Information
-
Patent Grant
-
6609892
-
Patent Number
6,609,892
-
Date Filed
Tuesday, November 21, 200024 years ago
-
Date Issued
Tuesday, August 26, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Look; Edward K.
- Nguyen; Ninh
Agents
- Ziolkowski Patent Solutions Group, LLC
-
CPC
-
US Classifications
Field of Search
US
- 416 93 A
- 416 134 R
- 416 244 B
-
International Classifications
-
Abstract
A propeller assembly that includes a plastic bushing that is secured, e.g., bonded, to an inner hub and is configured to engage an outer hub of a propeller. More specifically, and in an exemplary embodiment, the bushing includes a cylindrical shaped body having a bore therethrough, and a plurality of grooves are in an outer diameter surface of the cylindrical shaped body. The inner hub includes a cylindrical shaped body sized to extend into the bushing bore. A flange is at one end of the inner hub body, and at least one limp home tab extends from the flange. The propeller includes an outer hub having a cylindrical shaped body, and a plurality of blades extend from an outer diameter surface of the outer hub body. An inner diameter surface of the outer hub body has a plurality of protrusions that extend radially inward. Each protrusion is positioned to extend within a respective one of the grooves in the outer diameter surface of the bushing body. At least one limp home tab extends from the outer hub inner diameter surface.
Description
BACKGROUND OF THE INVENTION
The invention relates generally to marine engines, and more particularly, to propeller hubs.
Outboard engines include a drive shaft which extends from the engine power head, through an exhaust case, and into an engine lower unit. The lower unit includes a gear case, and a propeller shaft extends through the gear case. Forward and reverse gears couple the propeller shaft to the drive shaft. The drive shaft, gears, and propeller shaft sometimes are referred to as a drive train.
A propeller is secured to and rotates with the propeller shaft. Torque from the engine is transmitted from the propeller shaft to the propeller. Exemplary propeller hub assemblies include cross bolts, keys, shear pins, plastic hubs, and compressed rubber hubs. Such hub assemblies should have sufficient strength or stiffness so that during normal engine operations, very few losses occur between the propeller shaft and the propeller. Such hub assemblies, however, also should be resilient so that the engine drive train is protected in the event of an impact, e.g., if the propeller hits a log or rock.
A propeller hub assembly also should facilitate “limp home” operation of the engine so that even in the event that an interface between the propeller shaft and the propeller shears due to a large impact, the propeller and propeller shaft still remain sufficiently engaged so that the engine still drives the boat, for example, to return to a dock for repairs.
BRIEF SUMMARY OF THE INVENTION
In an exemplary embodiment, a propeller assembly includes a plastic bushing secured, e.g., bonded, to an inner hub and configured to engage an outer hub of a propeller. More specifically, and in an exemplary embodiment, the bushing includes a cylindrical shaped body having a bore therethrough, and a plurality of grooves are in an outer diameter surface of the cylindrical shaped body. The inner hub includes a cylindrical shaped body sized to extend into the bushing bore. A flange is at one end of the inner hub body, and at least one limp home tab extends from the flange.
The propeller includes an outer hub having a cylindrical shaped body, and a plurality of blades extend from an outer diameter surface of the outer hub body. An inner diameter surface of the outer hub body has a plurality of protrusions that extend radially inward. Each protrusion is positioned to extend within a respective one of the grooves in the outer diameter surface of the bushing body. Also, at least one limp home tab extends from the outer hub inner diameter surface.
Generally, the propeller assembly rotates with the propeller shaft during normal operations. In the event of an impact, e.g., the propeller strikes an object in the water, the propeller may rotate relative to the shaft. Specifically, in the exemplary embodiment, since the torsion bushing is plastic and outer hub is stainless steel, the outer hub may rotate relative to the bushing.
In the event that such relative rotation of the propeller results in shearing the engagement between the propeller and the torsion bushing, a limp home arrangement provides that the propeller may still be rotatable with the propeller shaft so that the operator can at least reach a dock for repairs. The limp home arrangement includes the outer hub tabs and the inner hub tabs. Once the propeller outer hub rotates so that the outer hub tabs engage the inner hub tabs, the outer hub once again rotates with the propeller shaft. Such operational condition is sometimes referred to herein as the limp home operation mode.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a front exploded view of the propeller assembly shown in FIG.
1
.
FIG. 2
is a rear exploded view of the propeller assembly shown in FIG.
3
.
FIG. 3
is a front perspective view of a propeller assembly in accordance with one embodiment of the present invention.
FIG. 4
is a rear perspective view of the propeller assembly shown in FIG.
1
.
FIG. 5
is a front view of the propeller assembly shown in FIG.
1
.
FIG. 6
is a rear view of the propeller assembly shown in FIG.
1
.
FIG. 7
is a cross-sectional view through line
7
—
7
shown in FIG.
5
.
FIG. 8
is a cross-sectional view through line
8
—
8
shown in FIG.
7
.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is not limited to practice in connection with a particular engine, nor is the present invention limited to practice with a particular propeller configuration. The present invention can be utilized in connection with many engines and propeller configurations. For example, a propeller having three blades is described herein. The present invention, however, can be used in connection with propellers having any number of blades. Therefore, although the invention is described below in the context of an exemplary outboard engine and propeller configuration, the invention is not limited to practice with such engine and propeller.
FIG. 1
is a front exploded view of a propeller assembly
100
in accordance with one embodiment of the present invention, and
FIG. 2
is a rear exploded view of assembly
100
. Propeller assembly
100
is configured for being secured to a propeller shaft
102
of a marine engine. Propeller assembly
100
includes a thrust bushing
104
and a propeller
106
having an outer hub
108
with a cylindrical shaped body. A plurality of blades
110
extend from an outer diameter hub surface
112
. Assembly
100
further includes a torsion bushing
114
and an inner hub
116
. A washer
118
and a nut
120
secure assembly
100
to propeller shaft
102
.
Torsion bushing
114
includes a plurality of grooves
122
that mate with drive protrusions
124
that extend radially inward from an inner diameter surface
126
of outer hub
108
. More specifically, a bore
128
extends through outer hub
108
. Each protrusion
124
is positioned to extend within a respective one of grooves
122
.
Bushing
114
includes a cylindrical shaped body
130
having a bore
132
therethrough. Grooves
122
are in an outer diameter surface
134
of cylindrical shaped body
130
. Bushing
114
slides into outer hub bore
128
so that protrusions
124
are located within grooves
122
. Outer hub
108
also includes a plurality of tabs
136
that, under certain operating conditions as described below in more detail, engage tabs
138
that extend from a flange
140
of inner hub
116
.
Inner hub
116
slides into bore
132
of bushing
114
and is securely engaged to bushing
114
, e.g., by a bonding process, such as by a vulcanizing process or other bonding process known in the art. Specifically, inner hub cylindrical shaped body
142
extends into bushing bore
132
.
In the exemplary embodiment described above, propeller shaft
102
is fabricated from steel, thrust bushing
104
is stainless steel, propeller
106
is stainless steel, torsion bushing
114
is a plastic, e.g., urethane, and inner hub
116
is stainless steel. Of course, such components can be fabricated from other materials, e.g., brass, aluminum, selected depending upon the desired operating characteristics of assembly
100
.
FIG. 3
is a front perspective view of propeller assembly
100
, and
FIG. 4
is a rear perspective view of assembly
100
. Generally, propeller assembly
100
rotates with propeller shaft
102
during normal operations. In the event of an impact, e.g., propeller
106
strikes an object in the water, propeller
106
may rotate relative to shaft
102
. Specifically, in the exemplary embodiment, since torsion bushing
114
is plastic and outer hub
108
is stainless steel, outer hub
108
may rotate relative to bushing
114
as described below.
In the event that such relative rotation of propeller
106
results in shearing the engagement between propeller
106
and torsion bushing
114
, a limp home arrangement provides that propeller
106
may still be rotatable with propeller shaft
102
so that the operator can at least reach a dock for repairs. The limp home arrangement includes outer hub tabs
136
and inner hub tabs
138
. Once propeller outer hub
108
rotates so that outer hub tabs
136
engage inner hub tabs
138
, outer hub
108
once again rotates with propeller shaft
102
. Such operational condition is sometimes referred to herein as the limp home operation mode.
FIG. 5
is a front view of assembly
100
, and
FIG. 6
is a rear view of assembly
100
. As shown in
FIG. 5
, inner hub
116
includes a central shaft supporting sleeve
144
having a bore
146
therethrough, and support ribs
148
′ extend from sleeve
144
to an inner wall
150
of hub
116
. Propeller shaft
102
extends through bore
146
.
As shown in
FIG. 6
, nut
120
is tightened to shaft
102
and engages shaft
102
to propeller
106
. As a result, propeller
106
rotates with shaft
102
during normal engine operations. Also, in an initial operative position, outer hub tabs
136
are radially spaced from inner hub tabs
138
. In the event propeller
106
rotates relative to inner hub
116
, e.g., upon an impact with an object in the water, then such relative rotation may continue until tabs
136
and
138
are in contact. Once tabs
136
and
138
are in contact, propeller
106
once again rotates with inner hub
116
and propeller shaft
102
, i.e., the limp home operation mode.
FIG. 7
is a cross-sectional view through line
7
—
7
shown in FIG.
5
. As shown in
FIG. 7
, torsion bushing
114
is tapered which facilitates secure engagement between bushing
114
and outer hub
108
. In addition, and although not shown in
FIG. 7
, propeller shaft
102
has longitudinal splines that extend from an end
152
of shaft
102
. The propeller shaft splines mate with grooves in an inner diameter surface
154
of sleeve
144
and facilitate secure engagement between inner hub
114
and propeller shaft
102
.
FIG. 8
is a cross-sectional view through line
8
—
8
shown in FIG.
7
. As shown in
FIG. 8
, protrusions
124
extend into grooves
122
in bushing
114
. Angles A, B, C, D, and E, in the exemplary embodiment, are as set forth below subject to manufacturing tolerances.
Angle A as illustrated in
FIG. 8
is an angle between a first side of bushing groove
122
and an edge of an inner hub support rib
148
. In an illustrative embodiment Angle A is about 12.8°.
Angle B as illustrated in
FIG. 8
is an angular difference between a first side of a bushing grove
122
and a first side of one of the outer hub protrusions
124
. In an illustrative embodiment Angle B is approximately 0.0181pi radians (approximately 1.04°).
Angle C as illustrated in
FIG. 8
is an angular difference between a second side of a bushing grove
122
and a second side of one of the outer hub protrusions
124
. In an illustrative embodiment Angle C is approximately 0.0181 pi radians (approximately 1.04°).
Angle D as illustrated in
FIG. 8
is an angular difference between a first side of one of the outer hub protrusions
124
and a second side of the outer hub protrusion
124
. In an illustrative embodiment Angle C is approximately 7.0°.
Angle E as illustrated in
FIG. 8
is an angular difference between a first side of a bushing grove
122
and a second side the bushing groove
122
. In an illustrative embodiment Angle E is approximately 8.5°.
Upon the occurrence of an impact, inner hub
116
continues to rotate with propeller shaft
102
. In the event that sufficient force is present, protrusions
124
shear which results in propeller shaft
102
rotating relative to propeller
106
. If the forces are not sufficient to also shear limp home tabs
136
and
138
, then propeller
106
will resume rotating with propeller shaft
102
.
Different inner hub and torsion bushing combinations can be used with one propeller so that one propeller can be utilized on many different types of marine engines. For example, one particular marine engine may have splines on the propeller shaft of a first length, and another particular marine engine may have splines on a propeller shaft of a second length, or a different number of splines or different size splines. Different inner hubs having sleeves with different length splines can be provided. Although different inner hub and torsion bushings are utilized, a same propeller can be used. That is, by providing interchangeable inner hub and torsion bushing sub-assemblies, one propeller can be used in conjunction with many different type engines.
It is contemplated that inner hub and torsion busing bushing subassemblies could be sold in kit form. For example, different kits containing different sub-assemblies specified for particular engine types could be provided. In one specific embodiment, a kit includes at least one such sub-assembly and a propeller that can be used with sub-assembly included in the kit as well as with other subassemblies.
From the preceding description of various embodiments of the present invention, it is evident that the objectives of the invention are attained. Although the invention has been described and illustrated in detail, it is to be clearly understood that the same is intended by way of illustration and example only and is not to be taken by way of limitation. Accordingly, the spirit and scope of the invention are to be limited only by the terms of the appended claims.
Claims
- 1. A propeller assembly for being secured to a propeller shaft of a marine engine, said propeller assembly comprising:a bushing comprising a cylindrical shaped body having a bore therethrough; an inner hub comprising a cylindrical shaped body sized to extend into said bushing bore and at least one tab extending therefrom; a propeller comprising an outer hub comprising a cylindrical shaped body, a plurality of blades extending from an outer diameter surface of said outer hub body; and at least one limp home tab radially extending from a side of the outer hub in the axial direction.
- 2. A propeller assembly in accordance with claim 1 wherein said bushing and said inner hub are secured together.
- 3. A propeller assembly in accordance with claim 2 wherein said bushing and said inner hub are secured together by a bonding process.
- 4. A propeller assembly in accordance with claim 1 wherein said bushing is fabricated from plastic.
- 5. A propeller assembly in accordance with claim 1, said bushing comprising a plurality of grooves in an outer diameter surface of said cylindrical shaped body.
- 6. A propeller assembly in accordance with claim 5 wherein an inner diameter surface of said outer hub body comprises a plurality of protrusions extending radially inward, each said protrusion positioned to extend within a respective one of said grooves in said outer diameter surface of said bushing body.
- 7. A propeller assembly in accordance with claim 1, said inner hub comprising a flange at one end of said inner hub body, and at least one tab extending therefrom.
- 8. An interchangeable bushing and inner hub subassembly for a propeller assembly to secure a propeller to a propeller shaft, said subassembly comprising a bushing comprising a cylindrical shaped body having a bore therethrough, and an inner hub comprising a cylindrical shaped body sized to extend into said bushing bore, wherein the cylindrical shaped body of the inner hub is sized such that upon positioning of the inner hub within the bushing, the body of the inner hub extends at least an entire length of the body of the bushing; andat least one tab extending radially outwardly from an end of said inner hub body.
- 9. A subassembly in accordance with claim 8 wherein said bushing and said inner hub are secured together.
- 10. A subassembly in accordance with claim 9 wherein said bushing and said inner hub are secured together by a bonding process.
- 11. A subassembly in accordance with claim 8 wherein said bushing is fabricated from plastic.
- 12. A subassembly in accordance with claim 8 wherein said inner hub further comprising a sleeve having a bore therethrough, a plurality of grooves in an inner diameter surface of said sleeve configured to mate with splines extending from an outer diameter surface of the propeller shaft.
- 13. A subassembly in accordance with claim 12 wherein a longitudinal length of said grooves in said inner diameter surface of said sleeve is selected based on a length of the splines extending from the outer diameter surface of the propeller shaft.
- 14. An interchangeable bushing and inner hub assembly in accordance with claim 8, said bushing comprising a plurality of grooves in an outer diameter surface of said bushing cylindrical shaped body.
- 15. An interchangeable bushing and inner hub assembly in accordance with claim 8, said inner hub body comprising a flange at one end thereof, said at least one tab extending from said flange.
- 16. A kit for securing a propeller to a propeller shaft of a marine engine, said kit comprising:a bushing comprising a cylindrical shaped body having a bore therethrough, and an inner hub comprising a cylindrical shaped body sized to extend into said bushing bore such that the cylindrical body of the inner hub extends past the cylindrical body of the bushing, said inner hub comprising a flange at one end of said inner hub body, and at least one tab radially extending from said flange.
- 17. A kit in accordance with claim 16 wherein the cylindrical shaped body of the inner hub comprises a plurality of grooves in an outer diameter surface.
- 18. A kit assembly in accordance with claim 16 wherein said bushing and said inner hub are secured together.
- 19. A kit in accordance with claim 18 wherein said bushing and said inner hub are secured together by a bonding process.
- 20. A kit in accordance with claim 16 wherein said bushing is fabricated from plastic.
- 21. A propeller assembly for being secured to a propeller shaft of a marine engine, said propeller assembly comprising:means for engaging the propeller shaft; a propeller comprising an outer hub comprising a cylindrical shaped body, and a plurality of blades extending from an outer diameter surface of said outer hub body, a bore extending through said propeller, and a plurality of protrusions extending radially inward from an inner diameter surface of said outer hub body; means intermediate said propeller shaft engaging means and said propeller, said intermediate means secured to said engaging means, said intermediate means comprising a plurality of grooves that mate with said plurality of protrusions; and at least one limp home tab extending from a side of the outer hub in the axial direction.
- 22. A propeller assembly in accordance with claim 21 wherein said engaging means comprises an inner hub comprising a cylindrical shaped body, a flange at one end of said inner hub body, and at least one tab extending from said flange.
- 23. A propeller assembly in accordance with claim 22 wherein said intermediate means comprises a bushing comprising a cylindrical shaped body have a bore therethrough, said plurality of grooves in an outer diameter surface of said cylindrical shaped body.
- 24. A propeller assembly in accordance with claim 21 wherein said engaging means and said intermediate means secured together by a bonding process.
- 25. A propeller assembly in accordance with claim 21 wherein said intermediate means is fabricated from plastic.
- 26. A propeller assembly for being secured to a propeller shaft of a marine engine, said propeller assembly comprising:an inner hub comprising a cylindrical shaped body, a flange at one end of said inner hub body, and at least one tab extending from said flange; a propeller comprising an outer hub comprising a cylindrical shaped body, a plurality of blades extending from an outer diameter surface of said outer hub body, an inner diameter surface of said outer hub body having a plurality of protrusions extending radially inward and,at least one limp home tab, an engagement member for coupling said propeller to said inner hub and causing said propeller and said hub to rotate together, said limp home tab configured to engage said at least one tab of said flange and rotate said propeller when said engagement member fails.
- 27. A propeller assembly in accordance with claim 26 said engagement member comprises a torsion bushing.
- 28. A propeller assembly in accordance with claim 27 wherein said torsion bushing comprises a cylindrical shaped body having a bore therethrough, and a plurality of grooves in an outer diameter surface of said cylindrical shaped body.
- 29. A propeller assembly in accordance with claim 28, each said outer hub body protrusion positioned to extend within a respective one of said grooves in said outer diameter surface of said bushing body.
- 30. A propeller assembly in accordance with claim 29 wherein said bushing is bonded to said inner hub.
- 31. An interchangeable bushing and inner hub subassembly for a propeller assembly to secure a propeller to a propeller shaft, said subassembly comprising a bushing comprising a cylindrical shaped body having a bore therethrough, and an inner hub comprising a cylindrical shaped body sized to extend into said bushing bore and at least one tab extending radially outwardly from an end of said inner hub body; andwherein said inner hub further comprises a sleeve having a bore therethrough, a plurality of grooves in an inner diameter surface of said sleeve configured to mate with splines extending from an outer diameter surface of the propeller shaft.
- 32. A subassembly in accordance with claim 31 wherein a longitudinal length of said grooves in said inner diameter surface of said sleeve is selected based on a length of the splines extending from the outer diameter surface of the propeller shaft.
US Referenced Citations (20)