Propanol derivatives and perfumes containing the same

Information

  • Patent Grant
  • RE37159
  • Patent Number
    RE37,159
  • Date Filed
    Wednesday, July 8, 1998
    26 years ago
  • Date Issued
    Tuesday, May 1, 2001
    23 years ago
Abstract
An optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanol derivative represented by formula (I): wherein R1 represents a lower alkyl group, and a perfume containing the same as an active ingredient are disclosed.
Description




FIELD OF THE INVENTION




This invention relates to a novel propanol derivative useful for perfume cosmetics, etc., and a perfume containing the same as an active ingredient.




BACKGROUND OF THE INVENTION




Some naturally-occurring compounds exhibit various characteristics attributed to their asymmetric structure. Of physiologically active substances having an asymmetric structure, many of those useful for humans are confined to the respective specific antipode. This tendency is particularly conspicuous in the field of pharmaceuticals, agricultural chemicals, pheromones, and food additives. It is known in these fields that a racemic mixture may have a markedly reduced effect or rather exhibit a counter effect. The field of perfumes is no exception to this tendency. For example, 1-menthol has the odor of mint; d-carvone has the odor of Caraway L.; and d-nootkatone has the odor of grapefruit. Each of these optical antipodes is different from or stronger than the respective other optical antipodes in odor. The latest examples of such a phenomenon are observed in α-ionine, hydroxycitronellal, and rose oxide. For the detail, reference can be made to Kaqaku Sosetsu, No. 14, Ch. 6 “Aji to Nioi no Kagaku” (1976).




Therefore, development of optically active perfume components as well as development of novel perfumes would lead to development of optical antipodes having a new odor or usefulness and are of industrial significance.




With respect to 3-(2,2,6-trimethylcyclohexan-1-yl)propanol derivatives, compounds known to have a wood-like fragrance or an amber-like fragrance include 1-(2,2,6-trimethylcyclohexan-1-yl)pentan-3-ol having an ethyl group as the alkyl moiety (see West German Patent Application (OLS) No. 2,455,761), 1-(2,2,6-trimethylcyclohexan-1-yl)hexan-3-ol having a propyl group as the alkyl moiety (see JP-A-62-70314, JP-B-1-38438, JP-B-59-18373, JP-A-61-191636, and JP-B-62-16935; the terms “JP-A” and “JP-B” as used herein mean an “unexamined published Japanese patent application” and an “examined Japanese patent publication”, respectively), and 5-methyl-1-(2,2,6-trimethylcyclohexan-1-yl(hexan-3-ol having an isobutyl group as the alkyl moiety (See USSR Patent 1,082,780).




JP-B-1-38438 discloses a composition of 1-(2,2,6-trimethylcyclohexan-1-yl)hexan-3-ol comprising 80% or more of a trans isomer and not more than 20% of a cis isomer.




Since these cis and trans isomers each has an asymmetric carbon atom in the molecule thereof, it is expected that there are a pair of enantiomers, i.e., (+)-isomer and (−)-isomer. However, the compounds disclosed in the above-cited references exist as a racemic mixture. No other study has been reported on synthesis or properties of the individual optical isomers.




The recent diversity of cosmetics and sanitary goods has created a new increasing demand for a perfume material which has a high diffusibility, unique scent, high tastiness, high retention, satisfactory stability, and high safety. In particular, perfume materials having an amber-like fragrance and satisfying these requirements have been wanted.




SUMMARY OF THE INVENTION




Accordingly, an object of this invention is to provide an optically active compound which is capable of imparting an amber-like fragrance while meeting the above-described demand.




Another object of this invention is to provide a perfume comprising the above-described optically active compound as an active ingredient.




In the light of the above-mentioned circumstances, the inventors have conducted extensive investigations and, as a result, succeeded to synthesize an optically active isomer of a 3-(2,2,6-trimethylcyclohexan-1-yl)propanol derivative and found that the 6(S)-isomer of the compound has a sharp and highly diffusible amber fragrance free from a wood-like fragrance accompanied by the dim odor of mold and is useful as a perfume. The present invention has been completed based on this finding.




The present invention relates to an optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanol derivative represented by formula (I):











wherein R


1


represents a lower alkyl group.




The present invention further relates to a perfume containing the optically active compound of formula (I) as an active ingredient.




DETAILED DESCRIPTION OF THE INVENTION




In formula (I), the lower alkyl group as represented by R


1


preferably contains from 1 to 4 carbon atoms, and specific examples thereof include a methyl group, and ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.




The optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanol derivative of formula (I) can be synthesized, for example, in the following reaction scheme.











wherein R


1


is as defined above; and X represents a halogen atom.




The above active optically active propanol derivatives of formula (


I


)


can also be represented by the following formula


(


A


):













In the above formula


(


A


)


, the wavy line means a bond whose direction is not specified in the formula. It thus includes both the trans and cis forms of the compounds of formula


(


I


)


as reflected in Synthesis Examples


7


-


17


.






That is, the optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanol derivative of formula (I) can easily be synthesized by reacting an optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal represented by formula (2) with an alkylmagnesium halide represented by the formula, R


1


MgX, wherein R


1


and X are the same as defined above.




The starting compound, 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal (2), is a novel compound and can be synthesized in the following reaction scheme:











wherein R


2


represented a hydrogen atom or a methyl group; Ac represents an acetyl group; Et represents an ethyl group; and the wavy line indicates a trans- and/or cis-position.




While an optically active 1-[6(S)-2,2,6-trimethylcyclohexan]carbaldehyde (5) as an intermediate compound of the above reaction route is known to by synthesized by starting with optically active citronellal as described in JP-A-63-44544, it can easily be synthesized in a high yield by starting with optically active 1-methoxycitronellal (3) which is used on an industrial scale as a perfume or juvenile pheromone of mosquito larvae. Namely, 1-methoxycitronellal (3) is reacted with acetic anhydride to obtain an enol acetate (4) which, as produced, is then subjected to cyclization in the presence of a phosphoric acid catalyst to obtain the compound (5).




The compound (5) is then reacted with triethyl phosphonoacetate (6) by utilizing the Wittig reaction described, e.g., In Herbert O. House, Modern Synthetic Reaction, p. 690, W. A. Benjamin, Inc., Menlo Park, Calif., U.S.A. (1972) by synthesize optically active ethyl 3-[6(S)-2,2,6-trimethylcyclohexan-1yl]acrylate (7).




The compound (7) is reduced by using sodium borohydride or sodium bis(2-methoxyethoxy)aluminum hydride to synthesize optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]-2-propen-1-ol (8) which is then oxidized with manganese dioxide to obtain optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]-2-propen-1-al (9). The compound (9) is then hydrogenated in the presence of a palladium-on-carbon as a catalyst to synthesize optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal (2).




While the above description relates to synthesis of the 6(S)-compound, a 6(R)-compound can be obtained in the similar manner by starting with d-methoxycitronellal in place of 1-methoxycitronellal.




It surprisingly turned out that the scent given off by the thus obtained 3-[2,2,6-trimethylcyclohexan-1-yl]propanol derivatives utterly differs between different optical antipodes. More specifically, the 6(S)-compounds have a sharp amber fragrance with very high diffusibility in common, though somewhat different in strength and quality depending on the kind of R


1


. On the other hand, the 6(R)-compounds basically produce no amber fragrance and give off a powerless wood-like fragrance with a little moldiness. The racemates give off a dull woody amber fragrance which is remarkably different from and far less powerful than that of the 6(S)-compounds.




Further, each of the 6(S)-compounds differing in R


1


was proved effective to impart to a perfume composition a distinct top note to yield a fresher and tastier composition as though it is of different kind from the corresponding 6(R)-compound or racemate. It was also proved that the 6(S)-compounds have high fragrance retention and high masking effects over odors of bases of soaps, etc., odors of bleaching agents, and ozone odor and are, therefore, very useful as perfume materials.




Thus, there is provided a fresh and tasty fragrance or a fragrance modifying or strengthening agent with high diffusibility and retention, which contains the 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanol derivative according to the present invention. There are also provided cosmetics, sanitary goods, pharmaceuticals, etc., which contains the compound of the invention as a perfume component. That is, the compound according to the present invention can be incorporated in an amount effective to impart its unique fragrance into bases of hair care cosmetics, e.g., shampoos, rinses, perfumes, colognes, hair tonics, hair creams, pomades, etc.; bases of facial cosmetics, e.g., face powders, lip sticks, etc.; toilet foods, e.g., face cleansers, soaps, disinfectants, tooth pastes, mouth-washes, toilet paper, etc.; various detergents, e.g., dish washing detergents, laundry detergents, textile softeners, disinfectant detergents, deodorant detergents, bleaching agent, etc.; environmental aromatizers, furniture care goods, insecticides; flavors for facilitating administration of medicines; and the like thereby to enhance the commercial value of these goods.




A suitable amount of the propanol derivative according to the present invention which is used in a perfume composition to be applied to various products is from 0.0001 to 50% by weight and preferably from 0.001 to 20% by weight.




The present invention is now illustrated in greater detail with reference to Synthesis Examples and Examples. All the parts, percents, and ratios are by weight unless otherwise indicated.











SYNTHESIS EXAMPLE 1




Synthesis of 1-[6(S)-2,2,6-Trimethylcyclohexan]carbaldehyde (5)




In a 5 l-volume four-necked flask equipped with a condenser, a thermometer, a dropping funnel, and a stirrer were charged 871 g of acetic anhydride, 27 g of sodium acetate, and 706 g of triethylamine under a nitrogen atmosphere, and the mixture was heated to 75° C. while stirring. To the resulting solution was added dropwise 1 kg of 1-methoxycitronellal (a commercially available product of Takasago International Corporation; [α]


D




25


: −10.42°; optical purity: 98% ee) over 1 hour.




After the dropwise addition, the reaction mixture was refluxed at 101° to 117° C. for 6-hours, followed by cooling to 5° C. To the reaction mixture were added 500 g of water and 500 g of toluene to conduct water washing and liquid-liquid separation. Again, 500 g of water was added thereto to conduct water washing and liquid-liquid separation to obtain 1,690 g of a toluene solution of an enol acetate (4). Gas chromatography (“HEWLETT PACKARD 5890”; column; Carbowax 20M (HP); 0.2 mm ID×25 m) (hereinafter abbreviated as GC) revealed that the solute was composed of 29.5% of cis-compound (4), 62.75% of trans-compound (4), and 5.3% of diacetate (10).











wherein Me represents a methyl group; and Ac represents an acetyl group. Spectral Data: Mass (CI)





















(4)-Trans:




229 (M + 1,1), 197 (70), 155 (42), 137 (100),








95 (12), 73 (41)







(4)-Cis:




229 (M + 1,3), 197 (100), 155 (88), 137 (98),








95 (24), 73 (82)







(10):




289 (M + 1,0.2), 197 (85), 155 (75), 137 (100),








103 (19), 73 (33)















In a 5 l-volume four-necked flask equipped with a condenser, a thermometer, an outlet for water, and a stirrer were charged 1,690 g of the resulting toluene solution of compound (4), 620 g of 85% phosphoric acid, and 500 g of toluene, and the mixture was heat-refluxed at 71° to 107° C. for 3 hours with stirring under a nitrogen atmosphere while controlling the refluxing temperature by removing the produced methanol together with toluene in small portions.




The reaction mixture was cooled to 5° C. and washed with 2,000 ml of cold water, followed by water washing and liquid-liquid separation. The mixture was further washed and separated successively with 2,000 ml of water, 2,000 ml of a 5% soda ash aqueous solution, and 2,000 ml of a saturated sodium chloride aqueous solution. The toluene was removed by distillation under reduced pressure to obtain 872 g of a concentrated oil. The resulting concentrated oil was subjected to rectification using a 1 mm distillation column packed with Helipack to obtain 425 g of optically active 1-[6(S)-2,2,6-trimethylcyclohexan]carbaldehyde (5).




Boiling point: 80°-81° C./8 mmHg




[α]


D




25


: −0.47°




Purity by GC: (5)-Trans: 90%; (5)-Cis: 10%











SYNTHESIS EXAMPLE 2




Synthesis of Ethyl 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]acrylate (7)




In a 10 l-volume four-necked flash equipped with a condenser, a thermometer, a dropping funnel, and a stirrer were charged 1,000 g of a sodium hydride dispersion (purity: 60% and 3,400 ml of tetrahydrofuran, and 565 g of triethyl phosphonoacetate (6) was added dropwise thereto over 1 hours. The mixture was stirred for 1 hour until hydrogen gas was not evolved.




Then, 424 g of the compound (5) prepared in Synthesis Example 1 was added dropwise thereto at room temperature over 1 hour, followed by stirring at room temperature for 3 hours to complete the reaction. To the reaction mixture was added 1 kg of water to conduct water washing and liquid-liquid separation, followed by working up in a usual manner to obtain 526 g of a concentrated oil.




The resulting concentrated oil was subjected to rectification using a 30 cm Helipack-packed distillation column to obtain 465 g of optically active ethyl 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]acrylate (7).




Boiling point: 108-109° C./0.95.mmHg




[α]


D




25


: +21.41°




Purity by GC: 99.5% (the product was not separated into the cis and trans compounds.)




Spectral Data of Compound (7):






1


HNMR (400 MHz, CDCl


3


, δ): 0.75 (3H, d, J=4.3 Hz), 0.82 (3H, s), 0.88 (3H, s), 1.29 (3H, t, J=7.1 Hz), 0.89-1.8 (8H), 4.18 (2H, q, J=7.1 Hz), 5.76 (1H, d, J=15.5 Hz), 6.73 (1H, q, J=15.5 Hz, J=10.1 Hz)




MS m/e: 224 (M


+


, 18), 209 (7), 179 (25 ), 168 (9), 150 (37), 136 (100), 125 (23), 109 (50), 95 (75), 81 (64), 69 (70), 55 (35), 41 (16), 29 (11)




IR ν


max


(cm


−1


): 2925, 1720, 1650, 1365, 1150-1180




SYNTHESIS EXAMPLE 3




Synthesis of 3-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]-2-propen-1-ol (8)




Into a 5 l-volume four-necked flask equipped with a condenser, a thermometer, a dropping funnel, and a stirrer were charged 633 g of a 70% toluene solution of sodium bis(2-methoxyethoxy)aluminum hydride and 2,100 ml of toluene under a nitrogen atmosphere, and 460 g of the compound (7) prepared in Synthesis Example 2 was added dropwise to the mixture at room temperature over 2 hours, followed by stirring at that temperature for 1 hour to complete the reaction.




The reaction mixture was worked up in a usual manner to obtain 390 g of a concentrated oil which was then purified by rectification using a 30 cm Helipack-packed distillation column to obtain 322 g of optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]-2-propen-1-ol (8).




Boiling point: 95°-96° C./0.95 mmHg




[α]


D




25


: +23.33°




Purity by GC: (8)-Trans: 95%; (8)-Cis: 5%











Spectral Data of (8)-Trans:






1


H-NMR (400 MHz, CDC


3


, δ): .76 (3H, d, J=6.3 Hz), 0.82 (6H, s), 0.87-1.49 (8H), 1.69 (1H, m), 4.11 (2H, q, Jgem=1.3 Hz, Jvic=5.9 Hz), 5.39 (1H, m), 5.57 (1H, m)




MS m/e: 182 (M


+


, 2), 164 (4), 149 (18), 138 (12), 124 (39), 109 (52), 95 (70), 81 (63), 69 (100), 55 (57), 41 (22), 28 (6)




IR ν


max


(cm


−1


): 3325, 2920, 1365, 970




Spectral Data of (8)-Cis:




MS m/e: 182 (M


30


, 3), 164 (7), 149 (18), 138 (11), 124 (48), 109 (74), 95 (78), 81 (50), 69 (100), 55 (46), 41 (24), 32 (9.6)




SYNTHESIS EXAMPLE 4




Synthesis of 3-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]-2-propen-1-al (9)




In a 2 l-volume four-necked flask equipped with a thermometer and a stirrer were charged 4,300 g of activated manganese dioxide, 10 l of n-octane, and 320 g of the compound (8) synthesized in Synthesis Example 3, and the mixture was stirred at 40° to 45° C. for 12 hours to complete the reaction. The reaction mixture was filtered and concentrated to obtain 326 g of a concentrated oil which was then purified by rectification by using a 30 cm Helipack-packed distillation column to obtain 277 g of optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]-2-propen-1-al (9).




Boiling point: 90°-91° C./0.9 mmHg




[α]


D




25


: +33.44°




Purity by GC: (9)-Trans: 95.5%; (9)-Cis: 4.5%











Spectral Data of (9)-Trans:






1


H-NMR (400 MHz, CDCl


3


, δ): 0.76 (3H, d, J=2.4 Hz), 0.91 (3H, s), 0.84 (3H, s), 1.22-1.71 (8H), 6.08 (1H, q, J=15.5 Hz, J=8 Hz), 6.61 (1H, q, J=15.5Hz, J=10.1Hz), 9.52 (1H, d, J=8Hz)




MS m/e: 180 (M


+


, 13), 165(11), 147 (6), 137 (43), 123 (31), 109 (41) 95 (100) 81 (72) 69 (35) 55 (30), 41 (24 )




IR ν


max


(cm


−1


): 2920, 2860, 2840, 1680, 1460, 1370, 1120, 1110




Spectral Data of (9)-Cis:




MS m/e: 180 (M


+


, 11), 165 (11), 147 (4), 137 (43), 123 (33), 109 (31), 95 (100), 81 (51), 69 (26), 55 (26), 41 (20)




SYNTHESIS EXAMPLE 5




Synthesis of 3-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]propanal (2)




In 7 l of ethanol was added 276 g of the compound (9) synthesized in Synthesis Example 4, and the mixture was subjected to hydrogenation at room temperature at atmospheric pressure using 14 g of 5% paladium-on-carbon as a catalyst. After the reaction, the catalyst was removed by filtration, and the resulting 290 g of a concentrated oil was purified by rectification using a 30 cm Helipack-packed distillation column to obtain 242 g of optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal (2).




Boiling point: 93°-94° C./1.1 mmHg




[α]


D




25


: +11.88°




Purity by GC: (2)-Trans: 95.7%; (2)-Cis: 4.3%











Spectral Data of (2)-Trans:






1


HNMR (400 MHz, CDCl


3


, δ): 0.80 (3H, d, J=4.3 Hz), 0.90 (6H), 0.92-1.78 (8H), 2.27-2.53 (4H), 9.74 (1H, t, J=1.9 Hz)




MS m/e 182 (M


+


, 8), 167 (12), 149 (16), 138 (17), 123 (13), 109 (35), 95 (17), 82 (70), 69 (100), 55 (48), 41 (20)




IR ν


max


(cm


−1


): 2920, 2890, 2840, 1720, 1460, 1390, 1380




Spectral Data of (2)-Cis:




MS m/e: 182 (M


+


, 4), 167 (7), 149 (16), 138 (52), 123 (68), 109 (41), 95 (76), 82 (98), 69 (100), 55 (52), 41 (18), 29 (41), 18 (9)




SYNTHESIS EXAMPLE 6




Synthesis of 3-[6(R)-2,2,6-Trimethylcyclohexan-1-yl]propanal (11)




The same procedures as in Synthesis Examples 1 through 5 were repeated, except for replacing the starting 1-methoxycirtonellal with d-methoxycitronellal (a commercially available product sold by Takasago International Corporation; [α]


D




25


: +10.42°; optical purity: 98% ee), to obtain 240 g of optically active 3-[6(R)-2,2,6-trimethylcyclohexan-1-yl]propanal (11).




Boiling point: 93-94° C./1.1 mmHg




[α]


D




25


-11.87°




Purity by GC: (11)-Trans: 95.6%; (11)-Cis: 4.4%











SYNTHESIS EXAMPLE 7




Synthesis of 1-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]butan-3-ol (12)




In a 300 ml-volume four-necked flask equipped with a condenser, a thermometer, a dropping funnel, a gas blowing tube, and a stirrer were charged 5.0 g of a magnesium powder, 0.001 g of iodine, 0.5 g of methyl iodide, and 10 ml of tetrahydrofuran under a nitrogen atmosphere. After confirming the start of a Grignard reaction (generation of bubbling), of tetrahydrofuran was added thereto, and methyl chloride gas was blown into the reaction mixture at 40° to 45° C. for 4 hours with stirring until the magnesium powder disappeared to thereby prepare a tetrahydrofuran solution of methylmagnesium chloride. To the resulting solution was added dropwise a solution of 15 g of the 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal (2) obtained in Synthesis Example 5 in 15 ml of tetrahydrofuran at 5° C. over 2 hours, followed by stirring at that temperature for 4 hours to complete the reaction. The reaction mixture was worked up in a usual manner, and 17 g of the resulting concentrated oil was subjected to rectification using a 20 cm Helipack-packed distillation column to obtain 13 g of optically active 1-[6(S)-2,2,6-trimethylcyclohexan-1-yl]butan-3-ol (12).




Boiling point: 93°-95° C./1 mmHg




[α]


D




25


: +12.98°Purity by GC: (12)-Trans: 95.3%; (12)-Cis: 4.7%




Elemental analysis:




Calcd. (%) C: 78.72; H: 13.21; O: 8.07




Found (%) C: 78.71; H: 13.22; O: 8.07











Spectral Data of (12)-Trans:






1


HNMR (400 MHz, CDCl


3


, δ): 3.75 (1H, m), 1.19 (3H, d, J=6.17 Hz), 0.88 (3H, d, J=6 Hz), 0.89 (3H, s), 0.79 (3H, s), 0.55 (1H, m), 1.6-0.9 (12H, m)




MS m/e: 198 (M


+


, 1), 180 (8), 165 (13), 151 (1), 138 (13), 124 (40), 109 (65), 95 (59), 82 (53), 69 (100), 55 (49), 45 (27), 29 (1)




IR ν


max


(cm


−1


): 3348, 1460, 1375, 1100




Spectral Data of (12)-Cis:




MS m/e: 198 (0), 180 (4), 165 (24), 138 (20), 123 (39), 109 (59), 95 (61), 82 (67), 69 (100), 55 (59), 43 (30), 32 (5)




SYNTHESIS EXAMPLE 8




Synthesis of 1-[6(R)-2,2,6-Trimethylcyclohexan-1-yl]butan-3-ol (13)




The same procedure as in Synthesis Example 7 was repeated, except for replacing the starting 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal with 10 g of 3-[6(R)-2,2,6-trimethylcyclohexan-1-yl]propanal, to obtain 9 g of optically active 1-[6(R)-2,2,6-trimethylcyclohexan-1-yl]butan-3-ol (13).




Boiling point 93°-95° C./1 mmHg




[α]


D




25


: −12.96°




Purity by GC: (13)-Trans: 95.2%; (13)-Cis: 4.8%




Elemental Analysis:




Calcd. (%) C: 79.57; H: 13.36; O: 7.07




Found (%) C: 79.54; H: 13.37; O: 7.09
















SYNTHESIS EXAMPLE 9




Synthesis of 1-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]pentan-3-ol (14)




The same procedure as in Synthesis Example 7 was repeated, except for replacing the methyl iodide and methyl chloride gas with ethyl iodide and ethyl chloride gas, respectively to prepare a tetrahydrofuran solution of ethylmagnesium chloride. The resulting concentrated oil (17 g) was subjected to rectification by using a 20 cm Helipack-packed distillation column to obtain 13 g of optically active 1-[6(S)-2,2,6-trimethylcyclohexan-1-yl]pentan-3-ol (14).




Boiling point: 95°-97° C./1 mmHg




[α]


D




25


: +13.08°




Purity by GC: (14)-Trans: 95.0%; (14)-Cis: 5.0%




Elemental Analysis:




Calcd. (%) C: 79.18; H: 13.29; O: 7.53




Found (%) C: 79.12; H: 13.32; O: 7.56
















Spectral Data of (14)-Trans:






1


HNMR (400 MHz, CDCl


3


, δ): 0.54 (1H, m), 0.79 (3H, s), 0.88-0.96 (10H), 1.00-1.66 (13H), 3.48 (1H, m)




MS m/e: 194 (M-18, 16), 179 (17), 165 (4), 151 (4), 138 (46), 124 (56), 109 (87), 95 (59), 82 (56), 69 (100), 55 (41), 41 (13), 31 (3), 82 (56), 69 (100), 55 (41), 41 (13), 31 (3)




IR ν


max


(cm


−1


): 3340, 2920, 2865, 2840, 1460, 1387, 1367




Spectral Data of (14)-Cis:




MS m/e: 194 (M-18), 179 (55), 165 (4), 151 (6), 138 (45), 123 (80), 109 (91), 95 (76), 82 (7), 69 (100), 55 (41), 41 (12), 31 (4)




SYNTHESIS EXAMPLE 10




Synthesis of 1-[6(R)-2,2,6-Trimethylcyclohexan-1-yl]pentan-3-ol (15)




The same procedure as in Synthesis Example 7 was repeated, except for replacing the methyl iodide and methyl chloride gas with ethyl iodide and ethyl chloride gas, respectively to prepare a tetrahydrofuran solution of ethylmagnesium chloride and replacing 15 g of the starting 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal with 10 g of 3-[6(R)-2,2,6-trimethylcyclohexan-1-yl]propanal, to obtain 9 g of optically active 1-[6(R)-2,2,6-trimethylcyclohexan-1-yl]pentan-3-ol (15).




Boiling point: 95°-97° C./1 mmHg




[α]


D




25


: −13.08°




Purity by GC: (15)-Trans: 95.0%; (15)-Cis: 5.0%




Elemental Analysis:




Calcd. (%) C: 79.18; H: 13.29; O: 7.53




Found (%) C: 79.15; H: 13.30; O: 7.55
















SYNTHESIS EXAMPLE 11




Synthesis of 1-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]hexan-3-ol (16)




In a 300 ml-volume four-necked flask equipped with a condenser, a thermometer, a dropping funnel, and a stirrer were charged 5.0 g of a magnesium powder, 0.001 g of iodine, 0.5 g of n-propyl iodide, and 10 ml of tetrahydrofuran under a nitrogen atmosphere. After confirming the start of a Grignard reaction (bubbling and heat evolution), 100 ml of tetrahydrofuran was added to the reaction mixture, and 18 g of n-propyl chloride was added dropwise thereto at 35° to 40° C. over hours, followed by stirring at that temperature until the magnesium powder disappeared, to prepare a tetrahydrofuran solution of n-propylmagnesium chloride. To the resulting solution was added dropwise a solution of 15 g of the 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal (2) obtained in Synthesis Example 5 in 15 ml of tetrahydrofuran at 5° C. over 2 hours, followed by stirring at that temperature for 4 hours to complete the reaction. The reaction mixture was worked up in a usual manner, and the resulting concentrated oil (18 g) was subjected to rectification by using a 20 cm Helipack-packed distillation column to obtain 13 g of optically active 1-[6(S)-2,2,6-trimethylcyclohexan-1-yl]hexan-3-ol (16).




Boiling point: 98°-101° C./1 mmHg




[α]


D




25


: +11.98°




Purity by GC: (16)-Trans: 95.2%; (16)-Cis: 4.8%




Elemental Analysis:




Calcd. (%) C: 79.57; H: 13.36; O: 7.07




Found (%) C: 79.61; H: 13.33; O: 7.06
















Spectral Data of (16)-Trans:






1


HNMR (400 MHz, CDCl


3


, δ): 0.54 (1H, m), 0.79 (3H, s), 0.87-0.95 (9H), 0.97-1.27 (3H), 1.28-1.65 (13H), 3.56 (1H, m)




MS m/e: 208 (M-18), 193 (19), 183 (11), 165 (9), 152 (13), 138 (46), 124 (61), 109 (87), 95 (65), 82 (67), 69 (100), 55 (59), 43 (17)




IR ν


max


(cm


−1


): 3340, 2958, 2920, 2870, 2840, 1466, 1460, 1387, 1378, 1368




Spectral Data of (16)-Cis:




MS m/e: 208 (17), 193 (61), 183 (4), 165 (7), 152 (8), 138 (55), 109 (93), 95 (76), 82 (81), 69 (100), 55 (61), 41 (18)




SYNTHESIS EXAMPLE 12




Synthesis of 1-[6(R)-2,2,6-Trimethylcyclohexan-1-yl]hexan-3-ol (17)




The same procedure as in Synthesis Example 11 was repeated, except for replacing 15 g of the starting 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal with 10 g of 3-[6(R)-2,2,6-trimethylcyclohexan-1-yl]propanal, to obtain 9 g of optically active 1-[6(R)-2,2,6-trimethylcyclohexan-1-yl]hexan-3-ol (17).




Boiling point: 98°-101° C./1 mmHg




[α]


D




25


: 11.97°




Purity by GC: (17)-Trans: 95.1%; (17)-Cis: 4.9%




Elemental Analysis:




Calcd. (%) C: 79.57; H: 13.36; O: 7.07




Found (%) C: 79.54; H: 13.37; O: 7.09
















SYNTHESIS EXAMPLE 13




Synthesis of 1-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]-4-methylpentan-3-ol (18)




The same procedure as in Synthesis Example 11 was repeated; except for replacing the n-propyl iodide with isopropyl iodide and dropwise adding isopropyl chloride in place of the n-propyl chloride over 3 hours to prepare a tetrahydrofuran solution of isopropylmagnesium chloride. The resulting concentrated oil (17 g) was subjected to rectification by using a 20 cm Helipack-packed distillation column to obtain 13 g of optically active 1-[6(S)-2,2,6-trimethylcyclohexan-1-yl]-4-methylpentan-3-ol (18).




Boiling point: 96°-97° C./1 mmHg




[α]


D




25


: 13.71°




Purity by GC: (18)-Trans 95.1%; (18)-Cis: 4.9%




Elemental Analysis:




Calcd. (%) C: 79.57; H: 13.36; O: 7.07




Found (%) C: 79.57; H: 13.36; O: 7.07
















Spectral Data of (18)-Trans:






1


HNMR (400 MHz, CDCl


3


, δ): 0.54 (1, m), 0.79 (3H, s), 0.87-0.94 (13H), 1.00-1.70 (12H), 3.3 (1H, m)




MS m/e: 236 (M


+


, 4), 208 (7), 193 (7), 183 (28), 165 (10), 154 (3), 138 (22), 124 (33), 109 (73), 95 (59), 83 (67), 69 (100), 55 (33), 43 (15)




IR ν


max


(cm


−1


): 3350, 2950, 2920, 2865, 2840, 1468, 1387, 1368




Spectral Data of (18)-Cis:




MS m/e: 208 (14), 193 (36), 183 (11), 165 (8), 152 (3), 138 (33), 123 (57), 109 (74), 95 (65), 83 (77), 69 (100), 55 (35), 43 (16)




SYNTHESIS EXAMPLE 14




Synthesis of 1-[6(R)-2,2,6-Trimethylcyclohexan-1-yl]-4-methylpentan-3-ol (19)




The same procedure as in Synthesis Example 11 was repeated, except for using isopropyl iodide in place of the n-propyl iodide and adding dropwise isopropyl chloride in place of the n-propyl chloride over 3 hours to prepare a tetrahydrofuran solution of isopropylmagnesium chloride and replacing 15 g of the starting 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal with 10 g of 3-[6(R)-2,2,6-trimethylcyclohexan-1-yl]propanal, to obtain 9 g of optically active 1-[6(R)-2,2,6-trimethylcyclohexan-1-yl]-4-methylpentan-3-ol (19).




Boiling point: 96°-97° C./1 mmHg




[α]


D




25


: −13.70°




Purity by GC: (19)-Trans: 95.2%; (19)-Cis: 4.8%




Elemental Analysis:




Calcd. (%) C: 79.57; H: 13.36; O: 7.07




Found (%) C: 79.56; H: 13.37; O: 7.07
















SYNTHESIS EXAMPLE 15




Synthesis of 1-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]heptan-3-ol (20)




The same procedure as in Synthesis Example 11 was repeated, except for using n-butyl iodide in place of the n-propyl iodide and using 20 g of n-butyl chloride in place of g of the n-propyl chloride to prepare a tetrahydrofuran solution of n-butylmagnesium chloride. The resulting concentrated oil (19 g) was subjected to rectification by using a 20 cm Helipack-packed distillation column to obtain 13 g of optically active 1-[6(S)-2,2,6-trimethylcyclohexan-1-yl]heptan-3-ol (20).




Boiling point: 109°-110° C./1 mmHg




[α]


D




25


: +11.23°




Purity by GC: (20)-Trans 95.2%; (20)-Cis: 4.8%




Elemental Analysis:




Calcd. (%) C: 79.93; H: 13.42; O: 6.65




Found (%) C: 79.95; H: 13.41; O: 6.64
















Spectral Data of (20)-Trans:






1


HNMR (400 MHz, CDCl


3


, δ): 0.54 (1H, m), 0.79 (3H, s), 0.88-0.93 (10H), 1.00-1.24 (2H), 1.31-1.64 (16H), 3.5 (1H, m)




MS m/e: 222 (M-18, 13), 207 (13), 183 (7), 166 (10), 154 (5), 138 (32), 124 (41), 109 (57), 95 (46), 82 (43), 69 (100), 55 (19), 41 (7)




IR ν


max


(cm


−1


): 3340, 2918, 2865, 2840, 1468, 1460 1389, 1378, 1369




Spectral Data of (20-Cis:




MS m/e: 222 (M-18, 15), 207 (50), 183 (4), 166 (4), 151 (4), 138 (36), 123 (63), 109 (63), 95 (62), 82 (56), 69 (100), 55 (22), 41 (10)




SYNTHESIS EXAMPLE 16




Synthesis of 1-[6(R)-2,2,6-Trimethylcyclohexan-1-yl]heptan-3-ol (21)




The same procedure as in Synthesis Example 11 was repeated, except for using n-butyl iodide in place of the n-propyl iodide and 20 g of n-butyl chloride in place of 18 g of the n-propyl chloride to prepare a tetrahydrofuran solution of n-butylmagnesium chloride and replacing the starting 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal with 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal, to obtain 9 g of optically active 1-[6(R)-2,2,6-trimethylcyclohexan-1-yl]heptan-3-ol (21).




Boiling point: 109°-110° C./1 mmHg




[α]


D




25


: −11.23°




Purity by GC: (21)-Trans: 95.1%; (21)-Cis: 4.9%




Elemental Analysis:




Calcd. (%) C: 79.93; H: 13.42; O: 6.65




Found (%) C: 79.92; H: 13.42; O: 6.66
















SYNTHESIS EXAMPLE 17




Synthesis of 1-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]-5-methylhexan-3-ol (22)




The same procedure as in Synthesis Example 11 was repeated, except for using isobutyl iodide in place of the n-propyl iodide and isobutyl chloride in place of the n-propyl chloride to prepare a tetrahydrofuran solution of isobutylmagnesium chloride. The resulting concentrated oil (18 g) was subjected to rectification by using a 20 cm Helipack-packed distillation column to obtain 13 g of optically active 1-[6(S)-2,2,6-trimethylcyclohexan-1-yl]-5-methylhexan-3-ol (22).




Boiling point: 103°-104° C./1 mmHg




[α]


D




25


: +10.57°




Purity by GC: (22)-Trans: 95.2%; (22)-Cis: 4.8%




Elemental Analysis:




Calcd. (%) C: 79.93; H: 13.42; O: 6.65




Found (%) C: 79.91; H: 13.44; O: 6.65
















Spectral Data of (22)-Trans:






1


HNMR (400 MHz, CDCl


3


, δ): 0.53 (1H, m), 0.79 (3H, s), 0.87-0.93 (13H), 1.00-1.65 (13H), 1.77 (1H, m), 3.6 (1H, m)




MS m/e: 222 (M-18, 9), 207 (11), 183 (11), 166 (6), 154 (7), 138 (35), 124 (37), 109 (59), 95 (44), 82 (50), 69 (100), 57 (22), 43 (15)




IR ν


max


(cm


−1


): 3350, 2950, 2920, 2865, 2840, 1468, 1387, 1368




Spectral Data of (22)-Cis:




MS m/e: 222 (M-18, 13), 207 (33), 183 (4), 166 (4), 151 (3), 138 (37), 123 (67), 109 (33), 95 (62), 69 (100), 55 (26), 43 (15)




SYNTHESIS EXAMPLE 18




Synthesis of 1-[6(R)-2,2,6-Trimethylcyclohexan-1-yl]-5-methylhexan-3-ol (23)




The same procedure as in Synthesis Example 11 was repeated, except for using isobutyl iodide in place of the n-propyl iodide and isobutyl chloride in place of the n-propyl chloride to prepare a tetrahydrofuran solution of isobutylmagnesium chloride and replacing the starting 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal with 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanal, to obtain 9 g of optically active 1-[6(R)-2,2,6-trimethylcyclohexan-1-yl]-5-methylhexan-3-ol (23).




Boiling point: 103°-104° C./1 mmHg




[α]


D




25


: −10.57°




Purity by GC: (23)-Trans: 95.1%; (23)-Cis: 4.9%




Elemental Analysis:




Calcd. (%) C: 79.93; H: 13.42; O: 6.65




Found (%) C: 79.93; H: 13.41; O: 6.66
















EXAMPLE 1




Odor Evaluation




Odor evaluation was carried out by a panel of 5 specialists on the 6(S)-compound, 6(R)-compound, and racemate of each of the 3-(2,2,6-trimethylcyclohexan-1-yl)propanal derivatives having various alkyl groups as R: as synthesized in the foregoing Synthesis Examples. The results are shown in Tables 1 and 2 below. Standards of rating were as follows.




A . . . Very pleasant and attractive




B . . . Pleasant and makes one to feel a desired to use




C . . . Usable but featureless




D . . . Not so interesting




E . . . Not interesting at all


















TABLE 1









Com-





6(S)-Com-




Com-





6(R)-Com-







pound





pound Odor




pound





pound Odor







No.




R


1






Character




No.




Rate




Character




Rate











(12),




CH


3






slightly floral




(13)




B




very faint




E






[(13)]





and orris-like






woody odor








amber










fragrance








(14),




C


2


H


5






highly diffus-




(15)




A




faint, slightly




D






[(15)]





ible, sharp






amber-like








amber fra-






woody odor








grance with






with a little








slight orris-






moldiness








like cam-








phorous side








note






(16),




n-C


3


H


7






highly diffus-




(17)




A




very faint




E






[(17)]





ible, sharp






woody odor








amber fra-






with a little








grance with






moldiness








slight orris-








like animal








note






(18),




i-C


3


H


7






relatively




(19)




C




very faint




E






[(19)]





powerless and






woody odor








slightly soil-






with a little








like amber-






moldiness








like woody fra-








grance






(20),




n-C


4


H


9






highly diffus-




(21)




A




faint woody




E






[(21)]





ible amber






odor with a








fragrance with






little








slight orris-






moldiness








like side note






(22),




i-C


4


H


9






highly diffus-




(23)




A




faint woody




D






[(23)]





ible, sharp






odor with a








amber fra-






little








grance with






moldiness








slight cam-








phorous side








note






















TABLE 2











Racemate [Mixture of 6(S)/6(R) = 1/1]















R


1






Odor Character




Rate











CH


3






orris-like, woody amber odor




C








with a low floral side note







C


2


H


5






low diffusible, dull, and




C








orris-like woody amber odor







n-C


3


H


7






dull and broadwise spreading




B








woody amber odor







i-C


3


H


7






faint amber odor with




D








soil-like side note







n-C


4


H


9






low diffusible, dull, and




C








faint amber odor







i-C


4


H


9






dull, broadwise spreading, and




B








woody amber odor with slight








comphorous side note















EXAMPLE 2




Masking Test of Amino Acid Shampoo




In order to test masking effect on the odor of the base of an amino acid shampoo, a shampoo composition containing 1-[6(S)-2,2,6-trimethylcyclohexan-1-yl]heptane-3-ol or a racemate thereof as shown in Table 3 below was prepared, and the degree of masking was evaluated by a panel of 5 specialists. As a result, the panel judged that Composition A containing the optically active compound smelled pleasantly of amber with the base odor being perfectly masked; Composition B containing the racemate smelled considerably of the base; and the smell of the base was substantially overpowered in Composition C containing the racemate in an amount 8 times that of the optically active compound in Composition A.
















TABLE 3











Composition




Composition




Composition







A




B




C



























Amino acid shampoo




 25 g




 25 g




 25 g






5% Diethylene glycol




0.1 g
















solution of 1-[6(S)-






2,2,6-trimethylcyclo-






hexan-1-yl]heptan-3-ol






5% Diethylene glycol









0.2 g




0.8 g






solution of racemate






[mixture of






6(S)/6(R) = 1/1]














EXAMPLE 3




Musk Base




A musk base having the following formulation was prepared, and the 1-[6(S)-2,2,6-trimethylcyclohexan-1-yl]-5-methylhexan-3-ol as synthesized in Synthesis Example 17 or a racemate thereof [mixture of 6.S()/6(R)=1/1] was compounded therein as shown in Table 4 below. Odor evaluation on the resulting perfumes (B-1, B-2), and B-4) was carried out by a panel of 5 specialists based on the following rating standards. The results are shown in Table 4. As a result of the fragrance test, the panel judged that: B-1 containing the optically active compound and B-4 containing the racemate in an amount 9 times that of the optically active compound in B-1 had an almost equal strength of fragrance, the top note of B-4 being, however, broadwise spreading and lacking sharpness, while B-1 had a well-balanced fragrance with freshness and was preferred to B-4. With respect to B-2, B-3, and B-4, the panel judged that the strength of fragrance was decreasing in the order of B-4>B-3>B-2 and that the preference was also decreasing in the same order.















Musk Base Formulation:


























Coumarin




 60 parts







Allyl cyclohexyloxyacetate




 1 part







Hydroxycitronellal




 40 parts







Geraniol




 40 parts







Bourbon geranium oil




 3 parts







Piperonal




 20 parts







4-(4-Hydroxy-4-methylpentyl)-3-




 40 parts







cyclohexenecarbaldehyde







1-Citronellal




 20 parts







Linalool




 20 parts







γ-Methyl isomone




 40 parts







Ethylene brassylate




380 parts







10% Dipropylene glycol




 8 parts







solution of 4-p-hydroxy-







phenylbutan-2-one







Phenylethyl alcohol




 40 parts







Isobornylcyclohexanol




108 parts







Acetyl cedrene




 80 parts







Total:




900 parts

























TABLE 4











Composition




Invention




Comparison















(part):




B-1




B-2




B-3




B-4









Musk base




900




900




900




900






1-[6(S)-2,2,6-Trimethyl-




 10





















cyclohexan-1-yl]-4-methyl-






hexan-3-ol






Racemate [mixture of









 20




 40




 90






6(S)/6(R) = 1/1]






Dipropylene glycol




 90




 80




 60




 10






Total:




100




100




100




100






Rate




 5




 2




 3




 4











Standards of Evaluation:










5 Very pleasant. Very preferable.










4 Fairly pleasant. Preferable.










3 Pleasant. Preferable.










2 Effect of addition was not so perceptible.










1 No effect of addition.













EXAMPLE 4




Perfume Composition for Detergent




A white floral perfume Composition (A) or (B) for detergents having the following formulation was prepared.





















(A)




(B)







Formulation:




(part)




(part)













7-Acetyl-1,1,3,4,4,5-hexamethyl-




 50




 50







1,2,3,4-tetrahydronaphthalene







Ethylene brassylate




200




200







p-Isobutyl α-methylidydro-




300




300







cinnamic aldehyde







2,4-Di-tert-butylcyclohexanone




100




100







γ-Methyl ionone




 30




 30







Geranium oil




 10




 10







Tetrahydrollinalool




 50




 50







Patchouli oil




 10




 10







Lauryl aldehyde




 5




 5







Methyl dihydrojasmonate




100




100







Linalool




 45




 45







Diethyl phthalate




 90




 80







1-[6(S)-2,2,6-Trimethylcyclo-




 10












hexan-1-yl]-hexan-3-ol







Racemate [mixture of









 20







6(S)/6(R) = 1/1]









Total:




1000 




1000 















Test of preference was carried out on each of Compositions (A) and (B) by a panel of 5 specialists. As a result, the panel judged that Composition (A) containing the optically active compound was better than Composition (B) because of diffusibility, freshness, and harmony of the fragrance. Further, towels were washed using each of Compositions (A) and (B), and the scent remaining on the laundry was tested by the panel. As a result, the panel judged that the towels washed by using Composition (A) had a stronger and better-balanced scent and were thus preferred.




EXAMPLE 5




Perfume Composition for Shampoo




A green floral and highly preferably perfume composition for shampoo having the following formulation was prepared.















Formulation:


























Ethylene brassylate




250 parts







Musk ketone




 50 parts







Methyl dihydrojasmonate




 70 parts







p-Isobutyl-α-methyldihydrocinnamic




200 parts







aldehyde







1-Citronellol




100 parts







Eugenol




 20 parts







2-Methyl-4-phenylbutan-2-yl acetate




 50 parts







50% Dipropylene glycol solution of




 10 parts







phenylacetaldehyde







2,4-Dimethyl-3-cyclohexenecarbaldehyde




 10 parts







Undecylenic aldehyde




 5 parts







Lime oil




 20 parts







Lemon oil




 40 parts







10% Dipropylene glycol




 20 parts







solution of







4-p-hydroxyphenylbutan-2-one







Cis-3-hexenyl propionate




 5 parts







Tetrahydrolinalool




 50 parts







Benzyl salicylate




 80 parts







Dipropylene glycol




 10 parts







1-[6(S)-2,2,6-Trimethylcyclohexan-




 10 parts







1-yl]-heptan-3-ol








Total:




1000 parts 















EXAMPLE 6




Perfume Composition for Textile Softener




A highly preferable Fougere type perfume composition for textile softeners having the following formulation was prepared.















Formulation:


























Coumarin




 50 parts







Ethylene brassylate




200 parts







Patchouli oil




 30 parts







Dimethylbenzylmethanal




100 parts







n-Tetradecyl aldehyde




 10 parts







2,4-Di-tert-butylcyclohexanone




100 parts







Benzyl salicylate




200 parts







Lavandin oil




 50 parts







α-Amylcinnamic aldehyde




100 parts







Cyclamen aldehyde




100 parts







Acetylcedrene




 50 parts







1-[6(S)-2,2,6-Trimethylcyclohexan-




 10 parts







1-yl]-pentan-3-ol








Total:




1000 parts 















EXAMPLE 7




Perfume Composition of Soap




An aldehydic floral bouquet perfume composition (A) or (B) for soaps having he following formulation was prepared.





















(A)




(B)







Formulation:




(part)




(part)













Lauryl aldehyde




10




10







Hydroxycitronellal




50




50







Bourbon geranium oil




10




10







Piperonal




15




15







4-(4-Hydroxy-4-methylpentyl)-3-




60




60







cyclohexenecarbaldehyde







1-Citronellol




100 




100 







γ-Methyl ionone




50




50







Ethylene brassylate




390 




390 







Isobornylcyclohexanol




100 




100 







Acetylcedrene




80




80







Patchouli oil




20




20







2,4-Dimethyl-3-cyclohexene-




 5




 5







carbaldhyde







Linalool




90




90







1-[6(S)-2,2,6-Trimethylcyclo-




10












hexan-1-yl]-4-methylhexan-3-ol







Racemate [mixture of









20







[6(S)/6(R) = 1/1]







Dipropylene glycol




10




















Total:




1000 parts
















Evaluation test was conducted by 10 panelists on soaps perfumed with 1% of each of Compositions (A) and (B). As a result, 9 out of 10 panelists judged that the fragrance of the soap containing Composition (A) containing the optically active compound was more diffusible and deeper and therefore preferred.




EXAMPLE 8




Liquid Hypochlorite Bleachinc Agent




A liquid hypochlorite bleaching agent having the following formulation was prepared.















Formulation:


























Sodium hypochlorite




40 parts







Sodium polyoxyethylene




20 parts







dodecyl ether sulfate







Sodium 2-ethylhexylsulfate




20 parts







Sodium hydroxide




10 parts







Water




10 parts







Total:




100 parts 















1-[6(S)-2,2,6-Trimethylcyclohexan-1-yl]-pentan-3-ol or a racemate thereof was added to the liquid hypochlorite bleaching solution in an amount of 0.1% or 0.2%, respectively to prepare Composition (A) or (B) having an amber fragrance.




The degree of masking of the odor of the hypochlorite in each of Compositions (A) and (B) was tested by a panel of 5 specialists. As a result, the panel judged that Composition (A) had a fresh amber-like fragrance with no perceptible odor of the hypochlorite, whereas Composition (B) smelled slightly of the hypochlorite.




Further, towels were washed in a washing machine using each of Compositions (A) and (B) as a bleaching agent, and the scent remaining on the laundry was tested by a panel of 5 specialists. As a result, the panel judged that the towels washed by using Composition (A) containing the optically active compound had a pleasant and fresh amber fragrance with no perceptible odor of the hypochlorite, whereas those washed by using Composition (B) containing the racemate smelled slightly of the hypochlorite. Incidentally, the towels washed by using Composition (A) provided bleached (whitened) to the same degree as those washed by using a bleaching agent having the same composition except for the perfume component.




The present invention provides an industrially useful optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]-propanal derivative and a perfume containing the same as an active ingredient. The optically active 3-[6(S)-2,2,6-tri-methylcyclohexan-1-yl]propanal derivative has excellent properties as a perfume, and the perfume containing the same as an active ingredient is useful in broad fields, such as various cosmetics, sanitary goods, pharmaceuticals, etc.




While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.



Claims
  • 1. An optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanol derivative represented by formula (I): wherein R1 represents a lower alkyl group.
  • 2. A perfume composition comprising an optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanol derivative represented by formula (I): wherein R1 represents a lower alkyl group, as an active ingredient.
  • 3. A perfume composition as in claim 2, wherein said optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]-propanol derivative represented by formula (I) is present in an amount of from 0.0001 to 50% by weight.
  • 4. A perfume composition as in claim 3, wherein said optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanol derivative represented by formula (I) is present in an amount of from 0.001 to 20% by weight.
  • 5. A perfume composition comprising a compound represented by formula (I) as an active ingredient, wherein 95% or more of said compound represented by formula (I) is in the trans-form:an optically active 3-[6(S)-2,2,6-trimethyl-cyclohexan-1-yl]propanol derivative represented by formula (I): wherein R1 represents a lower alkyl group.
  • 6. A perfume composition comprising a compound represented by formula (I) as an active ingredient, wherein 95% or more of said compound represented by formula (I) is in the trans form and has an optical purity of 98% ee or more:an optically active 3-[6(S)-2,2,6-trimethyl-cyclohexane-1-yl]propanol derivative represented by formula (I): wherein R1 represents a lower alkyl group.
  • 7. A perfume composition comprising a compound represented by formula (I) as an active ingredient, wherein 95% or more of said compound represented by formula 91) is in the trans form:an optically active 3-[6(S)-2,2,6-trimethyl-cyclohexan-1-yl]propanol derivative represented by formula (I): wherein R1 represents an ethyl group, an n-propyl group, an n-butyl group or an isobutyl group.
  • 8. A perfume composition comprising a compound represented by formula (I) as an active ingredient, wherein 95% or more of said compound represented by formula (I) is in the trans form and has an optical purity of 98% ee:an optically active 3-[6(S)-2,2,6-trimethylcyclohexan-1-yl]propanol derivative represented by formula (I): wherein R1 represents an ethyl group, an n-propyl group, an n-butyl group or an isobutyl group.
  • 9. A perfume composition comprising a compound represented by formula (I) as an active ingredient, wherein 95% or more of said compound represented by formula (I) is in the trans form and is obtained from 1-methoxycitronellal having an optical purity of 98% ee:an optically active 3-[6(S)-2,2,6-trimethyl-cyclohexan-1-yl]propanol derivative represented by formula (I): wherein R1 represents a lower alkyl group.
  • 10. A perfume composition comprising a mixture of two compounds represented by formula (I) as an active ingredient, wherein 95% or more of said compounds represented by formula (I) are in the trans form with the cis form being present in an amount in combination with said 95% or more of said trans form to impart an amber fragrance to said perfume composition, said compound represented by formula (I) having an optical purity of 98% ee or more, wherein 5% or less of said compounds represented by formula (I) are in the cis form and R1 represents an ethyl, n-propyl, n-butyl or isobutyl group.
  • 11. A perfume composition as claimed in claim 10, wherein the ratio of the compounds having the trans form and the compounds having the cis form ranges from 95/5-95.3/4.7 by weight.
  • 12. The perfume composition of claim 10 wherein R1 is ethyl.
  • 13. The perfume composition of claim 10 wherein R1 is n-propyl.
  • 14. The perfume composition of claim 10 wherein R1 is isobutyl.
Priority Claims (1)
Number Date Country Kind
2-125520 May 1990 JP
Parent Case Info

This is a Continuation of Application No. 07/592,099 filed Oct. 3, 1990 abandoned.

US Referenced Citations (4)
Number Name Date Kind
4252896 Klein et al. Feb 1981
4623750 Schulte-Elte et al. Nov 1986
4626381 Schulte-Elte et al. Dec 1986
4626602 Schulte-Elte et al. Dec 1986
Foreign Referenced Citations (3)
Number Date Country
0233904 Aug 1988 EP
0118817 Sep 1994 EP
0118809 Sep 1994 EP
Non-Patent Literature Citations (2)
Entry
Helv. Chim. Acta, vol. 68, pp. 1961-1985, 1984.*
Chemical Abstracts, vol. 101, No. 12, abstract 97504g, 1984.
Divisions (1)
Number Date Country
Parent 07/879738 May 1992 US
Child 09/111180 US
Continuations (1)
Number Date Country
Parent 07/592099 Oct 1990 US
Child 07/879738 US
Reissues (1)
Number Date Country
Parent 07/879738 May 1992 US
Child 09/111180 US