This application claims the benefit of PCT Patent Application No. PCT/GB2019/052261 filed on Aug. 12, 2019, entitled “A PROPULSION SYSTEM FOR A BOAT”, which is incorporated by reference in its entirety in this disclosure.
The present invention relates to a propulsion system for a boat. More particularly, but not exclusively, the present invention relates to a propulsion system for a boat comprising a plurality of aerofoils arranged on a mast, at least one of the aerofoils being adapted to be displaced along the mast, at least one of the aerofoils having a solar panel thereon. In a further aspect the present invention provides a boat comprising such a propulsion system.
Sail boats including solar panels are known. Typically the sail boat comprises a fabric sail. The solar panels are arranged on a separate structure of the boat such as the deck or on the roof of a cabin. In this case the solar panels are in a fixed orientation with respect to the boat and so are often not in the optimal orientation for generation of solar power. Alternatively, the solar panels are arranged on a separate adjustable structure. Such a structure is typically relatively small and so cannot hold a large number of solar panels. Further, it needs to be adjusted separately from the sail to keep the solar panels in the correct orientation. This can be difficult, particularly for a novice sailor.
The present invention seeks to overcome the problems of the prior art.
Accordingly, in a first aspect the present invention provides a propulsion system for a boat comprising
The propulsion system according to the invention can generate both wind and solar power. By suitable arrangement of the aerofoils and main mast it can be optimised between wind power and solar power generation. Separate optimisation of a sail and solar panel support is not required which considerably simplifies operation. The aerofoils provide a large area for support of the solar panels. And so the propulsion system can still generate a significant amount of solar power even when optimised for wind power generation.
Preferably each aerofoil has a solar panel thereon.
Preferably the displacement mechanism comprises an endless cable extending at least part way along the main mast.
Preferably each displaceable aerofoil is supported by an aerofoil frame, each aerofoil frame comprising a clamp for clamping the aerofoil frame to the endless cable
Preferably the propulsion system further comprises a stub rotation mechanism for rotating the stub about the stub axis.
Preferably the stub rotation mechanism comprises a mechanical gear system, preferably a worm and worm gear.
Preferably the propulsion system further comprises a pivot mechanism for pivoting the main mast with respect to the stub mast about the pivot.
Preferably the pivot mechanism comprises an extensible ram arranged between the main mast and stub mast.
Preferably the propulsion system further comprises a controller connected to the displacement mechanism for controlling the arrangement of the aerofoils.
Preferably the controller is adapted to detect at least one of force on the aerofoils, wind speed, wind direction and solar power generation and to control the arrangement of the aerofoils in response thereto.
Preferably the propulsion system comprises a plurality of displaceable aerofoils connected to the main mast, each displaceable aerofoil being adapted to be displaced between an open position for that aerofoil to a closed position for that aerofoil, the displacement mechanism being adapted to displace each displaceable aerofoil between its open and closed positions.
Preferably each displaceable aerofoil is adapted to be displaced to a different open position.
Preferably all of the displaceable aerofoils are adapted to be displaced to the same closed position.
In a further aspect of the invention there is provided a boat comprising a propulsion system as claimed in any one of claims 1 to 13.
The present invention will now be described by way of example only and not in any limitative sense with reference to the accompanying drawings in which
Shown in
The stub mast 3 extends along a stub mast axis 5 and is free to rotate about the stub mast axis 5. Rotation of the stub mast 3 about the stub mast axis 5 is driven by a stub rotation mechanism which is described in more detail below.
A main mast 6 is connected to the stub mast 3 by a stub pivot 7. The main mast 6 can be pivoted with respect to the stub mast 3 about the stub pivot 7. Pivoting is achieved by means of a pivot mechanism 8 which extends between the stub mast 3 and main mast 6.
Connected to the main mast 6 is a plurality of aerofoils 9 each having a solar panel 10 thereon. Each of the aerofoils 9 is substantially rigid to support its associated solar panel 10. As can be seen from the perspective view of
Returning to
Shown in
Shown in
Shown in
In order to displace a displaceable aerofoil 9, the motor 18 turns the drive pulley 16 so rotating the endless cable 14. The solenoid clamp 19 associated with the aerofoil support frame 11 for that aerofoil 9 is closed so clamping the aerofoil support frame 11 to the endless cable 14. As the cable 14 moves the aerofoil support frame 11 and hence the associated aerofoil 9 is pulled along the main mast 6 to the desired position. Once the aerofoil 9 reaches the desired position the endless cable 14 is braked so holding the aerofoil 9 aloft in the desired position. By appropriate opening and closing of the solenoid clamps 19 and movement of the endless cable 14 the displaceable aerofoils 9 can be moved as desired along the main mast 6. Each support frame 11 may further comprise a supplemental lock (not shown) which allows the aerofoil support frame 11 to be locked in position along the mast 6 and the associated solenoid clamp 19 opened. Use of such supplemental locks enables a user to move an aerofoil 9 to a desired position along the mast 6, lock it in place with the supplemental lock, release the solenoid clamp 19 then move the endless cable 14 to displace a different displaceable aerofoil 9. Supplemental locks allow the displaceable aerofoils 9 to be moved individually if required.
Shown in
Shown in
Shown in
In use a user programs the controller 26 with the course of the boat 2. In an alternative embodiment the controller 26 may determine this automatically, for example from a GPS system. On receiving the course information, the controller 26, based on the wind direction and speed, rotates the stub mast 3 to the appropriate orientation, raises the main mast 6 to the desired angle and displaces the aerofoils 9 to form a sail to propel the boat 2 in the desired direction. If the wind direction changes the controller 26 automatically rotates the stub mast 3 to, compensate. Similarly, if the wind speed changes the controller 26 displaces the aerofoils 9 to increase or decrease the effective sail area so as to optimise the forces on the boat 2. The measured force on the aerofoils 9 is typically used to perform this optimisation. The solar panels 10 on the aerofoils 9 collect sunlight so generating solar power which may be used to charge batteries on the boat 2 whilst the boat 2 is being driven by the aerofoils. The charged batteries can be used to drive electrical systems on the boat 2, for example electrical propellers to drive the boat 2 through the water or to power heating or lighting.
A further parameter that can be programmed into the controller 26 is the relative importance of wind power generation and solar power generation. If a user increases the relative importance of solar power generation the controller 26 adjusts the position of the masts 3,6, moving the aerofoils 9 away from the optimum position for collecting wind slightly and towards the sun. This decreases the amount of wind power generated but increases the amount of solar power generated. If the aerofoils 9 do not form a sail of open sail area it may be possible for the controller 26 to displace the displaceable aerofoils 9 increasing the sail area so compensating for the reduction in wind collection. Similarly, if the importance of solar power generation is reduced the controller 26 will adjust the masts 3,6 returning the aerofoils 9 back to the optimum orientation for collection of wind.
In the above described embodiment each aerofoil 9 has a solar panel 10 thereon. In an alternative embodiment only some of the aerofoils 9 have solar panels 10 thereon.
Similarly, in the above embodiment the bottom aerofoil 9 is a fixed aerofoil 9 and the remainder are displaceable aerofoils 9. In an alternative embodiment all of the aerofoils 9 are displaceable aerofoils 9. In a further alternative embodiment, a plurality of the aerofoils 9 are fixed aerofoils 9 and the remainder are displaceable aerofoils 9.
In an alternative embodiment of the invention a user programs the controller 26 with the desired positions of the main mast 6, stub mast 3 and aerofoils 9. The controller 26 then drives the displacement mechanism 13, stub rotation mechanism 20 and pivot mechanism 8 to move the masts 3,6 and aerofoils 9 to the desired positions. In a further alternative embodiment, the user does not employ a controller 26 and instead drives the displacement mechanism 13, stub rotation mechanism 20 and pivot mechanism 8 directly. In a further embodiment of the invention at least one of the stub mast 3 and main mast 6 are moved manually. In this case locking pins are typically used to lock the main mast 6 in place relative to the stub mast 3.
Number | Date | Country | Kind |
---|---|---|---|
1813263 | Aug 2018 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2019/052261 | 8/12/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/035668 | 2/20/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6189472 | Duncan | Feb 2001 | B1 |
6848442 | Haber | Feb 2005 | B2 |
20090188487 | Jones | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1049856 | Mar 1979 | CA |
107697257 | Apr 2019 | CN |
9004412 | Sep 1990 | DE |
S56116593 | Sep 1981 | JP |
2008098051 | Aug 2008 | WO |
2012076945 | Jun 2012 | WO |
2018039705 | Mar 2018 | WO |
Entry |
---|
International search report for international application No. PCT/GB2019/052261, dated Oct. 10, 2019. |
Great Britain Intellectual Property Office search report dated Feb. 4, 2020 for application No. GB1813263.9. |
Number | Date | Country | |
---|---|---|---|
20210163112 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CT2019/052261 | Aug 2019 | US |
Child | 17268024 | US |