The present invention relates generally to a poppet valve and more particularly to a proportional poppet valve adjusted by an electrical voice coil.
A variety of means are known to electrically actuate a poppet valve, including torque motors, force motors, solenoids, and piezoelectrics. However, it is desirable for a poppet valve?s response to control inputs to be both proportional and linear, and the conventional approaches do not achieve these goals. It is known, from U.S. Pat. Nos. 5,460,201 & 5,960,831, BORCEA et al., assigned to the assignee of the present invention, to electrically actuate a spool-and-sleeve pneumatic valve by using a voice coil. However, spool-and-sleeve valves are not appropriate for all applications, because such valves do not always maintain a reliably tight seal in the closed position.
We have found that using an electrical voice coil to actuate a poppet valve provides a linear displacement response which is proportional to the current input signal. Similar electrical actuators can be used with other types of valves, such as a gate or guillotine valve, a throttle valve or a globe valve. Voice coil actuated valves are more advantageous than prior art solenoid actuated valves because voice coil actuation permits adjustment to a variety of partially open positions, provides significantly faster operation than with a solenoid, and is resistant to external vibration influences.
According to a preferred embodiment of the invention, a feedback control circuit maintains or restores the valve to a commanded or desired position.
A suitable feedback circuit incorporates a transconductance amplifier.
The invention is particularly suited for use in industrial automation, animatronics, or other contexts requiring rapidly recycling or repetitive motion. Fluid power applications, including pneumatic and hydraulic valves, are suitable fields of use.
Valve body 12 is formed with an internal cavity 20 which accommodates the actuating elements. A magnet housing assembly 22 sits atop valve body 12, and includes a magnet cover 24, a permanent magnet 26, and a pole piece 28 arranged beneath magnet 26. Beneath pole piece 28, a voice coil subassembly 30 is inserted. This comprises a hollow coil form 32, which supports a coil winding 34, having a pair of terminals 36, 38, pressed into a coil header 40.
Energizing the voice coil quickly drives the poppet a desired displacement, typically completing up to a full stroke from fully closed to fully open within 3 to 10 milliseconds. By contrast, when charging of a solenoid begins, it typically takes at least 5 milliseconds to move at all, and about 15 milliseconds to complete a full stroke; partial strokes are not possible.
Means are provided for preventing rotation of the voice coil subassembly with respect to the valve body 12; this could be an anti-rotation header pin 46 (shown in
When the voice coil is energized, it is stronger than the spring force, so that poppet 42 and gate 48 move upward, partially or completely opening the passage, depending upon the amplitude of the coil current, and compressing spring 40. When the coil current declines, spring 40 expands again.
A command voltage value comes into the circuit at Vin and is applied to the positive input of an operational amplifier (op-amp) . The negative input of the op-amp receives a feedback signal from the voice coil. If there is a difference between the two input signals of the op-amp, the op-amp sends a voltage through a resistor R7 to the gates of an NPN transistor Q1 and a PNP transistor Q2, which is connected in series with Q1. The switch-on voltage values of these transistors are selected such that, if more energy needs to be applied to the voice coil, first transistor Q1 switches on, allowing current to flow between its emitter and collector, and then through the voice coil, shown at right. Conversely, if less energy in the coil is desired, Q2 switches on, allowing current to pass from coil input terminal +Io between the emitter and collector of Q2 to the negative line VDD of the power supply, thereby bleeding energy out of the coil. In this way, the coil moves back to the configuration commanded by the original command signal Vin. When the op-amp ceases to detect a difference between its input signals, it ceases to apply a voltage sufficient to turn on transistors Q1 or Q2, so they turn off.
Since the voice coil can move within a few milliseconds of application of driving current signals, the feedback circuit can compensate for even rapidly varying perturbing mechanical vibrations.
Those skilled in the art will appreciate that many variations and modifications are possible within the scope of the present invention; for example, features of one embodiment could be combined with features of another embodiment, or a voice coil actuator could be applied to other valve types. Other feedback means, for detecting and adjusting the position of the voice coil with respect to its permanent magnet, are possible. Therefore, the invention is not limited to the embodiments shown and described, but rather is defined by the following claims.
Number | Date | Country | |
---|---|---|---|
60516961 | Nov 2003 | US |