This invention generally relates to a propeller fan, a fluid feeder, and a molding die, and more particularly to a propeller fan for sending a fluid, a fluid feeder such as an electric fan, a circulator, an air-conditioner, an air cleaner, a humidifier, a dehumidifier, a fan heater, a cooling apparatus, or a ventilator including such a propeller fan, and a molding die used for molding such a propeller fan with a resin.
As disclosed in Japanese Patent Laying-Open No. 2003-206894 (PTD 1), Japanese Patent Laying-Open No. 2011-058449 (PTD 2), Japanese Patent Laying-Open No. 2004-293528 (PTD 3), and Japanese Patent Laying-Open No. 2000-054992 (PTD 4), a propeller fan has been improved for the purpose of improvement in blowing performance, lowering in noise, energy saving, or design for resource saving.
A first object of the present invention is to provide a propeller fan capable of lowering noise generated during rotation and power consumption required during rotation while enhancing efficiency by increasing a quantity of wind, a molding die used for manufacturing of the propeller fan, and a fluid feeder including the propeller fan.
A second object of the present invention is to provide a propeller fan capable of preventing separation of a flow of air by making air flow in at an appropriate inflow angle with respect to a blade surface over substantially the entire region in a direction of radius, a molding die used for manufacturing of the propeller fan, and a fluid feeder including the propeller fan.
A propeller fan based on a first aspect of the present invention includes a rotation shaft portion rotating around a virtual central axis in a prescribed direction of rotation and a blade extending outward from an outer surface of the rotation shaft portion in a direction of radius of the central axis. The blade includes a blade root portion arranged between the blade and the outer surface of the rotation shaft portion, a peripheral portion continuing to the blade root portion and forming a periphery of the blade together with the blade root portion, and a blade surface formed in a region surrounded by the blade root portion and the peripheral portion. The peripheral portion has a front edge portion arranged upstream in the direction of rotation, a blade tip end portion arranged on an outer side in the direction of radius, in the front edge portion, a rear edge portion arranged downstream in the direction of rotation, a blade rear end portion arranged on the outer side in the direction of radius, in the rear edge portion, and an outer edge portion extending in a circumferential direction around the central axis and connecting the blade tip end portion and the blade rear end portion to each other. The blade surface has an inner region including the blade root portion and located on the inner side in the direction of radius, an outer region including the blade rear end portion and located on the outer side in the direction of radius, and a coupling portion extending from a front end portion located close to the front edge portion, the blade tip end portion, or the outer edge portion to a rear end portion located close to the rear edge portion and coupling the inner region and the outer region to each other such that a side of a positive pressure surface of the blade surface is projecting and a side of a negative pressure surface of the blade surface is recessed. The blade surface is formed such that a stagger angle in a portion on the inner side in the direction of radius relative to the coupling portion in the blade surface is smaller than a stagger angle in a portion on the outer side in the direction of radius relative to the coupling portion in the blade surface.
Preferably, when a virtual concentric circle passing through a central position in the coupling portion in the direction of rotation and centered around the central axis is drawn, the front end portion of the coupling portion is located on an outer side in the direction of radius of the concentric circle and the rear end portion of the coupling portion is located on an inner side in the direction of radius of the concentric circle. Preferably, the coupling portion is formed such that an interior angle formed on the side of the negative pressure surface of the coupling portion is smallest around a center of the coupling portion in the direction of rotation, and the blade surface located around each of the front end portion and the rear end portion is formed at 180° in a cross-sectional view along the direction of radius, which passes through each of the front end portion and the rear end portion.
Preferably, the coupling portion is formed along a flow of a blade tip end vortex generated over the blade surface with rotation of the blade. Preferably, the blade surface is formed such that a stagger angle in a portion on the inner side in the direction of radius relative to the coupling portion in the blade surface is smaller toward the rotation shaft portion.
Preferably, the blade surface is formed such that an area of the blade in a portion on the inner side in the direction of radius relative to the coupling portion in the blade surface is equal to or greater than an area of the blade in a portion on the outer side in the direction of radius relative to the coupling portion in the blade surface. Preferably, the coupling portion is provided from a portion located in midway between the blade tip end portion and the blade rear end portion to the rear edge portion.
Preferably, the coupling portion is provided from a side downstream in the direction of rotation, of a portion where a thickness of the blade surface is greatest. Preferably, the coupling portion is provided as being curved from the inner region toward the outer region. Preferably, the coupling portion is provided as being bent from the inner region toward the outer region.
Preferably, a dimensionless position η obtained from an equation Ra/r1 satisfies a condition of 0.4≦η≦1, where Ra represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the front end portion of the coupling portion and r1 represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the outer edge portion.
Preferably, a dimensionless position ξ obtained from an equation Rb/r1 satisfies a condition of 0.3≦ξ≦0.7, where Rb represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the rear end portion of the coupling portion and r1 represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the outer edge portion.
Preferably, the front end portion of the coupling portion is located close to the outer edge portion, and a dimensionless position κ obtained from an equation Rc/C satisfies a condition of 0≦κ≦0.5, where C represents a cord length dimension of the outer edge portion and Rc represents a length dimension from the blade tip end portion to the front end portion of the coupling portion.
Preferably, a dimensionless position η is obtained from an equation Ra/r1, where Ra represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the front end portion of the coupling portion and r1 represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the outer edge portion, a dimensionless position ξ is obtained from an equation Rb/r1, where Rb represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the rear end portion of the coupling portion and r1 represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the outer edge portion, and a condition of 0.80≦η≦1.0 is satisfied and a condition of 0.40≦ξ≦0.65 is satisfied.
Preferably, the front end portion of the coupling portion is located close to the outer edge portion, a dimensionless position ξ is obtained from an equation Rb/r1, where Rb represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the rear end portion of the coupling portion and r1 represents a length dimension along the direction of radius from the outer surface of the rotation shaft portion to the outer edge portion, a dimensionless position κ is obtained from an equation Rc/C, where C represents a cord length dimension of the outer edge portion and Rc represents a length dimension from the blade tip end portion to the front end portion of the coupling portion, and a condition of 0.40≦ξ≦0.70 is satisfied and a condition of 0≦κ≦0.3 is satisfied.
Preferably, a region lying from the front edge portion to a portion of the outer edge portion close to the blade tip end portion has a constant height in an axial direction of the central axis. Preferably, the front edge portion has a constant height in an axial direction of the central axis between the rotation shaft portion and a position distant from the rotation shaft portion outward in the direction of radius.
Preferably, the blade root portion of the blade surface has a warped shape such that the side of the positive pressure surface of the blade surface is projecting and the side of the negative pressure surface of the blade surface is recessed, and the blade is formed such that a direction of warpage of the blade root portion and a direction of warpage of the outer edge portion are opposite to each other. Preferably, the outer edge portion has a front outer edge portion located on a side of the front edge portion, a rear outer edge portion located on a side of the rear edge portion, and a connection portion connecting the front outer edge portion and the rear outer edge portion to each other. The connection portion is a site where the front outer edge portion and the rear outer edge portion different in maximum radius are connected to each other, and it desirably smoothly connects the front outer edge portion and the rear outer edge portion to each other. Alternatively, desirably, the connection portion connects the front outer edge portion and the rear outer edge portion to each other substantially at an acute angle, for example, in a state having a cut. Alternatively, desirably, the connection portion connects the front outer edge portion and the rear outer edge portion to each other substantially at an obtuse angle, for example, in a state having a height difference. Alternatively, desirably, the connection portion is in a shape recessed toward the central axis. Preferably, formed from a resin molded product.
A fluid feeder based on the first aspect of the present invention includes the propeller fan based on the first aspect of the present invention. A molding die based on the first aspect of the present invention is used for molding the propeller fan based on the first aspect of the present invention.
A propeller fan based on a second aspect of the present invention includes a rotation shaft portion rotating around a virtual central axis in a prescribed direction of rotation and a blade extending outward from an outer surface of the rotation shaft portion in a direction of radius of the central axis. The blade includes a blade root portion arranged between the blade and the outer surface of the rotation shaft portion, a peripheral portion continuing to the blade root portion and forming a periphery of the blade together with the blade root portion, and a blade surface formed in a region surrounded by the blade root portion and the peripheral portion. The peripheral portion has a front edge portion arranged upstream in the direction of rotation, a blade tip end portion arranged on an outer side in the direction of radius, in the front edge portion, a rear edge portion arranged downstream in the direction of rotation, a blade rear end portion arranged on the outer side in the direction of radius, in the rear edge portion, and an outer edge portion extending in a circumferential direction around the central axis and connecting the blade tip end portion and the blade rear end portion to each other. A stagger angle in the blade root portion is smaller than a stagger angle in the outer edge portion. The blade root portion of the blade surface has a warped shape such that a side of a positive pressure surface of the blade surface is projecting and a side of a negative pressure surface of the blade surface is recessed. The blade is formed such that a direction of warpage of the blade root portion and a direction of warpage of the outer edge portion are opposite to each other.
A propeller fan based on another aspect of the second aspect of the present invention includes a rotation shaft portion rotating around a virtual central axis in a prescribed direction of rotation and a blade extending outward from an outer surface of the rotation shaft portion in a direction of radius of the central axis. The blade includes a blade root portion arranged between the blade and the outer surface of the rotation shaft portion, a peripheral portion continuing to the blade root portion and forming a periphery of the blade together with the blade root portion, and a blade surface formed in a region surrounded by the blade root portion and the peripheral portion. The peripheral portion has a front edge portion arranged upstream in the direction of rotation, a blade tip end portion arranged on an outer side in the direction of radius, in the front edge portion, a rear edge portion arranged downstream in the direction of rotation, a blade rear end portion arranged on the outer side in the direction of radius, in the rear edge portion, and an outer edge portion extending in a circumferential direction around the central axis and connecting the blade tip end portion and the blade rear end portion to each other. A stagger angle in the blade root portion is smaller than a stagger angle in the outer edge portion. The blade root portion of the blade surface is formed such that a cross-sectional view along the circumferential direction exhibits an S shape.
Preferably, the front edge portion has a constant height in an axial direction of the central axis between the rotation shaft portion and a position distant from the rotation shaft portion outward in the direction of radius. Preferably, the blade surface has an inner region including the blade root portion and located on the inner side in the direction of radius, an outer region including the blade rear end portion and located on the outer side in the direction of radius, and a coupling portion extending from a front end portion located close to the front edge portion, the blade tip end portion, or the outer edge portion to a rear end portion located close to the rear edge portion and coupling the inner region and the outer region to each other such that the side of the positive pressure surface of the blade surface is projecting and the side of the negative pressure surface of the blade surface is recessed.
Preferably, when a virtual plane orthogonal to the central axis is assumed on a burst side of the blade and a length in an axial direction of the central axis from that virtual plane is defined as a height, the rear edge portion has a substantially constant height in a region on an outer circumferential side around the central axis. Preferably, the blade surface is formed such that a stagger angle in a portion on the inner side in the direction of radius in the blade surface decreases toward the rotation shaft portion.
Preferably, when a virtual concentric circle passing through a central position in the coupling portion in the direction of rotation and centered around the central axis is drawn, the front end portion of the coupling portion is located on an outer side in the direction of radius of the concentric circle and the rear end portion of the coupling portion is located on an inner side in the direction of radius of the concentric circle. Preferably, the blade surface is formed such that an area of the blade in a portion on the inner side in the direction of radius relative to the coupling portion in the blade surface is equal to or greater than an area of the blade in a portion on the outer side in the direction of radius relative to the coupling portion in the blade surface. Preferably, formed from a resin molded product.
A fluid feeder based on the second aspect of the present invention includes the propeller fan based on the second aspect of the present invention. A molding die based on the second aspect of the present invention is used for molding the propeller fan based on the second object of the present invention.
According to the first aspect of the present invention, a propeller fan capable of lowering noise generated during rotation and power consumption required during rotation while enhancing efficiency by increasing a quantity of wind, a molding die used for manufacturing of the propeller fan, and a fluid feeder including the propeller fan can be obtained.
According to the second aspect of the present invention, a propeller fan capable of preventing separation of a flow of air by making air flow in at an appropriate inflow angle with respect to a blade surface over substantially the entire region in a direction of radius, a molding die used for manufacturing of the propeller fan, and a fluid feeder including the propeller fan can be obtained.
Each embodiment based on the present invention will be described hereinafter with reference to the drawings. When the number, a quantity or the like is mentioned in the description of each embodiment, the scope of the present invention is not necessarily limited to the number, the quantity or the like, unless otherwise specified. In the description of each embodiment, the same or corresponding elements have the same reference characters allotted and redundant description may not be repeated. Combination for use of features shown in each embodiment as appropriate is originally intended, unless otherwise restricted.
[First Embodiment]
(Fluid Feeder 510)
A fluid feeder 510 in the present embodiment will be described with reference to
(Propeller Fan 110)
Propeller fan 110 in the present embodiment has three blades 21. Propeller fan 110 rotates in a direction shown with an arrow 102 around a central axis 101 as it is driven by a drive motor (not shown). Rotation of blade 21 generates wind so that fluid feeder 510 can send wind.
Propeller fan 110 may have a plurality of blades 21 other than three or may have only a single blade 21. When propeller fan 110 has only one blade 21, a weight serving as a balancer is desirably provided on a side opposite to blade 21 with respect to central axis 101. Propeller fan 110 is not limited to fluid feeder 510 as a circulator, and it may be employed in various fluid feeders such as an electric fan, an air-conditioner, an air cleaner, a humidifier, a dehumidifier, a fan heater, a cooling apparatus, or a ventilator.
A basic structure of propeller fan 110 will be described below with reference to
Propeller fan 110 is integrally molded as a resin molded product with a synthetic resin such as an AS (acrylonitrile-styrene) resin. Propeller fan 110 has a boss hub portion 41 serving as a rotation shaft portion and blades 21A to 21C (see FIG. 2). In the following, each of blades 21A to 21C will be referred to as a blade 21 unless blades 21A to 21C are particularly distinguished.
For example, propeller fan 110 may be fabricated by twisting a sheet metal, or may be fabricated from an integrated small-thickness material formed to have a curved surface. In such a case, the propeller fan may have such a structure that blade 21A, blade 21B, and blade 21C are joined to separately molded boss hub portion 41.
Boss hub portion 41 is a portion connecting propeller fan 110 to an output shaft of a drive motor (not shown) which is a drive source. Receiving rotational motive force from the drive motor, boss hub portion 41 rotates in a prescribed direction of rotation (the direction shown with arrow 102) around virtual central axis 101. Boss hub portion 41 in the present embodiment has a cylindrical shape with bottom extending along an axial direction of central axis 101.
Blades 21A to 21C (see
When blades 21A to 21C rotate in the direction shown with arrow 102 around central axis 101, blades 21A to 21C rotate together with boss hub portion 41. Blades 21A to 21C send wind from the suction side to the burst side in the drawings as they rotate around central axis 101. In the present embodiment, blades 21A to 21C are identical in shape. When any blade 21 is rotated around central axis 101, that blade 21 and another blade 21 match in shape.
(Blade 21)
Blade 21 has a blade root portion 34 and a blade surface 28 extending like a plate from blade root portion 34. Blade root portion 34 is arranged between blade 21 and outer surface 41S of boss hub portion 41 (a boundary). Blade surface 28 is constituted of a positive pressure surface 26 and a negative pressure surface 27 arranged on the back of positive pressure surface 26. Positive pressure surface 26 is located on the burst side of blade surface 28 in the axial direction of central axis 101. Negative pressure surface 27 is located on the suction side of blade surface 28 in the axial direction of central axis 101. A surface of each of positive pressure surface 26 and negative pressure surface 27 is smoothly formed as a whole.
Blade surface 28 sends wind with rotation of propeller fan 110, and sends air from the suction side to the burst side. With generation of a flow of air over blade surface 28 during rotation of propeller fan 110, such pressure distribution that a pressure is relatively high over positive pressure surface 26 and a pressure is relatively low over negative pressure surface 27 is created.
On a periphery of blade surface 28, a front edge portion 22, a blade tip end portion 104 (see
In a plan view of blade 21, blade 21 has a shape pointed like a sickle, with blade tip end portion 104 where front edge portion 22 intersects with outer edge portion 23 being defined as the tip end. In a portion of front edge portion 22 and rear edge portion 24 on the radially inner side, a width thereof along the direction of rotation gradually decreases, and in a portion of front edge portion 22 and rear edge portion 24 on the radially outer side, a width thereof along the direction of rotation gradually increases.
Specifically, front edge portion 22 is arranged upstream in the direction of rotation (the direction shown with arrow 102) of blade 21. When propeller fan 110 is viewed in the axial direction of central axis 101 (in other words, propeller fan 110 is two-dimensionally viewed), front edge portion 22 extends from a portion on the side of the direction of rotation in blade root portion 34 outward in the direction of radius from the inner side in the direction of radius around central axis 101. Front edge portion 22 extends in the direction of rotation of propeller fan 110, as being curved from the inner side in the direction of radius outward in the direction of radius around central axis 101.
Blade tip end portion 104 is arranged on the outer side in the direction of radius in front edge portion 22 when viewed form central axis 101. Blade tip end portion 104 is a portion where front edge portion 22 and outer edge portion 23 which will be described next are connected to each other. Blade tip end portion 104 in the present embodiment is located most on the side of direction of rotation in blade 21.
Rear edge portion 24 is arranged downstream in the direction of rotation (the direction shown with arrow 102) of blade 21. When propeller fan 110 is viewed in the axial direction of central axis 101 (in other words, propeller fan 110 is two-dimensionally viewed), rear edge portion 24 extends from a portion opposite in the direction of rotation in blade root portion 34 outward in the direction of radius from the inner side in the direction of radius around central axis 101. Rear edge portion 24 is arranged as opposed to front edge portion 22 in the circumferential direction around central axis 101. Rear edge portion 24 extends in the direction of rotation of propeller fan 110, as being gently curved from the inner side in the direction of radius outward in the direction of radius around central axis 101.
Blade rear end portion 105 is arranged on the outer side in the direction of radius in rear edge portion 24 when viewed form central axis 101. Blade rear end portion 105 is a portion where rear edge portion 24 and outer edge portion 23 which will be described next are connected to each other. Blade tip end portion 104 in propeller fan 110 in the present embodiment is arranged on the inner circumferential side around central axis 101, relative to blade rear end portion 105.
Outer edge portion 23 extends along the circumferential direction around central axis 101 and is provided to connect blade tip end portion 104 and blade rear end portion 105 to each other. Outer edge portion 23 intersects with front edge portion 22 at blade tip end portion 104 located most on the side of the direction of rotation of propeller fan 110 on a line extending in the circumferential direction of outer edge portion 23 and intersects with rear edge portion 24 at blade rear end portion 105 located most opposite in the direction of rotation of propeller fan 110 on the line extending in the circumferential direction of outer edge portion 23. Outer edge portion 23 as a whole extends in an arc shape between blade tip end portion 104 and blade rear end portion 105.
Front edge portion 22, blade tip end portion 104, outer edge portion 23, blade rear end portion 105, and rear edge portion 24 constitute, together with blade root portion 34, a peripheral portion forming a periphery of blade 21. This peripheral portion (front edge portion 22, blade tip end portion 104, outer edge portion 23, blade rear end portion 105, and rear edge portion 24) are in a smooth shape not having a corner, as they are all formed in a substantially arc shape.
Referring to
Referring to
Outer edge portion 23 in the present embodiment has a maximum diameter end portion 111 (see
(Inner Region 31, Outer Region 32, and Coupling Portion 33)
Referring to
Inner region 31 includes blade root portion 34 in a part thereof and it is located on the inner side in the direction of radius of central axis 101, relative to coupling portion 33 and outer region 32. Outer region 32 includes blade rear end portion 105 in a part thereof and it is located on the outer side in the direction of radius of central axis 101, relative to coupling portion 33 and inner region 31. Positive pressure surface 26 in inner region 31 and positive pressure surface 26 in outer region 32 are formed to be different in surface shape from each other. Negative pressure surface 27 in inner region 31 and negative pressure surface 27 in outer region 32 are also formed to be different in surface shape from each other.
Coupling portion 33 couples inner region 31 and outer region 32 to each other such that a side of positive pressure surface 26 of blade surface 28 is projecting and a side of negative pressure surface 27 of blade surface 28 is recessed. Coupling portion 33 is provided to extend substantially along the direction of rotation, and extends from a front end portion 33A located most upstream in the direction of rotation in coupling portion 33 toward a rear end portion 33B located most downstream in the direction of rotation in coupling portion 33.
Coupling portion 33 is formed such that blade surface 28 is curved with slightly sharp variation in curvature from inner region 31 toward outer region 32, and couples in a curved manner, inner region 31 and outer region 32 different from each other in surface shape to each other at a boundary therebetween.
Coupling portion 33 is provided such that a curvature in a cross-sectional view along the direction of radius of blade surface 28 attains to relative maximum around the same, and appears as a curved protruding projecting portion on positive pressure surface 26 as extending like a streak from front end portion 33A toward rear end portion 33B and appears as a curved recessed groove portion on negative pressure surface 27 as extending like a streak from front end portion 33A toward rear end portion 33B.
Front end portion 33A of coupling portion 33 is located close to blade tip end portion 104 and provided as being distant from rear edge portion 24. Front end portion 33A of coupling portion 33 in the present embodiment is provided at a position displaced slightly inward in blade surface 28, from blade tip end portion 104 toward the side opposite to the direction of rotation (see
Front end portion 33A of coupling portion 33 may be provided close to front edge portion 22 or close to outer edge portion 23, so long as it is spaced apart from rear edge portion 24. Front end portion 33A of coupling portion 33 may be provided on front edge portion 22, on blade tip end portion 104, or on outer edge portion 23, so as to overlap with any of front edge portion 22, blade tip end portion 104, and outer edge portion 23.
Rear end portion 33B of coupling portion 33 is located close to rear edge portion 24 and provided as being spaced apart from all of front edge portion 22, blade tip end portion 104, and outer edge portion 23. Rear end portion 33B of coupling portion 33 in the present embodiment is provided at a position slightly displaced inward in blade surface 28 from a substantially central position in rear edge portion 24 in the direction of radius of central axis 101 toward the direction of rotation (see
As shown in
(Degree of Curving of Coupling Portion 33)
As shown in
As shown in
As shown in
(Stagger Angle θA, θB)
As shown in
Blade 21 in the present embodiment is formed such that stagger angle θA in a portion on the inner side in the direction of radius relative to coupling portion 33 in blade surface 28 is smaller toward boss hub portion 41.
As shown in
Referring to
(Function and Effect)
A function and effect of fluid feeder 510 (see
As shown in
Blade tip end vortex 340 is formed when blade tip end portion 104 mainly collides with air during rotation of propeller fan 110. Blade tip end vortex 340 originates mainly from blade tip end portion 104 and flows from blade tip end portion 104, a portion close to blade tip end portion 104 of front edge portion 22 located in the vicinity of blade tip end portion 104, and a portion close to blade tip end portion 104 of outer edge portion 23 located in the vicinity of blade tip end portion 104 over blade surface 28 toward rear edge portion 24.
Mainstream 310 is formed on a further upper side of blade surface 28 than blade tip end vortex 340 during rotation of propeller fan 110. In other words, mainstream 310 is formed on an opposite side of blade surface 28 with respect to a surface layer of blade surface 28 over which blade tip end vortex 340 is formed, with blade tip end vortex 340 lying therebetween. Mainstream 310 flows in from front edge portion 22, blade tip end portion 104, and outer edge portion 23 to blade surface 28, and flows toward rear edge portion 24.
Horseshoe vortex 320 is generated along outer edge portion 23 so as to flow from positive pressure surface 26 into negative pressure surface 27, owing to a pressure difference between positive pressure surface 26 and negative pressure surface 27 caused by rotation of propeller fan 110. Secondary flow 330 is generated to flow from boss hub portion 41 toward outer edge portion 23, owing to centrifugal force caused by rotation of the propeller fan. Horseshoe vortex 350 is generated as secondary flow 330 flows across a portion where coupling portion 33 is provided in blade surface 28.
As described above, front end portion 33A of coupling portion 33 in the present embodiment is provided at a position slightly displaced inward in blade surface 28 from blade tip end portion 104 toward the side opposite to the direction of rotation, and rear end portion 33B of coupling portion 33 is provided at a position slightly displaced inward in blade surface 28 from a substantially central position in rear edge portion 24 in the direction of radius of central axis 101 toward the direction of rotation (see
As shown in
Blade tip end vortex 340 which is generated in the vicinity of blade tip end portion 104 and flows as being held by coupling portion 33 and horseshoe vortex 350 which is generated in the vicinity of coupling portion 33 and flows as being held by coupling portion 33 provide kinetic energy to mainstream 310. Mainstream 310 provided with kinetic energy is less likely to separate from blade surface 28 on the downstream side over blade surface 28. Consequently, a separation region 52 can be made smaller or eliminated. Propeller fan 110 can achieve lowering in noise generated during rotation owing to suppression of separation, and increase in quantity of wind as compared with a case not provided with coupling portion 33 and resulting higher efficiency.
In such a general propeller fan, mainstream 310 and blade tip end vortex 340 generated over each of positive pressure surface 26 and negative pressure surface 27 of blade surface 28 flow along blade surface 28 on the upstream side over blade surface 28 close to front edge portion 22, blade tip end portion 104, and outer edge portion 24, however, it is less likely to flow along blade surface 28 on the downstream side over blade surface 28 close to rear edge portion 24. Since no kinetic energy is provided from blade tip end vortex 340 to mainstream 310 on the downstream side, separation region 52 where mainstream 310 separates from blade surface 28 is likely. In this propeller fan, it is difficult to lower noise generated during rotation. Such tendency is noticeable in particular over negative pressure surface 27, of positive pressure surface 26 and negative pressure surface 27.
During rotation of propeller fan 110 in the present embodiment, in the vicinity of a region where coupling portion 33 is provided, mainstream 310 flows from the outer side in the direction of radius toward the inner side in that direction. Therefore, by forming coupling portion 33 substantially along a flow of mainstream 310 and adopting a blade shape also for a region where coupling portion 33 is provided, the blade shape can be realized for all flows of mainstream 310 and hence wind can more efficiency be sent.
As coupling portion 33 is provided such that blade surface 28 is smoothly curved from the side of inner region 31 toward outer region 32, a degree of freedom in terms of design can be ensured in a shape of blade surface 28. For example, in order to suppress generation of a horseshoe vortex, such a complicated shape of blade surface 28 that a height of blade surface 28 is increased around boss hub portion 41 while a sickle shape decreasing in width of front edge portion 22 and outer edge portion 23 toward blade tip end portion 104 is maintained can also be implemented.
As described above with reference to
As described above with reference to
As described above with reference to
In a general propeller fan, owing to its structure, a peripheral velocity in a portion on the inner side in the direction of radius is low and a peripheral velocity in a portion on the outer side in the direction of radius is high. An inflow angle of air is different between the side of the blade root portion located on the inner side in the direction of radius and the side of the outer edge portion (a blade end side) located on the outer side in the direction of radius. Therefore, as an inflow angle (a camber angle) on the side of the outer edge portion (the blade end side) is designed such that inflow of air is good on the side of the outer edge portion (the blade end side), good inflow of air is less likely on the side of the blade root portion, and separation may occur in a flow of air on the side of the blade root portion (vice versa).
Therefore, as in propeller fan 110 in the present embodiment, a camber angle is varied appropriately on the side of blade root portion 34 located on the inner side in the direction of radius and the side of outer edge portion 23 (the blade end side) located on the outer side in the direction of radius and the reverse camber structure is provided in a region where an inflow angle of air on the side of blade root portion 34 is large, so that air can flow in at an appropriate inflow angle with respect to blade surface 28 over the entire region in the direction of radius and in addition separation of a flow of air can be prevented.
A construction of blade surface 28 as having a warped shape such that the side of positive pressure surface 26 is projecting and the side of negative pressure surface 27 is recessed in blade root portion 34 and inner region 31 and having a warped shape such that the side of positive pressure surface 26 is recessed and the side of negative pressure surface 27 is projecting in outer region 32 and outer edge portion 23 (the reverse camber structure) can be enabled independently of such a technical concept that coupling portion 33 is provided in blade surface 28.
Even when coupling portion 33 is not provided in the propeller fan, according to blade surface 28 having the reverse camber structure, air can flow in at an appropriate inflow angle with respect to blade surface 28 over the entire region in the direction of radius, and the object to prevent separation of a flow of air can be achieved.
As described above with reference to
In a general propeller fan, there is a great difference in distribution of a wind velocity at the time of blowing off in the direction of radius. A wind velocity is high on the outer side in the direction of radius and highest around the tip end portion of the blade, and the wind velocity has an extreme peak point. A difference in wind velocity is excessive between a portion where blade 21 does not function in the vicinity of central axis 101 and a portion where blade 21 most functions, and variation in wind velocity at the time of blowing off is caused, which is a major cause of uncomfortableness.
In contrast, according to propeller fan 110 in the present embodiment, a difference in quantity of wind (wind velocity) between the inner circumferential side and the outer circumferential side can be lessened. Propeller fan 110 can achieve more uniform blowing and uncomfortableness of a person who has received wind can be suppressed. With propeller fan 110, a space which can be occupied by a fan can be utilized as much as possible and strong blowing can also be achieved. Such a feature is desirably provided as necessary.
From a point of view of more uniform blowing by propeller fan 110, blade 21 is desirably formed such that an area of a blade in a portion on the inner side in the direction of radius relative to coupling portion 33 (inner region 31) in blade 21 is equal to or greater than an area of a blade in a portion on the outer side in the direction of radius relative to coupling portion 33 (outer region 32) in blade surface 28.
With such a construction, capability to send wind in the portion on the inner side in the direction of radius relative to coupling portion 33 (inner region 31) in blade 21 can be enhanced, and capability to send wind in the portion on the outer side in the direction of radius relative to coupling portion 33 (outer region 32) in blade surface 28 can be lowered. A difference in quantity of wind (wind velocity) between the inner circumferential side and the outer circumferential side can be lessened, more uniform blowing by propeller fan 110 can be achieved, and uncomfortableness of a person who has received wind can be suppressed. Such a feature is desirably provided as necessary.
[Variation of First Embodiment]
Coupling portion 33 of propeller fan 110 in the first embodiment described above is formed such that blade surface 28 is curved with slightly sharp variation in curvature from inner region 31 toward outer region 32 and couples in a curved manner, inner region 31 and outer region 32 different from each other in surface shape to each other at a boundary therebetween.
As shown in
If blade surface 28 is bent too extremely in coupling portion 33, that shape of coupling portion 33 is likely to affect a secondary flow which is not a mainstream generated over blade surface 28. In a case of maximum use of the same space as well, desirably, an appropriate degree of curving or bending is determined in consideration of a flow of air in coupling portion 33.
[Second Embodiment]
A propeller fan 120 in the present embodiment will be described with reference to
As a reference surface for a height in the axial direction, a virtual plane orthogonal to central axis 101 on the burst side is defined. In this case, front edge portion 22 of a general propeller fan is provided such that a height of front edge portion 22 from the virtual plane is higher on the outer circumferential side around central axis 101 and lower on the inner circumferential side. In this case, a height of blade 21 from the virtual plane is extremely smaller on the inner circumferential side than on the outer circumferential side around central axis 101, and capability to send wind of blade 21 on the inner circumferential side is extremely low.
In contrast, in propeller fan 120 in the present embodiment, front edge portion 22 has a constant height between the inner circumferential side and the outer circumferential side around central axis 101. With such a construction, on the inner circumferential side around central axis 101, a height of blade 21 from the virtual plane is set to be great so that capability to send wind can be improved. Thus, as compared with a general propeller fan having a blade equal in diameter and height, a quantity of wind sent from the propeller fan can significantly be increased.
By enhancing capability to send wind on the inner circumferential side around central axis 101, efficiency in sending wind with respect to a volume of an occupied space virtually formed as a result of rotation of the plurality of blades 21 can be enhanced. In this case, in sending wind of the same quantity of wind as well, the number of rotations of blade 21 can be suppressed to a lower value and hence it is advantage in terms of energy saving or lowering in noise.
By enhancing capability to send wind on the inner circumferential side around central axis 101, a difference in quantity of wind (wind velocity) between the inner circumferential side and the outer circumferential side can be lessened. Thus, more uniform blowing from propeller fan 120 can be achieved and uncomfortableness of a person who has received wind can be prevented.
[Variation of Second Embodiment]
In propeller fan 120 in the second embodiment described above, region R1 from front edge portion 22 to the portion of outer edge portion 23 close to blade tip end portion 104 is formed in the entire region over front edge portion 22 and formed in the portion close to blade tip end portion 104 relative to maximum diameter end portion 111 over outer edge portion 23.
As in a propeller fan 120A shown in
Region R1 where front edge portion 22 has a constant height in the axial direction of central axis 101 is formed, for example, between boss hub portion 41 and a position distant from central axis 101 by 0.4R to 0.6R (R representing a maximum radius of blade 21 in a plan view of propeller fan 120 (see
Even when region R1 having a constant height in the axial direction of central axis 101 is formed in a portion close to boss hub portion 41 of front edge portion 22 as in propeller fan 120A, a height of blade 21 is set to be large on the inner circumferential side around central axis 101. Thus, capability to send wind can be enhanced, and a function and effect substantially the same as in propeller fan 120 in the second embodiment described above can be obtained.
Alternatively, a height of front edge portion 22 of blade 21 may be constant from boss hub portion 41 to a certain section and subsequently the height may decrease. According to such a construction, a portion of front edge portion 22 on the side of boss hub portion 41 is higher than the portion of front edge portion 22 on the side of blade tip end portion 104. Since a wind velocity which tends to be low on the inner side in the direction of radius is high, a difference in wind velocity caused between the portion of front edge portion 22 on the side of boss hub portion 41 and the portion of front edge portion 22 on the side of blade tip end portion 104 can be decreased. Consequently, variation in wind generated on the downstream side of blade 21 is lessened. By suppressing a wind velocity being low in the portion of front edge portion 22 on the side of boss hub portion 41 and a wind velocity being extremely high in the portion of front edge portion 22 on the side of blade tip end portion 104, distribution of a wind velocity in the direction of radius is uniform, and hence generated wind is smoother and more comfortable.
[Third Embodiment]
A propeller fan 130 in the present embodiment will be described with reference to
According to such a construction, a height of blade 21 is maintained high also on the outer circumferential side around central axis 101. Thus, efficiency in sending wind of propeller fan 130 with respect to a volume of an occupied space virtually formed as a result of rotation of the plurality of blades 21 can further be enhanced.
In propeller fan 130, for the purpose of avoiding interference between a not-shown spinner for fixing boss hub portion 41 to a rotation shaft extending from the drive motor and blade 21, a height of rear edge portion 24 is greater on the inner circumferential side around central axis 101. Without being limited to such a construction, boss hub portion 41 may be extended to the burst side such that a height of rear edge portion 24 is constant between boss hub portion 41 and outer edge portion 23.
[Fourth Embodiment]
A propeller fan 140 in the present embodiment will be described with reference to
Here, though connection portion 38 is preferably formed in a smoothly curved shape as illustrated, it does not necessarily have to be in the curved shape but it may be in a bent shape. In the present embodiment, since connection portion 38 is formed as being relatively shallowly recessed on outer edge portion 23, connection portion 38 has a shape at a substantially obtuse angle. A position where connection portion 38 is formed is not particularly limited so long as it is a position on outer edge portion 23. In the present embodiment, however, connection portion 38 is formed at a position close to blade rear end portion 105 in outer edge portion 23. In the present embodiment, a width of front outer edge portion 37 along the direction of rotation is formed to be greater than a width of rear outer edge portion 39 along the direction of rotation. By forming outer edge portion 23 in such a shape, an effect as follows is achieved.
Firstly, with blade 21 constructed as above, wind velocity distribution in a radial direction can be more uniform and variation in wind velocity can be suppressed. Thus, comfortably impinging wind can be obtained.
Namely, in a case of a blade shape not having recessed connection portion 38 formed in outer edge portion 23, a wind velocity increases radially outward substantially in proportion, and there is a great difference in velocity between wind generated in a portion close to the radially inner side and wind generated in a portion close to the radially outer side. Thus, significant variation in wind velocity is caused in generated wind.
In contrast, in the present embodiment, recessed connection portion 38 is formed in outer edge portion 23. Therefore, as compared with a case that no recessed connection portion 38 is formed on outer edge portion 23, an area of a blade is decreased in the vicinity of outer edge portion 23 (that is, a portion close to the radially outer side). Therefore, a wind velocity increasing radially outward substantially in proportion is lowered in a portion close to outer edge portion 23. A velocity of wind generated in the portion close to the radially inner side and a velocity of wind generated in a portion close to outer edge portion 23 are close to each other and wind velocity distribution in the radial direction is more uniform. Therefore, variation in wind velocity can be suppressed and comfortably impinging wind can be obtained.
Secondly, with blade 21 constructed as above, pressure fluctuation included in wind generated in a portion close to the radially outer side is less and comfortably impinging wind can be generated.
Namely, in a case of a blade shape not having recessed connection portion 38 formed in outer edge portion 23, air passes through a relatively large space between blades and great pressure fluctuation is caused in generated wind. This is particularly noticeable in a portion on the side of outer edge portion 23 where wind high in velocity is generated, and wind greater in pressure difference is generated as the number of blades 21 is smaller.
In contrast, in the present embodiment, the blade shape is such that recessed connection portion 38 is formed in outer edge portion 23. Therefore, a relatively small space (that is, a space where recessed connection portion 38 is located) is formed between front outer edge portion 37 and rear outer edge portion 39 in one blade 21, and the space is present as a space in blade 21 where no wind is generated.
Consequently, in a portion on the side of outer edge portion 23 where wind high in velocity is generated, a pressure difference caused in generated wind is lessened as a result of decrease in area of the blade, and in addition, a pressure fluctuates in a more finely stepwise manner. Therefore, front outer edge portion 37 and rear outer edge portion 39 provided in one blade 21 function as if two blades sent wind, and comfortably impinging wind less in pressure fluctuation as a whole can be generated.
Thirdly, with blade 21 constructed as above, during rotation at a low speed, comfortably impinging wind diffusing over a wide range can be obtained, and during rotation at a high speed, wind high in straightness and reaching farther can be obtained, which will be described in further detail with reference to
As described above, in the present embodiment, recessed connection portion 38 is formed at a position on outer edge portion 23 of blade 21. The position on outer edge portion 23 corresponds to a position downstream of blade tip end portion 104, along a streamline of the blade tip end vortex which flows over the blade surface.
As shown in
On the other hand, as shown in
Thus, according to propeller fan 140 and fluid feeder 520 including the same in the present embodiment, generated wind can be less in pressure fluctuation and comfortably impinging wind can be sent, and noise can be lowered.
[Variation of Fourth Embodiment]
In propeller fan 140 in the fourth embodiment described above, recessed connection portion 38 is formed at a position close to blade rear end portion 105 of outer edge portion 23. In a propeller fan 150 in the present embodiment, recessed connection portion 38 is provided in a region in midway between blade tip end portion 104 and blade rear end portion 105 on outer edge portion 23. According to such a construction as well, a function and effect substantially the same as in propeller fan 140 in the fourth embodiment can be obtained.
[First Verification Experiment]
A first verification experiment carried out in connection with coupling portion 33 commonly provided in the propeller fans in the embodiments above will be described with reference to
As shown in
With a length dimension along the direction of radius from outer surface 41S of boss hub portion 41 to front end portion 33A of coupling portion 33 being denoted as Ra, dimensionless position η is represented as a value calculated by dividing Ra by length r1 in the direction of radius of blade 21 (Ra/r1). With a length dimension along the direction of radius from outer surface 41S of boss hub portion 41 to rear end portion 33B of coupling portion 33 being denoted as Rb, dimensionless position ξ is represented as a value calculated by dividing Rb by length r1 in the direction of radius of blade 21 (Rb/r1).
Blade 21 of propeller fan 160 is formed such that a stagger angle on the inner side in the direction of radius relative to coupling portion 33 (on the side of inner region 31) and a stagger angle on the outer side in the direction of radius (on the side of outer region 32) relative to coupling portion 33 are substantially constant, and such that the stagger angle on the inner side in the direction of radius relative to coupling portion 33 (on the side of inner region 31) is smaller than the stagger angle on the outer side in the direction of radius (on the side of outer region 32) relative to coupling portion 33.
Regarding a height of front edge portion 22 of blade surface 28, a propeller fan (shown with a dotted line in
A quantity of wind and pressure fluctuation were measured at a position distant by 30 mm on the burst side along central axis 101 of propeller fan 160 where a distance along the direction of radius from central axis 101 of propeller fan 160 is 80% of maximum radius R of outer edge portion 23. The position around a portion where a distance along the direction of radius from central axis 101 of propeller fan 160 is 70% to 80% of the maximum radius of outer edge portion 23 is generally a position where a wind velocity is highest and hence pressure fluctuation is most.
As shown in
As shown in
As shown in
Referring to
According to such a construction, during rotation of the propeller fan, in the vicinity of the region where coupling portion 33 is provided, a mainstream flows from the outer side to the inner side in the direction of radius. Therefore, by forming coupling portion 33 substantially along a flow of the mainstream and adopting a blade shape also for the region where coupling portion 33 is provided, a blade shape can be realized for all flows of a mainstream, and hence wind can more efficiently be sent.
[Second Verification Experiment]
A second verification experiment carried out in connection with coupling portion 33 commonly provided in the propeller fans in the embodiments above will be described with reference to
As shown in
With a length dimension along the direction of radius from outer surface 41S of boss hub portion 41 to rear end portion 33B of coupling portion 33 being denoted as Rb, dimensionless position ξ is represented as a value obtained by dividing Rb by length r1 in the direction of radius of blade 21. With a length dimension from blade tip end portion 104 to front end portion 33A being denoted as Rc, dimensionless position κ is represented as a value obtained by dividing Rc by cord length dimension C of outer edge portion 23 of blade 21 (Rc/C).
Blade 21 of propeller fan 170 is formed such that a stagger angle on the inner side in the direction of radius relative to coupling portion 33 and a stagger angle on the outer side in the direction of radius (on the side of outer region 32) relative to coupling portion 33 are substantially constant and the stagger angle on the inner side in the direction of radius (on the side of inner region 31) relative to coupling portion 33 is smaller than a stagger angle on the outer side in the direction of radius (on the side of outer region 32) relative to coupling portion 33.
Regarding a height of front edge portion 22 of blade surface 28, a propeller fan (shown with a dotted line in
A quantity of wind and pressure fluctuation were measured at a position distant by 30 mm on the burst side along central axis 101 of propeller fan 170 where a distance along the direction of radius from central axis 101 of propeller fan 170 is 80% of maximum radius R of outer edge portion 23. The position where a distance along the direction of radius from central axis 101 of propeller fan 170 is 80% of the maximum radius of outer edge portion 23 is generally a position where a wind velocity is highest and hence pressure fluctuation is most.
As shown in
As shown in
As shown in
Referring to
[Third Verification Experiment]
A third verification experiment carried out in connection with coupling portion 33 commonly provided in the propeller fans in the embodiments above will be described with reference to
Referring to
Propeller fan 180 has a diameter D10 of 180 mm. An occupied space LM10 formed as a result of rotation of propeller fan 180 has a height H10 in the direction of central axis 101 of 40 mm. Boss hub portion 41 has a diameter D10 of 30 mm. A gap SA having a prescribed volume is formed between propeller fan 180 and occupied space LM10.
Referring to
Boss hub portion 41 also has a diameter D20 the same as diameter D10 (30 mm) of boss hub portion 41 in propeller fan 180. A gap SB having a prescribed volume is formed between propeller fan 910 and occupied space LM20. Gap SB is greater than gap SA.
Based on comparison between line L1 and line L2, with the number of rotations n being the same, propeller fan 180 obtains a quantity of wind increased by 40% as compared with propeller fan 910. Therefore, it can be seen that propeller fan 180 can obtain a larger quantity of wind than propeller fan 910 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Based on comparison between line L1 and line L2, with quantity of wind Q at a reached distance being the same, noise generated from propeller fan 180 is lower by 5 dB than noise generated from propeller fan 910. Therefore, it can be seen that propeller fan 180 can achieve lower noise than propeller fan 910 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Based on comparison between line L1 and line L2, with quantity of wind Q at a reached distance being the same, power consumption in propeller fan 180 is lower by 5% than power consumption in propeller fan 910. Therefore, it can be seen that propeller fan 180 can achieve lowering in power consumption as compared with propeller fan 910 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
[Fourth Verification Experiment]
A fourth verification experiment carried out in connection with coupling portion 33 commonly provided in the propeller fans in the embodiments above will be described with reference to
As shown in
Based on comparison between line L1 and line L3, with the number of rotations n being the same, propeller fan 190 obtains a quantity of wind increased by 40% as compared with propeller fan 910. Therefore, it can be seen that propeller fan 190 can obtain a larger quantity of wind than propeller fan 910 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Based on comparison between line L1 and line L3, with quantity of wind Q at a reached distance being the same, noise generated from propeller fan 190 is lower by 3 dB than noise generated from propeller fan 910. Therefore, it can be seen that propeller fan 190 can achieve lower noise than propeller fan 910 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Based on comparison between line L1 and line L3, with quantity of wind Q at a reached distance being the same, power consumption in propeller fan 190 is lower by 5% than power consumption in propeller fan 910. Therefore, it can be seen that propeller fan 190 can be lower in power consumption than propeller fan 910 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Based on comparison between line L1 and line L3, with regard to both of propeller fans 190 and 910, a wind velocity exhibits a high peak value at a position distant by 0.8R (R representing a maximum radius of blade 21 in a plan view of the propeller fan) from central axis 101. On the other hand, it can be seen that, in propeller fan 190, by enhancing capability to send wind on the inner circumferential side around central axis 101 and lowering capability to send wind on the outer circumferential side around central axis 101, a peak of the wind velocity has been eliminated.
Considering the fourth verification experiment, it can be seen that a total quantity of wind can significantly be increased and noise and power consumption can be lowered by providing coupling portion 33 on blade surface 28, making a stagger angle on the inner side of blade surface 28 relatively smaller, making a stagger angle on the outer side of blade surface 28 relatively greater, and forming a sickle shape while making a substantially maximum use of a space which can be occupied in the propeller fan.
When blade surface 28 is formed as being deeply bent in coupling portion 33, a stagger angle which has once attained to the maximum at coupling portion 33 again increases on the side of outer edge portion 23, and a cross-sectional shape of blade surface 28 cut along the direction of radius is raised and lowered along the direction of radius. If blade surface 28 is bent too extremely at coupling portion 33, a shape of blade surface 28 and coupling portion 33 will affect a secondary flow which is not a mainstream generated over blade surface 28 and an effect of effective suppression of generation of noise tends to be lower. Therefore, even when maximum use of a space which can be occupied is made, a degree of curving, a degree of bending, and a shape of coupling portion 33 are desirably determined in consideration of a flow of air such as a mainstream and a horseshoe vortex in the vicinity of coupling portion 33.
[Fifth Verification Experiment]
A fifth verification experiment carried out in connection with coupling portion 33 commonly provided in the propeller fans in the embodiments above will be described with reference to
As shown in
Front edge portion 22 of propeller fan 200 extends forward (see an arrow AR5) in the direction of rotation as compared with front edge portion 22 of propeller fan 190. A dotted line DL54 in
[Sixth Verification Experiment]
A sixth verification experiment carried out in connection with coupling portion 33 commonly provided in the propeller fans in the embodiments above will be described with reference to
As shown in
As shown with an arrow AR6 in
Based on comparison between line L3 and line L5, with the number of rotations n being the same, it can be seen that propeller fan 210 obtains a quantity of wind slightly smaller than but substantially the same as that of propeller fan 190. Therefore, with the number of rotations n being the same, propeller fan 190 obtains a quantity of wind increased by 40% as compared with propeller fan 910 (see
Based on comparison between line L5 and line L3, with quantity of wind Q at a reached distance being the same, noise generated from propeller fan 210 is lower by further 2 dB than noise generated from propeller fan 190. Therefore, it can be seen that propeller fan 210 can achieve further lower noise than propeller fan 190 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Based on comparison between line L5 and line L3, with quantity of wind Q at a reached distance being the same, power consumption in propeller fan 210 is lower by further 15% than power consumption in propeller fan 190. Therefore, it can be seen that propeller fan 210 can be further lower in power consumption than propeller fan 190 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Considering the sixth verification experiment, in propeller fan 210, a maximum use of a space which can be occupied in the propeller fan is made on the inner side relative to coupling portion 33 and a stagger angle is made greater on the outer side relative to coupling portion 33. It can be seen that, by lowering a height on the outer side in the direction of radius of outer edge portion 23 and having such a smooth curved surface that a stagger angle monotonously increases on the outer side in the direction of radius, a secondary flow flows appropriately with low resistance, turbulence and noise are lowered, and power consumption (flow loss) can also be lowered.
[Seventh Verification Experiment]
A seventh verification experiment carried out in connection with a reverse camber structure commonly provided in the propeller fans in the embodiments above will be described with reference to
As shown in
As shown in
As shown in
Referring to
Based on comparison between line L5 and line L6, it can be seen that, with the number of rotations n being the same, propeller fan 220 obtains a quantity of wind slightly smaller than but substantially the same as that of propeller fan 210. With the number of rotations n being the same, even propeller fan 220 having the forward camber structure can obtain a quantity of wind increased by 40% as compared with propeller fan 910 (see
Based on comparison between line L5 and line L6, it can be seen that, with quantity of wind Q at a reached distance being the same, noise generated from propeller fan 220 is slightly higher than noise generated from propeller fan 210. With quantity of wind Q at a reached distance being the same, even propeller fan 220 having the forward camber structure can achieve lower noise than propeller fan 910 (see
Based on comparison between line L5 and line L6, with quantity of wind Q at a reached distance being the same, power consumption in propeller fan 220 slightly increases as compared with power consumption in propeller fan 210. With quantity of wind Q at a reached distance being the same, even propeller fan 220 having the forward camber structure can be lower in power consumption than propeller fan 910 (see
Considering the seventh verification experiment, it can be seen that the reverse camber structure is superior to the forward camber structure in terms of a quantity of wind, noise, and power consumption. Depending on relation between a height and a cord length dimension of blade surface 28, wind may not satisfactorily be sent in blade root portion 34. In such a case, it can be seen that the reverse camber structure is desirably adopted. It has been found that, when a propeller fan has a diameter of 180 mm, boss hub portion 41 has a diameter of 30 mm, and an occupied space formed as a result of rotation of the propeller fan has a height in the direction of central axis 101 of 40 mm, the reverse camber structure obtains an effect noticeably better than the forward camber structure.
Inner region 31 of propeller fan 230 is formed such that a warped shape curved as being distant from virtual straight line 31L toward the burst side and a warped shape curved as being distant from virtual straight line 31L toward the suction side continue in an S shape as a whole from front edge portion 22 toward rear edge portion 24. Depending on relation between a height and a cord length dimension of blade surface 28, wind may not satisfactorily be sent in blade root portion 34. In such a case, with blade root portion 34 being formed in an S shape in a cross-sectional view, wind can satisfactorily be sent. Such a construction (an S-shaped camber structure) can be enabled independently of the technical concept of provision of coupling portion 33 in blade surface 28.
[Fifth Embodiment]
(Fluid Feeder 610)
A fluid feeder 610 in the present embodiment will be described with reference to
(Propeller Fan 250)
Propeller fan 250 rotates in the direction shown with arrow 102 around central axis 101 as it is driven by the drive motor (not shown). Rotation of blade 21 generates wind so that fluid feeder 610 (see
Propeller fan 250 in the present embodiment has boss hub portion 41 serving as a rotation shaft portion and seven blades 21. Propeller fan 250 may have a plurality of blades 21 other than seven or may have only a single blade 21. Propeller fan 250 is not limited to fluid feeder 610 serving as the electric fan, and it may be employed in various fluid feeders such as a circulator, an air-conditioner, an air cleaner, a humidifier, a dehumidifier, a fan heater, a cooling apparatus, or a ventilator.
Boss hub portion 41 is a portion connecting propeller fan 250 to an output shaft of a drive motor (not shown) which is a drive source. Blade 21 is formed to extend outward from the outer surface of boss hub portion 41 in the direction of radius of central axis 101. Seven blades 21 are arranged at regular intervals in the circumferential direction around the axis of rotation (central axis 101) of propeller fan 250. In the present embodiment, seven blades 21 are identical in shape. When any blade 21 is rotated around central axis 101, that blade 21 and another blade 21 match in shape.
(Blade 21)
Blade 21 has blade root portion 34 and blade surface 28 extending like a plate from blade root portion 34. Blade root portion 34 is arranged between blade 21 and the outer surface of boss hub portion 41 (a boundary). Blade surface 28 is constituted of positive pressure surface 26 and negative pressure surface 27 arranged on the back of positive pressure surface 26. Positive pressure surface 26 is located on the burst side of blade surface 28 in the axial direction of central axis 101. Negative pressure surface 27 is located on the suction side of blade surface 28 in the axial direction of central axis 101. A surface of each of positive pressure surface 26 and negative pressure surface 27 is smoothly formed as a whole.
Blade surface 28 sends wind with rotation of propeller fan 250 and sends air from the suction side to the burst side. With generation of a flow of air over blade surface 28 during rotation of propeller fan 250, such pressure distribution that a pressure is relatively high over positive pressure surface 26 and a pressure is relatively low over negative pressure surface 27 is created.
On a periphery of blade surface 28, front edge portion 22, blade tip end portion 104, outer edge portion 23, blade rear end portion 105, and rear edge portion 24 are annularly arranged in this order from a portion on the side of the direction of rotation in blade root portion 34 toward a portion opposite in the direction of rotation in blade root portion 34.
In a plan view of blade 21, blade 21 has a shape pointed like a sickle, with blade tip end portion 104 where front edge portion 22 intersects with outer edge portion 23 being defined as the tip end. In a portion of front edge portion 22 and rear edge portion 24 on the radially inner side, a width thereof along the direction of rotation gradually decreases, and in a portion of front edge portion 22 and rear edge portion 24 on the radially outer side, a width thereof along the direction of rotation gradually increases.
Specifically, front edge portion 22 is arranged upstream in the direction of rotation (the direction shown with arrow 102) of blade 21. When propeller fan 250 is viewed in the axial direction of central axis 101 (in other words, propeller fan 250 is two-dimensionally viewed), front edge portion 22 extends from a portion on the side of the direction of rotation in blade root portion 34 outward in the direction of radius from the inner side in the direction of radius around central axis 101. Front edge portion 22 extends in the direction of rotation of propeller fan 250, as being curved from the inner side in the direction of radius outward in the direction of radius around central axis 101.
Blade tip end portion 104 is arranged on the outer side in the direction of radius in front edge portion 22 when viewed form central axis 101. Blade tip end portion 104 is a portion where front edge portion 22 and outer edge portion 23 which will be described next are connected to each other. Blade tip end portion 104 in the present embodiment is located most on the side of direction of rotation in blade 21.
Rear edge portion 24 is arranged downstream in the direction of rotation (the direction shown with arrow 102) of blade 21. When propeller fan 250 is viewed in the axial direction of central axis 101 (in other words, propeller fan 250 is two-dimensionally viewed), rear edge portion 24 extends from a portion opposite in the direction of rotation in blade root portion 34, outward in the direction of radius from the inner side in the direction of radius around central axis 101. Rear edge portion 24 is arranged as opposed to front edge portion 22 in the circumferential direction around central axis 101. Rear edge portion 24 extends in the direction of rotation of propeller fan 250, as being gently curved from the inner side in the direction of radius outward in the direction of radius around central axis 101.
Blade rear end portion 105 is arranged on the outer side in the direction of radius in rear edge portion 24 when viewed form central axis 101. Blade rear end portion 105 is a portion where rear edge portion 24 and outer edge portion 23 which will be described next are connected to each other. Blade tip end portion 104 in propeller fan 250 of the present embodiment is arranged on the inner circumferential side around central axis 101, relative to blade rear end portion 105.
Outer edge portion 23 extends along the circumferential direction around central axis 101 and is provided to connect blade tip end portion 104 and blade rear end portion 105 to each other. Outer edge portion 23 intersects with front edge portion 22 at blade tip end portion 104 located most on the side of the direction of rotation of propeller fan 250 on the line extending in the circumferential direction of outer edge portion 23 and intersects with rear edge portion 24 at blade rear end portion 105 located most opposite in the direction of rotation of propeller fan 250 on the line extending in the circumferential direction of outer edge portion 23. Outer edge portion 23 as a whole extends in an arc shape between blade tip end portion 104 and blade rear end portion 105.
Front edge portion 22, blade tip end portion 104, outer edge portion 23, blade rear end portion 105, and rear edge portion 24 constitute, together with blade root portion 34, a peripheral portion forming a periphery of blade 21. This peripheral portion (front edge portion 22, blade tip end portion 104, outer edge portion 23, blade rear end portion 105, and rear edge portion 24) are in a smooth shape not having a corner, as they are all formed to have a substantially arc shape. Blade surface 28 is formed over the entire region inside the region surrounded by blade root portion 34 and this peripheral portion (front edge portion 22, blade tip end portion 104, outer edge portion 23, blade rear end portion 105, and rear edge portion 24).
Blade surface 28 is formed as being smoothly curved as a whole from the suction side to the burst side in the circumferential direction from front edge portion 22 toward rear edge portion 24. Blade 21 in propeller fan 250 in the present embodiment is formed in such a blade shape that a thickness of a cross-sectional shape in the circumferential direction connecting front edge portion 22 and rear edge portion 24 to each other increases from front edge portion 22 and rear edge portion 24 toward a portion around a center of the blade and is greatest at a position close to front edge portion 22 relative to the center of the blade.
Blade surface 28 of propeller fan 250 has inner region 31, outer region 32, and coupling portion 33. Inner region 31, outer region 32, and coupling portion 33 are formed in both of positive pressure surface 26 and negative pressure surface 27.
Inner region 31 includes blade root portion 34 in a part thereof and it is located on the inner side in the direction of radius of central axis 101, relative to coupling portion 33 and outer region 32. Outer region 32 includes blade rear end portion 105 in a part thereof and it is located on the outer side in the direction of radius of central axis 101, relative to coupling portion 33 and inner region 31. Positive pressure surface 26 in inner region 31 and positive pressure surface 26 in outer region 32 are formed to be different in surface shape from each other. Negative pressure surface 27 in inner region 31 and negative pressure surface 27 in outer region 32 are also formed to be different in surface shape from each other.
Coupling portion 33 couples inner region 31 and outer region 32 to each other such that a side of positive pressure surface 26 of blade surface 28 is projecting and a side of negative pressure surface 27 of blade surface 28 is recessed. Coupling portion 33 is provided to extend substantially along the direction of rotation, and extends from front end portion 33A located most upstream in the direction of rotation in coupling portion 33 to rear end portion 33B located most downstream in the direction of rotation in coupling portion 33.
Coupling portion 33 is formed such that blade surface 28 is curved with slightly sharp variation in curvature from inner region 31 toward outer region 32, and couples in a curved manner, inner region 31 and outer region 32 different from each other in surface shape to each other at a boundary therebetween. Coupling portion 33 may couple them in a bent manner.
Coupling portion 33 is provided such that a curvature in a cross-sectional view along the direction of radius of blade surface 28 attains to relative maximum around the same, and appears as a curved protruding projecting portion on positive pressure surface 26 as extending like a streak from front end portion 33A toward rear end portion 33B and appears as a curved recessed groove portion on negative pressure surface 27 as extending like a streak from front end portion 33A toward rear end portion 33B. Coupling portion 33 in the present embodiment is provided from a portion in outer edge portion 23 located in midway between blade tip end portion 104 and blade rear end portion 105 to rear edge portion 24.
Blade 21 in the present embodiment has what is called a forward camber structure. Blade 21 has, in both of inner region 31 and outer region 32, a warped shape such that the side of positive pressure surface 26 is recessed and the side of negative pressure surface 27 is projecting. Blade 21 is formed such that a stagger angle (θA) in the portion on the inner side in the direction of radius (the side of inner region 31) relative to coupling portion 33 in blade surface 28 is smaller than a stagger angle (θB) in the portion on the outer side in the direction of radius (the side of outer region 32) relative to coupling portion 33 in blade surface 28. Recessed connection portion 38 is provided in outer edge portion 23 of blade 21. Recessed connection portion 38 in the present embodiment is formed to be recessed toward central axis 101 from the portion in outer edge portion 23 close to blade rear end portion 105.
Height H3 of rear edge portion 24 is smaller on the inner circumferential side around central axis 101 as a distance from boss hub portion 41 is greater, and it is greater on the outer circumferential side around central axis 101, toward outer edge portion 23 (blade rear end portion 105). In other words, rear edge portion 24 extends as being curved to project on the burst side in the axial direction of central axis 101 between boss hub portion 41 and outer edge portion 23. A position where height H3 of rear edge portion 24 starts to increase toward outer edge portion 23 is preferably within a range from 0.4R to 0.7R (R representing a maximum radius of blade 21 in the plan view of propeller fan 250) around central axis 101.
(Function and Effect)
According to fluid feeder 610 (see
As recessed connection portion 38 is provided in outer edge portion 23, wind velocity distribution in the direction of radius can be more uniform, variation in wind velocity can be suppressed, comfortably impinging wind can be obtained, pressure fluctuation included in wind generated in the portion close to the outer side in the direction of radius is lessened, and comfortably impinging wind can be generated. During rotation at a low speed, comfortably impinging wind diffusing over a wide range can be obtained, and during rotation at a high speed, wind high in straightness and reaching farther can be obtained.
As height H3 of rear edge portion 24 increases toward outer edge portion 23 (blade rear end portion 105), capability to send wind is suppressed on the outer circumferential side around central axis 101, so that a propeller fan achieving less uncomfortableness of blowing from the fan can be realized.
[Eighth Verification Experiment]
An eighth verification experiment carried out in connection with propeller fan 250 (see
Blade 21 of propeller fan 250 used in the eighth verification experiment is substantially the same in shape as propeller fan 160 (see
Referring to
Based on comparison between line L10 and line L20, with the number of rotations n being the same, propeller fan 250 obtains a quantity of wind increased by 25% as compared with propeller fan 950. Therefore, it can be seen that propeller fan 250 can obtain a larger quantity of wind than propeller fan 950 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Based on comparison between line L10 and line L20, with quantity of wind Q at a reached distance being the same, noise generated from propeller fan 250 is lower by 8 dB than noise generated from propeller fan 950. Therefore, it can be seen that propeller fan 250 can achieve lower noise than propeller fan 950 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Based on comparison between line L10 and line L20, with quantity of wind Q at a reached distance being the same, power consumption in propeller fan 250 is lower than power consumption in propeller fan 950. For example, when quantity of wind Q at a reached distance is approximately 50 m3/min., power consumption in propeller fan 250 is lower by 30% than power consumption in propeller fan 950. Therefore, it can be seen that propeller fan 250 can be lower in power consumption than propeller fan 950 identical in diameter of the propeller fan, height of the occupied space formed as a result of rotation of the propeller fan, and diameter of the boss hub portion.
Based on comparison between line L10 and line L20, it can be seen that, in propeller fan 250, a peak of a wind velocity has significantly been eliminated as compared with propeller fan 910 and a wind velocity is substantially fully uniform within a range of a distance (dimensionless) from central axis 101 in the direction of radius being from 0.1 to 0.7.
Considering the eighth verification experiment, it can be seen that a quantity of wind can be uniform and noise and power consumption can be lowered by providing coupling portion 33 on blade surface 28, making a stagger angle on the inner side of blade surface 28 relatively small, making a stagger angle on the outer side of blade surface 28 relatively great, providing recessed connection portion 38 in outer edge portion 23, and having rear edge portion 24 have height H3 increasing toward outer edge portion 23 (blade rear end portion 105) in region R3 on the outer circumferential side.
Referring to
[Sixth Embodiment]
(Molding Die)
In the present embodiment, a molding die 61 for molding various propeller fans in each embodiment and each verification experiment described above with a resin will be described.
Molding die 61 may be provided with a not-shown heater for enhancing fluidity of the resin injected into the cavity. Such provision of a heater is particularly effective in using a synthetic resin having increased strength such as an AS resin filled with glass fibers.
With regard to molding die 61 shown in
Some propeller fans are integrally formed by using a metal as a material and through drawing by pressing. For such molding, a thin metal plate is generally employed, because a thick metal plate is difficult to draw and a mass thereof is also great. In this case, it is difficult to maintain strength (rigidity) in a large propeller fan. In contrast, some propeller fans include a part called a spider formed from a metal plate greater in thickness than a blade portion and have the blade portion fixed to a rotation shaft, however, it is great in mass and fan balance is also is poor. Generally, since a metal plate which is thin and has a constant thickness is employed, a cross-sectional shape of a blade portion cannot be in a blade shape.
In contrast, by forming the propeller fan with a resin, such problems can collectively be solved.
As above, each embodiment and each verification experiment based on the present invention have been described, however, each embodiment and each verification experiment disclosed herein are illustrative and non-restrictive in every respect. The technical scope of the present invention is shown by the terms of the claims, and includes any modifications within the scope and meaning equivalent to the terms of the claims.
This invention is applied, for example, to such home electric appliances as an electric fan, a circulator, an air-conditioner, an air cleaner, a humidifier, a dehumidifier, a fan heater, a cooling apparatus, or a ventilator.
21, 21A, 21B, 21C blade; 22 front edge portion; 23 outer edge portion; 24 rear edge portion; 26 positive pressure surface; 27 negative pressure surface; 28 blade surface; 31 inner region; 31L, 33L virtual straight line; 32 outer region; 33 coupling portion; 33A front end portion; 33B rear end portion; 34 blade root portion; 38 connection portion; 41 boss hub portion (rotation shaft portion); 41S outer surface; 52 separation region; 61 molding die; 62 fixed die; 63 movable die; 101 central axis; 102, AR5, AR6 arrow; 104 blade tip end portion; 105 blade rear end portion; 107 virtual plane; 109 circumscribed circle; 110, 120, 120A, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 250, 260, 270, 280, 910, 950 propeller fan; 111 maximum diameter end portion; 310 mainstream; 320, 350 horseshoe vortex; 330 secondary flow; 340 blade tip end vortex; 510, 520, 610 fluid feeder; 800, 900 wind; C cord length dimension; D10, D20 diameter; DL5, DL6, L1, L2, L3, L4, L5, L6, L10, L20, LL2, LL3, LL4, LL5 line; H2, H3, H10, H20 height; LM1, LM10, LM20, LM50 space; P1 central position; R radius (maximum radius); R1, R2, R3 region; S1, S2, S3, SA, SB gap; TT thickness; and Z1 concentric circle.
Number | Date | Country | Kind |
---|---|---|---|
2012-089282 | Apr 2012 | JP | national |
2012-089285 | Apr 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/060710 | 4/9/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/154102 | 10/17/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2269287 | Roberts | Jan 1942 | A |
5513951 | Komoda et al. | May 1996 | A |
6254342 | Fujinaka et al. | Jul 2001 | B1 |
6341940 | Giribaldi | Jan 2002 | B1 |
20030103846 | Ohsuka | Jun 2003 | A1 |
20060042894 | Lee et al. | Mar 2006 | A1 |
20070243064 | Nakano et al. | Oct 2007 | A1 |
20080019826 | Arinaga | Jan 2008 | A1 |
20080050240 | Tanigawa | Feb 2008 | A1 |
20080069700 | Laisathit | Mar 2008 | A1 |
20090010763 | Watts | Jan 2009 | A1 |
20100158677 | Ishihara | Jun 2010 | A1 |
20110223029 | Allen et al. | Sep 2011 | A1 |
20120107127 | Chang | May 2012 | A1 |
20120171042 | Takeda | Jul 2012 | A1 |
20130028747 | Henner et al. | Jan 2013 | A1 |
20150071786 | Kumon et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
1388869 | Jan 2003 | CN |
101023271 | Aug 2007 | CN |
102341603 | Feb 2012 | CN |
104145118 | Aug 2016 | CN |
285219 | Feb 1928 | GB |
1-247797 | Oct 1989 | JP |
04-171299 | Jun 1992 | JP |
5-202893 | Aug 1993 | JP |
05-296195 | Nov 1993 | JP |
06-307397 | Nov 1994 | JP |
6-336999 | Dec 1994 | JP |
08-121391 | May 1996 | JP |
11-201084 | Jul 1999 | JP |
2000-054992 | Feb 2000 | JP |
2002-54597 | Feb 2002 | JP |
2003-206894 | Jul 2003 | JP |
2004-293528 | Oct 2004 | JP |
2006-037800 | Feb 2006 | JP |
2006-063978 | Mar 2006 | JP |
2008-157117 | Jul 2008 | JP |
2010-144702 | Jul 2010 | JP |
2010-255560 | Nov 2010 | JP |
2011-058449 | Mar 2011 | JP |
2011069762 | Jun 2011 | WO |
Entry |
---|
Official Communication issued in International Patent Application No. PCT/JP2013/060710, dated Jul. 9, 2013. |
Kumon et al., “Propeller Fan, Fluid Feeder, Electric Fan, and Molding Die,” U.S. Appl. No. 14/391,412, filed Oct. 9, 2014. |
Number | Date | Country | |
---|---|---|---|
20150071786 A1 | Mar 2015 | US |