Prostate imaging

Information

  • Patent Grant
  • 8521253
  • Patent Number
    8,521,253
  • Date Filed
    Monday, October 29, 2007
    17 years ago
  • Date Issued
    Tuesday, August 27, 2013
    11 years ago
Abstract
A device for registering prostate images, the device comprises an elongate element suitable for insertion into a body passageway, the elongate element comprising at least one marker readable by an ultrasound probe and at least one marker readable by a gamma camera.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to a device and method for registering prostate images, using a registration element suitable for insertion into a body passageway.


The prostate gland may contain multiple tumors that require taking biopsies of multiple tissue samples to determine, for example, the presence of malignant cells.


During prostate biopsy, an ultrasound probe is inserted into the patient rectum to produce ultrasound images of the prostate. A thin biopsy needle is inserted, for example trans-rectally, and visualized on the ultrasound monitor. The multiple random tissue samples taken with the biopsy needle are sent to a laboratory and analyzed for malignant cells.


To take multiple samples on a non-random basis, nuclear images of the prostate taken from a nuclear imager mounted on a large gantry in close proximity to the surgical field are registered with the ultrasound images.


SUMMARY OF THE INVENTION

According to one aspect of the invention, there is provided a device for registering prostate images, the device comprising: an elongate element suitable for insertion into a body passageway, the elongate element comprising at least one marker readable by an ultrasound probe, and at least one marker readable by a gamma camera.


In embodiments, the elongate element is configured for insertion into a portion of a urethra. In embodiments, the elongate element is flexible.


In embodiments, the at least one marker readable by the ultrasound probe comprises at least one of: air bubbles and solid-state markers.


In embodiments, the at least one marker readable by the ultrasound probe has a different density than the average density of prostate tissue.


In embodiments, the elongate element is provided in a kit containing a tumor imaging fluid and the at least one marker readable by the gamma camera has a photo peak energy that is different from a photo peak energy of the tumor imaging fluid.


In embodiments, the at least one marker readable by an ultrasound probe comprises at least two markers readable by the ultrasound probe and the at least one marker readable by the gamma camera is configured as an interleaf between the at least two of the markers readable by the ultrasound probe.


In embodiments, the device includes at least three interleafs along at least a portion of the elongate element, comprising: at least one first interleaf pattern, at least one second interleaf pattern, and at least one third interleaf pattern.


In embodiments, the at least one first interleaf is spaced a first distance from the at least one second interleaf, and the at least one second interleaf is spaced a second distance from the at least one third interleaf, wherein the first distance is different from the second distance.


In embodiments, the device includes at least two markers readable by the gamma camera, comprising at least one first marker readable by the gamma camera having a different photo peak energy than the at least one second marker readable by the gamma camera.


In embodiments, the device includes at least two markers readable by the ultrasound probe, comprising a first marker having a first density readable by the ultrasound probe and a second marker having a second density readable by the ultrasound probe.


In embodiments, the device includes at least one marker that is readable by the ultrasound probe and the gamma camera.


In embodiments, the device includes at least two markers that are readable by the ultrasound probe and the gamma camera, comprising at least one first marker having a first photo peak energy and at least one second marker having a second photo peak energy.


In embodiments, the device includes at least two markers that are readable by the ultrasound probe and the gamma camera, comprising at least one first marker having a first density readable by the ultrasound probe and at least one second marker having a second density readable by the ultrasound probe.


According to a further aspect of the invention, there is provided a method for registering an ultrasound image with a gamma camera image, the method comprising: imaging a tissue portion and an ultrasound-readable marker using a rectally introduced ultrasound probe, imaging the tissue, and a gamma camera-readable marker using a rectally introduced gamma camera, and registering the image using the ultrasound probe and the image using the gamma camera.


In embodiments, the method includes providing the ultrasound-readable marker and the gamma camera-readable marker on a single elongate element.


In embodiments, the tissue portion comprises a prostate.


In embodiments, the method includes superimposing a 2D slice of the imaging using the gamma camera on a correspondingly registered 2D slice of the imaging using the ultrasound.


In embodiments, the method includes guiding a biopsy needle seen on an ultrasound image with the superimposed 2D slice.


According to another embodiment of the invention, there is provided an image registration device, comprising: a correlating circuit configured to correlate a 2D ultrasound image of a tissue portion to a 3D ultrasound image of the tissue portion and a nuclear extraction circuit configured to extract a 2D nuclear image from a 3D nuclear image of the tissue portion, based on the correlation.


In embodiments, the circuitry is programmed using software. In embodiments, the circuitry is preprogrammed with software.


In embodiments, the circuitry is configured to extract the 2D nuclear image using at least two markers, comprising at least one ultrasound-readable marker, and at least one gamma camera-readable marker.


In embodiments, the circuitry is configured to assemble the 3D ultrasound image from multiple 2D ultrasound images of the tissue portion.


In embodiments, the circuitry includes an image generating software module configured to generate a real time image of the correlated 2D ultrasound image and the 2D extracted nuclear image.


The present invention successfully addresses the shortcomings of the presently known configurations by providing a device and method for registering prostate images using a registration element suitable for insertion into a body passageway.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below.


In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


As used herein, the terms “comprising” and “including” or grammatical variants thereof are to be taken as specifying the stated features, integers, steps or components but do not preclude the addition of one or more additional features, integers, steps, components or groups thereof. This term encompasses the terms “consisting of” and “consisting essentially of”.


The phrase “consisting essentially of” or grammatical variants thereof when used herein are to be taken as specifying the stated features, integers, steps or components but do not preclude the addition of one or more additional features, integers, steps, components or groups thereof but only if the additional features, integers, steps, components or groups thereof do not materially alter the basic and novel characteristics of the claimed composition, device or method.


The term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the imaging arts.


Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.


For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit.


Additionally, software for performing selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system.


In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard disk and/or removable media, for storing instructions and/or data.


Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.





BRIEF DESCRIPTION OF THE DRAWINGS

The file of this patent contains at least one drawing executed in color photograph. Copies of this patent with color photograph(s) will be provided by the Patent and Trademark Office upon request and payment of necessary fee.


The invention of a device and method for registering prostate images, using a registration element suitable for insertion into a body passageway, is herein described, by way of example only, with reference to the accompanying drawings.


With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention.


In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention; the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


In the drawings:



FIG. 1 shows a registration guide, according to an embodiment of the present invention;



FIGS. 2 and 3 show a gamma camera probe being used to examine a prostate in a cross section of a human body, according to an embodiment of the present invention;



FIG. 4A shows the prostate of FIG. 2 being examined with an ultrasound probe, according to an embodiment of the present invention;



FIG. 4B shows registration of the ultrasound image of FIG. 4A and gamma camera image of FIG. 2, according to an embodiment of the present invention;



FIG. 5 shows biopsies being taken in real time using the registered image of FIG. 4B, according to an embodiment of the present invention; and



FIG. 6 shows a Prostate Image Registration Flowchart according to an embodiment of the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is a device and method for providing registration of nuclear and ultrasound images of the prostate in real time.


The principles and operation of the device and method according to the present invention may be better understood with reference to the drawings and accompanying descriptions.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings.


Further, it is to be understood that the invention is not limited in its application to the details set forth in the following description. The invention is capable of other embodiments or of being practiced or carried out in various ways.


In addition, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


Referring now to the drawings:



FIG. 1 shows a registration guide 104 for the registration of ultrasound and nuclear isotope images of prostate tissue 122.


Registration guide 104 comprises a flexible polymer that can easily follow the configuration of a urethra 110 and a diameter that allows easy insertion through urethra 110, for example between about 2.0 and 4.0 millimeters in diameter.


Registration guide 104 includes a nuclear isotope that emits gamma rays that is formed into nuclear imager-readable markers 106. Nuclear imager-readable markers 106 can be formed, for example, by introducing particles of the nuclear isotope into a base comprising a polymer, which is then adhered to registration guide 104.


Nuclear imager-readable markers 106 emit gamma rays having a photo-peak energy that is different from an average photo-peak energy that of an isotope 101 that is introduced by injection. In embodiments, isotope 101 may be introduced as a sub-dermal and/or intra-muscular injection.


In alternative embodiments, isotope 101 may be introduced through vena-puncture. In still other embodiments, isotope 101 may be directly injected into prostate tissue 122 surrounding registration guide 104.


Registration guide 104 additionally includes ultrasound-readable markers 105 comprising air bubbles or solid-state markers that are configured to reflect ultrasound waves.


In embodiments, one or more ultrasound-readable markers have a density that is different from the density of urethra 110 and prostate tissue 122 surrounding registration guide 104. As explained below, there are varieties of arrangements of ultrasound-readable markers 105 and/or nuclear markers 106 on registration guide 104 for the purpose of providing, for example, greater registration precision.


Ultrasound-readable markers 105 and nuclear markers 106 are optionally placed on registration guide 104 to be read by the respective imaging devices from any degree of rotation with respect to registration guide 104.


Referring to FIGS. 2 and 3, prostate isotope 101 has been introduced via the blood stream and absorbed by prostate 122 shown in a cross section of a portion of a human 120.


Registration guide 104, of sufficient length to pass through urethra 110 and prostate 122, is positioned so that ultrasound-readable markers 105 and nuclear imager-readable markers 106 are near prostate 122. A nuclear imager camera probe 102 is placed in a rectum 103 and an image 124 of prostate 122 is acquired and displayed on a monitor 125.


In some cases, it may be advantageous to prevent longitudinal movement of registration guide 104 within urethra 110. In such cases, registration guide 104 optionally includes a balloon at a first end that is inflatable within the bladder and/or a biologically compatible tape that secures a second end of registration guide 104 to the external opening of urethra 110.


Referring to FIG. 4A, nuclear imager camera probe 102 has been replaced by an ultrasound probe 109 in rectum 103.


An ultrasound scan of prostate 122 is made, thereby capturing a long section of registration guide 104, forming an image slice 126 that is displayed on monitor 125. Multiple image slices 126 are formed into a 3D ultrasound image as will be explained below.


In general, the position of nuclear imager camera probe 102 and ultrasound probe 109 are determined by the position of registration guide 104 within the respective images. For example, a portion of registration guide 104 appears in the bottom left corner of an image provided by nuclear imager camera probe 102. The same portion of registration guide 104 appears in the upper right corner of an image provided by ultrasound probe 109. Registration guides in the ultrasound and nuclear images are aligned during processing so that appropriate portions of each image undergo registration.


Optionally, registration guide 104 is a relatively non-stretchable material so that the spacing between ultrasound-readable markers 105 and nuclear imager-readable markers 106 does not significantly change between acquiring images from nuclear imager camera probe 102 and ultrasound probe 109.


Alignment between images from nuclear imager camera probe 102 and ultrasound probe 109 may be optionally enhanced by varying the spacing and/or pattern of ultrasound-readable markers 105 and nuclear imager-readable markers 106.


Registration guide 104 is shown with single ultrasound-readable markers 105 equally spaced between and single nuclear markers 106 that can require capturing a long section of registration guide 104 to provide a basis for image registration.


A greater number of markers 105 and 106 along a given length of registration guide 104 provides for more precise location of images provided by nuclear imager camera probe 102 and/or ultrasound probe 109.


Alternatively, applying groups of markers 105 and 106 and varying parameters of markers 105 and 106 in each group, may allow the operator to more precisely identify the location of each image based upon the positioning of each group of markers.


Variations in parameters may include multiple ultrasound-readable markers 105 that vary in density throughout the length of registration guide 104. Additionally or alternatively, by using different isotopes, multiple nuclear markers 106 may vary in photo-peak throughout registration guide 104, similarly achieving greater imaging precision such that a relatively small field of the imaged portion of prostate 122 can be precisely determined.


Alternatively, to achieve registration precision along a relatively short portion of registration guide 104, ultrasound-readable markers 105 that vary in density and nuclear markers 106 having unvaried photo-peaks may be merged into single markers 105 and 106, thereby providing more precise positioning information.


In still further optional configurations, multiple nuclear markers 106 varying in photo-peak can be merged with ultrasound-readable markers 105.


In still further embodiments, single markers 105 and 106 having variable ultrasound density can be spaced relatively close together.


In still further embodiments to achieve greater positioning precision, ultrasound-readable markers 105 and nuclear markers 106 may be sequenced to form patterns.


For example, an upper portion of registration guide 104 includes two ultrasound-readable markers 105 followed by one nuclear marker 106. Along a mid portion of registration guide 104, two nuclear markers 106 follow one ultrasound-readable marker 105. Along a lower portion of registration guide 104, one nuclear marker 106 is followed by one ultrasound-readable marker 105.


In still further embodiments, variable distances between the markers may be used as a code to support absolute positioning based on relatively short segment of the registration guide.


For example, along an upper portion of registration guide 104, ultrasound-readable markers 105 and nuclear markers 106 are spaced 1 millimeter apart. Along a mid portion of registration guide 104, markers 105 and 106 are spaced 1.5 millimeters apart, while along a lower portion of registration guide 104, markers 105 and 106 are spaced 2.0 millimeters apart.


Referring to FIG. 4B, as seen in image 128, a slice of ultrasound image slice 126 is registered with nuclear image 124, using registration guide 104 to align the images as noted above. Registered image 128 is displayed on monitor 125 in which nuclear markers 106 and acoustical markers 105 have been aligned, merged and then deleted from image 128. Tumors 129, 130, 132 and 134 are shown on ultrasound image 126.


In FIG. 5, registered image 128 is used to visualize the position of biopsy needle 144 in real time and tissue samples are precisely taken from tumors 129, 130, 132 and 134.



FIG. 6 shows a Prostate Image Registration Flowchart 100, which summarizes the steps used in registering the above-noted ultrasound and nuclear images.


Isotope 101 has already been introduced into the patient and has bound to prostate tissue 122 and, with higher density, to prostate tumors 129 and 130.


Beginning at an insert stage 102, registration guide 104 is inserted into the urethra of the patient proximate to prostate 122.


At stage 111, a nuclear camera probe is inserted into rectum 103, and a nuclear image of prostate 122 is acquired. Included in the 3D nuclear image are the images of the above-noted nuclear markers on registration guide 104. The nuclear 3D image is saved for later use and the nuclear camera probe is removed.


At an ultrasound 3D image stage 112, ultrasound probe is inserted into rectum 103 and moved with respect to prostate 122. As the clinician moves the ultrasound probe, position and orientation are recorded with respect to registration guide 104 while a series of 2D ultrasound images are recorded.


These 2D slices, together with the information about their positions and orientations, are formed into an ultrasound 3D image of prostate 122 at ultrasound 3D image stage 112. The captured 3D ultrasound prostate image is saved for later use.


In an image registration stage 113, the 3D nuclear image is registered with the ultrasound 3D image of prostate 122. The registration process registers ultrasound and nuclear images by aligning the appropriate markers on registration guide 104 and a common coordinate system 148 is created for both the ultrasound and nuclear 3D images.


At an optional stage 114, using common image processing methods, the tumors 129 and 130, having higher signal than the background, are distinguished from the background. The background is then deleted from the image. An image of the tumors only, with the registration coordinate system, is saved for a later use.


At an ultrasound 2D stage 115, a real time ultrasound 2D image 126 is taken of the prostate. At a stage 116 the ultrasound 2D image 126 is compared and correlated with the 3D ultrasound image 122 acquired in step 112.


In embodiments, identification of the 2D ultrasound image 126 within the 3D ultrasound image 122 uses a cross correlation method, a feature correlation method, or other methods that may be available in the future.


The location of 2D image 126 is then identified in the common coordinate system 148.


At a stage 117, using the planar information found for 2D image 126 in stage 116 and common coordinate system 148, a correlated 2D slice 150 is extracted from the 3D image saved in stage 114.


In a stage 118, the ultrasound 2D image 126 and the nuclear 2D image 150 are registered using the common coordinate system 148 and displayed on a monitor that includes the real time ultrasound 2D view 126 showing biopsy needle 144 in position with the correlated nuclear 2D view 150 of tumor 129.


Biopsy needle 144, as shown, is entered trans-rectally, however trans-peritoneum or other entry positions are contemplated as well.


It is expected that during the life of this patent, many relevant ultrasound and gamma camera registration systems will be developed and the scope of the term “ultrasound and gamma camera registration systems” is intended to include all such new technologies a priori.


As used herein the term “about” refers to ±10%.


Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art.


Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

Claims
  • 1. A device for assisting in registering prostate images, the device comprising: an elongate element suitable to follow configuration of a urethra and having a diameter and length allowing insertion into and passing through said urethra to a position near the prostate, said elongate element comprising: i) at least one marker readable by an ultrasound probe, andii) at least one marker readable by a gamma camera;wherein said markers and same portions of said elongate element imaged in ultrasound and gamma camera images of the prostate are configured to be aligned in an image registration process.
  • 2. The device according to claim 1, wherein said elongate element is flexible.
  • 3. The device according to claim 1, wherein said at least one marker readable by said ultrasound probe comprises at least one of: an air bubble; anda solid state marker.
  • 4. The device according to claim 1, wherein said at least one marker readable by said ultrasound probe has a different density than an average density of prostate tissue.
  • 5. The device according to claim 1, wherein said elongate element is provided in a kit containing a tumor imaging fluid and said at least one marker readable by said gamma camera has a photo peak energy that is different from a photo peak energy of said tumor imaging fluid.
  • 6. The device according to claim 1, wherein; i) said at least one marker readable by an ultrasound probe comprises at least two markers readable by said ultrasound probe; andii) said at least one marker readable by said gamma camera is configured as an interleaf between said at least two of said markers readable by said ultrasound probe.
  • 7. The device according to claim 6, including at least three interleafs along at least a portion of said elongate element, comprising: at least one first interleaf pattern;at least one second interleaf pattern; andat least one third interleaf pattern.
  • 8. The device according to claim 7, wherein: i) said at least one first interleaf is spaced a first distance from said at least one second interleaf; andii) said at least one second interleaf is spaced a second distance from said at least one third interleaf.
  • 9. The device according to claim 1, including at least two markers readable by said gamma camera, comprising: i) at least one first marker having a first photo peak energy; andii) at least one second marker having a second photo peak energy.
  • 10. The device according to claim 1, including at least two markers readable by said ultrasound probe, comprising: i) a first marker having a first density readable by said ultrasound probe; andii) a second marker having a second density readable by said ultrasound probe.
  • 11. The device according to claim 1, including at least one marker that is readable by said ultrasound probe and said gamma camera.
  • 12. The device according to claim 1, including at least two markers that are readable by said ultrasound probe and said gamma camera, comprising: i) at least one first marker having a first photo peak energy; andii) at least one second marker having a second photo peak energy.
  • 13. The device according to claim 1, including at least two markers that are readable by said ultrasound probe and said gamma camera, comprising: i) at least one first marker having a first density readable by said ultrasound probe; andii) at least one second marker having a second density readable by said ultrasound probe.
  • 14. The device of claim 1, wherein said elongate element includes an inflatable balloon at a first end thereof.
  • 15. The device of claim 1, wherein said at least one marker readable by said ultrasound probe and said at least one marker readable by said gamma camera along said elongate element are variably spaced apart or patterned.
  • 16. The device of claim 1, wherein along a length of said elongate element at least one said ultrasound probe marker is spaced a distance apart from at least one said gamma camera marker.
  • 17. The device of claim 1, wherein said aligned imaged markers and imaged same portions of said elongate element are used for creating a common coordinate system for said ultrasound and gamma camera images of the prostate.
  • 18. The device of claim 1, wherein the device is used for assisting in acquiring the prostate images.
  • 19. The device of claim 18, wherein a position of said same portions of said elongate element imaged in said ultrasound and gamma camera images of the prostate determines a position of said ultrasound probe and of said gamma camera relative to the prostate.
  • 20. A method for assisting in registering prostate images, the method comprising: providing an elongate element suitable to follow configuration of a urethra and having a diameter and length allowing insertion into and passing through said urethra to a position near the prostate, said elongate element comprising: i) at least one marker readable by an ultrasound probe, and ii) at least one marker readable by a gamma camera;inserting said elongate element into and through said urethra to a said position near the prostate;acquiring ultrasound images and gamma camera images of the prostate and of said markers, by said ultrasound probe and said gamma camera; andaligning said markers and same portions of said elongate element imaged in said ultrasound and gamma camera images of the prostate, in an image registration process.
  • 21. The method of claim 20, further comprising using said aligned imaged markers and imaged same portions of said elongate element for creating a common coordinate system for said ultrasound and gamma camera images of the prostate.
  • 22. The method of claim 20, further comprising using a position of said same portions of said elongate element imaged in said ultrasound and gamma camera images of the prostate for determining a position of said ultrasound probe and of said gamma camera relative to the prostate.
US Referenced Citations (718)
Number Name Date Kind
630611 Knapp et al. Aug 1899 A
2776377 Anger Jan 1957 A
3340866 Nöller Sep 1967 A
3446965 Ogier et al. May 1969 A
3535085 Shumate et al. Oct 1970 A
3684887 Hugonin Aug 1972 A
3690309 Pluzhnikov et al. Sep 1972 A
3719183 Schwartz Mar 1973 A
3739279 Hollis Jun 1973 A
3971362 Pope et al. Jul 1976 A
3978337 Nickles et al. Aug 1976 A
3988585 O'Neill et al. Oct 1976 A
4000502 Butler et al. Dec 1976 A
4015592 Bradley-Moore Apr 1977 A
4055765 Gerber et al. Oct 1977 A
4061919 Miller et al. Dec 1977 A
4095107 Genna et al. Jun 1978 A
4165462 Macovski et al. Aug 1979 A
4181856 Bone Jan 1980 A
4278077 Mizumoto Jul 1981 A
4289969 Cooperstein et al. Sep 1981 A
4291708 Frei et al. Sep 1981 A
4296785 Vitello et al. Oct 1981 A
4302675 Wake et al. Nov 1981 A
4364377 Smith Dec 1982 A
4383327 Kruger May 1983 A
4476381 Rubin Oct 1984 A
4503331 Kovacs, Jr. et al. Mar 1985 A
4521688 Yin Jun 1985 A
H12 Bennett et al. Jan 1986 H
4580054 Shimoni Apr 1986 A
4595014 Barrett et al. Jun 1986 A
4674107 Urban et al. Jun 1987 A
4679142 Lee Jul 1987 A
4689041 Corday et al. Aug 1987 A
4689621 Kleinberg Aug 1987 A
4709382 Sones Nov 1987 A
4710624 Alvarez et al. Dec 1987 A
4731536 Rische et al. Mar 1988 A
4773430 Porath Sep 1988 A
4782840 Martin, Jr. et al. Nov 1988 A
4791934 Brunnett Dec 1988 A
4801803 Denen et al. Jan 1989 A
4828841 Porter et al. May 1989 A
4834112 Machek et al. May 1989 A
4844067 Ikada et al. Jul 1989 A
4844076 Lesho et al. Jul 1989 A
4853546 Abe et al. Aug 1989 A
4854324 Hirschman et al. Aug 1989 A
4854330 Evans, III et al. Aug 1989 A
4867962 Abrams Sep 1989 A
4893013 Denen et al. Jan 1990 A
4893322 Hellmick et al. Jan 1990 A
4919146 Rhinehart et al. Apr 1990 A
4924486 Weber et al. May 1990 A
4928250 Greenberg et al. May 1990 A
4929832 Ledley May 1990 A
4938230 Machek et al. Jul 1990 A
4951653 Fry et al. Aug 1990 A
4959547 Carroll et al. Sep 1990 A
4970391 Uber, III Nov 1990 A
4995396 Inaba et al. Feb 1991 A
5014708 Hayashi et al. May 1991 A
5018182 Cowan et al. May 1991 A
5032729 Charpak Jul 1991 A
5033998 Corday et al. Jul 1991 A
5039863 Matsuno et al. Aug 1991 A
5042056 Hellmick et al. Aug 1991 A
5070878 Denen Dec 1991 A
5088492 Takayama et al. Feb 1992 A
5115137 Andersson-Engels et al. May 1992 A
5119818 Carroll et al. Jun 1992 A
5132542 Bassalleck et al. Jul 1992 A
5145163 Cowan et al. Sep 1992 A
5151598 Denen Sep 1992 A
5170055 Carroll et al. Dec 1992 A
5170439 Zeng et al. Dec 1992 A
5170789 Narayan et al. Dec 1992 A
5196796 Misic et al. Mar 1993 A
5210421 Gullberg et al. May 1993 A
5243988 Sieben et al. Sep 1993 A
5246005 Carroll et al. Sep 1993 A
5249124 DeVito Sep 1993 A
5252830 Weinberg Oct 1993 A
5254101 Trombley, III Oct 1993 A
5258717 Misic et al. Nov 1993 A
5263077 Cowan et al. Nov 1993 A
5279607 Schentag et al. Jan 1994 A
5284147 Hanaoka et al. Feb 1994 A
5299253 Wessels Mar 1994 A
5304165 Haber et al. Apr 1994 A
5307808 Dumoulin et al. May 1994 A
5307814 Kressel et al. May 1994 A
5309959 Shaw et al. May 1994 A
5317506 Coutre et al. May 1994 A
5317619 Hellmick et al. May 1994 A
5323006 Thompson et al. Jun 1994 A
5329976 Haber et al. Jul 1994 A
5334141 Carr et al. Aug 1994 A
5349190 Hines et al. Sep 1994 A
5355087 Claiborne et al. Oct 1994 A
5365069 Eisen et al. Nov 1994 A
5365928 Rhinehart et al. Nov 1994 A
5367552 Peschmann Nov 1994 A
5377681 Drane Jan 1995 A
5381791 Qian Jan 1995 A
5383456 Arnold et al. Jan 1995 A
5383858 Reilly et al. Jan 1995 A
5386446 Fujimoto et al. Jan 1995 A
5387409 Nunn et al. Feb 1995 A
5391877 Marks Feb 1995 A
5395366 D'Andrea Mar 1995 A
5399868 Jones et al. Mar 1995 A
5404293 Weng et al. Apr 1995 A
5415181 Hofgrefe et al. May 1995 A
5431161 Ryals et al. Jul 1995 A
5435302 Lenkinski et al. Jul 1995 A
5436458 Tran et al. Jul 1995 A
5441050 Thurston et al. Aug 1995 A
5448073 Jeanguillaume Sep 1995 A
5451232 Rhinehart et al. Sep 1995 A
5472403 Cornacchia et al. Dec 1995 A
5475219 Olson Dec 1995 A
5475232 Powers et al. Dec 1995 A
5476095 Schnall et al. Dec 1995 A
5479969 Hardie et al. Jan 1996 A
5481115 Hsieh et al. Jan 1996 A
5484384 Fearnot Jan 1996 A
5489782 Wernikoff Feb 1996 A
5493595 Schoolman Feb 1996 A
5493805 Penuela et al. Feb 1996 A
5494036 Uber, III et al. Feb 1996 A
5501674 Trombley, III et al. Mar 1996 A
5517120 Misik et al. May 1996 A
5519221 Weinberg May 1996 A
5519222 Besett May 1996 A
5519931 Reich May 1996 A
5520182 Leighton et al. May 1996 A
5520653 Reilly et al. May 1996 A
5521506 Misic et al. May 1996 A
5536945 Reich Jul 1996 A
5545899 Tran et al. Aug 1996 A
5559335 Zeng et al. Sep 1996 A
5565684 Gullberg et al. Oct 1996 A
5569181 Heilman et al. Oct 1996 A
5572132 Pulyer et al. Nov 1996 A
5572999 Funda et al. Nov 1996 A
5579766 Gray Dec 1996 A
5580541 Wells et al. Dec 1996 A
5585637 Bertelsen et al. Dec 1996 A
5587585 Eisen et al. Dec 1996 A
5591143 Trombley, III et al. Jan 1997 A
5600145 Plummer Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5610520 Misic Mar 1997 A
5617858 Taverna et al. Apr 1997 A
5629524 Stettner et al. May 1997 A
5635717 Popescu Jun 1997 A
5657759 Essen-Moller Aug 1997 A
5672877 Liebig et al. Sep 1997 A
5677539 Apotovsky et al. Oct 1997 A
5682888 Olson et al. Nov 1997 A
5687542 Lawecki et al. Nov 1997 A
5690691 Chen et al. Nov 1997 A
5692640 Caulfield et al. Dec 1997 A
5694933 Madden et al. Dec 1997 A
5695500 Taylor et al. Dec 1997 A
5716595 Goldenberg Feb 1998 A
5727554 Kalend et al. Mar 1998 A
5729129 Acker Mar 1998 A
5732704 Thurston et al. Mar 1998 A
5739508 Uber, III Apr 1998 A
5741232 Reilly et al. Apr 1998 A
5742060 Ashburn Apr 1998 A
5744805 Raylman et al. Apr 1998 A
5757006 De Vito et al. May 1998 A
5779675 Reilly et al. Jul 1998 A
5780855 Pare et al. Jul 1998 A
5781442 Engleson et al. Jul 1998 A
5784432 Kurtz et al. Jul 1998 A
5786597 Lingren et al. Jul 1998 A
5795333 Reilly et al. Aug 1998 A
5800355 Hasegawa Sep 1998 A
5803914 Ryals et al. Sep 1998 A
5806519 Evans, III et al. Sep 1998 A
5808203 Nolan, Jr. et al. Sep 1998 A
5810742 Pearlman Sep 1998 A
5811814 Leone et al. Sep 1998 A
5813985 Carroll Sep 1998 A
5818050 Dilmanian et al. Oct 1998 A
5821541 Tümer Oct 1998 A
5825031 Wong et al. Oct 1998 A
5827219 Uber, III et al. Oct 1998 A
5828073 Zhu et al. Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5838009 Plummer et al. Nov 1998 A
5840026 Uber, III et al. Nov 1998 A
5841141 Gullberg et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5843037 Uber, III Dec 1998 A
5846513 Carroll et al. Dec 1998 A
5847396 Lingren et al. Dec 1998 A
5857463 Thurston et al. Jan 1999 A
5871013 Wainer et al. Feb 1999 A
5873861 Hitchins et al. Feb 1999 A
5880475 Oka et al. Mar 1999 A
5882338 Gray Mar 1999 A
5884457 Ortiz et al. Mar 1999 A
5885216 Evans, III et al. Mar 1999 A
5891030 Johnson et al. Apr 1999 A
5893397 Peterson et al. Apr 1999 A
5899885 Reilly et al. May 1999 A
5900533 Chou May 1999 A
5903008 Li May 1999 A
5910112 Judd et al. Jun 1999 A
5911252 Cassel Jun 1999 A
5916167 Kramer et al. Jun 1999 A
5916197 Reilly et al. Jun 1999 A
5920054 Uber, III Jul 1999 A
5927351 Zhu et al. Jul 1999 A
5928150 Call Jul 1999 A
5932879 Raylman et al. Aug 1999 A
5938639 Reilly et al. Aug 1999 A
5939724 Eisen et al. Aug 1999 A
5944190 Edelen Aug 1999 A
5944694 Hitchins et al. Aug 1999 A
5947935 Rhinehart et al. Sep 1999 A
5953884 Lawecki et al. Sep 1999 A
5954668 Uber, III et al. Sep 1999 A
5961457 Raylman et al. Oct 1999 A
5967983 Ashburn Oct 1999 A
5973598 Beigel Oct 1999 A
5974165 Giger et al. Oct 1999 A
5984860 Shan Nov 1999 A
5987350 Thurston Nov 1999 A
5993378 Lemelson Nov 1999 A
5997502 Reilly et al. Dec 1999 A
6002134 Lingren Dec 1999 A
6002480 Izatt et al. Dec 1999 A
6017330 Hitchins et al. Jan 2000 A
6019745 Gray Feb 2000 A
6021341 Scibilia et al. Feb 2000 A
6026317 Verani Feb 2000 A
6037595 Lingren Mar 2000 A
6040697 Misic Mar 2000 A
6042565 Hirschman et al. Mar 2000 A
RE36648 Uber, III et al. Apr 2000 E
6046454 Lingren et al. Apr 2000 A
6048334 Hirschman et al. Apr 2000 A
6052618 Dahlke et al. Apr 2000 A
6055450 Ashburn Apr 2000 A
6055452 Pearlman Apr 2000 A
RE36693 Reich May 2000 E
6063052 Uber et al. May 2000 A
D426891 Beale et al. Jun 2000 S
D426892 Beale et al. Jun 2000 S
6072177 McCroskey et al. Jun 2000 A
6076009 Raylman et al. Jun 2000 A
6080984 Friesenhahn Jun 2000 A
D428491 Beale et al. Jul 2000 S
6082366 Andra et al. Jul 2000 A
6090064 Reilly et al. Jul 2000 A
6091070 Lingren et al. Jul 2000 A
6096011 Trombley, III et al. Aug 2000 A
6107102 Ferrari Aug 2000 A
6115635 Bourgeois Sep 2000 A
6129670 Burdette et al. Oct 2000 A
6132372 Essen-Moller Oct 2000 A
6135955 Madden et al. Oct 2000 A
6135968 Brounstein Oct 2000 A
6137109 Hayes Oct 2000 A
6145277 Lawecki et al. Nov 2000 A
6147352 Ashburn Nov 2000 A
6147353 Gagnon et al. Nov 2000 A
6148229 Morris, Sr. et al. Nov 2000 A
6149627 Uber, III Nov 2000 A
6155485 Coughlin et al. Dec 2000 A
6160398 Walsh Dec 2000 A
6162198 Coffey et al. Dec 2000 A
6172362 Lingren et al. Jan 2001 B1
6173201 Front Jan 2001 B1
6184530 Hines et al. Feb 2001 B1
6189195 Reilly et al. Feb 2001 B1
6194715 Lingren et al. Feb 2001 B1
6194725 Colsher et al. Feb 2001 B1
6194726 Pi et al. Feb 2001 B1
6197000 Reilly et al. Mar 2001 B1
6202923 Boyer et al. Mar 2001 B1
6203775 Torchilin et al. Mar 2001 B1
6205347 Morgan et al. Mar 2001 B1
6212423 Krakovitz Apr 2001 B1
6223065 Misic et al. Apr 2001 B1
6224577 Dedola et al. May 2001 B1
6226350 Hsieh May 2001 B1
6229145 Weinberg May 2001 B1
6232605 Soluri et al. May 2001 B1
6233304 Hu et al. May 2001 B1
6236050 Tumer May 2001 B1
6236878 Taylor et al. May 2001 B1
6236880 Raylman et al. May 2001 B1
6239438 Schubert May 2001 B1
6240312 Alfano et al. May 2001 B1
6241708 Reilly et al. Jun 2001 B1
6242743 DeVito Jun 2001 B1
6242744 Soluri et al. Jun 2001 B1
6242745 Berlad et al. Jun 2001 B1
6246901 Benaron Jun 2001 B1
6252924 Davantes et al. Jun 2001 B1
6258576 Richards-Kortum et al. Jul 2001 B1
6259095 Bouton et al. Jul 2001 B1
6261562 Xu et al. Jul 2001 B1
6263229 Atalar et al. Jul 2001 B1
6269340 Ford et al. Jul 2001 B1
6270463 Morris, Sr. et al. Aug 2001 B1
6271524 Wainer et al. Aug 2001 B1
6271525 Majewski et al. Aug 2001 B1
6280704 Schutt et al. Aug 2001 B1
6281505 Hines et al. Aug 2001 B1
6308097 Pearlman Oct 2001 B1
6310968 Hawkins et al. Oct 2001 B1
6315981 Unger Nov 2001 B1
6317623 Griffiths et al. Nov 2001 B1
6317648 Sleep et al. Nov 2001 B1
6318630 Coughlin et al. Nov 2001 B1
6322535 Hitchins et al. Nov 2001 B1
6323648 Belt et al. Nov 2001 B1
6324418 Crowley et al. Nov 2001 B1
RE37487 Reilly et al. Dec 2001 E
D452737 Nolan, Jr. et al. Jan 2002 S
6336913 Spohn et al. Jan 2002 B1
6339652 Hawkins et al. Jan 2002 B1
6339718 Zatezalo et al. Jan 2002 B1
6344745 Reisker et al. Feb 2002 B1
6346706 Rogers et al. Feb 2002 B1
6346886 de la Huerga Feb 2002 B1
RE37602 Uber, III et al. Mar 2002 E
6353227 Boxen Mar 2002 B1
6356081 Misic Mar 2002 B1
6368331 Front et al. Apr 2002 B1
6371938 Reilly et al. Apr 2002 B1
6375624 Uber, III et al. Apr 2002 B1
6377838 Iwanczyk et al. Apr 2002 B1
6381349 Zeng et al. Apr 2002 B1
6385483 Uber, III et al. May 2002 B1
6388258 Berlad et al. May 2002 B1
6392235 Barrett et al. May 2002 B1
6396273 Misic May 2002 B2
6397098 Uber, III et al. May 2002 B1
6399951 Paulus et al. Jun 2002 B1
6402717 Reilly et al. Jun 2002 B1
6402718 Reilly et al. Jun 2002 B1
6407391 Mastrippolito et al. Jun 2002 B1
6408204 Hirschman Jun 2002 B1
6409987 Cardin et al. Jun 2002 B1
6415046 Kerut, Sr. Jul 2002 B1
6420711 Tuemer Jul 2002 B2
6425174 Riech Jul 2002 B1
6426917 Tabanou et al. Jul 2002 B1
6429431 Wilk Aug 2002 B1
6431175 Penner et al. Aug 2002 B1
6432089 Kakimi et al. Aug 2002 B1
6438401 Cheng et al. Aug 2002 B1
6439444 Shields, II Aug 2002 B1
6440107 Trombley, III et al. Aug 2002 B1
6442418 Evans, III et al. Aug 2002 B1
6448560 Tumer Sep 2002 B1
6453199 Kobozev Sep 2002 B1
6459925 Nields et al. Oct 2002 B1
6459931 Hirschman Oct 2002 B1
6468261 Small et al. Oct 2002 B1
6469306 Van Dulmen et al. Oct 2002 B1
6471674 Emig et al. Oct 2002 B1
6480732 Tanaka et al. Nov 2002 B1
6484051 Daniel Nov 2002 B1
6488661 Spohn et al. Dec 2002 B1
6490476 Townsend et al. Dec 2002 B1
6504157 Juhi Jan 2003 B2
6504178 Carlson et al. Jan 2003 B2
6504899 Pugachev et al. Jan 2003 B2
6506155 Sluis et al. Jan 2003 B2
6510336 Daghighian et al. Jan 2003 B1
6512374 Misic et al. Jan 2003 B1
6516213 Nevo Feb 2003 B1
6519569 White et al. Feb 2003 B1
6520930 Critchlow et al. Feb 2003 B2
6522945 Sleep et al. Feb 2003 B2
6525320 Juni Feb 2003 B1
6525321 Juni Feb 2003 B2
6541763 Lingren et al. Apr 2003 B2
6545280 Weinberg et al. Apr 2003 B2
6549646 Yeh et al. Apr 2003 B1
6560354 Maurer et al. May 2003 B1
6562008 Reilly et al. May 2003 B1
6563942 Takeo et al. May 2003 B2
6565502 Bede et al. May 2003 B1
6567687 Front et al. May 2003 B2
6575930 Trombley, III et al. Jun 2003 B1
6576918 Fu et al. Jun 2003 B1
6584348 Glukhovsky Jun 2003 B2
6585700 Trocki et al. Jul 2003 B1
6587710 Wainer Jul 2003 B1
6589158 Winkler Jul 2003 B2
6591127 McKinnon Jul 2003 B1
6592520 Peszynski et al. Jul 2003 B1
6602488 Daghighian Aug 2003 B1
6607301 Glukhovsky et al. Aug 2003 B1
6611141 Schulz et al. Aug 2003 B1
6614453 Suri et al. Sep 2003 B1
6620134 Trombley, III et al. Sep 2003 B1
6627893 Zeng et al. Sep 2003 B1
6628983 Gagnon Sep 2003 B1
6628984 Weinberg Sep 2003 B2
6630735 Carlson et al. Oct 2003 B1
6631284 Nutt et al. Oct 2003 B2
6632216 Houzego et al. Oct 2003 B2
6633658 Dabney et al. Oct 2003 B1
6638752 Contag et al. Oct 2003 B2
6643537 Zatezalo et al. Nov 2003 B1
6643538 Majewski et al. Nov 2003 B1
6652489 Trocki et al. Nov 2003 B2
6657200 Nygard et al. Dec 2003 B2
6662036 Cosman Dec 2003 B2
6664542 Ye et al. Dec 2003 B2
6670258 Carlson et al. Dec 2003 B2
6671563 Engleson et al. Dec 2003 B1
6673033 Sciulli et al. Jan 2004 B1
6674834 Acharya et al. Jan 2004 B1
6676634 Spohn et al. Jan 2004 B1
6677182 Carlson et al. Jan 2004 B2
6677755 Belt et al. Jan 2004 B2
6680750 Tournier et al. Jan 2004 B1
6694172 Gagnon et al. Feb 2004 B1
6697660 Robinson Feb 2004 B1
6699219 Emig et al. Mar 2004 B2
6704592 Reynolds et al. Mar 2004 B1
6713766 Garrard et al. Mar 2004 B2
6714012 Belt et al. Mar 2004 B2
6714013 Misic Mar 2004 B2
6716195 Nolan, Jr. et al. Apr 2004 B2
6722499 Reich Apr 2004 B2
6723988 Wainer Apr 2004 B1
6726657 Dedig et al. Apr 2004 B1
6728583 Hallett Apr 2004 B2
6731971 Evans, III et al. May 2004 B2
6731989 Engleson et al. May 2004 B2
6733477 Cowan et al. May 2004 B2
6733478 Reilly et al. May 2004 B2
6734416 Carlson et al. May 2004 B2
6734430 Soluri et al. May 2004 B2
6737652 Lanza et al. May 2004 B2
6737866 Belt et al. May 2004 B2
6740882 Weinberg et al. May 2004 B2
6743202 Hirschman et al. Jun 2004 B2
6743205 Nolan, Jr. et al. Jun 2004 B2
6747454 Belt Jun 2004 B2
6748259 Benaron et al. Jun 2004 B1
6751500 Hirschman et al. Jun 2004 B2
6765981 Heumann Jul 2004 B2
6766048 Launay et al. Jul 2004 B1
6771802 Patt et al. Aug 2004 B1
6774358 Hamill et al. Aug 2004 B2
6776977 Liu Aug 2004 B2
6787777 Gagnon et al. Sep 2004 B1
6788758 De Villiers Sep 2004 B2
6798206 Misic Sep 2004 B2
6808513 Reilly et al. Oct 2004 B2
6813868 Baldwin et al. Nov 2004 B2
6821013 Reilly et al. Nov 2004 B2
6822237 Inoue et al. Nov 2004 B2
6833705 Misic Dec 2004 B2
6838672 Wagenaar et al. Jan 2005 B2
6841782 Balan et al. Jan 2005 B1
6843357 Bybee et al. Jan 2005 B2
6851615 Jones Feb 2005 B2
6866654 Callan et al. Mar 2005 B2
6870175 Dell et al. Mar 2005 B2
6881043 Barak Apr 2005 B2
6888351 Belt et al. May 2005 B2
6889074 Uber, III et al. May 2005 B2
6897658 Belt et al. May 2005 B2
6906330 Blevis et al. Jun 2005 B2
D507832 Yanniello et al. Jul 2005 S
6915170 Engleson et al. Jul 2005 B2
6915823 Osborne et al. Jul 2005 B2
6917828 Fukuda Jul 2005 B2
6921384 Reilly et al. Jul 2005 B2
6928142 Shao et al. Aug 2005 B2
6935560 Andreasson et al. Aug 2005 B2
6936030 Pavlik et al. Aug 2005 B1
6937750 Natanzon et al. Aug 2005 B2
6939302 Griffiths et al. Sep 2005 B2
6940070 Tumer Sep 2005 B2
6943355 Shwartz et al. Sep 2005 B2
6957522 Baldwin et al. Oct 2005 B2
6958053 Reilly Oct 2005 B1
6963770 Scarantino et al. Nov 2005 B2
6970735 Uber, III et al. Nov 2005 B2
6972001 Emig et al. Dec 2005 B2
6974443 Reilly et al. Dec 2005 B2
6976349 Baldwin et al. Dec 2005 B2
6984222 Hitchins et al. Jan 2006 B1
6985870 Martucci et al. Jan 2006 B2
6988981 Hamazaki Jan 2006 B2
6994249 Peterka et al. Feb 2006 B2
7009183 Wainer et al. Mar 2006 B2
7011814 Suddarth et al. Mar 2006 B2
7012430 Misic Mar 2006 B2
7017622 Osborne et al. Mar 2006 B2
7018363 Cowan et al. Mar 2006 B2
7019783 Kindem et al. Mar 2006 B2
7025757 Reilly et al. Apr 2006 B2
7026623 Oaknin et al. Apr 2006 B2
7043063 Noble et al. May 2006 B1
7102138 Belvis et al. Sep 2006 B2
7103204 Celler et al. Sep 2006 B1
7127026 Amemiya et al. Oct 2006 B2
7142634 Engler et al. Nov 2006 B2
7145986 Wear et al. Dec 2006 B2
7147372 Nelson et al. Dec 2006 B2
7164130 Welsh et al. Jan 2007 B2
7176466 Rousso et al. Feb 2007 B2
7187790 Sabol et al. Mar 2007 B2
7217953 Carlson May 2007 B2
7256386 Carlson et al. Aug 2007 B2
7327822 Sauer et al. Feb 2008 B2
7359535 Salla et al. Apr 2008 B2
7373197 Daighighian et al. May 2008 B2
7394923 Zou et al. Jul 2008 B2
7444010 De Man Oct 2008 B2
7468513 Charron et al. Dec 2008 B2
7490085 Walker et al. Feb 2009 B2
7495225 Hefetz et al. Feb 2009 B2
7502499 Grady Mar 2009 B2
7570732 Stanton et al. Aug 2009 B2
7592597 Hefetz et al. Sep 2009 B2
7620444 Le et al. Nov 2009 B2
7627084 Jabri et al. Dec 2009 B2
7671331 Hefetz Mar 2010 B2
7672491 Krishnan et al. Mar 2010 B2
7680240 Manjeshwar et al. Mar 2010 B2
7705316 Rousso et al. Apr 2010 B2
7826889 David et al. Nov 2010 B2
7831024 Metzler et al. Nov 2010 B2
7835927 Schlotterbeck et al. Nov 2010 B2
7894650 Weng et al. Feb 2011 B2
7968851 Rousso et al. Jun 2011 B2
8158951 Bal et al. Apr 2012 B2
20010016029 Tumer Aug 2001 A1
20010020131 Kawagishi et al. Sep 2001 A1
20010035902 Iddan et al. Nov 2001 A1
20010049608 Hochman Dec 2001 A1
20020068864 Bishop et al. Jun 2002 A1
20020072784 Sheppard, Jr. et al. Jun 2002 A1
20020085748 Baumberg Jul 2002 A1
20020087101 Barrick et al. Jul 2002 A1
20020099295 Gil et al. Jul 2002 A1
20020099310 Kimchy et al. Jul 2002 A1
20020099334 Hanson et al. Jul 2002 A1
20020103429 DeCharms Aug 2002 A1
20020103431 Toker et al. Aug 2002 A1
20020145114 Inoue et al. Oct 2002 A1
20020148970 Wong et al. Oct 2002 A1
20020165491 Reilly Nov 2002 A1
20020168094 Kaushikkar et al. Nov 2002 A1
20020168317 Daighighian et al. Nov 2002 A1
20020172405 Schultz Nov 2002 A1
20020179843 Tanaka et al. Dec 2002 A1
20020183645 Nachaliel Dec 2002 A1
20020188197 Bishop et al. Dec 2002 A1
20020198738 Osborne Dec 2002 A1
20030001098 Stoddart et al. Jan 2003 A1
20030001837 Baumberg Jan 2003 A1
20030006376 Tumer Jan 2003 A1
20030013950 Rollo et al. Jan 2003 A1
20030013966 Barnes et al. Jan 2003 A1
20030038240 Weinberg Feb 2003 A1
20030055685 Cobb et al. Mar 2003 A1
20030063787 Natanzon et al. Apr 2003 A1
20030071219 Motomura et al. Apr 2003 A1
20030081716 Tumer May 2003 A1
20030135388 Martucci et al. Jul 2003 A1
20030136912 Juni Jul 2003 A1
20030144322 Kozikowski et al. Jul 2003 A1
20030147887 Wang et al. Aug 2003 A1
20030158481 Stotzka et al. Aug 2003 A1
20030183226 Brand et al. Oct 2003 A1
20030189174 Tanaka et al. Oct 2003 A1
20030191430 D'Andrea et al. Oct 2003 A1
20030202629 Dunham et al. Oct 2003 A1
20030208117 Shwartz et al. Nov 2003 A1
20030215122 Tanaka Nov 2003 A1
20030215124 Li Nov 2003 A1
20030216631 Bloch et al. Nov 2003 A1
20030219149 Vailaya et al. Nov 2003 A1
20040003001 Shimura Jan 2004 A1
20040010397 Barbour et al. Jan 2004 A1
20040015075 Kimchy et al. Jan 2004 A1
20040021065 Weber Feb 2004 A1
20040044282 Mixon et al. Mar 2004 A1
20040051368 Caputo et al. Mar 2004 A1
20040054248 Kimchy et al. Mar 2004 A1
20040054278 Kimchy et al. Mar 2004 A1
20040065838 Tumer Apr 2004 A1
20040075058 Blevis et al. Apr 2004 A1
20040081623 Eriksen et al. Apr 2004 A1
20040082918 Evans et al. Apr 2004 A1
20040084340 Morelle et al. May 2004 A1
20040086437 Jackson et al. May 2004 A1
20040101176 Mendonca et al. May 2004 A1
20040101177 Zahlmann et al. May 2004 A1
20040116807 Amrami et al. Jun 2004 A1
20040120557 Sabol Jun 2004 A1
20040122311 Cosman Jun 2004 A1
20040125918 Shanmugaval et al. Jul 2004 A1
20040138557 Le et al. Jul 2004 A1
20040144925 Stoddart et al. Jul 2004 A1
20040153128 Suresh et al. Aug 2004 A1
20040162492 Kobayashi Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040183022 Weinberg Sep 2004 A1
20040184644 Leichter et al. Sep 2004 A1
20040193453 Butterfield et al. Sep 2004 A1
20040195512 Crosetto Oct 2004 A1
20040204646 Nagler et al. Oct 2004 A1
20040205343 Forth et al. Oct 2004 A1
20040210126 Hajaj et al. Oct 2004 A1
20040238743 Gravrand et al. Dec 2004 A1
20040251419 Nelson et al. Dec 2004 A1
20040253177 Elmaleh et al. Dec 2004 A1
20050001170 Juni Jan 2005 A1
20050006589 Joung et al. Jan 2005 A1
20050020898 Vosniak et al. Jan 2005 A1
20050020915 Bellardinelli et al. Jan 2005 A1
20050023474 Persyk et al. Feb 2005 A1
20050029277 Tachibana Feb 2005 A1
20050033157 Klein et al. Feb 2005 A1
20050055174 David et al. Mar 2005 A1
20050056788 Juni Mar 2005 A1
20050074402 Cagnolini et al. Apr 2005 A1
20050107698 Powers et al. May 2005 A1
20050107914 Engleson et al. May 2005 A1
20050108044 Koster May 2005 A1
20050113945 Engleson et al. May 2005 A1
20050121505 Metz et al. Jun 2005 A1
20050131270 Weil et al. Jun 2005 A1
20050145797 Oaknin et al. Jul 2005 A1
20050148869 Masuda Jul 2005 A1
20050149350 Kerr et al. Jul 2005 A1
20050156115 Kobayashi et al. Jul 2005 A1
20050173643 Tumer Aug 2005 A1
20050187465 Motomura et al. Aug 2005 A1
20050198800 Reich Sep 2005 A1
20050203389 Williams Sep 2005 A1
20050205792 Rousso et al. Sep 2005 A1
20050205796 Bryman Sep 2005 A1
20050211909 Smith Sep 2005 A1
20050215889 Patterson, II Sep 2005 A1
20050234424 Besing et al. Oct 2005 A1
20050247893 Fu et al. Nov 2005 A1
20050253073 Joram et al. Nov 2005 A1
20050261936 Silverbrook et al. Nov 2005 A1
20050261937 Silverbrook et al. Nov 2005 A1
20050261938 Silverbrook et al. Nov 2005 A1
20050266074 Zilberstein et al. Dec 2005 A1
20050277833 Williams, Jr. Dec 2005 A1
20050277911 Stewart et al. Dec 2005 A1
20050278066 Graves et al. Dec 2005 A1
20050288869 Kroll et al. Dec 2005 A1
20060000983 Charron et al. Jan 2006 A1
20060033028 Juni Feb 2006 A1
20060036157 Tumer Feb 2006 A1
20060072799 McLain Apr 2006 A1
20060074290 Chen et al. Apr 2006 A1
20060109950 Arenson et al. May 2006 A1
20060122503 Burbank et al. Jun 2006 A1
20060145081 Hawman Jul 2006 A1
20060160157 Zuckerman Jul 2006 A1
20060237652 Kimchy et al. Oct 2006 A1
20060257012 Kaufman et al. Nov 2006 A1
20070116170 De Man et al. May 2007 A1
20070133852 Collins et al. Jun 2007 A1
20070156047 Nagler et al. Jul 2007 A1
20070166227 Liu et al. Jul 2007 A1
20070189436 Goto et al. Aug 2007 A1
20070194241 Rousso et al. Aug 2007 A1
20070265230 Rousso et al. Nov 2007 A1
20080001090 Ben-Haim et al. Jan 2008 A1
20080029704 Hefetz et al. Feb 2008 A1
20080033291 Rousso et al. Feb 2008 A1
20080036882 Uemura et al. Feb 2008 A1
20080039721 Shai et al. Feb 2008 A1
20080042067 Rousso et al. Feb 2008 A1
20080128626 Rousso et al. Jun 2008 A1
20080137938 Zahniser Jun 2008 A1
20080230702 Rousso et al. Sep 2008 A1
20080230705 Rousso et al. Sep 2008 A1
20080237482 Shahar et al. Oct 2008 A1
20080260228 Dichterman et al. Oct 2008 A1
20080260637 Dickman Oct 2008 A1
20080277591 Shahar et al. Nov 2008 A1
20090001273 Hawman Jan 2009 A1
20090018412 Schmitt Jan 2009 A1
20090078875 Rousso et al. Mar 2009 A1
20090152471 Rousso et al. Jun 2009 A1
20090190807 Rousso et al. Jul 2009 A1
20090201291 Ziv et al. Aug 2009 A1
20090236532 Frach et al. Sep 2009 A1
20090304582 Rousso et al. Dec 2009 A1
20100006770 Balakin Jan 2010 A1
20100021378 Rousso et al. Jan 2010 A1
20100102242 Burr et al. Apr 2010 A1
20100140483 Rousso et al. Jun 2010 A1
20100202664 Busch et al. Aug 2010 A1
20100245354 Rousso et al. Sep 2010 A1
20120106820 Rousso et al. May 2012 A1
20120248320 Wangerin et al. Oct 2012 A1
20120326034 Sachs et al. Dec 2012 A1
20130114792 Zilberstein et al. May 2013 A1
Foreign Referenced Citations (63)
Number Date Country
1516429 Dec 1969 DE
19814199 Oct 1999 DE
19815362 Oct 1999 DE
0273257 Jul 1988 EP
0525954 Feb 1993 EP
0526970 Feb 1993 EP
0543626 May 1993 EP
0592093 Apr 1994 EP
0697193 Feb 1996 EP
0813692 Dec 1997 EP
0887661 Dec 1998 EP
1237013 Sep 2002 EP
2031142 Apr 1980 GB
59-141084 Aug 1984 JP
61-026879 Feb 1986 JP
01-324568 Jun 1986 JP
03-121549 May 1991 JP
04-151120 May 1992 JP
06-109848 Apr 1994 JP
6-109848 Apr 1994 JP
07-059763 Mar 1995 JP
07-141523 Jun 1995 JP
08-292268 Nov 1996 JP
10-260258 Sep 1998 JP
11-072564 Mar 1999 JP
WO 9200402 Jan 1992 WO
WO 9816852 Apr 1998 WO
WO 9903003 Jan 1999 WO
WO 9930610 Jun 1999 WO
WO 9939650 Aug 1999 WO
WO 0010034 Feb 2000 WO
WO 0018294 Apr 2000 WO
WO 0022975 Apr 2000 WO
WO 0031522 Jun 2000 WO
WO 0038197 Jun 2000 WO
WO 0189384 Nov 2001 WO
WO 0216965 Feb 2002 WO
WO 02058531 Aug 2002 WO
WO 02075357 Sep 2002 WO
WO 03073938 Sep 2003 WO
WO 03086170 Oct 2003 WO
WO 2004004787 Jan 2004 WO
WO 2004032151 Apr 2004 WO
WO 2004042546 May 2004 WO
WO 2004113951 Dec 2004 WO
WO 2005002971 Jan 2005 WO
WO 2005059592 Jun 2005 WO
WO 2005059840 Jun 2005 WO
WO 2005067383 Jul 2005 WO
WO 2005104939 Nov 2005 WO
WO 2005118659 Dec 2005 WO
WO 2005119025 Dec 2005 WO
WO 2006042077 Apr 2006 WO
WO 2006051531 May 2006 WO
WO 2006054296 May 2006 WO
WO 2006075333 Jul 2006 WO
WO 2006129301 Dec 2006 WO
WO 2007010534 Jan 2007 WO
WO 2007010537 Jan 2007 WO
WO 2007054935 May 2007 WO
WO 2007074467 Jul 2007 WO
WO 2008010227 Jan 2008 WO
WO 2008075362 Jun 2008 WO
Non-Patent Literature Citations (443)
Entry
Notice of Allowance Dated May 5, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Response Dated Jul. 8, 2010 to Communication Pursuant to Article 94(3) EPC of Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3.
Examination Report Dated Jun. 22, 2011 From the Government of India, Patent Office, Intellectual Property Building Re. Application No. 2963/CHENP/2006.
Official Action Dated Mar. 9, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jun. 7, 2011 to Official Action of Mar. 9, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jun. 28, 2011 to Official Action of Dec. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re.: Application No. 06809851.6.
Communication Pursuant to Article 94(3) EPC Dated Apr. 16, 2010 From the European Patent Office Re. Application No. 01951883.6.
Communication Pursuant to Article 96(2) EPC Dated Jun. 19, 2006 From the European Patent Office Re.: Application No. 03810570.6.
Communication Relating to the Results of the Partial International Search Dated Apr. 18, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291.
Communication Relating to the Results of the Partial International Search Dated May 21, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2007/001588.
International Preliminary Report on Patentability Dated Apr. 16, 2009 From the International Bureau of WIPO Re.: Applicaiton No. PCT/IL2007/000918.
International Preliminary Report on Patentability Dated Jan. 22, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/000834.
International Search Report Dated Jul. 25, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2007/001588.
International Search Report Dated Aug. 3, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173.
International Search Report Dated Sep. 11, 2002 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL01/00638.
International Search Report Dated Sep. 12, 2002 From the International Searching Authority of the Patent Cooperation Treaty Re: Application No. PCT/IL02/00057.
International Search Report Dated Mar. 18, 2004 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL03/00917.
International Search Report Dated May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575.
International Search Report Dated Mar. 26, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00394.
Notice of Allowance Dated Sep. 17, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568. Suppl. IDS VIII.
Notice of Allowance Dated Jul. 22, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Notice of Allowance Dated Aug. 25, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Office Action Dated Dec. 2, 2007 From the Israeli Patent Office Re.: Application No. 158442.
Office Action Dated Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323.
Official Action Dated Jun. 1, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/686,536.
Official Action Dated Sep. 4, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated Sep. 5, 2002 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Official Action Dated Apr. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Apr. 9, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Aug. 10, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Apr. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 15, 2004 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/725,316.
Official Action Dated Jan. 17, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 11/034,007.
Official Action Dated Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Official Action Dated Apr. 20, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Mar. 21, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated Jun. 23, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Jun. 25, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Sep. 25, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Apr. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Sep. 30, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jul. 1, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Response Dated Jul. 1, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Response Dated Jun. 3, 2010 to Notice of Appeal and Pre-Appeal Brief of Jan. 4, 2010 to Official Action of Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Response Dated Jul. 8, 2010 to Official Action of Apr. 9, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Sep. 8, 2010 to Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re.: Application No. 06809851.6.
Response Dated May 10, 2010 to Official Action of Apr. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated May 10, 2010 to Official Action of Jan. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated Aug. 16, 2010 to Communication Pursuant to Article 94(3) EPC of Apr. 16, 2010 From the European Patent Office Re. Application No. 01951883.6.
Response Dated Jun. 23, 2010 to Official Action of Feb. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Aug. 25, 2010 to Official Action of Jul. 27, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Supplemental Response Under 37 C.F.R. § 1.125 Dated Aug. 12, 2010 to Telephonic Interview of Aug. 6, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Supplementary European Search Report Dated Dec. 12, 2005 From the European Patent Office Re.: Application No. 03810570.6.
Supplementary Partial European Search Report Dated Nov. 11, 2008 From the European Patent Office Re.: Application No. 01951883.6.
Written Opinion Dated Feb. 1, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00048.
Written Opinion Dated Jul. 1, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00834.
Written Opinion Dated Jul. 2, 2007 From the international Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291.
Written Opinion Dated Oct. 10, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00059.
Written Opinion Dated Mar. 23, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00572.
Written Opinion Dated Jul. 25, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173.
Written Opinion Dated Mar. 26, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00394.
Aoi et al. “Absolute Quantitation of Regional Myocardial Blood Flow of Rats Using Dynamic Pinhole SPECT”, IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 3: 1780-1783, 2002. Abstract, Figs.
Bromiley et al. “Attenuation Correction in PET Using Consistency Conditions and a Three-Dimensional Template”, IEEE Transactions on Nuclear Science, XP002352920, 48(4): 1371-1377, 2001. p. 1376, col. 2, § 2.
Gilland et al. “A 3D Model of Non-Uniform Attenuation and Detector Response for Efficient Iterative Reconstruction in SPECT”, Physics in Medicine and Biology, XP002558623, 39(3): 547-561, Mar. 1994. p. 549-550, Section 2.3 ‘Active Voxel Reconstruction’, p. 551, Lines 4-8.
Gilland et al. “Simultaneous Reconstruction and Motion Estimation for Gated Cardiac ECT”, IEEE Transactions on Nuclear Science, XP011077797, 49(5): 2344-2349, Oct. 1, 2002. p. 2344, Section ‘Introduction’, First §.
Gugnin et al “Radiocapsule for Recording the Ionizing Radiation in the Gastrointestinal Tract”, UDC 615. 417:616.34-005.1-073.916-71 (All-Union Scientific-Research Institute of medical Instrument Design, Moscow. Translated from Meditsinskaya Tekhnika, 1:21-25, Jan.-Feb. 1972).
Hayakawa et al. “A PET-MRI Registration Technique for PET Studies of the Rat Brain”, Nuclear Medicine & Biology, 27: 121-125, 2000. p. 121, col. 1.
Kojima et al. “Quantitative Planar Imaging Method for Measurement of Renal Activity by Using a Conjugate-Emission Image and Transmission Data”, Medical Physics, 27(3): 608-615, 2000. p. 608.
Lavallée et al. “Building a Hybrid Patient's Model for Augmented Reality in Surgery: A Registration Problem”, Computing in Biological Medicine, 25(2): 149-164, 1995.
Li et al. “A IIOTLink/Networked PC Data Acquisition and Image Reconstruction System for a High Resolution Whole-Body PET With Respiratory or ECG-Gated Performance”, IEEE Nuclear Sience Symposium and Medical Imaging Conference, Norfolk, VA, USA, Nov. 10-16, 2002, XP010663724, 2: 1135-1139, Nov. 10, 2002. p. 1137, First Col., 2nd §.
Moore et al. “Quantitative Multi-Detector Emission Computerized Tomography Using Iterative Attenuation Compensation”, Journal of Nuclear Medicine, XP002549083, 23(8): 706-714, Aug. 1982. Abstract, p. 707, Section ‘The Multi-Detector Scanner’, First §.
Pardridge et al. “Tracer Kinetic Model of Blood-Brain Barrier Transport of Plasma Protein-Bound Ligands”, Journal of Clinical Investigation, 74: 745-752, 1984.
Qi et al. “Resolution and Noise Properties of MAP Reconstruction for Fully 3-D PET”, IEEE Transactions on Medical Imaging, XP002549082, 19(5): 493-506, May 2000. p. 493, col. 2, Lines 10-21, p. 495, col. 1, Last §.
Stoddart et al. “New Multi-Dimensional Reconstructions for the 12-Detector, Scanned Focal Point, Single-Photon Tomograph”, Physics in Medicine and Biology, XP020021960, 37(3): 579-586, Mar. 1, 1992. p. 582, § 2-p. 585, § 1.
Wilson et al. “Non-Stationary Noise Characteristics for SPECT Images”, Proceedings of the Nuclear Science Symposium and Medical Imaging Conference, Santa Fe, CA, USA, Nov. 2-9, 1991, XP010058168, p. 1736-1740, Nov. 2, 1991. p. 1736, col. 2, Lines 4-6.
Zaidi et al. “MRI-Guided Attenuation Correction in 3D Brain PET”, Neuroimage Human Brain Mapping 2002 Meeting, 16(2): Abstract 504, Jun. 2002.
Official Action Dated Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Pluim et al. “Image Registration by Maximization of Combined Mutual Information and Gradient Information”, IEEE Transactions on Medical Imaging, 19(8): 1-6, 2000.
Notice of Allowance Dated Jun. 30, 2010 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Aug. 3, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Supplemental Response After Interview Dated Aug. 4, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Communication Pursuant to Article 94(3) EPC Dated Mar. 2, 2011 From the European Patent Office Re.: Application No. 06756259.5.
Notice of Allowance Dated Nov. 15, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301.
Notice of Non-Compliant Amendment Dated Feb. 14, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Feb. 10, 2011 to Notice of Allowance of Nov. 15, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301.
Lin et al. “Improved Sensor Pills for Physiological Monitoring”, NASA Technical Brief, JPL New Technology Report, NPO-20652, 25(2), 2000.
Mettler et al. “Legal Requirements and Radiation Safety”, Essentials of Nuclear Medicine Imaging, 2nd Ed., Chap.13: 323-331, 1985.
Final OA dated Jul. 12, 2007.
Invitation to Pay Additional Fees.
Invitation to pay additional fees dated Apr. 18, 2007.
OA dated Sep. 4, 2008.
OA of Jun. 1, 2006.
OA of Aug. 10, 2007.
OA of Jan. 17, 2006.
OA of Jun. 19, 2006.
OA of Jan. 7, 2009.
Official Action Dated May 3, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Oct. 7, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Dec. 13, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Apr. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Dec. 15, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Feb. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Apr. 20, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Dec. 23, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Jun. 23, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
International Preliminary Report on Patentability Dated Apr. 16, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2007/000918.
International Preliminary Report on Patentability Dated Jun. 21, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/000575.
International Preliminary Report on Patentability Dated Jan. 22, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/001511.
International Preliminary Report on Patentability Dated May 22, 2007 From the International Preliminary Examining Authority Re.: Application No. PCT/IL06/00059.
International Preliminary Report on Patentability Dated May 22, 2008 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/001291.
International Preliminary Report on Patentability Dated May 24, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/001173.
International Preliminary Report on Patentability Dated Apr. 26, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/000394.
International Preliminary Report on Patentability Dated Jan. 31, 2008 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/000840.
International Search Report Dated Oct. 15, 2008 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Invitation to Pay Additional Fees Dated Jul. 10, 2008 From the International Searching Authority Re.: Application No. PCT/IL06/01511.
Invitation to Pay Additional Fees Dated Feb. 15, 2007 From the International Searching Authority Re.: Application No. PCT/IL05/00575.
Official Action Dated Jan. 7, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Dec. 16, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Nov. 26, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Apr. 29, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Aug. 14, 2008 to Official Action of Apr. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Response Dated Nov. 25, 2005 to Office Action of May 13, 2005 From the Patent Office of the People's Republic of China Re.: Application No. 1817689.5.
Response to the International Search Report and the Written Opinion of Oct. 10, 2006 From the International Searching Authority Re.: Appliction No. PCT/IL06/00059.
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC Dated Jan. 16, 2009 From the European Patent Office Re.: Application No. 03810570.6.
Supplementary Partial European Search Report Dated Sep. 4, 2007 From the European Patent Office Re.: Application No. 0 2716285.8.
Supplementary Partial European Search Report Dated Nov. 20, 2007 From the European Patent Office Re.: Application No. 02716285.8.
Translation of Office Action Dated May 13, 2005 From the Patent Office of the People's Republic of China Re.: Application No. 01817689.5.
Written Opinion Dated Oct. 15, 2008 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Kinahan et al. “Attenuation Correction for a Combined 3D PET/CT Scanner”, Medical Physics, 25(10): 2046-2053, Oct. 1998.
Takahashi et al. “Attenuation Correction of Myocardial SPECT Images With X-Ray CT: Effects of Registration Errors Between X-Ray CT and SPECT”, Annals of Nuclear Medicine, 16(6): 431-435, Sep. 2002.
Yu et al. “Using Correlated CT Images in Compensation for Attenuation in PET Image Reconstruction”, Proceedings of the SPIE, Applications of Optical Engineering: Proceedings of OE/Midwest '90, 1396: 56-58, 1991.
Zaidi et al. “Magenetic Resonance Imaging-Guided Attenuation and Scatter Corrections in Three-Dimensional Brain Positron Emission Tomography”, Medical Physics, 30(5): 937-948, May 2003.
Response Dated May 11, 2010 to Official Action of Mar. 11, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Response Dated May 26, 2010 to Official Action of Mar. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Notice of Allowance Dated Jun. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Communication Pursuant to Article 94(3) EPC Dated Oct. 21, 2009 From the European Patent Office Re.: Application No. 02716285.8.
Notice of Allowance Dated Sep. 17, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated Sep. 1, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Official Action Dated Jul. 2, 2004 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Aug. 11, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Sep. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Sep. 21, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Aug. 28, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Oct. 30, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Dec. 10, 2009 to Official Action of Aug. 11, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Oct. 12, 2009 to Notice of Allowance of Jul. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Response Dated Oct. 14, 2009 to Official Action of May 14, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated Nov. 16, 2009 to Official Action of Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Supplementary Partial European Search Report and the European Search Opinion Dated Oct. 16, 2009 From the European Patent Office Re.: Application No. 06756259.5.
Communication pursuant to Article 96(2) EPC Dated Aug. 30, 2007 From the European Patent Office Re.: Application No. 03810570.6.
International Search Report Dated Jul. 11, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/01511.
International Search Report May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575.
International Search Report Dated Nov. 1, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00840.
International Search Report Dated Feb. 1, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00048.
International Search Report Dated Jul. 1, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00834.
International Search Report Dated Jul. 2, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291.
International Search Report Dated May 11, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001215.
International Search Report Dated Mar. 23, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00572.
Official Action Dated Jun. 1, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/686,536.
Official Action Dated Dec. 2, 2007 From the Israeli Patent Office Re.: Application No. 158442.
Official Action Dated May 3, 2007 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Sep. 5, 2002 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Official Action Dated Oct. 7, 2008 From the US Patent Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Aug. 10, 2007 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Jul. 12, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Dec. 15, 2006 From the US Patent Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Apr. 15, 2008 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Feb. 15, 2008 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 15, 2008 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 15, 2004 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/725,316.
Official Action Dated Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323.
Written Opinion Dated May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/1IL05/00575.
Written Opinion Dated Mar. 26, 2007 From the International Searching Authority of the Patent Cooperation. Treaty Re.: Application No. PCT/IL05/00394.
Notice of Allowance Dated Dec. 17, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Dec. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Response Dated Dec. 15, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Official Action Dated Jan. 28, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Feb. 10, 2011 to Official Action of Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Jan. 27, 2011 to Official Action of Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Jan. 31, 2011 to Official Action of Sep. 30, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Apr. 5, 2011 to Official Action of Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Supplementary European Search Report and the European Search Opinion Dated Mar. 16, 2011 From the European Patent Office Re. Application No. 05803689.8.
lann et al. “Mitochondrial Proteome: Altered Cytochtrome C Oxidase Subunit Levels in Prostate Cancer”, Proteomics, XP002625778, 3(9): 1801-1810, Sep. 2003.
Krieg et al. “Mitochondrial Proteome: Cancer-Altered Metabolism Associated With Cytochrome C Oxidase Subunit Level Variation”, Proteomics, XP002625779, 4(9): 2789-2795, Sep. 2004.
Interview Summary Dated Mar. 25, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Mao et al. “Human Prostatic Carcinoma: An Electron Microscope Study”, Cancer Research, XP002625777, 26(5): 955-973, May 1966.
Storey et al. “Tc-99m Sestamibi Uptake in Metastatic Prostate Carcinoma”, Clinical Nuclear Medicine, XP009145398, 25(2): 133-134, Feb. 2000.
Response Dated Mar. 3, 2011 to Notice of Non-Compliant Amendment of Feb. 14, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Appeal Brief Dated Jan. 19, 2010 to Notice of Appeal of Nov. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Communication Pursuant to Article 94(3) EPC Dated Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3.
Notice of Allowance Dated Nov. 23, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Notice of Appeal and Pre-Appeal Brief Dated Jan. 4, 2010 to Official Action of Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Notice of Appeal Dated Nov. 16, 2009 to Official Action of Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Office Action Dated Jan. 2, 2006 From the Israeli Patent Office Re.: Application No. 154323.
Office Action Dated Sep. 4, 2007 From the Israeli Patent Office Re.: Application No. 157007.
Official Action Dated Mar. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Official Action Dated Dec. 8, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/132,320.
Official Action Dated Jan. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Official Action Dated Mar. 11, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Mar. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Feb. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Jan. 14, 2010 to Official Action of Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Jan. 14, 2010 to Official Action of Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Response Dated Jan. 21, 2010 to Official Action of Sep. 21, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Feb. 22, 2010 to Communication Pursuant to Article 94(3) EPC of Oct. 21, 2009 From the European Patent Office Re.: Application No. 02716285.8.
Response Dated Dec. 28, 2009 to Official Action of Aug. 28, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Response Dated Dec. 30, 2009 to Official Action of Sep. 1, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Response Dated Dec. 30, 2009 to Official Action of Oct. 30, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Supplementary Partial European Search Report and the European Search Opinion Dated Dec. 15, 2009 From the European Patent Office Re.: Application No. 06832278.3.
Gilland et al. “Simultaneous Reconstruction and Motion Estimation for Gated Cardiac ECT”, IEEE Transactions on Nuclear Science, XP011077797, 49(5): 23442349, Oct. 1, 2002. p. 2344, Section ‘Introduction’, First §.
Kadrmas et al. “Static Versus Dynamic Teboroxime Myocardial Perfusion SPECT in Canines”, IEEE Transactions on Nuclear Science, 47(3): 1112-1117, Jun. 2000.
Li et al. “A HOTLink/Networked PC Data Acquisition and Image Reconstruction System for a High Resolution Whole-Body PET With Respiratory or ECG-Gated Performance”, IEEE Nuclear Sience Symposium and Medical Imaging Conference, Norfolk, VA, USA, Nov. 10-16, 2002, XP010663724, 2: 1135-1139, Nov. 10, 2002. p. 1137, First Col., 2nd §.
Communication Pursuant to Article 93(3) EPC Dated Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3.
International Search Report Dated Oct. 10, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00059.
Written Opinion Dated Aug. 3, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173.
Notice of Allowance Dated May 6, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Official Action Dated Apr. 20, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Apr. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Bromiley et al. “Attenuation Correction in PET Using Consistency Conditions and A Three-Dimensional Template”, IEEE Transactions on Nuclear Science, 48(4): 1371-1377, 2001. p. 1376, col. 2, § 2.
Corstens et al. “Nuclear Medicine's Role in Infection and Inflammation”, The Lancet, 354: 765-770, 1999.
Day et al. “Localization of Radioiodinated Rat Fibrogen in Transplanted Rat Tumors”, Journal of the National Cancer Institute, 23(4): 799-812, 1959.
Erbil et al. “Use and Limitations of Serum Total and Lipid-Bound Sialic Acid Concentrations as Markers for Colorectal Cancer”, Cancer, 55: 404-409, 1985.
Garcia et al. “Accuracy of Dynamic SPECT Acquisition for Tc-99m Teboroxime Myocardial Perfusion Imaging: Preliminary Results”, American College of Cardiology, 51st Annual Scientific Session, Atlanta, Georgia, USA, 8 P., 2002.
Hassan et al. “A Radiotelemetry Pill for the Measurement of Ionising Radiation Using a Mercuric Iodide Detector”, Physics in Medicine and Biology, 23(2): 302-308, 1978.
Hoffman et al. “Intraoperative Probes and Imaging Probes”, European Journal of Nuclear Medicine, 26(8): 913-935, 1999.
Huesman et al. “Kinetic Parameter Estimation From SPECT Cone-Beam Projection Measurements”, Physics in Medicine and Biology, 43(4): 973-982, 1998.
Jeanguillaume et al. “From the Whole-Body Counting to Imaging: The Computer Aided Collimation Gamma Camera Project (CACAO)”, Radiation Projection Dosimetry 89(3-4): 349-352, 2000.
Jessup “Tumor Markers—Prognostic and Therapeutic Implications for Colorectal Carcinoma”, Surgical Oncology, 7: 139-151, 1998.
Molinolo et al. “Enhanced Tumor Binding Using Immunohistochemical Analyses by Second Generation Anti-Tumor-Associated Glycoprotein 72 Monoclonal Antibodies versus Monoclonal Antibody B72.3 in Human Tissue”, Cancer Research, 50: 1291-1298, 1990.
Mori et al. “Overexpression of Matrix Metalloproteinase-7mRNA in Human Colon Carcinomas”, Cancer, 75: 1516-1519, 1995.
Pardridge et al. “Tracer Kinetic Model of Blood-Brain Barrier Transport of Plasma Protein-Bound Ligands”, Journal of Clinical Investigation, 74: 745-752, 1984. Suppl. IDS in 27480.
Piperno et al. “Breast Cancer Screening by Impedance Measurements”, Frontiers Med. Biol. Engng., 2(2): 11-17, 1990.
Quartuccia et al. “Computer Assisted Collimation Gama Camera: A New Approach to Imaging Contaminated Tissues”, Radiation Projection Dosimetry, 89(3-4): 343-348, 2000.
Rajshekhar “Continuous Impedence Monitoring During CT-Guided Stereotactic Surgery: Relative Value in Cystic and Solid Lesions”, British Journal of Neurosurgery, 6: 439-444, 1992.
Reutter et al. “Direct Least Squares Estimation of Spatiotemporal Distributions From Dynamic SPECT Projections Using a Spatial Segmentation and Temporal B-Splines”, IEEE Transactions on Medical Imaging, 19(5): 434-450, 2000.
Reutter et al. “Kinetic Parameter Estimation From Attenuated SPECT Projection Measurements”, IEEE Transactions on Nuclear Science, 45(6): 3007-3013, 1998.
Zhang et al. “An Innovative High Efficiency and High Resolution Probe for Prostate Imaging”, The Journal of Nuclear Medicine, 68: 18, 2000. Abstract.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
McJilton et al. “Protein Kinase Cε Interacts With Bax and Promotes Survival of Human Prostate Cancer Cells”, Oncogene, 22; 7958-7968, 2003.
Xu et al. “Quantitative Expression Profile of Androgen-Regulated Genes in Prostate Cancer Cells and Identification of Prostate-Specific Genes”, International Journal of Cancer, 92: 322-328, 2001.
Official Action Dated Jul. 11, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Response Dated Jul. 14, 2011 to Official Action of Mar. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 27, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Jul. 26, 2010 to Official Action of Apr. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Amendment After Allowance Under 37 CFR 1.312 Dated Sep. 13, 2010 to Notice of Allowance of Jul. 22, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Communication Pursuant to Article 94(3) EPC Dated Jul. 22, 2009 From the European Patent Office Re.: Application No. 06809851.6.
Notice of Allowance Dated Jul. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Official Action Dated Jul. 7, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated May 13, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated May 14, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Official Action Dated Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Jul. 20, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Response Dated Mar. 13, 2008 to Official Action of Dec. 13, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Mar. 15, 2007 to Official Action of Dec. 15, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Sep. 22, 2008 to Official Action of Jun. 25, 2008 From US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Oct. 31, 2007 to Official Action of Jul. 12, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Second International Search Report Dated Jun. 1, 2009 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Second Written Opinion Dated Jun. 1, 2009 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Bloch et al. “Application of Computerized Tomography to Radiation Therapy and Surgical Planning”, Proceedings of the IEEE, 71(3): 351-355, Mar. 1983.
Ogawa et al. “Ultra High Resoultion Pinhole SPECT”, IEEE Nuclear Science Symposium, 2: 1600-1604, 1998.
Pellegrini et al. “Design of Compact Pinhole SPECT System Based on Flat Panel PMT”, IEEE Nuclear Science Symposium Conference Record, 3: 1828-1832, 2003.
Wu et al. “ECG-Gated Pinhole SPECT in Mice With Millimeter Spatial Resolution”, IEEE Transactions on Nuclear Science, 47(3): 1218-1221, Jun. 2000.
Official Action Dated Sep. 30, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Oct. 5, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Beekman et al. “Efficient Fully 3-D Iterative SPECT Reconstruction With Monte Carlo-Based Scatter Compensation”, IEEE Transactions on Medical Imaging, 21(8): 867-877, Aug. 2002.
Brown et al. “Method for Segmenting Chest CT Image Data Using an Anatomical Model: Preliminary Results”, IEEE Transactions on Medical Imaging, 16(6): 828-839, Dec. 1997.
Del Guerra et al. “An Integrated PET-SPECT Small Animal Imager: Preliminary Results”, Nuclear Science Symposium, IEEE Records, 1: 541-544, 1999.
Official Action Dated Jan. 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Notice of Allowance Dated Feb. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Mar. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Response Dated Mar. 24, 2011 to Official Action of Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Communication Pursuant to Rules 70(2) and 70a(2) EPC Dated Apr. 4, 2011 From the European Patent Office Re. Application No. 05803689.8.
Response Dated Mar. 31, 2011 to Official Action of Jan. 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Interview Summary Dated May 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301.
Response Dated Jun. 1, 2010 to Official Action of Mar. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Official Action Dated Jun. 28, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074.
Response Dated Mar. 8, 2011 to Official Action of Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Jul. 12, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Nov. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated Nov. 18, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Response dated Sep. 1, 2010 to Official Action of Aug. 3, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Jan. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated Jan. 23, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Jin et al. “Reconstruction of Cardiac-Gated Dynamic SPECT Images”, IEEE International Conference on Image Processing 2005, ICIP 2005, Sep. 11-14, 2005, 3: 1-4, 2005.
Toennies et al. “Scatter Segmentation in Dynamic SPECT Images Using Principal Component Analysis”, Progress in Biomedical Optics and Imaging, 4(23): 507-516, 2003.
Notice of Allowance Dated Feb. 2, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074.
Notice of Panel Decision From Pre-Appeal Brief Review Dated Feb. 29, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Mar. 1, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Dec. 22, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Official Action Dated Feb. 28, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 6, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/792,856.
Office Action Dated Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323 and Its Translation Into English.
Restriction Official Action Dated Apr. 13, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Official Action Dated Apr. 16, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Communication Pursuant to Article 94(3) EPC Dated Jun. 11, 2012 From the European Patent Office Re.: Application No. 06756259.5.
Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re. Application No. 06809851.6.
Communication Pursuant to Article 94(3) EPC Dated May 29, 2012 From the European Patent Office Re. Application No. 05803689.8.
Communication Under Rule 71(3) EPC Dated May 30, 2012 From the European Patent Office Re.: Application No. 02716285.8.
international Preliminary Report on Patentability Dated Apr. 7, 2009 From the International Bureau of WIPO Re. Application No. PCT/IL2007/000918.
International Preliminary Report on Patentability Dated Jan. 13, 2009 From the International Bureau of WIPO Re. Application No. PCT/IL2006/000834.
International Preliminary Report on Patentability Dated May 14, 2008 From the International Bureau of WIPO Re. Application No. PCT/IL2006/001291.
International Preliminary Report on Patentability Dated May 15, 2007 From the International Bureau of WIPO Re. Application No. PCT/IL2005/001173.
International Search Report Dated Jul. 1, 2008 From the International Searching Authority Re. Application No. PCT/IL2006/000834.
International Search Report Dated Jul. 2, 2007 From the International Searching Authority Re. Application No. PCT/IL2006/001291.
International Search Report Dated Aug. 3, 2006 From the International Searching Authority Re. Application No. PCT/IL2005/001173.
International Search Report Dated Oct. 15, 2008 From the International Searching Authority Re. Application No. PCT/2007/000918.
Official Action Dated Nov. 1, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/728,383.
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,690.
Official Action Dated Apr. 9, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Official Action Dated Aug. 13, 2008 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/769,826.
Official Action Dated Feb. 16, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/747,378.
Official Action Dated May 18, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Official Action Dated Apr. 20, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Official Action Dated Dec. 20, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Official Action Dated Sep. 21, 2009 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,690.
Official Action Dated Sep. 30, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Bracco Diagnostics “Cardiotec®: Kit for the Preparation of Technetium Tc 99m, Teboroxime For Diagnostic Use”, Braco Diagnostics Inc., Product Sheet 2P• Jul. 2003.
Dewaraja et al. “Accurate Dosimetry in 131I Radionuclide Therapy Using Patient-Specific, 3-Dimensional Methods for SPECT Reconstruction and Basorbed Dose Calculation”, The Journal of Nuclear Medicine, 46(5): 840-849, May 2005.
Dillman “Radiolabeled Anti-CD20 Monoclonal Antibodies for the Treatment of B-Cell Lymphoma”, Journal of Clinical Oncology, 20(16): 3545-3557, Aug. 15, 2002.
Mallinckrodt “Kit for the Preparation of Technetium Tc 99m Sestamibi Injection”, Mallinckrodt Inc., Product Sheet, 2 P., Sep. 8, 2008.
Pharmalucence “Kit for the Preparation of Technetium Tc99m Sulfur Colloid Injection for Subcutaneous, Intraperitoneal, Intravenous, and Oral Use”, Pharmalucence Inc., Reference ID: 2977567, Prescribing Information, 10 P., Jul. 2011.
Saltz et al. “Interim Report of Randomized Phase II Trial of Cetuximab/Bevacizumab/Trinotecan (CBI) Versus Cetuximab/Bevacizumab (CB) in Irinotecan-Refractory Colorectal Cancer”, Gastrointestinal Cancer Symposium, Hollywood, FL., USA, Jan. 27-29, 2005, American Society of Clinical Oncology, Abstract 169b, 4 P., 2005.
Sands et al. “Methods for the Study of the Metabolism of Radiolabeled Monoclonal Antibodies by Liver and Tumor”, The Journal of Nuclear Medicine, 28: 390-398, 1987.
Trikha et al. “Monoclonal Antibodies as Therapeutics in Oncology”, Current Opinion in Biotechnology, 13: 609-614, 2002.
Volkow et al. “Imaging the Living Human Brain: Magnetic Resonance Imaging and Positron Emission Tomography”, Proc. Natl. Acad. Sci. USA, 94: 2787-2788, Apr. 1997.
Official Action Dated Jun. 21, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Official Action Dated Jul. 30, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Bowsher et al. “Treatment of Compton Scattering in Maximum-Likelihood, Expectation-Maximization Reconstructions of SPECT Images”, Journal of Nuclear Medicine, 32(6): 1285-1291, 1991.
Official Action Dated Aug. 2, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Handrick et al. “Evaluation of Binning Strategies for Tissue Classification in Computed Tomography Images”, Medical Imaging 2006: Image Processing, Proceedings of the SPIE, 6144: 1476-1486, 2006.
Thorndyke et al. “Reducing Respiratory Motion Artifacts in Positron Emission Tomography Through Retrospective Stacking”, Medical Physics, 33(7): 2632-2641, Jul. 2006.
Restriction Official Action Dated Aug. 16, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473.
Response Dated Sep. 1, 2011 to Communication Pursuant to Article 94(3) EPC of Mar. 2, 2011 From the European Patent Office Re.: Application No. 06756259.5.
Response Dated Aug. 29, 2011 to Official Action of Apr. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Aug. 31, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Communication Pursuant to Article 94(3) EPC Dated Sep. 22, 2011 From the European Patent Office Re. Application No. 06756258.7.
Notice of Allowance Dated Sep. 16, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Official Action Dated Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Response Dated Sep. 12, 2011 to Official Action of Jul. 11, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Response Dated Sep. 20, 2011 to Official Action of Apr. 20, 2011 From the Its Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Ellestad “Stress Testing: Principles and Practice”, XP008143015, 5th Edition, p. 432, Jan. 1, 2003.
Gilland et al. “Long Focal Length, Asymmetric Fan Beam Collimation for Transmission Acquisition With a Triple Camera SPECT System”, IEEE Transactions on Nuclear Science, XP011087666, 44(3): 1191-1196, Jun. 1, 1997.
Meyers et al. “Age, Perfusion Test Results and Dipyridamole Reaction”, Radiologic Technology, XP008142909, 73(5): 409-414, May 1, 2002.
Zhang et al. “Potential of a Compton Camera for High Performance Scintimammography”, Physics in Medicine and Biology, XP020024019, 49(4): 617-638, Feb. 21, 2004.
Response Dated Oct. 14, 2011 to Supplementary European Search Report and the European Search Opinion of Mar. 16, 2011 From the European Patent Office Re. Application No. 05803689.8.
Official Action Dated Oct. 26, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Oct. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Supplemental Notice of Allowability Dated Oct. 24, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Notice of Allowance Dated Oct. 11, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/988,926.
Response Dated Oct. 14, 2011 to Communication Pursuant to Rules 70(2) and 70a(2) EPC of Apr. 4, 2011 From the European Patent Office Re. Application No. 05803689.8.
Restriction Official Action Dated Nov. 8, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Response Dated Nov. 14, 2011 to Official Action of Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Response Dated Oct. 24, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Restriction Official Action Dated Nov. 15, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,683.
Official Action Dated Dec. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Response Dated Nov. 13, 2011 to Official Action of Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Response Dated Dec. 29, 2011 to Office Action of Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323.
Berman et al. “Dual-Isotope Myocardial Perfusion SPECT With Rest Thallium-201 and Stress Tc-99m Sestamibi”, Cardiology Clinics, 12(2): 261-270, May 1994.
DeGrado et al. “Topics in Integrated Systems Physiology. Tracer Kinetic Modeling in Nuclear Cardiology”, Journal of Nuclear Cardiology, 7: 686-700, 2000.
Links “Advances in SPECT and PET Imaging”, Annals in Nuclear Medical Science, 13(2): 107-120, Jun. 2000.
Response Dated Dec. 8, 2011 to Restriction Official Action of Nov. 8, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Communication Pursuant to Article 94(3) EPC Dated Nov. 18, 2011 From the European Patent Office Re. Application No. 05803689.8.
Response Dated Nov. 14, 2011 to Official Action of Jul. 12, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Nov. 23, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Nov. 23, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Nov. 28, 2011 to Official Action of Jun. 28, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074.
Notice of Allowance Dated Sep. 28, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/792,856.
Applicant-Initiated Interview Summary Dated Jan. 28, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Feb. 7, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Advisory Action Before the Filing of an Appeal Brief Dated Feb. 26, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Notice of Allowance Dated Feb. 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Communication Under Rule 71(3) EPC Dated Feb. 26, 2013 From the European Patent Office Re. Application No. 06756259.5.
Official Action Dated Feb. 22, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Communication Pursuant to Article 94(3) EPC Dated Sep. 17, 2012 From the European Patent Office Re. Application No. 06832278.3.
Ouyang et al. “Incorporation of Correlated Structural Images in PET Image Reconstruction”, IEEE Transactions of Medical Imaging, 13(4): 627-640, Dec. 1994.
Communication Pursuant to Article 94(3) EPC Dated Nov. 12, 2012 From the European Patent Office Re. Application No. 06756258.7.
Communication Pursuant to Article 94(3) EPC Dated Oct. 26, 2012 From the European Patent Office Re. Application No. 05803689.8.
Notice of Allowance Dated Nov. 15, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Notice of Allowance Dated Feb. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/728,383.
Notice of Allowance Dated Dec. 26, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Notice of Allowance Dated Oct. 26, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Official Action Dated Oct. 7, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/750,057.
Official Action Dated Oct. 7, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/932,872.
Official Action Dated Oct. 10, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Official Action Dated Mar. 15, 2004 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/765,316.
Official Action Dated Dec. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473.
Official Action Dated Dec. 28, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Nov. 30, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Response Dated Apr. 7, 2009 to Official Action of Oct. 7, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jan. 27, 2011 to Official Action of Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/728,383.
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC Dated Nov. 29, 2012 From the European Patent Office Re. Application No. 06756259.5.
Supplementary European Search Report and the European Search Opinion Dated Nov. 13, 2012 From the European Patent Office Re. Application No. 06728347.3.
Berman et al. “Dual-Isotope Myocardial Perfusion SPECT With Rest Thallium-201 and Stress Tc-99m Sestamibi”, Nuclear Cardiology, 12(2): 261-270, May 1994.
Bracco Diagnostics “Cardiotec®: Kit for the Preparation of Technetium Tc 99m Teboroxime. For Diagnostic Use”, Bracco Diagnostics Inc., Product Sheet, 2 P., Jul. 2003.
Bracco Diagnostics “Techneplex®: Kit for the Preparation of Technetium Tc 99m Pentetate Injection. Diagnostic—for Intravenous Use”, Bracco Diagnostics™, Product Sheet, 5 P., Jun. 1995.
Brzymialkiewicz et al. “Evaluation of Fully 3-D Emission Mammotomography With a Compact Cadmium Zinc Telluride Detector”, IEEE Transactions on Medical Imaging, 24(7): 868-877, Jul. 2005.
Cancer Medicine “Radiolabeled Monoclonal Antibodies. Historical Perspective”, Cancer Medicine, 5th Ed., Sec.16: Principles of Biotherapeutics, Chap.65: Monoclonal Serotherapy, 2000.
Charland et al. “The Use of Deconvolution and Total Least Squares in Recovering a Radiation Detector Line Spread Function”, Medical Physics, 25(2): 152-160, Feb. 1998. Abstract Only!
Chengazi et al. “Imaging Prostate Cancer With Technetium-99m-7E11-C5.3 (CYT-351)”, Journal of Nuclear Medicine, 38: 675-682, 1997.
GE Healthcare “Myoview™: Kit for the Preparation of Technetium Tc99m Tetrofosmin for Injection. Diagnostic Radiopharmaceutical. For Intravenous Use Only. Rx Only”, GE Healthcare, Product Sheet, 4 P., Aug. 2006.
Jan et al. “Preliminary Results From the AROPET”, IEEE Nuclear Science Symposium Conference Record, Nov. 4-10, 2001, 3: 1607-1610, 2001.
Lange et al. “EM Reconstruction Algorithms for Emission and Transmission Tomography”, Journal of Computer Assisted Tomography, 8(2): 306-316, Apr. 1984.
Mallinckrodt “OctreoScan®: Kit for the Preparation of Indium In-111 Pentetreotide. Diagnostic—for Intravenous Use. Rx Only”, Mallinckrodt Inc., Product Sheet, 2 P., Oct. 25, 2006.
McJilton et al. “Protein Kinase C? Interacts With Bax and Promotes Survival of Human Prostate Cancer Cells”, Oncogene, 22; 7958-7968, 2003.
Ohno et al. “Selection of Optimum Projection Angles in Three Dimensional Myocardial SPECT”, IEEE Nuclear Science Symposium Conference Record 2001, 4: 2166-2169, 2001.
Ohrvall et al. “Intraoperative Gamma Detection Reveals Abdominal EndocrineTumors More Efficiently Than Somatostatin Receptor Scintigraphy”, 6th Conference on Radioimmunodetection and Radioimmunotherapy of Cancer, Cancer, 80: 2490-2494, 1997.
Rockmore et al. “A Maximum Likelihood Approach to Emission Image Reconstruction From Projections”, IEEE Transactions on Nuclear Science, 23(4): 1428-1432, Aug. 1976.
Seret et al. “Intrinsic Uniformity Requirements for Pinhole SPECT”, Journal of Nuclear Medicine Technology, 34(1): 43-47, Mar. 2006.
Shepp et al. “Maximum Likelihood Reconstruction for Emission Tomography”, IEEE Transactions on Medical Imaging, MI-1: 113-122, Oct. 1982.
Sitek et al. “Reconstruction of Dynamic Renal Tomographic Data Acquired by Slow Rotation”, The Journal of Nuclear Medicine, 42(11): 1704-1712, Nov. 2001.
Smither “High Resolution Medical Imaging System for 3-D Imaging of Radioactive Sources With 1 mm FWHM Spatial Resolution”, Proceedings of the SPIE, Medical Imaging 2003: Physics of Medical Imaging, 5030: 1052-1060, Jun. 9, 2003.
Solanki “The Use of Automation in Radiopharmacy”, Hospital Pharmacist, 7(4): 94-98, Apr. 2000.
Tornai et al. “A 3D Gantry Single Photon Emission Tomograph With Hemispherical Coverage for Dedicated Breast Imaging”, Nuclear Instruments & Methods in Physics Research, Section A, 497: 157-167, 2003.
Weldon et al. “Quantification of Inflammatory Bowel Disease Activity Using Technetium-99m HMPAO Labelled Leucocyte Single Photon Emission Computerised Tomography (SPECT)”, Gut, 36: 243-250, 1995.
Advisory Action Before the Filing of an Appeal Brief Dated Feb. 26, 2013 From the US Patent and Trademark Office U.S. Appl. No. 11/989,223.
Notice of Allowance Dated Feb. 27, 2013 From the US Patent and Trademark Office U.S. Appl. No. 12/514,785.
Official Action Dated Nov. 30, 2012 From the US Patent and Trademark Office U.S. Appl. No. 11/989,223.
Advisory Action before the Filing of An Appeal Brief Dated May 21, 2013 From the US Patent and Trademark Office U.S. Appl. No. 11/980,653.
Applicant-Initiated Interview Summary Dated May 1, 2013 From the US Patent and Trademark Office U.S. Appl. No. 10/343,792.
Applicant-Initiated Interview Summary Dated May 1, 2013 From the US Patent and Trademark Office U.S. Appl. No. 11/980,653.
Applicant-Initiated Interview Summary Dated May 9, 2013 From the US Patent and Trademark Office U.S. Appl. No. 12/448,473.
Notice of Allowance Dated Jun. 14, 2013 From the US Patent and Trademark Office U.S. Appl. No. 10/616,307.
Official Action Dated Jun. 12, 2013 From the US Patent and Trademark Office U.S. Appl. No. 12/087,150.
Bacharach et al. “Attenuation Correction in Cardiac Positron Emission Tomography and Single-Photon Emission Computed Tomography”, Journal of Nucelar Cardiology, 2(3): 246-255, 1995.
Uni Magdeburg “Attenuation Map”, University of Magdeburg, Germany, Retrieved From the Internet, Archived on Jul. 31, 2002.
Zaidi et al. “Determination of the Attenuation Map in Emission Tomography”, Journal of Nuclear Medicine, 44(2): 291-315, 2003.
Related Publications (1)
Number Date Country
20090112086 A1 Apr 2009 US