N/A
N/A
The present invention relates to dental instruments, and more particularly to dental prophylaxis devices.
Dental prophylaxis angles, generally referred to as “prophy angles,” are commonly used dental instruments providing rotation for dental tools such as brushes, prophy cups, or other receptacles used in polishing teeth. A prophy angle typically includes a housing having a neck and a head portion extending at approximately a 90° angle to the neck, which increases the ability of a dentist to reach various surfaces of the teeth of a patient. A drive shaft can be located within the housing and attached to a driven gear in the head of the prophy angle. Prophy angles are generally affixed to a handpiece, which connects the prophy angle to a drive source, thereby enabling a rotating motion of the drive shaft and driven gear of the prophy angle and any affixed dental tool.
Prophy angles are commonly manufactured from lightweight plastic to make them disposable and thereby increasing overall sterility in the dental environment. One drawback of these current instruments is that they are often cumbersome to assemble and may contain a myriad of loosely fitting parts. For example, prior prophy angles have included a two-piece housing which must be mated together prior to use to enclose the inner components of the angle. During use of the prophy angle, the housing may experience increased strain when in contact with the teeth of a patient, and cause the seams in the housing to separate and expose the inner components of the angle. Such separation in the housing may result in a spacing apart or separation of the internal gears of the angle, potentially leading to failure of the device.
In addition to concerns regarding housing integrity, the drive shaft and driven gear of an angle may experience some displacement during use of the prophy angle. As the angle is being used, the drive shaft may excessively move forward or backward due to an increase in the pressure placed on the rotating parts, and result either in an increased amount of force between the gear teeth of the drive shaft and the driven gear, or separation of engagement of the gear teeth of the shaft from those of the driven gear. Subsequently, this displacement can also lead to a premature malfunction of the prophy angle prior to completing a dental procedure.
Furthermore, conventional prophy angles may have a significant amount of contact between surfaces of the housing, the drive shaft and the driven gear. Such large, often flat surfaces can generate increasing amounts of friction as the prophy angle is used at higher rates of rotation. The increased friction can prevent the prophy angle from reaching the desired rate of rotation, may cause enhanced wear and tear between the interacting components, and may generate greater heat, thus making the angle uncomfortable to use.
In light of the above limitations, it would be desirable to provide a prophy angle having a singular housing, where the prophy angle limits displacement of the internal components during use, and further reduces friction between interacting surfaces.
The present invention advantageously provides a dental prophylaxis angle having a singular housing, a drive shaft, a rotor, and a collar. In one embodiment, the singular housing can include a first bore, a second bore in communication with the first bore at a substantial angle thereto, and a third bore coaxial with the second bore. The housing may further define an annular groove and a first shoulder, where the annular groove and the first shoulder are disposed about the first bore. In addition, the housing includes a plurality of rotor bearing elements. The drive shaft is positionable in the first bore, with the drive shaft having a post defining a spherical depression.
The prophy angle also provides a rotor positionable in the second bore of the housing, with the rotor defining a spherical bearing and a spherical tip. The rotor may also include a flange that covers a substantial portion of the second bore when the rotor is positioned in the second bore. The collar defines an axial bore, a first annular wall disposed about the collar, and a second shoulder also disposed about the collar. Moreover, the collar is positionable in the first bore of the housing such that a portion of the drive shaft is disposed within the axial bore, the annular wall is received by the annular groove of the housing, and the second shoulder of the collar abuts the first shoulder of the housing.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
In an exemplary embodiment, the present invention provides a dental prophylaxis angle having a singular housing 10, a drive shaft 12, a rotor 14, and a collar 16.
A plurality of rotor bearing elements 26 is radially positioned within the second bore 20. Each rotor bearing element 26 includes an upper bearing surface 28, as well as having a spherical recess 30 on a surface of the bearing element that is substantially perpendicular to the upper bearing surface 28. In addition, the housing 10 includes a third bore 32 that is substantially coaxial with the second bore 20, yet having a diameter substantially less then the diameter of the second bore 20. The housing 10 can be constructed from a variety of available plastics having sufficient rigidity to apply pressure to a patient's teeth, while remaining flexible enough to receive the internal components of the prophy angle.
As shown in
In
Now referring to
As shown in
The spherical bearing 42 of the rotor 14 is received by the spherical recess 30 of each of the plurality of rotor bearing elements 26, with the intermediate disc 40 being located proximate to the upper bearing surface 28 of each of the plurality of rotor bearing elements 26. Of note, it is not necessary that the curvature of the spherical bearing or the curvature of the spherical recesses are indeed substantially spherical. Rather, it is intended that the curvature of the spherical bearing is substantially similar to the curvature of the recess in the rotor bearing elements, whether the curved surfaces are precisely spherical, ovoidal, elliptical or otherwise.
The flange 36 of the rotor 14 rests over the opening of the second bore 20, effectively preventing any debris from entering the interior of the housing 10, which could potentially interfere with the subsequent operation of the prophy angle, while the button 34 for a prophy cup (not shown) remains exposed to the exterior of the housing 10.
Subsequent to the placement of the rotor 14, the drive shaft 12 is inserted into the first bore 18 of the housing 10 such that the plurality of drive gear teeth 46 of the drive shaft 12 engages the plurality of driven gear teeth 38 of the rotor 14. In addition, the spherical depression 50 on the post 48 of the drive shaft 12 abuts the spherical bearing 42 of the rotor 14. While in general operation, the contact between the spherical depression 50 of the drive shaft 12 and the spherical bearing 42 of the rotor 14 may be minimal. However, should the drive shaft 12 experience any displacement or increased pressure against the rotor 14, the rotor 14 will transmit the additional force to the housing 10 through the spherical recesses 30 of the plurality of rotor bearing elements 26. By transferring the force to the housing 10, the likelihood that the increased force will cause the gears of the drive shaft 12 and the rotor 14 to seize is significantly reduced.
Next, the collar 16 is positioned in the second bore 20 of the housing 10 such that a portion of the drive shaft 12 is located within the axial bore 52 of the collar 16. The collar 16 is placed within the housing 10 and moved towards the direction of the rotor 14 until the collar shoulder 58 abuts the housing shoulder 24. Moreover, the second annular wall 56 of the collar 16 abuts an underside of the plurality of drive gear teeth at a rear shoulder, providing a rounded bearing surface of the collar 16 in contact with the drive shaft 12. The rounded surface of the second annular wall 56 reduces the contact area between the collar 16 and the drive shaft 12, thereby reducing friction as compared to traditional flat contact surface areas.
In this position, the first annular wall 54 of the collar 16 couples with the annular groove 22 of the housing 10, thereby securing the collar 16 in the housing 10. As a result, the collar 16 secures the drive shaft 12 in engagement with the rotor 14, which is further supported and secured by the plurality of rotor bearing elements 26 in the second bore 20 of the housing 10. These features of the prophy angle significantly reduce and may altogether prevent any displacement of the drive shaft 12 or rotor 14 while the prophy angle is being used.
The prophy angle of the present invention provides an easily assembled dental device having features which secure the inner components against displacement during use, as well as providing numerous rounded surfaces which reduce friction experienced between moving parts by reducing the contacting surface areas.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. A variety of modifications and variations are possible in light of the above teachings without departing from the scope and spirit of the invention, which is limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3964166 | Stahlman | Jun 1976 | A |
4053983 | Flatland | Oct 1977 | A |
4266933 | Warden et al. | May 1981 | A |
4486175 | Fisher et al. | Dec 1984 | A |
4522595 | Selvidge | Jun 1985 | A |
4604058 | Fisher et al. | Aug 1986 | A |
4929180 | Moreschini | May 1990 | A |
4944677 | Alexandre | Jul 1990 | A |
5028233 | Witherby | Jul 1991 | A |
5040978 | Falcon et al. | Aug 1991 | A |
5062796 | Rosenberg | Nov 1991 | A |
5083922 | Yale | Jan 1992 | A |
5131846 | Hall | Jul 1992 | A |
5156546 | Frank et al. | Oct 1992 | A |
5156547 | Bailey | Oct 1992 | A |
5178538 | Eckert | Jan 1993 | A |
5209658 | Brahler | May 1993 | A |
5211560 | Lowder et al. | May 1993 | A |
5273559 | Hammar et al. | Dec 1993 | A |
5316475 | Rosenberg | May 1994 | A |
5328369 | Bailey | Jul 1994 | A |
5340310 | Bifulk | Aug 1994 | A |
5348473 | Kivlighan, Jr. | Sep 1994 | A |
5360339 | Rosenberg | Nov 1994 | A |
5374189 | Mendoza | Dec 1994 | A |
5380202 | Brahler | Jan 1995 | A |
5405265 | Mendoza | Apr 1995 | A |
5423679 | Bailey | Jun 1995 | A |
5433605 | Strobl, Jr. | Jul 1995 | A |
5482461 | Yale | Jan 1996 | A |
5484284 | Bailey | Jan 1996 | A |
5496218 | Brahler | Mar 1996 | A |
5503555 | Bailey | Apr 1996 | A |
5507644 | Kivlighan, Jr. | Apr 1996 | A |
5529495 | Edwards | Jun 1996 | A |
5531599 | Bailey | Jul 1996 | A |
5571012 | Witherby et al. | Nov 1996 | A |
5584690 | Maassarani | Dec 1996 | A |
5593304 | Ram | Jan 1997 | A |
5645426 | Grim et al. | Jul 1997 | A |
5683247 | Bailey | Nov 1997 | A |
5690488 | Spinello | Nov 1997 | A |
5692901 | Roth et al. | Dec 1997 | A |
5730595 | Bailey | Mar 1998 | A |
5743718 | Mendoza et al. | Apr 1998 | A |
5749728 | Bailey | May 1998 | A |
5766008 | Hughes | Jun 1998 | A |
5775905 | Weissenfluh et al. | Jul 1998 | A |
5797744 | Rosenberg | Aug 1998 | A |
5871353 | Pierce et al. | Feb 1999 | A |
5876203 | Bailey | Mar 1999 | A |
5902107 | Lowell | May 1999 | A |
5911577 | Henrikson | Jun 1999 | A |
5964590 | Loddeke et al. | Oct 1999 | A |
6012922 | Novak | Jan 2000 | A |
6053732 | Sale | Apr 2000 | A |
6083000 | Charlton | Jul 2000 | A |
6089866 | Brahler | Jul 2000 | A |
6099309 | Cardarelli | Aug 2000 | A |
6146140 | Bailey | Nov 2000 | A |
6149430 | Nemetz et al. | Nov 2000 | A |
6168433 | Hamlin | Jan 2001 | B1 |
6187294 | Penner | Feb 2001 | B1 |
6203322 | Kraenzle | Mar 2001 | B1 |
6247931 | Postal et al. | Jun 2001 | B1 |
6257886 | Warner | Jul 2001 | B1 |
6302692 | Pond et al. | Oct 2001 | B1 |
6305935 | Cardarelli | Oct 2001 | B1 |
6315559 | Nakanishi | Nov 2001 | B1 |
6382971 | Randolph | May 2002 | B1 |
6409507 | Postal et al. | Jun 2002 | B1 |
6527552 | Loddeke et al. | Mar 2003 | B2 |
6632090 | Randolph | Oct 2003 | B1 |
6821119 | Shortt et al. | Nov 2004 | B2 |
6875017 | Tarr | Apr 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20070026361 A1 | Feb 2007 | US |