This application is a National Stage of International Application No. PCT/KR2015/011262 filed Oct. 23, 2015, claiming priority based on Korean Patent Application No. 10-2014-0144477 filed Oct. 23, 2014, the contents of all of which are incorporated herein by reference in their entirety.
Exemplary embodiments of the present invention relate to a propulsion apparatus using sound radiation force which is capable of providing strong propulsive force by using sound radiation force of ultrasound.
As a method of propelling the existing ultra-small wireless flying object, there are methods using propellers and wings. The method using the propeller rotates the propeller by using a small motor, thereby obtaining thrust in a direction opposite to an air flow generated by the rotation of the propeller. The method using the wing uses a method of mimicking animal's wing flapping. Thrust is obtained by making artificial muscles with various methods and flapping the light wings.
The method using the propeller is efficient, but has a drawback because of use of the motor. The motor includes a coil, a rotating body, and a permanent magnet, and as a result, there is a limitation in size. The size of the motor causes a great limitation in an ultra-small flying object. Therefore, researches are being conducted on an ultra-small flying object having a size less than 5 cm in respect to the method of using the wing. However, this method causes a manufacturing method to be complicated, and it is difficult to implement actual commercialization because it is complicated to operate the wing.
Meanwhile, ultrasound is a type of sound and refers to sound waves with frequencies equal to or higher than 20 kHz which humans cannot hear, and because a human's eardrum cannot keep up with vibration velocity and great power is transmitted by small vibration, and as a result, the ultrasound is used for mechanical processing, cleaning, and the like, and the ultrasound is transmitted to a long distance because of directionality and straightness which are properties of the ultrasound.
In particular, in 2006, it was confirmed that an ultrasound generator generated sound waves with a wavelength (17 kHz) of 20 millimeters by making a sound wave pressure field between the ultrasound generator and a reflection device by using the ultrasound generator and the reflection device, and as a result, various types of live animals came up.
Hypersonic waves refer to sound waves with frequencies per second exceeding 500 MHz, and are used for hypersonic pistols and hypersonic acoustic effects at present, and it has been known that if a person is exposed to intense noise for over several seconds, he/she loses his/her hearing and his/her body is injured.
An exemplary embodiment of the present invention proposes a propulsion apparatus capable of providing strong propulsive force to an object to be operated by using sound radiation force of ultrasound.
An exemplary embodiment of the present invention proposes a propulsion apparatus capable of providing strong propulsive force to an object to be operated by using sound radiation force of ultrasound, and a control method therefor.
A propulsion apparatus using sound radiation force according to an exemplary embodiment of the present invention includes: an ultrasound generation unit which is installed at one side of an object to be operated, generates ultrasound, and provides propulsive force to the object to be operated by using sound radiation force of the ultrasound; and an ultrasound control unit which is coupled to one side of the ultrasound generation unit, and increases propulsive force to be provided to the object to be operated by controlling intensity of the ultrasound generated by the ultrasound generation unit.
The ultrasound control unit may control intensity of the ultrasound by adjusting a flow of air flowing in a traveling direction of the ultrasound.
The ultrasound control unit may be a tube having a cross-sectional area of which the radius is constant in a longitudinal direction thereof.
The ultrasound control unit may be a focuser having a cross-sectional area of which the radius is gradually decreased in a longitudinal direction thereof.
The ultrasound generation unit may be installed at an end in a direction opposite to a direction in which the object to be operated travels.
The ultrasound generation unit may be a high-frequency ultrasound element which generates ultrasound with high frequencies equal to or higher than 100 kHz.
The ultrasound generation unit may adjust frequencies for generating the ultrasound in accordance with a traveling velocity of the object to be operated in consideration of ultrasound intensity control by the ultrasound control unit.
A method of controlling a propulsion apparatus using sound radiation force according to another exemplary embodiment of the present invention includes: generating ultrasound and providing propulsive force to an object to be operated by using sound radiation force of the ultrasound, by an ultrasound generation unit installed at one side of the object to be operated; and increasing propulsive force to be provided to the object to be operated by controlling intensity of the ultrasound generated by the ultrasound generation unit, by an ultrasound control unit coupled to one side of the ultrasound generation unit.
The increasing of the propulsive force to be provided to the object to be operated may include controlling intensity of the ultrasound by adjusting a flow of air flowing in a traveling direction of the ultrasound, by a tube having a cross-sectional area of which the radius is constant in a longitudinal direction thereof.
The increasing of the propulsive force to be provided to the object to be operated may include controlling intensity of the ultrasound by adjusting a flow of air flowing in a traveling direction of the ultrasound, by a focuser having a cross-sectional area of which the radius is gradually decreased in a longitudinal direction thereof.
According to the exemplary embodiment of the present invention, it is possible to provide strong propulsive force to an object to be operated by using sound radiation force of ultrasound.
According to the exemplary embodiment of the present invention, it is possible to implement a high-efficiency ultra-small propulsion body that is substituted for the existing propeller-type and wing-type ultra-small propulsion bodies.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
Advantages and/or features of the present invention and methods of achieving the advantages and features will be clear with reference to exemplary embodiments described in detail below together with the accompanying drawings. However, the present invention is not limited to the exemplary embodiments set forth below, and may be embodied in various other forms. The present exemplary embodiments are for rendering the disclosure of the present invention complete and are set forth to provide a complete understanding of the scope of the invention to a person with ordinary skill in the technical field to which the present invention pertains, and the present invention will only be defined by the scope of the claims. Like reference numerals indicate like constituent elements throughout the specification.
Air is moved by a mechanical method in the related art, but in the exemplary embodiment of the present invention, propulsive force may be obtained by generating an air flow by using an acoustic method. Ultrasound radiates in one direction when a size of a high-frequency ultrasound element (>100 kHz) is very greater than a wavelength. The radiating ultrasound is attenuated in air, and volume force is applied to the air in proportion to the attenuation. The air is pushed by this force, and force is applied to a transducer because of a reaction to the force.
A propulsion apparatus, which provides propulsive force by using the aforementioned principle, will be briefly described with reference to
Referring to
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
First, referring to
The ultrasound generation unit 110 is installed at one side of an object 101 to be operated, generates ultrasound, and provides propulsive force to the object 101 to be operated by using sound radiation force of the ultrasound.
Here, the object 101 to be operated may include a small and light carrying body such as an ultra-small unmanned flying object and a micro robot. The ultrasound generation unit 110 installed on the object 101 to be operated is installed at a rear side of the object 101 to be operated, that is, at an end in a direction opposite to a traveling direction, thereby providing propulsive force to the object 101 to be operated.
The ultrasound generation unit 110 may be implemented as a high-frequency ultrasound element that generates ultrasound with high frequencies equal to or higher than 100 kHz.
Because the principle of providing propulsive force to the object 101 to be operated by using sound radiation force of the ultrasound generated by the ultrasound generation unit 110 is identical to the principle described with reference to
For reference, even a flat plate type propulsion apparatus configured only by the ultrasound generation unit 110 may provide propulsive force to the object 101 to be operated by using sound radiation force of the ultrasound, but in this case, air may flow into left and right sides, and as a result, propulsive force may deteriorate.
Therefore, there is a need for a method that adjusts a flow of the inflow air without hindering the travel of the ultrasound. In the exemplary embodiment of the present invention, the ultrasound control unit 120 is coupled to one side of the ultrasound generation unit 110, such that it is possible to adjust an air flow, and thus to increase the propulsive force.
Hereinafter, the ultrasound control unit 120 will be more specifically described as a configuration for increasing the propulsive force.
The ultrasound control unit 120 is coupled to one side of the ultrasound generation unit 110, and serves to control intensity of the ultrasound generated by the ultrasound generation unit 110, thereby increasing propulsive force to be provided to the object 101 to be operated.
To this end, the ultrasound control unit 120 controls intensity of the ultrasound by adjusting a flow of air flowing in the traveling direction of the ultrasound, thereby increasing propulsive force to be provided to the object 101 to be operated.
As an example, as illustrated in
In a case in which the ultrasound control unit 120 is implemented in the form of a tube, it is possible to prevent air from flowing into the left and right sides, and thus to adjust a flow of the inflow air without hindering the travel of the ultrasound.
Therefore, it is possible to increase intensity of the ultrasound generated by the ultrasound generation unit 110, and as a result, it is possible to increase propulsive force to be provided to the object 101 to be operated.
As another example, as illustrated in
Similar to the tube as illustrated in
Therefore, it is possible to increase intensity of the ultrasound generated by the ultrasound generation unit 110 by increasing an air flow at a central portion (portion having a smallest radius) of the focuser, thereby further increasing propulsive force to be provided to the object 101 to be operated.
Meanwhile, the ultrasound generation unit 110 may adjust frequencies for generating the ultrasound in accordance with a traveling velocity of the object 101 to be operated in consideration of ultrasound intensity control by the ultrasound control unit 120.
That is, the ultrasound generation unit 110 may adjust frequencies for generating the ultrasound in accordance with a traveling velocity of the object 101 to be operated in consideration of a propulsive force increment by the ultrasound control unit 120, thereby controlling a velocity of the object 101 to be operated by the propulsion apparatus 100 as necessary.
All of the transducers (propulsion apparatuses) applied to
First, as illustrated in
For reference, in the case of the flat plate type ultrasound transducer, air radiates at about 30 m/s or higher in a region of a radius of 0.5 mm, and thrust, which may be obtained by the air flow, is about 0.000867 N which corresponds to a weight of 88.5 mg. Therefore, the present simulation may indicate that the flat plate type ultrasound transducer may produce propulsive force of about 24 times its weight.
Meanwhile, as illustrated in
Referring to
Next, in step 820, the ultrasound control unit 120 of the propulsion apparatus 100 may increase propulsive force to be provided to the object 101 to be operated by controlling intensity of the ultrasound generated by the ultrasound generation unit 110.
That is, the ultrasound control unit 120 of the propulsion apparatus 100 controls intensity of the ultrasound by adjusting a flow of air flowing in the traveling direction of the ultrasound, thereby increasing propulsive force to be provided to the object 101 to be operated.
To this end, the ultrasound control unit 120 of the propulsion apparatus 100 may be implemented in the form of a tube having a cross-sectional area of which the radius is constant in the longitudinal direction thereof (see
While the specific exemplary embodiments according to the present invention have been described above, the exemplary embodiments may be modified to various exemplary embodiments without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described exemplary embodiments, and should be defined by not only the claims to be described below but also those equivalents to the claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0144477 | Oct 2014 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2015/011262 | 10/23/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/064239 | 4/28/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9726114 | Wang | Aug 2017 | B2 |
20130224018 | Kinzie et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2004-305510 | Nov 2004 | JP |
2006-319404 | Nov 2006 | JP |
2010-096186 | Apr 2010 | JP |
10-2010-0069904 | Jun 2010 | JP |
Entry |
---|
International Search Report of PCT/KR2015/011262 dated Jan. 20, 2016. |
Number | Date | Country | |
---|---|---|---|
20170333948 A1 | Nov 2017 | US |