The present disclosure relates to a control system for pneumatic grips, using proportional air pressure control, as employed in the field of materials testing.
In the prior art, materials testing systems often employ pneumatic clamps or grips for holding the specimen during the test. Manufacturers of materials testing system provide a wide array of pneumatic control systems to open and close the grips and to regulate the pressure. However, a number of challenges or problems may exist in that the grips may close at full test pressure when loading the specimen thereby raising safety concerns; a fast closing rate could pinch the fingers of the user or cause the specimen to be damaged; and in that the manual setting of pressures may impact the repeatability of results. Additionally, similar deficiencies that may arise in the prior art are that to manually set the pressure for each specimen type may be time-consuming; the process may not be adequately reliable for quality control and result repeatability; some implementations of pressure feedback may impact the accuracy of the results; the prior art apparatus may allow the test to proceed even if the correct pressure has not been achieved; and the test pressure is not reported in the software or firmware of the device thereby making it difficult to critically analyze the proper functioning of the apparatus during the test.
Some prior art includes European Patent Application EP 2631496 A2, entitled “Fluid Control, in particular Pneumatic Control for Testing Machines”. Further prior art includes the Zwick/Roell product literature for the “Pneumatic Control Unit”, document nos. PI 480 2.0812 and PI 818 2.0912.
The disclosure relates to electronic control of the hydraulic or pneumatic components of a materials testing system.
Embodiments of the present disclosure typically have the benefit of variable gripping pressure wherein a user adjustable low gripping pressure is used in set-up mode. This reduces the of risk of pinch injuries thereby increasing safety. The pressure is adjustable, typically within a low range up to 1 bar (15 psi). The low pressure causes a slow closing speed of the grips, thereby allowing time to the user to avoid injury.
There is a fast ramp up or fast fill to full pressure after the grips are closed and a separate command is given. The firmware controls the gripping pressure on a per test basis thereby allowing for a repeatability of results.
This is intended to provide a substantially fail-safe design. The pressure is logged and checked in firmware and/or software and the initiation of the test is prevented if the target pressure or set pressure is not achieved.
Further objects and advantages of the disclosure will become apparent from the following description and from the accompanying drawings, wherein:
Referring now to the figures in detail, one sees that
A materials testing device 100 is provided. The materials testing device 100 typically includes vertically opposed upper and lower grips 102, 104. Upper grip 102 includes horizontally opposed upper jaw faces 106, 108 which are activated in response to upper pneumatic input 110. Likewise, lower grip 104 includes horizontally opposed lower jaw faces 112, 114 which are activated in response to lower pneumatic input 116. Upper and lower pneumatic inputs 110, 116 are in fluid (air) communication with manifold 12 which receives pressurized air through pressurized air supply 14 (illustrated as being provided at 120 psi, somewhat higher than a typical desired operating pressure of the materials testing device 100). This pressurized air ultimately operates the jaw faces 106, 108, 112, 114, but is pneumatically regulated by manifold 12 which is, in turn, in electronic communication with and controlled by electronic pneumatic control unit 16 (typically implemented as a printed circuit board). Pressurized air from pressurized air supply 14 is received by first input solenoid valve (fill valve) 20 which is in fluid communication with second input solenoid valve (dump valve) 22 via intermediate air line 24. Pressurized air line 26, which includes accumulator 28, extends from intermediate air line 24 and includes a first fork 30 which provides pressurized air to upper grip solenoid valve 32 and a second fork 34 which provides pressurized air to lower grip solenoid valve 36, with a tap line 38 leading to pressure sensor 40.
Upper grip solenoid valve 32 provides pneumatically regulated pressure to upper pneumatic input 110 of upper grip 102 via upper grip pneumatic line 42, thereby operating upper jaw faces 106, 108. An optional first pressure switch 44 may tap into upper grip pneumatic line 42 and provide a control signal to electronic pneumatic control unit 16 via first pressure switch signal line 46. Likewise, lower grip solenoid valve 36 provides pneumatically regulated pressure to lower pneumatic input 116 of lower grip 104 via lower grip pneumatic line 48, thereby operating lower jaw faces 112, 114. An optional second pressure switch 50 may tap into lower grip pneumatic line 48 and provide a control signal to electronic pneumatic control unit 16 via second pressure switch signal line 52.
The exhaust ports of second input solenoid valve 22, upper grip solenoid valve 32 and lower grip solenoid valve 36 are in fluid communication with exhaust line 60 which exits the manifold 12 via exhaust port 62 and, typically, muffler 64. The combination of the various states of the first and second input solenoid valves 20, 22 provides the fundamental operation of manifold 12. When first input solenoid valve 20 is closed, pressure is not communicated from pressurized air supply 14 to manifold 12. When first input solenoid valve 20 is open and second input solenoid valve 22 is closed, air pressure is provided to the upper and lower grip solenoid valves 32, 36. When upper and lower grip solenoid valves 32, 36 are open with air pressure being provided thereto, the upper jaw faces 106, 108 are driven toward each other and the lower jaw faces 110, 116 are driven toward each other. When first and second input solenoid valves 20, 22 are closed, air pressure is communicated from pressurized air supply 14 but exhausted through exhaust port 62, thereby relieving any pressure supplied to upper and lower grip solenoid valves 32, 36 and allowing upper jaw faces 106, 108 to move apart and lower jaw faces 110, 116 to likewise move apart.
Proportional pressure control logic unit 70 (typically implemented as a printed circuit board) receives a pressure command via analog pressure command line or digital-to-analog converter 76 from electronic pneumatic control unit 16. This is typically an analog value from between zero and ten volts, corresponding a desired pressure range of 0-100 psig. Proportional pressure control logic unit 70 further receives an electronic pressure signal from pressure sensor 40 via line 78. Proportional pressure control logic unit 70 uses this information to control the configurations (open or closed) of first and second input solenoid valves 20, 22 via electrical control lines 72, 74, wherein the electrical control lines 72, 74 thereby control the pressure in pressurized air line 26 and associated lines.
More specifically, the electronic pneumatic control unit 16 connects to the materials testing controller 90 via the CAN bus 88. The materials testing controller 90, in turn, connects via an ethernet cable or similar connection to a remote processing device (not shown) where the materials testing application is running. The values for the desired method pressure and safe pressure, used to close the upper and lower grips 102, 104, are entered as separate parameters by an operator or similar personnel using this software application.
Electronic pneumatic control unit 16 optionally receives input from the first and second pressure switches 44, 50 and, as described above, further receives the pressure feedback signal from proportional pressure control unit 70 via line 71. Electronic pneumatic control unit 16, based on this information, sends grip closing signals to upper and lower grip solenoid valves 32, 36 via lines 80, 82, respectively, and, as previously described, a pressure command via analog pressure command line or digital-to-analog converter 76 to electronic pneumatic control unit 16.
Additionally, electronic pneumatic control unit 16 includes a module 86 which can provide power to manifold 12, and further transmit information to and receive information from a bus 88, which may be connected to external devices such as a materials testing controller 90, a footswitch module 92, and various recording devices (not shown).
Turning now to an overview of the firmware as illustrated in
The firmware is made up of three main tasks, which run concurrently on a real-time operating system (RTOS) to achieve the above functions. These tasks are as follows:
1. Main supervisory task, illustrated in
2. Pressure control task, illustrated in
3. CAN bus communications task, illustrated in
The logical flow of the firmware is typically as follows:
1. When the firmware starts up as shown in
2. The on-board hardware is then initialized to open the grips 102, 104 and keep the pressure at 0 pounds per square inch (psi) as shown in block 306. The grip states are controlled via digital output bits connected to the top and bottom pneumatic solenoids 32, 36. As shown in block 308, the pressure is set to 0.0 psi by writing to a digital-to-analog converter (DAC), which sends a 0.0 Volt signal to the proportional pressure controller 70 via line 76. The calibration of the DAC and proportional pressure controller 70 are matched such that 0 to +10 VDC digital-to-analog converter output corresponds to 0 to 100 psi of requested pressure.
3. The main supervisory task, or executor task, illustrated in
4. The pressure control task, illustrated in
5. The CAN bus task, illustrated in
6. The executor task, see
7. The materials testing controller 90 first sends messages 6c, 6d, 6g, to define the operating pressures and grip closure sequencing modes to use when message 6a open/close requests are subsequently received from the footswitch module 92. The safe pressure and method pressure parameters received from the materials testing controller 90 in message 6g are saved locally by the firmware. Safe pressure is typically settable to 0 to 15 psi, while method pressure is typically settable in the range of 15-100 psi. Safe and method pressures are applied automatically to the upper and lower grips 102, 104 by the firmware, based on the system safety level, when message 6a close grip requests are received. The system safety level is a global system parameter which defines the safety behavior of the whole materials testing system, including the grip pressure sequencing. It is broadcast continuously over the CAN bus 88 by the materials testing controller 90 (message 6f). More specifically, when the operator enters the desired values for the method pressure and the safe pressure into the software application, these values are sent to the materials testing controller 90 by an ethernet cable or similar connection. The materials testing controller, in turn, transmits these values to the pneumatic control unit 16 via the CAN bus 88. The control unit 16 stores theses values locally, so that they can be quickly retrieved, converted to an equivalent analog 0-10 volts DC value for a pressure command via line 76 to the proportional pressure controller 70, during the various grip and system states as described herein.
8. In processing message 6a, the executor task of
The above eight steps describe the basic design and operation of the firmware on the electronic pneumatic control unit 16.
Thus the several aforementioned objects and advantages are most effectively attained. Although preferred embodiments of the invention have been disclosed and described in detail herein, it should be understood that this invention is in no sense limited thereby.
This application is a National Phase application of PCT International Application PCT/US2017/025285, filed Mar. 31, 2017 which claims priority under 35 U.S.C. 119(e) of U.S. provisional application Ser. No. 62/317,678 filed on Apr. 4, 2016, the contents of which is hereby incorporated by reference in its entirety and for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US17/25285 | 3/31/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62317678 | Apr 2016 | US |