltica
Idiomarina fontislapidosi
Idiomarina loihiensis
Idiomarina ramblicola
Idiomarina
seosinensis
Idiomarina zobellii
Ignatzschineria larvae
Ignavigranum ruoffiae
Ilumatobacter fluminis
Ilyobacter delafieldii
Ilyobacter insuetus
Ilyobacter polytropus
Ilyobacter tartaricus
Janibacter anophelis
Janibacter corallicola
Janibacter limosus
Janibacter melonis
Janibacter terrae
Jannaschia
cystaugens
Jannaschia helgolandensis
Jannaschia pohangensis
Jannaschia rubra
Janthinobacterium agaricidamnosum
Janthinobacterium lividum
Jejuia pallidilutea
Jeotgalibacillus
alimentarius
Jeotgalicoccus halotolerans
Kaistia adipata
Kaistia soli
Kangiella aquimarina
Kangiella koreensis
Kerstersia gyiorum
Kiloniella laminariae
K. granulomatis
K. oxytoca
K. pneumoniae
K. terrigena
K. variicola
Kluyvera ascorbata
Kocuria roasea
Kocuria varians
Kurthia zopfii
Labedella gwakjiensis
Labrenzia aggregata
Labrenzia alba
Labrenzia alexandrii
Labrenzia marina
Labrys methylaminiphilus
Labrys miyagiensis
Labrys monachus
Labrys okinawensis
Labrys portucalensis
Laceyella putida
Lechevalieria aerocolonigenes
L. aquatica
L. booriae
L. cornellensis
L. fleischmannii
L. floridensis
L. grandensis
L. grayi
L. innocua
Listeria ivanovii
L. marthii
L. monocytogenes
L. newyorkensis
L. riparia
L. rocourtiae
L. seeligeri
L. weihenstephanensis
L. welshimeri
Listonella anguillarum
Macrococcus bovicus
Marinobacter algicola
Marinobacter bryozoorum
Marinobacter flavimaris
Meiothermus ruber
Methylophilus
methylotrophus
Microbacterium
ammoniaphilum
Microbacterium arborescens
Microbacterium liquefaciens
Microbacterium oxydans
Micrococcus luteus
Micrococcus lylae
Moraxella bovis
Moraxella nonliquefaciens
Moraxella osloensis
Nakamurella multipartita
Nannocystis pusilla
Natranaerobius
thermophilus
Natranaerobius trueperi
Naxibacter alkalitolerans
Neisseria cinerea
Neisseria denitrificans
Neisseria gonorrhoeae
Neisseria lactamica
Neisseria mucosa
Neisseria sicca
Neisseria subflava
Neptunomonas japonica
Nesterenkonia holobia
Nocardia argentinensis
Nocardia corallina
Nocardia
otitidiscaviarum
L. acetotolerans
L. acidifarinae
L. acidipiscis
L. acidophilus
Lactobacillus agilis
L. algidus
L. alimentarius
L. amylolyticus
L. amylophilus
L. amylotrophicus
L. amylovorus
L. animalis
L. antri
L. apodemi
L. aviarius
L. bifermentans
L. brevis
L. buchneri
L. camelliae
L. casei
L. kitasatonis
L. kunkeei
L. leichmannii
L. lindneri
L. malefermentans
L. catenaformis
L. ceti
L. coleohominis
L. collinoides
L. composti
L. concavus
L. coryniformis
L. crispatus
L. crustorum
L. curvatus
L. delbrueckii subsp.
bulgaricus
L. delbrueckii subsp.
delbrueckii
L. delbrueckii subsp. lactis
L. dextrinicus
L. diolivorans
L. equi
L. equigenerosi
L. farraginis
L. farciminis
L. fermentum
L. fornicalis
L. fructivorans
L. frumenti
L. mali
L. manihotivorans
L. mindensis
L. mucosae
L. murinus
L. nagelii
L. namurensis
L. nantensis
L. oligofermentans
L. oris
L. panis
L. pantheris
L. parabrevis
L. parabuchneri
L. paracasei
L. paracollinoides
L. parafarraginis
L. homohiochii
L. iners
L. ingluviei
L. intestinalis
L. fuchuensis
L. gallinarum
L. gasseri
L. parakefiri
L. paralimentarius
L. paraplantarum
L. pentosus
L. perolens
L. plantarum
L. pontis
L. protectus
L. psittaci
L. rennini
L. reuteri
L. rhamnosus
L. rimae
L. rogosae
L. rossiae
L. ruminis
L. saerimneri
L. jensenii
L. johnsonii
L. kalixensis
L. kefiranofaciens
L. kefiri
L. kimchii
L. helveticus
L. hilgardii
L. sakei
L. salivarius
L. sanfranciscensis
L. satsumensis
L. secaliphilus
L. sharpeae
L. siliginis
L. spicheri
L. suebicus
L. thailandensis
L. ultunensis
L. vaccinostercus
L. vaginalis
L. versmoldensis
L. vini
L. vitulinus
L. zeae
L. zymae
L. gastricus
L. ghanensis
L. graminis
L. hammesii
L. hamsteri
L. harbinensis
L. hayakitensis
Legionella
adelaidensis
Legionella anisa
Legionella beliardensis
Legionella birminghamensis
Legionella bozemanae
Legionella brunensis
Legionella busanensis
Legionella cardiaca
Legionella cherrii
Legionella cincinnatiensis
Legionella clemsonensis
Legionella donaldsonii
Legionella drancourtii
Legionella dresdenensis
Legionella drozanskii
Legionella dumoffii
Legionella erythra
Legionella fairfieldensis
Legionella fallonii
Legionella feeleii
Legionella geestiana
Legionella genomospecies
Legionella gormanii
Legionella gratiana
Legionella gresilensis
Legionella hackeliae
Legionella impletisoli
Legionella israelensis
Legionella jamestowniensis
Candidatus Legionella jeonii
Legionella jordanis
Legionella lansingensis
Legionella londiniensis
Legionella longbeachae
Legionella lytica
Legionella maceachernii
Legionella massiliensis
Legionella micdadei
Legionella monrovica
Legionella moravica
Legionella nagasakiensis
Legionella nautarum
Legionella norrlandica
Legionella oakridgensis
Legionella parisiensis
Legionella pittsburghensis
Legionella pneumophila
Legionella quateirensis
Legionella quinlivanii
Legionella rowbothamii
Legionella rubrilucens
Legionella sainthelensi
Legionella santicrucis
Legionella shakespearei
Legionella spiritensis
Legionella steelei
Legionella steigerwaltii
Legionella taurinensis
Legionella tucsonensis
Legionella tunisiensis
Legionella wadswothii
Legionella waltersii
Legionella worsleiensis
Legionella yabuuchiae
Oceanibulbus indolifex
Oceanicaulis alexandrii
Oceanicola batsensis
Oceanicola granulosus
Oceanicola nanhaiensis
Oceanimonas baumannii
Oceaniserpentilla haliotis
Oceanisphaera donghaensis
Oceanisphaera litoralis
Oceanithermus desulfurans
Oceanithermus profundus
Oceanobacillus caeni
Oceanospirillum linum
Paenibacillus thiaminolyticus
Pantoea agglomerans
Paracoccus alcaliphilus
Paucimonas lemoignei
Pectobacterium aroidearum
Pectobacterium atrosepticum
Pectobacterium
betavasculorum
Pectobacterium cacticida
Pectobacterium carnegieana
Pectobacterium
carotovorum
Pectobacterium chrysanthemi
Pectobacterium cypripedii
Pectobacterium rhapontici
Pectobacterium wasabiae
Planococcus citreus
Planomicrobium okeanokoites
Plesiomonas shigelloides
Proteus vulgaris
Prevotella albensis
Prevotella amnii
Prevotella bergensis
Prevotella bivia
Prevotella brevis
Prevotella bryantii
Prevotella buccae
Prevotella buccalis
Prevotella copri
Prevotella dentalis
Prevotella denticola
Prevotella disiens
Prevotella histicola
Prevotella intermedia
Prevotella maculosa
Prevotella marshii
Prevotella
melaninogenica
Prevotella micans
Prevotella multiformis
Prevotella nigrescens
Prevotella oralis
Prevotella oris
Prevotella oulorum
Prevotella pallens
Prevotella salivae
Prevotella stercorea
Prevotella tannerae
Prevotella timonensis
Prevotella veroralis
Providencia stuartii
Pseudomonas aeruginosa
Pseudomonas alcaligenes
Pseudomonas anguillispetica
Pseudomonas fluorescens
Pseudoalteromonas
haloplanktis
Pseudoalteromonas mendocina
Pseudoalteromonas
pseudoalcaligenes
Pseudoalteromonas putida
Pseudoalteromonas tutzeri
Pseudoalteromonas syringae
Psychrobacter faecalis
Psychrobacter
phenylpyruvicus
Quadrisphaera granulorum
Quatrionicoccus
australiensis
Quinella ovalis
Ralstonia eutropha
Ralstonia insidiosa
Ralstonia mannitolilytica
Ralstonia pickettii
Ralstonia
pseudosolanacearum
Ralstonia syzygii
Ralstonia
solanacearum
Ramlibacter henchirensis
Ramlibacter tataouinensis
Raoultella ornithinolytica
Raoultella planticola
Raoultella terrigena
Rathayibacter caricis
Rathayibacter festucae
Rathayibacter iranicus
Rathayibacter rathayi
Rathayibacter toxicus
Rathayibacter tritici
Rhodobacter sphaeroides
Ruegeria gelatinovorans
Saccharococcus thermophilus
Saccharomonospora azurea
Saccharomonospora cyanea
Saccharomonospora viridis
Saccharophagus degradans
Saccharopolyspora erythraea
Saccharopolyspora gregorii
Saccharopolyspora hirsuta
Saccharopolyspora hordei
Saccharopolyspora rectivirgula
Saccharopolyspora spinosa
Saccharopolyspora taberi
Saccharothrix australiensis
Saccharothrix coeruleofusca
Saccharothrix espanaensis
Saccharothrix longispora
Saccharothrix mutabilis
Saccharothrix syringae
Saccharothrix tangerinus
Saccharothrix texasensis
Sagittula stellata
Salegentibacter salegens
Salimicrobium album
Salinibacter ruber
Salinicoccus alkaliphilus
Salinicoccus hispanicus
Salinicoccus roseus
Salinispora arenicola
Salinispora tropica
Salinivibrio costicola
Salmonella bongori
Salmonella enterica
Salmonella subterranea
Salmonella typhi
Sanguibacter keddieii
Sanguibacter suarezii
Saprospira grandis
Sarcina maxima
Sarcina ventriculi
Sebaldella termitidis
Serratia fonticola
Serratia marcescens
Sphaerotilus natans
Sphingobacterium multivorum
Stenotrophomonas
maltophilia
Streptomyces
achromogenes
Streptomyces cesalbus
Streptomyces cescaepitosus
Streptomyces cesdiastaticus
Streptomyces cesexfoliatus
Streptomyces fimbriatus
Streptomyces fradiae
Streptomyces fulvissimus
Streptomyces griseoruber
Streptomyces griseus
Streptomyces lavendulae
Streptomyces
phaeochromogenes
Streptomyces
thermodiastaticus
Streptomyces tubercidicus
Tatlockia maceachernii
Tatlockia micdadei
Tenacibaculum
amylolyticum
Tenacibaculum discolor
Tenacibaculum
gallaicum
Tenacibaculum
lutimaris
Tenacibaculum
mesophilum
Tenacibaculum
skagerrakense
Tepidanaerobacter
syntrophicus
Tepidibacter
formicigenes
Tepidibacter
thalassicus
Thermus aquaticus
Thermus filiformis
Thermus thermophilus
S. arlettae
S. agnetis
S. aureus
S. auricularis
S. capitis
S. caprae
S. carnosus
S. caseolyticus
S. chromogenes
S. cohnii
S. condimenti
S. delphini
S. devriesei
S. epidermidis
S. equorum
S. felis
S. fleurettii
S. gallinarum
S. haemolyticus
S. hominis
S. hyicus
S. intermedius
S. kloosii
S. leei
S. lentus
S. lugdunensis
S. lutrae
S. lyticans
S. massiliensis
S. microti
S. muscae
S. nepalensis
S. pasteuri
S. petrasii
S. pettenkoferi
S. piscifermentans
S. pseudintermedius
S. pseudolugdunensis
S. pulvereri
S. rostri
S. saccharolyticus
S. saprophyticus
S. schleiferi
S. sciuri
S. simiae
S. simulans
S. stepanovicii
S. succinus
S. vitulinus
S. warneri
S. xylosus
Streptococcus agalactiae
Streptococcus anginosus
Streptococcus bovis
Streptococcus canis
Streptococcus constellatus
Streptococcus downei
Streptococcus dysgalactiae
Streptococcus equines
Streptococcus faecalis
Streptococcus ferus
Streptococcus infantarius
Streptococcus iniae
Streptococcus intermedius
Streptococcus lactarius
Streptococcus milleri
Streptococcus mitis
Streptococcus mutans
Streptococcus oralis
Streptococcus tigurinus
Streptococcus orisratti
Streptococcus parasanguinis
Streptococcus peroris
Streptococcus pneumoniae
Streptococcus
pseudopneumoniae
Streptococcus pyogenes
Streptococcus ratti
Streptococcus salivariu
Streptococcus thermophilus
Streptococcus sanguinis
Streptococcus sobrinus
Streptococcus suis
Streptococcus uberis
Streptococcus vestibularis
Streptococcus viridans
Streptococcus
zooepidemicus
Uliginosibacterium gangwonense
Ulvibacter litoralis
Umezawaea tangerina
Undibacterium pigrum
Ureaplasma urealyticum
Ureibacillus composti
Ureibacillus suwonensis
Ureibacillus terrenus
Ureibacillus thermophilus
Ureibacillus thermosphaericus
Vagococcus carniphilus
Vagococcus elongatus
Vagococcus fessus
Vagococcus fluvialis
Vagococcus lutrae
Vagococcus salmoninarum
Variovorax boronicumulans
Variovorax dokdonensis
Variovorax paradoxus
Variovorax soli
Veillonella atypica
Veillonella caviae
Veillonella criceti
Veillonella dispar
Veillonella montpellierensis
Veillonella parvula
Veillonella ratti
Veillonella rodentium
Venenivibrio stagnispumantis
Verminephrobacter eiseniae
Verrucomicrobium spinosum
Vibrio aerogenes
Vibrio aestuarianus
Vibrio albensis
Vibrio alginolyticus
Vibrio campbellii
Vibrio cholerae
Vibrio cincinnatiensis
Vibrio coralliilyticus
Vibrio cyclitrophicus
Vibrio diazotrophicus
Vibrio fluvialis
Vibrio furnissii
Vibrio gazogenes
Vibrio halioticoli
Vibrio harveyi
Vibrio ichthyoenteri
Vibrio mediterranei
Vibrio metschnikovii
Vibrio mytili
Vibrio natriegens
Vibrio navarrensis
Vibrio nereis
Vibrio nigripulchritudo
Vibrio ordalii
Vibrio orientalis
Vibrio parahaemolyticus
Vibrio pectenicida
Vibrio penaeicida
Vibrio proteolyticus
Vibrio shilonii
Vibrio splendidus
Vibrio tubiashii
Vibrio vulnificus
Virgibacillus
halodenitrificans
Virgibacillus
pantothenticus
Weissella cibaria
Weissella confusa
Weissella halotolerans
Weissella hellenica
Weissella kandleri
Weissella koreensis
Weissella minor
Weissella
paramesenteroides
Weissella soli
Weissella thailandensis
Weissella viridescens
Williamsia marianensis
Williamsia maris
Williamsia serinedens
Winogradskyella
thalassocola
Wolbachia persica
Wolinella succinogenes
Xanthobacter agilis
Xanthobacter
aminoxidans
Xanthobacter
autotrophicus
Xanthobacter flavus
Xanthobacter tagetidis
Xanthobacter viscosus
Xanthomonas
albilineans
Xanthomonas alfalfae
Xanthomonas
arboricola
Xanthomonas
axonopodis
Xanthomonas
campestris
Xanthomonas citri
Xanthomonas codiaei
Xanthomonas
cucurbitae
Xanthomonas
euvesicatoria
Xanthomonas fragariae
Xanthomonas fuscans
Xanthomonas gardneri
Xanthomonas hortorum
Xanthomonas hyacinthi
Xanthomonas perforans
Xanthomonas phaseoli
Xanthomonas pisi
Xanthomonas populi
Xanthomonas theicola
Xanthomonas
translucens
Xenophilus azovorans
Xenorhabdus beddingii
Xenorhabdus bovienii
Xenorhabdus cabanillasii
Xenorhabdus doucetiae
Xenorhabdus griffiniae
Xenorhabdus hominickii
Xenorhabdus koppenhoeferi
Xenorhabdus nematophila
Xenorhabdus poinarii
Xylanibacter oryzae
Xylanibacterium ulmi
Yangia pacifica
Yaniella flava
Yaniella halotolerans
Yeosuana aromativorans
Yersinia aldovae
Yersinia bercovieri
Yersinia enterocolitica
Yersinia entomophaga
Yersinia frederiksenii
Yersinia intermedia
Yersinia kristensenii
Yersinia mollaretii
Yersinia
philomiragia
Yersinia pestis
Yersinia pseudotuberculosis
Yersinia rohdei
Yersinia ruckeri
Yokenella regensburgei
Yonghaparkia alkaliphila
Zavarzinia compransoris
Zobellella
denitrificans
Zobellella taiwanensis
Zobellia galactanivorans
Zobellia uliginosa
Zoogloea ramigera
Zoogloea resiniphila
Zooshikella ganghwensis
Zunongwangia profunda
Zymobacter palmae
Zymomonas mobilis
Zymophilus paucivorans
Zymophilus raffinosivorans
Zeaxanthinibacter
enoshimensis
Zhihengliuella
halotolerans
Number | Date | Country | Kind |
---|---|---|---|
1712733.3 | Aug 2017 | GB | national |
This application is a divisional of U.S. application Ser. No. 16/637,656, filed internationally on Aug. 8, 2018, which is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/EP2018/071454, filed internationally on Aug. 8, 2018, which claims priority benefit to United Kingdom Application No. 1712733.3, filed Aug. 8, 2017, the contents of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16637656 | Feb 2020 | US |
Child | 18539066 | US |