This invention relates generally to propellers and propeller related vehicles and more particular to vehicles, such as air, land and water vehicles, that use or incorporate propellers to create lift or as a means for propulsion, and for most aspects of the present invention relate to air based vehicles designed for the toy or hobby industry.
While the present invention is related in part to vehicles developed in the toy and hobby industry, the present invention, as will become apparent, may easily be applicable for full sized vehicles. There are many types of vehicles that use propellers as a source of lift or as a means for propulsion. The more common types of these vehicles are air/space based vehicles such as airplanes, helicopters, or unconventional aircraft.
Air-based vehicles such as planes, helicopters and unconventional aircraft that use propellers to create and sustain lift are well known. In general such aircraft, especially aircraft designed for the toy and hobby industry, require complex programming and mechanics to control the flight path and are especially difficult to control. In most instances, controlling these aircraft to fly in a stable horizontal position takes countless hours of practice. Examples of these prior art aircraft may be found in the following U.S. Patents. U.S. Pat. No. 5,609,312 is directed to a model helicopter that describes an improved fuselage with a structure that supports radio-control components, drive train components and such, in an attempt to provide a simple structure. U.S. Pat. No. 5,836,545 is directed to a rotary wing model aircraft that includes a power distribution system that efficiently distributes engine power to the rotary wings and tail rotor system. U.S. Pat. No. 5,879,131 is directed to a main propeller system for model helicopters that are capable of surviving repeated crashes. U.S. Pat. No. 4,604,075 is directed to a toy helicopter that includes a removable control unit, which a user may plug into the toy helicopter.
These toys use at least one propeller rotating in a substantially horizontal plane to create and sustain lift. In addition these “aircraft” may have another propeller rotating at an angle from the horizontal plane to counter the torque created from the rotating horizontal propeller. Typically the second propeller is rotating in a substantially vertical plane. One problem that arises is when the propellers are rotating in the horizontal plane, variations such as wind or power fluctuations may cause the propeller blades to pitch further causing the aircraft to tip, turn, oscillate or bank. This effect may be compensated for and corrected in various ways with complicated programming and mechanics. However, as mentioned above these have a tendency to make the aircraft too expensive or too difficult to control, especially for children. The ability to even maintain horizontal stability in these aircrafts is extremely difficult.
As such a need exists to improve these aircrafts that utilize propellers to create and sustain lift to overcome the problems identified above. Such a need should be inexpensive and easy to implement. The outcome should further provide for aircrafts that are easy to control or manipulate without the need for complex linkages, servos, gyros or other electromechanical devices.
In addition to the need to improve the stability and control of these aircrafts, there is also an increased need to make such aircraft safer. Oftentimes a child or user is injured when the user comes in contact with a rotating propeller. As such there exists a further need to make the propellers safer.
A propeller related vehicle in accordance with one embodiment of the present invention is described as a helicopter having an airframe housing a motor mechanism for powering a main propeller and a tail rotor. The main propeller is attached to a main drive shaft that extends vertically through the airframe. The helicopter further includes a horizontal stabilizing means attached between the main propeller and the main drive shaft, which permits the main propeller to freely pivot about the main drive shaft independently from the airframe. As such when the main propeller is rotating and the main propeller begins to pitch, a centrifugal force created by the rotation of the main propeller, tends to pivot the main propeller about the horizontal stabilizing means in a manner that offsets the pitch such that the helicopter remains in a substantially horizontal position.
The main propeller of the propeller related aircraft may also exhibit an increased means for self-stabilizing the aircraft. In one embodiment, the main propeller may include a pair of blades extending outwardly from the horizontal stabilizing means. Each blade includes a leading edge, an end proximal to the horizontal stabilizing means, and a distal end. The main propeller also includes a safety arc attached to the proximal and distal ends of each blade and positioned in front of the leading edge of each blade. Furthermore, the safety arc has a diameter, which transitions from a relatively flat horizontal surface by the proximal end into a wider vertical surface by the distal end.
In another embodiment, the main propeller may include a pair of blades extending outwardly from the horizontal stabilizing means along a horizontal plane. Each blade has a leading edge, an end proximal to the horizontal stabilizing means and a distal end. A safety arc is also provided and attached to the proximal and distal ends of each blade and positioned in front of the leading edge of each blade. The main propeller also has a pair of flybars extending outwardly from the horizontal stabilizing means along the horizontal plane. As such when the main propeller is rotating and the main propeller begins to pitch, the flybars having an increased centrifugal force created by the rotation thereof will tend to pivot the blades about the horizontal stabilizing means in a manner that offsets the pitch such that the helicopter remains in a substantially horizontal position.
In another embodiment, the main propeller includes a crossbar joint pivotally attached to the horizontal stabilizing means. A pair of blades extends outwardly along a horizontal plane from the blade joint, wherein each blade has an end proximal to the crossbar joint and a distal end. A pair of crossbars extends outwardly from the crossbar joint along the horizontal plane. Each crossbar has an end proximally secured to the crossbar joint and an end distal thereto. A circular safety ring is secured to the distal ends of each crossbar and has pivots for receiving the distal ends of each blade. A flybar is extended outwardly both from a leading edge and a trailing edge defined in each blade. Each flybar extends along the horizontal plane, wherein when the main propeller is rotating and the main propeller begins to pitch, the flybars having an increased centrifugal force created by the rotation thereof will tend to pivot the blades about the horizontal stabilizing means in a manner that offsets the pitch such that the helicopter remains in a substantially horizontal position.
In another embodiment, the main propeller includes a blade joint pivotally attached to the horizontal stabilizing means. Two pair of blades are extended outwardly along a horizontal plane from the blade joint, such that one pair of blades is perpendicular to the other pair of blades. Furthermore each pair of blades may pivot independently of the other pair. Each blade has an end proximal to the blade joint and a distal end. A circular safety ring includes pivots for receiving the distal ends of each blade. A flybar is extended outwardly from a leading edge defined in each blade, wherein when the main propeller is rotating and the main propeller begins to pitch, the flybars having an increased centrifugal force created by the rotation thereof will tend to pivot the blades about the horizontal stabilizing means in a manner that offsets the pitch such that the helicopter remains in a substantially horizontal position.
In addition thereto the flybars may include weighted ends to increase the centrifugal force created by the rotation thereof. The main propeller described above may be used in other propeller related vehicles since each exhibits a means for stabilizing the propeller in a single plane, or since the main propellers include safety rings or arcs that decrease the likelihood a user may be injured by a rotating propeller.
Numerous advantages and features of the invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, and from the accompanying drawings.
A fuller understanding of the foregoing may be had by reference to the accompanying drawings, wherein:
While the invention is susceptible to embodiments in many different forms, there are shown in the drawings and will be described herein, in detail, the preferred embodiments of the present invention. It should be understood, however, that the present disclosure is to be considered an exemplification of the principles of the invention and is not intended to limit the spirit or scope of the invention and/or the embodiments illustrated.
A propeller related vehicle, is illustrated in but one embodiment of the present invention as a helicopter 10, depicted in
The helicopter 10 includes a main propeller 14 and a tail rotor 16 as a means for correcting counter-rotation. Both the main propeller 14 and the tail rotor 16 are powered by a motorized means 18, discussed in greater detail below. The actual design, shape or length of the main propeller 14 may vary with the size and weight of the helicopter 10, such that an appropriate amount of lift is generated for takeoff and sustained flight. The tail rotor 16 rotates at a pre-determined rotation that offsets the torque created by the main propeller 14, when the main propeller 14 is rotating at a maximum revolution per minute (Max RPM). The predetermined rotation is determined upon a number of factors well known in the art.
The motorized means 18 includes a power supply 26, such as a battery pack, that powers a motor mechanism 28. The motorized means 18 is controlled through a circuit board 30. A transmitter/receiver 34 may also be employed such that the helicopter 10 may be remotely operated. The power supply 26 is accessible through a door 32 in the lower chassis 22.
The motor mechanism 28 drives a motor pinion 36 that is meshed to a combo crown gear 38. The combo crown gear 38 is rotatably mounted to the upper chassis 20. The combo crown gear 38 is also mounted to one end of a main rotor drive shaft 40. The main rotor drive shaft 40 extends upwardly from the crown gear 38 through the upper chassis 20. The other end of the main rotor drive shaft 40 is attached to the main propeller 14 via a means for stabilizing the helicopter in a horizontal position 42 (referred to herein as horizontal stabilizing means 42) discussed in greater detail below.
As mentioned above, the tail rotor 16 is also driven by the motorized means 18. The crown portion of the combo crown gear 38 is meshed to a tail rotor pinion 60, which rotates a tail drive shaft 62 that is mounted thereto. A tail boom 66 is clamped by a boom clamp 64, or otherwise secured, to the upper chassis 20. For stability a tail bushing 68 is positioned midway within the length of the tail boom 66. The other end of the tail drive shaft 62 is mounted to a tail rotor rear pinion 70. The tail rotor rear pinion 70 is meshed to and drives a tail rotor crown gear 72, which spins a tail rotor axle 74. The tail rotor 16 is secured onto the tail rotor axle 74 such that when the tail drive shaft 62 rotates, the tail rotor 16 rotates. A tail rotor gear housing 76 is positioned to enclose the tail rotor crown gear 72, the tail rotor rear pinion 70 and the tail rotor axle 74.
The helicopter 10 may be turned on/off via a switch 78 mounted through a mounting plate 80 alongside the airframe 12 of the helicopter 10. The on/off switch 78 may also include an access cover 82 such that the switch 78 is not accidentally hit, for instance if the helicopter 10 crashes. In addition, the power supply 26 may be rechargeable through a charging jack 84. The helicopter 10 may include vents 86 to permit air to cool the motorized means 18 or power supply 26 when running. The ventilation or cooling process is further accomplished by the unique and novel combo gear 38.
As further illustrated in
To further stabilize the upper chassis 20, a grill 88 is positioned over the upper chassis 20 such that the grill 88 may be received by an inside area of the airframe 12, when assembled.
The horizontal stabilizing means 42 is defined by mounting the main propeller 14 on a freely pivotal main rotor head 44 (
Referring now to
The safety arcs 52 in conjunction with the fact that the main propeller 14 is freely pivotally attached to the helicopter 10 provides a helicopter that is self-stabilizing,; in other words the main propeller 14 is kept in a substantialsubstantially horizontal position when the helicopter 10 is operating. It is well known that in true helicopter flight, as the helicopter gains airspeed, the leading edge of the main propeller facing forward and rotating to the back of the helicopter, lifts more than the opposite blade. This causes the helicopter to bank, in the unequal lift. In the present main propeller embodiment 14, the safety arcs 52 create a centrifugal force that tends to offset a pitch force exhibited by the main propeller 14 when rotating, such that the main propeller 14 has a tendency to remain in substantially the same plane. Since the weight of the safety arcs 52The weight of the safety arcs 52 may add weight to the blades 50 to provide a greater gyroscopic effect that stabilizes the main propeller 14.
When the main propeller 14 rotates, if the main propeller 14 begins to pitch, the safety arcs 52 will begin to move off of the horizontal plane. The weight of the safety arcs however, create a gyroscopic effect causing the main propeller 14 to level out by pivoting the blades 50 about the pivot pin 48fromof the horizontal stabilizing means 42. The blades 50 pivot along with the changing pitch of the main propeller 14 such that the main propeller 14 returns to rotating in a substantially horizontal plane to assist in horizontally stabilizing the helicopter 10 and maintaining the helicopter 10 in substantially the same position. Thereby stabilizing the helicopter 10 horizontally, keeping it level and in substantially the same position. Similarly, if the body of the helicopter 10 (below the horizontal stabilizing means 42) begins to sway the horizontal stabilizing mean 42 will similarly compensate and return the helicopter 10 to a substantially horizontal position. As such, the present invention provides a novel mechanical means for compensating for any change in the horizontal position of the helicopter without the need for expensive servos and programming.
During operation, the present invention will allow the helicopter 10 to lift straight up and maintain a hover or stationary position. The helicopter 10 may include several forms of control, starting with no control or “free flight,” or it may be outfitted with electronics having a microprocessor for “preprogrammed” or “programmable” flight or it may be outfitted with a radio receiver for use with a hand held remote transmitter or it may be any combination of the above.
As mentioned above, the tail rotor 16 rotates at a predetermined rotation that offsets the torque created by the main propeller 14, when the main propeller 14 is rotating at a Max RPM. With a simple inexpensive remote control unit, a user may be able to adjust the speed of the main propeller 14. If the user decreases the speed of the main propeller 14, the tail rotor 16 will be rotating at a rate such that its counter rotation force is different during deceleration then what is required to keep the helicopter 10 from rotating at Max RPM or during acceleration. As such the helicopter 10 will begin to rotate about the main rotor drive shaft 40, providing the user with a simple means of rotating or turning the helicopter 10.
In another embodiment of the present invention, the helicopter may include various main propeller and tail rotors. Referring now to
The base may function both to charge the power supply in the helicopter and to energize the main propeller of the helicopter to a sufficient RPM required for launching the helicopter from the launching base. The launching base may also include batteries and a timer circuit for charging the helicopter and may have a separate motor for energizing the main propeller. The charger may either be equipped to turn off after a certain amount of time or until the battery reaches a certain voltage.
Referring now to
The flybars 128, in conjunction with the single axis pivot of the blades 124 will help keep the main propeller 122 in equilibrium when the main propeller is spinning. As mentioned above, in previous propeller embodiments, when the main propeller is rotating, the blades 124 will pivot to compensate for any banking or unequal lift forces. In addition, when spinning with the main propeller 122, centrifugal force will pull the weighted ends 138 on the flybars 128 outwardly; making the blades 124 more stable by reducing the ease at which the blades 124 may pivot. Additionally, even if the flybars 128 did not include weighted ends the centrifugal force would still pull on the flybars 128 themselves, increasing the stability of the main propeller 122.
In another embodiment, as depicted in
The dual-axis pivot created by the two pairs (160 and 162) of independently pivoting blades 154 helps keep the main propeller 152 in equilibrium when the main propeller is rotating. In addition when rotating, a centrifugal force pulls the flybars 158, and especially the weighted ends 172, outwardly increasing stability by reducing the amount of pivot the blades 154 may exhibit.
In yet another embodiment of the present invention, as depicted in
As should be readily apparent from the above description each of the main propellers described above is mounted to the horizontal stabilizing means 42, increasing the ability to keep the helicopter in a level horizontal plane during operation. However, the propellers may also be incorporated onto a helicopter that does not include the horizontal stabilizing means 42, as each of the main propellers described above, by themselves, assist in keeping a helicopter in a substantially horizontal plane.
In addition, the helicopter may or may not take the form of “traditional” helicopter styling and the technology used to make the item fly could be used in other flying toys, such as airplanes and other unconventional aircraft, such as but not limited to a vehicle using two or more horizontal propellers.
In addition, the present invention is applicable to an aircraft having one or more propellers that rotate in a horizontal plane. The aircraft would typically have an airframe for housing a motor mechanism, which is used to power each propeller. Each propeller is attached to a corresponding drive shaft that extends vertically through the airframe. The aircraft further includes a horizontal stabilizing means attached between each propeller and the corresponding drive shaft, which permits the propeller to freely pivot about the corresponding drive shaft independently from the airframe. As such when a propeller that is rotating begins to pitch, the rotating propeller has a centrifugal force created by the rotation thereof that tends to pivot the propeller about the horizontal stabilizing means in a manner that offsets the pitch such that the aircraft remains in a substantially horizontal position.
From the foregoing and as mentioned above, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the novel concept of the invention. For example, the propellers, while shown may be used in airplanes, may find further applications in other propeller driven vehicles, either miniature or life-size, such as but not limited to water driven vehicles (such as boats and submarines), land driven vehicles (such as propeller operated cars) and other air driven vehicles (such as rockets) as well as other products that use propellers. It is to be understood that no limitation with respect to the specific methods and apparatus illustrated herein is intended or should be inferred.
This application claims the benefit of U.S. Provisional Patent Application having Ser. No. 60/337,670 and filed on, filed Nov. 7, 2001 and claims the benefit of U.S. Provisional Patent Application having Ser. No. 60/348,891 and filed on, filed Jan. 14, 2002 and hereby incorporates both provisional applications by reference. This application further claims the benefit to and is a continuation-in-part of U.S. Design application having Ser. No. 29/158,996 and filed, filed Apr. 15, 2002 and, and now U.S. Pat. No. D503,142. This application further claims the benefit to and is a continuation-in-part of U.S. Design application having Ser. No. 29/158,997 and filed, filed Apr. 15, 2002, and now U.S. Pat. No. D506,178 and hereby incorporates both design applicationspatents by reference.
Number | Name | Date | Kind |
---|---|---|---|
1366736 | Krause | Jan 1921 | A |
1491997 | Messick | Apr 1924 | A |
2074342 | Platt | Mar 1937 | A |
2382347 | Streater | Aug 1945 | A |
2384516 | Young | Sep 1945 | A |
2388653 | Hays | Nov 1945 | A |
2429502 | Young | Oct 1947 | A |
2510006 | Young | May 1950 | A |
D158936 | Crowder | Jun 1950 | S |
2552651 | Skold | May 1951 | A |
2597688 | Vought | May 1952 | A |
2633924 | Young | Apr 1953 | A |
D169558 | Nagler | May 1953 | S |
2646848 | Young | Jul 1953 | A |
2684122 | Perry | Jul 1954 | A |
2731767 | Holt | Jan 1956 | A |
3108641 | Taylor | Oct 1963 | A |
3135334 | Culver | Jun 1964 | A |
3199603 | Margolis | Aug 1965 | A |
3857194 | Guttman | Dec 1974 | A |
D250966 | Spore | Jan 1979 | S |
4604075 | Richards et al. | Aug 1986 | A |
4728311 | Magers | Mar 1988 | A |
4781642 | Stanzel | Nov 1988 | A |
5252100 | Osawa et al. | Oct 1993 | A |
5370341 | Leon | Dec 1994 | A |
5381988 | Kattas | Jan 1995 | A |
5609312 | Arlton et al. | Mar 1997 | A |
5628620 | Arlton | May 1997 | A |
5672086 | Dixon | Sep 1997 | A |
5836545 | Arlton et al. | Nov 1998 | A |
5879131 | Arlton et al. | Mar 1999 | A |
6086016 | Meek | Jul 2000 | A |
6182923 | Weinhart | Feb 2001 | B1 |
6612893 | Rehkemper et al. | Sep 2003 | B2 |
6659395 | Rehkemper et al. | Dec 2003 | B2 |
6732973 | Rehkemper | May 2004 | B1 |
6758436 | Rehkemper et al. | Jul 2004 | B2 |
D503142 | Rehkemper et al. | Mar 2005 | S |
D503198 | Rehkemper et al. | Mar 2005 | S |
D506178 | Rehkemper et al. | Jun 2005 | S |
7178758 | Rehkemper | Feb 2007 | B2 |
Number | Date | Country |
---|---|---|
2002352512 | May 2003 | AU |
2431661 | May 2003 | CA |
1558853 | Dec 2004 | CN |
1318263 | May 2007 | CN |
60208929 | Jul 2006 | DE |
1441945 | Jan 2006 | EP |
751837 | Jul 1956 | GB |
3733366 | Jan 2006 | JP |
03005415 | Feb 2005 | MX |
Entry |
---|
Trademark Publication EM 000062088-0001 A1, published Dec. 23, 2003, Office for Harmonization in the Internal Market (OHIM)—European Union Community Trademark Office. |
Front page of HK 1070628 B (The Hong Kong Special Administrative Region of the People's Republic of China), published Jun. 24, 2005, and corresponding to CN 1318263 C. |
Number | Date | Country | |
---|---|---|---|
60348891 | Jan 2002 | US | |
60337670 | Nov 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29158997 | Apr 2002 | US |
Child | 10189681 | US | |
Parent | 29158996 | Apr 2002 | US |
Child | 29158997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10189681 | Jul 2002 | US |
Child | 14136854 | US |