This application claims priority to European Patent Application No. 12305485.0, filed Apr. 30, 2012, and all the benefits accruing therefrom under 35 U.S.C. §119, the contents of which in its entirety are herein incorporated by reference.
The present invention relates to propellers and, in particular, to propeller blades that include a lightweight insert disposed in them.
Modem propeller blades typically include root portions which extend into the hub arm of the hub of the propeller system and which are secured to and rotatable relative to the hub arm via a retention assembly. Typically the retention assembly includes one or a plurality of ball bearing assemblies which permit the rotation of the blade in the hub arm for accomplishing pitch change of the blade for altering the speed of the propeller and accordingly, the aircraft.
The blades are typically formed by surrounding a foam spar core with a resin impregnated fabric. Leading and trailing edges of the blade are then formed over the fabric and surrounded by, for example, a Kevlar sock. Such blades are light and effective for their intended purposes.
According to one embodiment, a propeller blade that includes a foam core and a structural layer that surrounds at least a portion of the foam core and includes a face side and a camber side is disclosed. The propeller blade of this embodiment also includes a bulkhead disposed in the foam core in operable contact with the face side and the camber side of the structural layer and extending in a chord wise direction of the propeller blade.
According to another embodiment, a method of forming a propeller blade is disclosed and includes: providing a mold; disposing a bulkhead in a chord wise direction of the mold; forming a foam core; and forming a structural layer that surrounds the foam core and includes a face side and a camber side such that the face side and the camber side are in operable contact with the bulkhead.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Referring now to
The blade 100 is formed by first forming a spar 102. The spar 102 includes a spar foam core 104 surrounded by a structural layer 106. The core 104 is typically formed of a foam material that is injected into a mold but could also be pre-molded and machined and then inserted into the mold. The mold can include a layer of fiberglass or carbon on the walls thereof to which the foam of the core 104 adheres. As such, the core 104 can be surrounded by a layer of fiberglass or carbon (not shown) in one embodiment but this is not required. The foam that forms the core 104 can be selected from one of: polyurethane (PU), polyisocyanurate, or polymethacrylimide (PMI).
According to one embodiment, the blade 100 includes one or more bulkheads 105. In one embodiment, these bulkheads 105 can be provided in the mold. In such an embodiment, the foam of the core 104 is disposed within open spaces defined by the bulkheads 105. The foam of the core 104 is also disposed in the remainder of the area of the mold not occupied by the bulkheads 105. The bulkheads 105 can be formed of carbon, fiberglass or any other suitable composite or non-composite material.
The structural layer 106 is typically formed of a dry braided carbon fiber which is subsequently resin injected or a resin-impregnated fabric material (e.g. resin impregnated carbon fiber fabric) and disposed such that it surrounds the core 104 (and the fiberglass layer if it is included) by, for example, a braiding process. In one embodiment, the structural layer 106 is impregnated with a resin. In some cases, the spar 102 is heated to set the resin in the structural layer 106. With the inclusion of the bulkheads 105, the respective leading and trailing edges 115, 116 of the spar 102 are kept in a fixed relation to one another. As such, the possibility of the core 104 cracking may be reduced.
In some instances, the spar 102 is formed such that a portion of it surrounds a root portion 108 that allows the blade 100 to be connected to a hub (not shown). Rotation of the hub causes the blade 100 to rotate and, consequently, causes the generation of thrust to propel an aircraft. In the following discussion, it shall be assumed that the blade 100 rotates in the clockwise direction. The root portion 108 is sometimes referred to as a “tulip” in the industry and is typically formed of a metal.
After the spar 102 is formed, leading edge foam 112 and trailing edge foam 114 are formed on the leading and trailing edges 115, 116 respectively of the spar 102. The leading edge foam 112, trailing edge foam 114 and the spar 102 can then be encased in an outer layer 118. The outer layer 118 can be formed of Kevlar and be in the form of a sock that is pulled over the assembly that includes the leading edge foam 112, trailing edge foam 114 and the spar 102. Of course, the outer layer 118 could be formed in other manners as well.
In some instances, to reduce weight, to balance the blade 100, or both, a section of the core 104 is removed. In
The bulkheads 105 can take on any number shapes in cross section.
In more detail,
As discussed above, the bulkheads 105 disclosed herein can reduce the possibility of the spar core 104 from cracking. In addition, when loads are applied to the blade (e.g., during flight) the bulkheads 105 disclosed herein can have the effect of preventing one or both of the face side 107 and the camber side 109 bulging outward, reducing the stresses in the blade spar.
The blades 100 shown herein could be formed in many manners. For instance, the spars could be formed and then have portions removed to allow for the bulkheads to be inserted. In such a case, for instance, a portion of the spar could be removed and then the remaining portions bonded to the bulkheads that are placed in the portion of the spar that was removed. Then, as described above, the structural layer could be bonded around the combined spar/ bulkhead combination. In one embodiment, foam could be located between the one or more bulkheads.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while the various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
12305485.0 | Apr 2012 | EP | regional |