Propulsion control apparatus and method for a paver

Information

  • Patent Grant
  • RE38632
  • Patent Number
    RE38,632
  • Date Filed
    Friday, July 28, 2000
    24 years ago
  • Date Issued
    Tuesday, October 19, 2004
    20 years ago
Abstract
An apparatus is disclosed for controlling the propulsion and steering of a machine. The machine includes a hydrostatic system that drives a pair of ground engaging traction devices. An electronic controller receives operator signals indicative of a desired travel speed and direction, and determines a desired rotational speed of the ground engaging traction devices. The electronic controller produces command signals indicative of the determined speeds to regulate the speed of the ground engaging traction devices to the desired speed.
Description




TECHNICAL FIELD




This invention relates generally to an apparatus for controlling the propulsion of a paver and, more particularly, to an apparatus for controlling the propulsion of a paver utilizing a microprocessor based system.




BACKGROUND ART




Asphalt pavers include a hopper for receiving paving material and a conveyor system for transferring the paving material from the hopper for discharging on the roadbed. Screw augers spread the material on the roadbed in front of a floating screed, which is connected to the paving machine by pivoting tow or draft arms. The screed functions to format and compact the paving material distributed by the augers, ideally leaving the finished road with a uniform, smooth surface.




Such machines may be propelled by using several types of ground engaging traction devices, e.g., rubber wheels or endless metal (or rubber) belts that are disposed on opposite sides of the machine. The steering of a belted type machine is carried out by creating a differential speed between the oppositely disposed ground engaging traction devices.




Unfortunately, such machines that use differential speed steering develop several problems. Once such problem is that the machine does not track straight when it is desired that it do so. Another problem is that the desired turn radius of the machine varies with the travel speed of the machine. Thus, it becomes difficult for the operator to control the machine with a high degree of consistency—a crucial element for asphalt paving.




Another problem of typical pavers is the reliance on analog circuitry to control the propulsion. As is well known, analog circuitry is inflexible and does not allow for customization of machine performance as does programmable digital circuitry.




Finally, another problem of many pavers is the use of the mechanical braking system to stop the machine. Such mechanical braking system are typically used in conjunction with the hydrostatic drive system. However, because rarely does the mechanical braking system act in concert with the hydraulic system, abrupt breaking or wearing of the mechanical brakes may occur.




The present invention is directed to overcoming one or more of the problems as set forth above.




DISCLOSURE OF THE INVENTION




In one aspect of the present invention, an apparatus for controlling the propulsion of a machine having a hydrostatic system that drives a plurality of ground engaging traction devices is disclosed. An electronic controller receives a desired travel speed signal and a steering angle signal, determines a desired rotational speed of the orthogonal engaging traction devices to steer the machine at the desired steering angle, and produces command signals indicative of the desired rotational speeds. An electrohydraulic device receives command signals and responsively controls the speed of the ground engaging traction devices to the desired speed to cause the machine to steer at a desired turning radius that is independent to the actual speed of machine travel.











BRIEF DESCRIPTION OF THE DRAWINGS




For a better understanding of the present invention, reference may be made to the accompanying drawings in which:





FIG. 1

illustrates a side view of an asphalt paver;





FIG. 2

illustrates an electronic control system for a hydrostatic drive system of the paver;





FIG. 3

illustrates a high level block diagram of steering and propelling control method; and





FIG. 4

illustrates a high level block diagram of a pump calibration routine.











BEST MODE FOR CARRYING OUT THE INVENTION




Referring now to the drawings,

FIG. 1

illustrates a paver


100


. The paver


100


, as shown, is of the crawler track type having endless metal belts. However, those well skilled in the art can appreciate that the present invention is applicable to a paver of the rubber tire type. The paver


100


has a chassis


110


through which dual feed conveyors carry paving material, such as asphalt material, from a feed hopper


120


located at the front of the layer


100


. Spreader augers


125


, also referred to as spreading screws, are disposed transversely to and at the rear of the chassis


110


. The augers


125


distribute the asphalt material transversely to the direction of travel of the paver


100


. The material is spread over the desired width of a strip of pavement. The thickness and width of the pavement is established by the material-compacting, screed assembly


105


. As shown, the screed assembly


105


is attached to the chassis


110


by a pair of draft arms


130


. Preferably, the screed assembly


105


includes a main screed


135


and an extendable or extension screed


140


. The main screed


135


is formed in two sections, one on each side of the center line of the paver. The extension screed


140


is mounted to each of the main screed sections.




An electronic control system


200


for an hydrostatic drive system


205


of the paver


100


is shown in FIG.


2


. The hydrostatic drive system


205


includes an internal combustion engine


207


that drives two variable displacement hydraulic pumps


210


,


215


. The swashplate of each pump is actuable by a displacement actuator


220


,


225


. Preferably, each displacement actuator includes a directional solenoid


230


,


225


that controls the output flow and direction of the respective pump, i.e., either forward or reverse. Each pump


210


,


215


provides high pressure fluid to a variable displacement motor


240


,


245


, which includes a displacement solenoid


250


,


255


that is used to actuate the displacement of the respective motor. The motors


240


,


245


are used to provide the necessary torque in order to propel the machine via the right and left set of tracks. A plurality of spring applied, fluid released service brakes


257


are additionally provided.




The electronic control system


200


includes a microprocessor based controller


260


that includes system memory. The controller


260


receives various sensing signals and controls the displacement of the pumps


210


,


215


and motors


240


,


245


, and the actuation of the brakes


257


in order to regulate the speed and steering of the machine.




A speed dial


275


is provided for the operator to set the maximum travel speed of the machine based on the engine speed. Accordingly, a speed dial sensor


280


produces a maximum travel speed signal that is proportional to the rotational position of the speed dial


275


.




A propel lever


265


is provided for the operator to indicate a desired direction of machine travel, e.g, forward, reverse, or neutral. The propel level


265


additionally controls the acceleration or de-acceleration of the machine by indicating the desired percent of maximum travel speed. Accordingly, a proper level sensor


270


produces a propel signal that is indicative of the desired direction of machine travel and desired percent of maximum travel speed in response to the relative position of the position of the propel lever


265


.




A speed range switch


281


is provided for the operator to select a desired speed range, e.g., travel, pave and maneuver. Because the preferred drive system is a hydrostatic drive system, the speed range is set by controlling the displacement of the hydraulic motors


240


,


245


(although a variable ratio reduction gearing could also be used). Accordingly, a speed range signal is produced in response to the position of the speed range switch


281


.




A brake pedal


285


is provided for the operator to “quickly” decelerate or slow the machine.




The brake pedal


285


is intended to be operated by the feet to allow the operator's hands to be “free”. Accordingly, a brake pedal position sensor


290


produces a braking signal having a magnitude that is proportional to the relative position of the brake pedal


285


.




Finally, a steering wheel


293


is provided for the operator to steer the machine. Accordingly, a steering sensor


295


produces a steering angle signal that is representative of the desired steering angle of the machine. For example, the steering sensor


295


may sense the rotational position of the steering wheel


293


or, in the case of a rubber tired machine, the steering sensor


295


may be responsible to the steering angle of the steering wheels. Although a steering wheel is shown, it will become apparent to those skilled in the art that a set of levers, pedals, a joystick assembly, or the like may equally be used.




An engine speed sensor


296


produces an engine speed signal in response to the rotational speed of the engine


207


. A right track sensor


297


produces a right track signal in response to the rotation of the right track. A left track sensor


299


produces a left track signal in response to the rotation of the left track. Preferably, the track sensors


297


,


299


are mounted integral to the respective motors


240


,


245


to monitor the rotation of the respective track drive gear. Thus, the track sensors produce a pulse for each occurrence of a passing tooth of the respective track drive gear.




The controller


260


utilizes arithmetic units to control various processes according to software programs. Typically, the programs are stored in read-only memory, random-access memory or the like. One such process is a braking control method that is discussed below.




The service brakes


257


and the hydrostatic drive system


205


are used as the primary braking system for the machine. For example, the controller


260


reduces the displacement of the pumps


210


in production to the amount of brake pedal depression to slow the machine. Once the machine stops, the controller


260


applies the service brakes


257


to hold the machine stationary. However, the service brakes


257


will be applied when the machine speed is zero or a predetermined time period after the brake pedal is fully depressed, the proper lever


265


is in neutral, or the speed dial


275


is at zero speed.




Another such process is shown with reference to

FIG. 3

, which shows a high level block diagram of a steering and propelling control method


300


. Advantageously, the steering control method


300


provides for the machine to track “straight” and also provides for the machine to turn with a constant radius that is independent to travel speed or engine speed.




A multiplication block


305


receives the propel, braking, and maximum speed signals and produces a desired travel speed signal in response to the product of the received signals.




A software look-up table routine


310


receives the steering angle, speed range, and directional signals, and selects a turning radius value that is indicative of a desired turning radius.




For example, the software look-up table routine may include a separate “map” for the forward and reverse travel directions. Moreover, each map may include several curves that are programmable to provide for different steering or handling characteristics. For example, each curve represents a desired turning radius as a function of the desired steering angle for a predetermined speed range. Note, the software look-up table may be equally substituted with a set of empirical equations used to calculate the turning radius value as a function of the desired steering radius, travel direction and speed range.




A decision block


315


determines whether the turning radius value represents a “straight ahead” or “turning” movement of the machine. If a turning movement is desired a track speed calculation routine


320


receives the desired travel speed signal and the turning radius value, and determines the right and left (or inner and outer) track speeds. For example, the outer and inner track speeds are calculated as follows:




Turn Radius Equations






V


outer


=V


desired


(2−2R/G+2R)








V


inner


=V


outer


(R/R+G)






where:




V


desired


=the desired machine travel speed;




R=the turning radius value; and




G=The gage of the machine, i.e., the width between the track centers.




The turns radius calculations shown above are valid for all turns. However, it is preferable to compare the calculated track speed values with low and high speed limits to compensate for hydraulic component deficiencies.




In general, speed control of hydraulic motors at very low speeds is poor. During very slow speed maneuvering, the calculated track speeds (for a given radius) can yield speeds that are two slow for the motors to achieve; thereby, adversely effecting machine steering. To prevent this type of condition, the inner track speed is limited to a minimum limit. Consequently, if the calculated inner track speed is too low of a value, the inner track speed is set to a minimum value and the outer track speed is recalculated. This prevents the machine steering characteristics from deteriorating at low travel speeds.




Slow Speed Calculations






if V


inner


<V


min


, then V


inner


=V


min


, and V


outer


=V


min


(G+R)/R






Similarly, during high speed operations, the calculated track speeds (for a given radius) may be too high for the motors to achieve; thereby, adversely effecting machine steering. To prevent this type of condition, the outer track speed is limited to a maximum limit. Consequently, if the calculated outer track speed is too high, the outer track speed is limited to the maximum value and the inner track speed is re-calculated. This prevents machine steering characteristics from deteriorating at high travel speeds.




High Speed Calculation






if V


outer


>V


max


, then V


outer


=V


max


, and V


inner


=V


max


(R/(R+G))






Further, it is desirable for the maximum travel speed of the machine to be as high as possible to minimize travel time. Track speed, however, must be limited to maintain desired steering characteristics and correct for track to track component tolerances and environmental conditions, e.g., machine load, temperature, terrain, etc. Advantageously, the present invention utilizes an adaptive or adjustable maximum track speed limit, which is automatically adjusted during machine operation. This provides for a particular machine to operate at a maximum travel speed that is responsive to the machine operating conditions, rather than provide preset limits based on “worst case” production tolerances.




During high travel speeds, the track speeds are monitored and compared to desired track speeds. If the actual track speed is less than the desired speed, the control determines if the track speed is at the maximum track speed limit. The control then adjusts the maximum track speed limit accordingly. Moreover, the control compares the pump command signal magnitudes produced by the PID controllers to a PID limit value to determine if the track speeds can be increased under present machine conditions. If so, the maximum track speed limits for both tracks are increased. However, if not, the maximum track speed limits are decreased.




Adaptive Speed Calculations






if V


actual


<V


desired


, and V


actual


<V


max


, then V


max


=V


max


+V


increase








otherwise






if V


actual


<V


desired


, V


actual


<V


max


, and PID


actual


≧PID


limits


then V


max


=V


max


−V


increase


else PID


actual


<PID


limit


then V


max


=V


max








In the summary, the track speed calculation routine


320


calculates a desired speed for each track, which maintains a constant turning radius (at a desired steering angle)—irregardless of the machine travel speed.




A software look-up routine


325


receives signals representative of the calculated outer and inner track speeds and retrieves a pump command signal magnitude for each pump. Accordingly, feedback controllers


330


,


335


receives the pump command signals and deliver the signals to the respective pump solenoids in order to control the flow of fluid to the respective motors. For example, each feedback controller receives signals representative of the desired and actual track speeds, compares the track speeds to each other, and adjusts the respective pump command signal magnitude in order to control the actual track speed to the desired track speed. The feedback controllers


330


,


335


may use well known proportional plus integral control strategies to produce the respective pump command signals having sufficient magnitudes to accurately regulate the track speeds.




Adverting, back to decision block


315


, if a straight-ahead movement is desired, then an adjustment routine


340


is called. The adjustment routine


340


receives the track signals associated with the left and right tracks, compares the number of pulses associated with each signal to one another, and adjusts the pump command signal of the left pump to equalize the track rotations. For example, if the left track is found to have traveled a greater distance than the right track, then the left pump command signal magnitude is decreased. Alternately, if the right track is found to have traveled a greater distance than the left track, then the left pump command signal magnitude is increased. Consequently, the adjustment routine


340


provides for the machine to track straight by equalizing the track rotation of the left and right tracks. Note, it is unimportant which track rotation is corrected, as the right pump command can equally be modified.




Preferably, the adjustment routine bases the adjustments over the entire distance that the machine is tracking straight, rather than making the adjustments over a predetermined time period. This means that the error between the track rotations are continually updated to provide for accurate adjustments.




The above routine is equally applicable to rubber tired machines. For example, to assist the steering of a rubber tired machine, the powered wheels may be controlled with a differential speed to enhance the steering characteristics.




Additionally, the above described control accounts for engine underspeed conditions while the machine is turning. For example, the maximum speed signal is produced in response to a map function where the magnitude of the maximum speed signal is determined in response to the engine speed. Preferably, the maximum speed signal is variable up to a maximum value that corresponds to a minimum engine speed. Thus, during a turning condition (which loads the engine causing the engine speed to droop), the map function causes the desired machine travel speed to be at a value low enough so as to not “kill” the engine, and yet maintain the desired turning radius.




Referring now to

FIG. 4

, a high level block diagram of a pump calibration routine


400


is shown. The pump calibration routine


400


is used to calibrate the pump command signal to a calibration track speed. The pump calibration routine


400


may be required in the event that the hydraulic components are not “matched”, which could result in undesirable speed transients while the machine accelerates from a zero speed to a desired speed. The flow diagram represents the calibration for the right pump


215


, for example; however, the calibration for the left pump


210


is identical.




First, a calibration track speed is read from system memory (block


405


), and a pump command signal having a magnitude associated with the calibration track speed is delivered to the right pump solenoid


235


(block


410


). The right track speed signal which is indicative of the actual track speed is received (block


415


), and compared to the calibration track speed (block


420


). If the actual and calibration track speeds are not equal, then the magnitude of the pump command signal is adjusted accordingly, e.g., either positively or negatively. Once the actual and calibration track speed are equal, then the current magnitude of the pump command signal is stored for the calibration speed. Accordingly, the calibration routine is performed for each pump independently so that the associated pump command signal will provide for an accurate track speed. Note that, the calibration routine can be controlled to simultaneously calibrate each pump. Once the pumps have been calibrated, the values are stored and utilized until the hydraulic components are repaired or replaced.




Thus, while the present invention has been particularly shown and described with reference to the preferred embodiment above, it will be understood by those skilled in the art that various additional embodiments may be contemplated without departing from the spirit and scope of the present invention.




INDUSTRIAL APPLICABILITY




As described, the present invention is particularly suited to control the propulsion (including steering) of an asphalt paver. In order to be more operator friendly than typical asphalt pavers, the control apparatus associated with the present invention utilizes a steering wheel and a brake pedal, as commonly found in an automobile. Thus, the control apparatus is easier to use than traditional pavers, which use a plurality of levers or pedals that to control the track speed and steering of the machine.




Additional advantages include: the track speed calculation routine, which provides for the actual turn radius of the machine to be independent to machine speed to simulate the steering “feel” of an automobile; the track adjusting routine, which provides for the machine to track straight; the under-speed routine, which limits the pump displacement to provide for a minimum allowable engine horsepower; and the calibration routine, which provides for automatic calibration of the pumps to minimize speed transient problems that occur while the machine is accelerating from a zero speed to the desired speed.




Other aspects, objects and advantages of the present invention can be obtained from a study of the drawings, the disclosure and the appended claims.



Claims
  • 1. An apparatus for controlling the propulsion of a machine having a hydrostatic system that drives a plurality of ground engaging traction devices, comprising:means for producing a desired travel speed signal indicative of a desired speed of machine travel; means for producing a steering angle signal indicative of a desired steering angle of the machine travel; means for receiving the desired travel speed and steering angle signals, determining a desired rotational speed of the ground engaging traction devices to steer the machine at the desired steering angle, and producing command signals indicative of the desired rotational speeds; and means for receiving the command signals and responsively controlling the speed of the ground engaging traction devices to the desired speed to cause the machine to steer at a desired turning radius that is independent to the actual speed of travel.
  • 2. An apparatus, as set forth in claim 1, including means for determining the desired turning radius of the machine, the means including a plurality of software maps, each map being comprised of several programmable curves corresponding to varying speed ranges, wherein each curve represents the desired turning radius as a function of the desired strength angle.
  • 3. An apparatus, as set forth in claim 1, wherein the hydrostatic drive system includes:a plurality of hydraulic motors for driving a respective ground engaging traction device; a plurality of variable displacement pumps for delivering pressurized fluid to the hydraulic motors in response to receiving command signals; and an internal combustion engine for driving the variable displacement pumps.
  • 4. An apparatus, as set forth in claim 3, including:a plurality of spring applied brakes to stop the ground engaging traction devices; and a brake pedal to conduit the travel speed of the machine, wherein the amount of depression of the brake pedal is proportional to the attenuation of the speed of travel.
  • 5. An apparatus, as set forth in claim 4, including means for controlling the pump displacement to slow the machine in response to the depression of the brake pedal and controlling the application of brakes to hold the machine in place in response to the machine being stopped.
  • 6. An apparatus, as set forth in claim 3, including means for controlling the displacement of each pump to limit the total horsepower drawn by the pumps to less than the available engine horsepower.
  • 7. An apparatus, as set forth in claim 3, including means for automatically calibrating the magnitude of the command signals to correspond to a calibration track speed.
  • 8. An apparatus, as set forth in claim 3, wherein the ground engaging traction devices include a pair of endless belts.
  • 9. A method of controlling the propulsion of a machine having a plurality of ground engaging traction devices, comprising the steps of:producing a desired travel speed signal indicative of a desired speed of machine travel; producing a steering angle signal indicative of a desired steering angle of the machine travel; receiving the desired travel speed and steering angle signals, determining a desired rotational speed of the ground engaging traction devices to steer the machine at the desired steering angle, and producing command signals indicative of the rotation speeds; and receiving the command signals and responsively controlling the speed of the ground engaging devices to the desired speed to cause the machine to steer at a desired turning radius that is independent to the actual speed of travel.
  • 10. A method, as set forth in claim 9, including steps of:storing a plurality of software maps, each map being comprised of several programmable curves corresponding to varying speed ranges, wherein each curve represents the desired turning radius as a function of the desired steering angle; and selecting a curve and producing a desired turning radius signal in response to the desired steering angle.
  • 11. A method, as set forth in claim 10, including the steps of:producing a maximum speed signal indicative of a maximum travel speed; producing a propel signal indicative of a desired percentage of maximum travel speed and direction of travel; producing a braking signal indicative of a desired attenuation of the machine travel speed; and receiving the maximum, propel, braking and desired turning radius signals, and responsively producing the desired travel speed signal.
  • 12. A method, as set forth in claim 11, wherein the desired rotational speed of the ground engaging traction devices are calculated as follows:Vouter=Vdesired(2−2R/G+2R) Vinner=Vouter (R/R+G) where:Vdesired=the desired machine travel speed; R=the desired turning radius; and G=the gage of the machine.
  • 13. A method, as set forth in claim 12, including the step of modifying the desired rotational speeds in response to the calculated inner rotational speed being less than a minimum limit.
  • 14. A method, as set forth in claim 13, including the step of modifying the desired rotational speeds in response to the calculated outer rotational speed being greater than a maximum limit.
  • 15. A method, as set forth in claim 14, including the step of monitoring the speed of the ground engaging traction devices and producing signals indicative of the actual speed of the ground engaging devices.
  • 16. A method, as set forth in claim 15, including the step of modifying the maximum limit in response to the actual rotational speed being less than the desired rotational speed.
  • 17. A method, as set forth in claim 16, including the steps of receiving the desired and actual speed signals, comparing the signals to each other, and adjusting the magnitude of the command signals in response to the comparison.
  • 18. A method, as set forth in claim 17, including the step of adjusting the speed of the ground engaging traction devices to provide for the machine to track straight.
  • 19. A method for controlling the propulsion of a machine having a plurality of ground engaging traction devices, comprising:determining a desired travel speed of the machine; determining a desired steering angle of the machine; determining a respective desired rotational speeds for the ground engaging traction devices to steer the machine at a predetermined turn radius, the predetermined turn radius being a function of the desired steering angle and independent to the actual travel speed of the machine, and the desired rotational speeds being a function of the desired travel speed and the desired steering angle; and controlling the rotational speeds of the ground engaging traction devices to the desired rotational speeds to cause the machine to steer at the predetermined radius.
  • 20. The method of claim 19 wherein determining the rotational speeds for the ground engaging traction devices comprises determining the rotational speeds for the ground engaging traction devices to steer the machine at a predetermined turn radius over a predetermined range of travel speeds.
  • 21. The method of claim 19, further comprising determining a speed range of the machine, the desired rotational speeds of the ground engaging traction devices further being a function of the speed range.
  • 22. The method of claim 19 wherein the ground engaging traction devices comprise tracks.
  • 23. The method of claim 19 wherein the ground engaging traction devices comprise belts.
  • 24. A method for controlling the propulsion of a machine having a plurality of ground engaging traction devices, comprising:determining a desired travel speed of the machine; determining a desired steering angle of the machine; determining a difference in the respective desired rotational speeds for the ground engaging traction devices to steer the machine at a predetermined turn radius, the predetermined turn radius being a function of the desired steering angle and independent to the actual travel speed of the machine, and the difference in the desired rotational speeds being a function of the desired travel speed and the desired steering angle; and controlling the rotational speeds of the ground engaging traction devices to have the difference in the desired rotational speeds to cause the machine to steer at the predetermined radius.
  • 25. The method of claim 24 wherein determining a difference in the rotational speeds for the ground engaging traction devices comprises determining a difference in the rotational speeds for the ground engaging traction devices to steer the machine at a predetermined turn radius over a predetermined range of travel speeds.
  • 26. The method of claim 24, further comprising determining a speed range of the machine, the difference in the desired rotational speeds of the ground engaging traction devices further being a function of the speed range.
  • 27. The method of claim 24 wherein the ground engaging traction devices comprise tracks.
  • 28. The method of claim 24 wherein the ground engaging traction devices comprise belts.
  • 29. A method for controlling the propulsion of a machine having a plurality of ground engaging traction devices, comprising:determining a desired travel speed of the machine; determining a desired steering angle of the machine; determining respective desired rotational speeds for the ground engaging traction devices to steer the machine at a predetermined turn radius, the predetermined turn radius being one of: a function of the desired steering angle and independent to the actual travel speed of the machine when the machine is traveling between a first and second predetermined travel speeds, and a function of the desired steering angle and the actual travel speed of the machine when the machine is traveling between a third and fourth predetermined travel speeds, and the desired rotational speeds being a function of the desired travel speed and the desired steering angle; and controlling the rotational speeds of the ground engaging traction devices to the desired rotational speeds to cause the machine to steer at the predetermined radius.
  • 30. The method of claim 29 wherein the ground engaging traction devices comprise tracks.
  • 31. The method of claim 29 wherein the ground engaging traction devices comprise belts.
  • 32. A method for controlling the propulsion of a machine having an operating speed range and a plurality of ground engaging traction devices, comprising:determining a desired travel speed of the machine; determining a desired steering angle of the machine; determining respective desired rotational speeds for the ground engaging traction devices to steer the machine at a predetermined turn radius, the predetermined turn radius being a function of the desired steering angle and independent to the actual travel speed of the machine for at least a portion of the operating speed range of the machine, and the desired rotational speeds being a function of the desired travel speed and the desired steering angle; and controlling the rotational speeds of the ground engaging traction devices to the desired rotational speeds to cause the machine to steer at the predetermined radius.
US Referenced Citations (38)
Number Name Date Kind
3477225 Cryder et al. Nov 1969 A
3803841 Erickson et al. Apr 1974 A
3908374 Habiger Sep 1975 A
4080850 Bubula et al. Mar 1978 A
4096694 Habiger et al. Jun 1978 A
4161865 Day Jul 1979 A
4175628 Cornell et al. Nov 1979 A
4185521 Beals Jan 1980 A
4193323 Bubula et al. Mar 1980 A
4203293 Bubula et al. May 1980 A
4310078 Shore Jan 1982 A
4315555 Schritt Feb 1982 A
4399886 Pollman Aug 1983 A
4420991 Meyerle Dec 1983 A
4527649 Mauldin Jul 1985 A
4541497 Riediger et al. Sep 1985 A
4702358 Mueller et al. Oct 1987 A
4736811 Marsden et al. Apr 1988 A
4754824 Olsson Jul 1988 A
4914592 Callahan et al. Apr 1990 A
5099938 Watanabe et al. Mar 1992 A
5101919 Ossi Apr 1992 A
5162707 Joseph Nov 1992 A
5208751 Berkefeld May 1993 A
5249422 Smith et al. Oct 1993 A
5249639 Marr et al. Oct 1993 A
5445234 Hall, III Aug 1995 A
5487437 Avitan Jan 1996 A
5489005 Marcott et al. Feb 1996 A
5497692 Marcott Mar 1996 A
5520262 Marcott May 1996 A
5535840 Ishino et al. Jul 1996 A
5553517 Yesel et al. Sep 1996 A
5569109 Okada Oct 1996 A
5590041 Cooper Dec 1996 A
5611405 Ishino et al. Mar 1997 A
5787374 Ferguson et al. Jul 1998 A
5805449 Ito Sep 1998 A
Foreign Referenced Citations (1)
Number Date Country
0885798 May 1998 EP
Non-Patent Literature Citations (2)
Entry
Section 260, Steering and Brakes Manual (month and year are not available).
Steering System of John Deere 800 Series Track Tractors, Dr. Sanjay I. Mistry & Yifei R. Hou, 1998 (month is not available).
Divisions (1)
Number Date Country
Parent 08/548122 Oct 1995 US
Child 09/627652 US
Reissues (1)
Number Date Country
Parent 08/548122 Oct 1995 US
Child 09/627652 US