Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces

Information

  • Patent Grant
  • 8409254
  • Patent Number
    8,409,254
  • Date Filed
    Friday, June 27, 2008
    16 years ago
  • Date Issued
    Tuesday, April 2, 2013
    11 years ago
Abstract
Cephalad and caudal vertebral facet joint prostheses and methods of use are provided. The cephalad prostheses are adapted and configured to be attached to a lamina portion of a vertebra without blocking a pedicle portion of the cephalad vertebra.
Description
FIELD OF THE INVENTION

This invention relates to prostheses for treating various types of spinal pathologies, as well as to methods of treating spinal pathologies.


BACKGROUND OF THE INVENTION

I. Vertebral Anatomy


As FIG. 1 shows, the human spinal column 10 is comprised of a series of thirty-three stacked vertebrae 12 divided into five regions. The cervical region includes seven vertebrae 12, known as C1-C7. The thoracic region includes twelve vertebrae 12, known as T1-T12. The lumbar region contains five vertebrae 12, known as L1-L5. The sacral region is comprised of five vertebrae 12, known as S1-S5. The coccygeal region contains four vertebrae 12, known as Co1-Cu4.



FIG. 2 shows a normal human lumbar vertebra 12. Although the lumbar vertebrae 12 vary somewhat according to location, they share many features common to most vertebrae 12. Each vertebra 12 includes a vertebral body 14 and posterior elements as follows:


Two short bones, the pedicles 16, extend backward from each side of the vertebral body 14 to form a vertebral arch 18. At the posterior end of each pedicle 16 the vertebral arch 18 flares out into broad plates of bone known as the laminae 20. The laminae 20 fuse with each other to form a spinous process 22. The spinous process 22 serves for muscle and ligamentous attachment. A smooth transition from the pedicles 16 into the laminae 20 is interrupted by the formation of a series of processes.


Two transverse processes 24 thrust out laterally on each side from the junction of the pedicle 16 with the lamina 20. The transverse processes 24 serve as levers for the attachment of muscles to the vertebrae 12. Four articular processes, two superior 26 and two inferior 28, also rise from the junctions of the pedicles 16 and the laminae 20. The superior articular processes 26 are sharp oval plates of bone rising upward on each side from the union of the pedicle 16 with the lamina 20. The inferior processes 28 are oval plates of bone that extend in an inferior direction on each side.


The superior and inferior articular processes 26 and 28 each have a natural bony structure known as a facet. The superior articular facet 30 faces upward or superiorly, while the inferior articular facet 31 faces downward. As FIG. 3 shows, when adjacent (i.e., cephalad and caudal) vertebrae 12 are aligned, the facets 30 and 31, capped with a smooth articular cartilage, interlock to form a facet joint 32, also known as a zygapophysial joint.


The facet joint 32 is composed of a superior half and an inferior half. The superior half is formed by the vertebral level below the joint 32, and the inferior half is formed by the vertebral level above the joint 32. For example, in the L4-L5 facet joint, the superior portion of the joint is formed by bony structure on the L-5 vertebra (e.g., a superior articular surface and supporting bone on the L-5 vertebra), and the inferior portion of the joint is formed by bony structure on the L-4 vertebra (e.g., an inferior articular surface and supporting bone on the L-4 vertebra).


As also shown in FIG. 3, an intervertebral disc 34 between each pair of vertebrae 12 permits relative movement between vertebrae 12. Thus, the structure and alignment of the vertebrae 12 permit a range of movement of the vertebrae 12 relative to each other.


II. Facet Joint Dysfunction


Back pain, particularly in the “small of the back”, or lumbosacral (L4-S1) region, is a common ailment. In many cases, the pain severely limits a person's functional ability and quality of life. Such pain can result from a variety of spinal pathologies.


Through disease or injury, the laminae, spinous process, articular processes, or facets of one or more vertebrae can become damaged, such that the vertebrae no longer articulate or properly align with each other. This can result in an undesired anatomy, pain or discomfort, and loss of mobility.


For example, the vertebral facet joints can be damaged by either traumatic injury or by various disease processes. These disease processes include osteoarthritis, ankylosing spondylolysis, and degenerative spondylolisthesis. The damage to the facet joints often results in pressure on nerves, also called a “pinched” nerve, or nerve compression or impingement. The result is pain, misaligned anatomy, and a corresponding loss of mobility. Pressure on nerves can also occur without facet joint pathology, e.g., a herniated disc.


One type of conventional treatment of facet joint pathology is spinal stabilization, also known as intervertebral stabilization. Intervertebral stabilization prevents relative motion between the vertebrae. By preventing movement, pain can be reduced. Stabilization can be accomplished by various methods.


One method of stabilization is posterior spinal fusion. Another method of stabilization is anterior spinal fusion, fixation of any number of vertebrae to stabilize and prevent movement of the vertebrae.


Another type of conventional treatment is decompressive laminectomy. This procedure involves excision of the laminae to relieve compression of nerves.


These traditional treatments are subject to a variety of limitations and varying success rates. Furthermore, none of the described treatments puts the spine in proper alignment or return the spine to a desired anatomy. In addition, stabilization techniques, by holding the vertebrae in a fixed position, permanently limit the relative motion of the vertebrae, altering spine biomechanics.


SUMMARY OF THE INVENTION

There is a need for prostheses, installation tools, and methods that overcome the problems and disadvantages associated with current strategies and designs in various treatments for spine pathologies.


The invention provides prostheses, installation tools, and methods designed to replace natural facet joints at virtually all spinal levels including L1-L2, L2-L3, L3-L4, L4-L5, L5-S1, T-11-T12, and T12-L1. The prostheses, installation tools, and methods can restore a desired anatomy to a spine and give back to an individual a desired range of relative vertebral motion. The prostheses, installation tools, and methods also can lessen or alleviate spinal pain by relieving the source of nerve compression or impingement.


For the sake of description, the prostheses that embody features of the invention will be called either “cephalad” or “caudal” with relation to the portion of a given natural facet joint they replace. As previously described, a given natural facet joint has a superior half and an inferior half. In anatomical terms, the superior half of the joint is formed by the vertebral level below the joint (which can thus be called the caudal portion of the facet joint, i.e., because it is near the feet). The inferior half of the joint is formed by the vertebral level above the joint (which can thus be called the cephalad portion of the facet joint, i.e., because it is near the head). Thus, a prosthesis that, in use, replaces the caudal portion of a facet joint (i.e., the superior half) will be called a “caudal” prosthesis. Likewise, a prosthesis that, in use, replaces the cephalad portion of a facet joint (i.e., the inferior half) will be called a “cephalad” prosthesis.


One aspect of the invention provides a cephalad facet joint prosthesis to replace a cephalad portion of a natural facet joint (e.g., an inferior articular surface and its supporting bone structure on the posterior elements of the vertebra) in the posterior elements of a vertebra. According to this aspect of the invention, the prosthesis includes an artificial facet joint element adapted and configured to replace a cephalad portion of the natural facet joint and a fixation element extending from the artificial facet joint element, the fixation element being adapted and configured to be inserted through a lamina portion of a vertebra to affix the artificial facet joint element to the vertebra, preferably without blocking access to a pedicle portion of the vertebra. The fixation element may also extend through a second lamina portion of the vertebra, such as by traversing the midline of the vertebra through or adjacent to the spinous process. In one embodiment, after installation the cephalad bearing element is disposed between a caudal facet joint bearing surface and a portion of the vertebra, such as a lamina portion.


This aspect of the invention also provides a method of implanting an artificial cephalad facet joint prosthesis on a vertebra and/or the posterior elements of a vertebra. According to this method, a fixation element is inserted through a lamina portion of the vertebra, and a cephalad facet joint bearing surface is placed in a position to form a cephalad portion of a facet joint. An artificial facet joint element is attached to a distal end of the fixation element either after or prior to insertion of the fixation element. The fixation element preferably does not block access to a pedicle portion of the vertebra. The fixation element may also extend through a second lamina portion of the vertebra, such as by traversing the midline of the vertebra through or adjacent to the spinous process. In one embodiment, the placing step includes disposing the artificial facet joint bearing surface between a caudal facet joint bearing surface and a portion of the vertebra, such as a lamina portion. The method may also include the steps of using a guide to define an insertion path for the fixation element and forming a passage through the lamina corresponding to the insertion path.


Another aspect of the invention provides a prosthesis to replace a cephalad portion of a natural facet joint on a vertebra. In this aspect of the invention the prosthesis includes an artificial facet joint element adapted and configured to replace a cephalad portion of the natural facet joint; and a fixation element adapted and configured to affix the artificial facet joint element to the vertebra without blocking access to a pedicle portion of the vertebra. In one embodiment, after installation the cephalad bearing element is disposed between a caudal facet joint bearing surface and a portion of the vertebra, such as a lamina portion.


This aspect of the invention also provides a method for implanting a cephalad facet joint prosthesis to replace a removed cephalad portion of a natural facet joint on a vertebra. The method includes the steps of aligning the cephalad facet joint prosthesis with a caudal facet joint bearing surface; and attaching the cephalad facet joint prosthesis to the vertebra without blocking a pedicle portion of the vertebra. The attaching step of the method may also include disposing the cephalad facet joint prosthesis between the caudal facet joint bearing surface and a portion of the vertebra. The attaching step may also include the step of inserting a fixation element through a portion of the vertebra, such as the lamina. In this case, the method may include the steps of defining an insertion path in the vertebra prior to the inserting step and forming a passage in the vertebra corresponding to the insertion path. A guide may be used to direct the location and orientation of the insertion path.


Another aspect of the invention provides a facet joint prosthesis to replace, on a vertebra, a caudal portion of a natural facet joint (e.g., a superior articular surface and supporting bone structure on the vertebra). The prosthesis includes an artificial facet joint element with a vertebra contacting surface and a caudal bearing surface, the caudal bearing surface being adapted and configured to replace a caudal portion of a natural facet joint and to be substantially entirely posterior of a contact portion of the vertebra when the vertebra contacting surface contacts the contact portion. The prosthesis also includes a fixation element extending from the artificial facet joint element, the fixation element being adapted and configured to be inserted into the vertebra to affix the prosthesis to the vertebra.


Another aspect of the invention provides a prosthesis for replacing a caudal portion and a cephalad portion of a natural facet joint of cephalad and caudal vertebrae of a spine motion segment. The prosthesis includes an artificial cephalad facet joint element adapted and configured to replace a cephalad portion of the natural facet joint, the artificial cephalad facet joint element having a cephalad bearing surface; a cephalad fixation element, the cephalad fixation element being adapted and configured to be inserted through a lamina portion of a vertebra to affix the artificial cephalad facet joint element to the cephalad vertebra; and an artificial caudal facet-joint element adapted and configured to replace a caudal portion of the natural facet joint, the artificial caudal facet joint element including a caudal bearing surface adapted and configured to mate with the cephalad bearing surface.


Yet another aspect of the invention provides a method for implanting a facet joint prosthesis to replace removed cephalad and caudal portions of a natural facet joint of cephalad caudal vertebrae. The method includes the steps of: affixing an artificial caudal facet joint element to the caudal vertebra; inserting a cephalad fixation element through a lamina portion of the cephalad vertebra; and placing an artificial cephalad facet joint bearing surface in a position to form a cephalad portion of a facet joint. The method may also include attaching an artificial cephalad facet joint element comprising the cephalad facet joint bearing surface to an end of the fixation element either prior to or after the inserting step. In one embodiment, the fixation element does not block access to a pedicle portion of the cephalad vertebra. The cephalad fixation element may also extend through a second lamina portion of the cephalad vertebra, such as by traversing the midline of the cephalad vertebra through or adjacent to the spinous process. The placing step may also include the step of disposing the artificial cephalad facet joint bearing surface between the artificial caudal facet joint element and a portion of the cephalad vertebra. An installation fixture may be used to align the caudal and cephalad elements, although the prosthesis may also be installed without using an installation fixture. The method may also include the step of using a guide to define an insertion path for the cephalad fixation element, although the prosthesis may also be installed without using a guide.


Another aspect of the invention provides a prosthesis to replace a caudal portion and a cephalad portion of a natural facet joint of cephalad and caudal vertebrae. The prosthesis may include an artificial cephalad facet joint element adapted and configured to replace a cephalad portion of the natural facet joint, with the artificial cephalad facet joint element including a cephalad bearing surface; a cephalad fixation element adapted and configured to affix the artificial cephalad facet joint element to the cephalad vertebra without blocking access to a pedicle portion of the cephalad vertebra; and an artificial caudal facet joint element adapted and configured to replace a caudal portion of the natural facet joint, the artificial caudal facet joint element including a caudal bearing surface adapted and configured to mate with the cephalad bearing surface. In one embodiment, after installation the cephalad facet joint bearing surface is disposed between a caudal facet joint bearing surface and a portion of the vertebra, such as a lamina portion. In one embodiment, the cephalad bearing surface and the caudal bearing surface each has a width along its respective transverse axis, with the cephalad bearing surface width being shorter than the caudal bearing surface width. The artificial caudal facet joint element may also include a vertebra contacting surface, with the entire caudal bearing surface being adapted configured to be posterior of a contact portion of the caudal vertebra when the vertebra contacting surface contacts the contact portion.


This aspect of the invention also includes a method for implanting a facet joint prosthesis to replace removed cephalad and caudal portions of a natural facet joint of cephalad and caudal vertebrae. The method includes the steps of affixing an artificial caudal facet joint element to the caudal vertebra; and affixing an artificial cephalad facet joint element to the cephalad vertebra in alignment with the artificial caudal facet joint element and without blocking access to a pedicle portion of the cephalad vertebra. The second affixing step may also include the step of disposing the artificial cephalad facet joint element between the artificial caudal facet joint element and a portion of the cephalad vertebra. An installation fixture may be used to align the caudal and cephalad element, although the prosthesis may also be installed without using an installation fixture. The method may also include the step of using a guide to define an insertion path for the cephalad fixation element, although the prosthesis may also be installed without using a guide.


Other features and advantages of the inventions are set forth in the following description and drawings, as well as in the appended claims.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a lateral elevation view of a normal human spinal column;



FIG. 2 is a superior view of a normal human lumbar vertebra;



FIG. 3 is a lateral elevation view of a vertebral lumbar facet joint;



FIG. 4 is a posterior view of an artificial facet joint prosthesis installed in a patient according to one embodiment of this invention;



FIG. 5 is a left side view of the embodiment of FIG. 4, as installed in a patient;



FIG. 6 is yet another view of the embodiment of FIG. 4, as installed in a patient;



FIG. 7A is a cross-sectional view of a cephalad bearing element and fixation element according to the embodiment of FIG. 4;



FIG. 7B is a posterior view of a pair of artificial cephalad and caudal facet joint prostheses according to one embodiment of this invention;



FIG. 7C is a top view of a pair of artificial cephalad and caudal facet joint prostheses in the embodiment of FIG. 7A;



FIG. 7D is a left view of a pair of artificial cephalad and caudal facet joint prostheses in the embodiment of FIG. 7A;



FIG. 7E is a bottom view of a pair of artificial cephalad and caudal facet joint prostheses in the embodiment of FIG. 7A;



FIG. 7F is an anterior view of a pair of artificial cephalad and caudal facet joint prostheses in the embodiment of FIG. 7A;



FIG. 8A is a perspective view of an installation fixture according to one embodiment of this invention;



FIG. 8B is a top view of the installation fixture of FIG. 8A;



FIG. 8C is a side view of the installation fixture of FIG. 8A;



FIG. 8D is a back view of the installation fixture of FIG. 8A;



FIG. 9 is an exploded view of the installation fixture of FIG. 8 along with a pair of caudal facet bearing elements and a pair of cephalad facet bearing elements according to one embodiment of the invention;



FIGS. 10A-D are views of a guide tool according to one embodiment of the invention;



FIG. 11 is a posterior view of the installation fixture of FIGS. 8 and 9 to which a pair of caudal facet bearing elements and a pair of cephalad bearing elements have been attached and with the caudal bearing elements attached to the patient;



FIG. 12 is a left side view of the installation fixture and bearing elements of FIG. 11 with the caudal bearing elements attached to the patient;



FIG. 13 is a perspective view of the installation fixture and bearing elements of FIGS. 11 and 12 showing a guide tool according to one embodiment of this invention;



FIG. 14 is a perspective view of the installation fixture and bearing elements of FIGS. 11 and 12 showing the use of a drill bit with the guide tool according to one embodiment of this invention.





The invention may be embodied in several forms without departing from its spirit or essential characteristics. The scope of the invention is defined in the appended claims, rather than in the specific description preceding them. All embodiments that fall within the meaning and range of equivalency of the claims are therefore intended to be embraced by the claims.


DETAILED DESCRIPTION

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention that may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.



FIGS. 4-7 show artificial cephalad and caudal facet joint prostheses 36 and 50 for replacing a natural facet joint according to one aspect of this invention. Cephalad prosthesis 36 has a bearing element 38 with a bearing surface 40. In this embodiment, bearing surface 40 has a convex shape. Bearing element 38 may be formed from biocompatible metals (such as cobalt chromium steel, surgical steels, titanium, titanium alloys, tantalum, tantalum alloys, aluminum, etc.), ceramics, polyethylene, biocompatible polymers, and other materials known in the prosthetic arts, and bearing surface 40 may be formed from biocompatible metals (such as cobalt chromium steel, surgical steels, titanium, titanium alloys, tantalum, tantalum alloys, aluminum, etc.), ceramics, polyethylene, biocompatible polymers, and other materials known in the prosthetic arts.


Depending on the patient's disease state, the condition of the patient's natural facet joint—including the facet joint's strength, location and orientation—may not be acceptable. As shown in FIGS. 4-7, therefore, the natural cephalad and caudal facet joint surfaces have been removed to enable the installation of a prosthetic facet joint without limitations presented by remaining portions of the natural facet joint.


In one embodiment of the invention, fixation element 42 attaches cephalad prosthesis 36 to a vertebra 60 in an orientation and position that places bearing surface 40 in approximately the same location as the natural facet joint surface the prosthesis replaces. The prosthesis may also be placed in a location other than the natural facet joint location without departing from the invention, such as by orienting the fixation element along a different angle, by moving the joint cephalad or caudad, or by moving the joint medially or laterally.


In the embodiment shown in FIGS. 4-7, fixation element 42 is a screw. Other possible fixation elements include headless screws, stems, corkscrews, wire, staples, adhesives, bone cements, and other materials known in the prosthetic arts.


In this embodiment of the invention, the cephalad facet joint prosthesis attaches to a posterior element of the vertebra, such as one or portions of the lamina and/or the spinous process. For example, as shown in FIGS. 4-6, fixation element 42 may extend through a lamina portion 62 of vertebra 60 at the base of spinous process 64, traversing the vertebra midline as defined by the spinous process 64 and through another lamina portion 66. This orientation of the fixation element is similar to that used in translaminar facet joint screw fixation, as known in the art. Other orientations of fixation element 42 are possible, of course, depending on the dictates of the specific vertebral anatomy and the desires of the clinician. For example, fixation element 42 may extend through only one lamina portion, only through the spinous process, etc.


Unlike other facet joint prostheses that attach to the pedicle, this embodiment's use of one or more posterior elements of the vertebra to attach the cephalad facet joint prosthesis of this invention does not block access to the pedicle area, leaving this area free to be used to attach other prostheses or devices. Other embodiments of the invention may block the pedicle area, of course, without departing from the scope or spirit of the invention. In addition, because of the inherent strength of the lamina, the cephalad facet joint prosthesis may be affixed without the use of bone cement, especially when using a bone ingrowth surface or trabecular metal.


In the orientation shown in FIGS. 4-6 as well as in some alternative embodiments, after insertion the fixation element's proximal end 43 (preferably formed to mate with a suitable insertion tool) and distal end 44 lie on opposite sides of the lamina. Bearing element 38 attaches to the distal end 44 of fixation element 42 to be disposed between a caudal facet joint bearing surface (either natural or artificial, such as the artificial caudal facet joint prosthesis described below) and a portion of the vertebra, such as the lamina portion shown in FIGS. 4-6. To attach bearing element 38 to fixation element 42 in the embodiment shown in FIG. 4, a hole 46 in bearing element 38 is formed with a Morse taper that mates with the distal end 44 of fixation element 42. Other means of attaching bearing element 38 to fixation element 42 may be used, of course, such as other Morse or other taper connections, machine screw threads, NPT screw threads or other known mechanical fastening means. Fixation element 42 may be coated with antimicrobial, antithrombotic, hydroxyapatite, or osteoinductive materials to promote bone ingrowth and fixation. Bearing element 38 may be attached to fixation element 42 before or after implantation in the patient, depending on the manner of implantation and the requirements of the situation.


Prosthesis 36 may be used to form the cephalad portion of a facet joint with either a natural caudal facet joint portion or an artificial caudal facet joint prosthesis.



FIGS. 4-7 also show an artificial caudal joint prosthesis 50 for replacing the superior half of a natural facet joint according to one aspect of this invention. Caudal prosthesis 50 has a bearing element 52 with a bearing surface 54. In this embodiment, bearing surface 54 is concave. Bearing element 52 may be formed from biocompatible metals (such as cobalt chromium steel, surgical steels, titanium, titanium alloys, tantalum, tantalum alloys, aluminum, etc.), ceramics, polyethylene, biocompatible polymers, and other materials known in the prosthetic arts, and bearing surface 54 may be formed from biocompatible metals (such as cobalt chromium steel, surgical steels, titanium, titanium alloys, tantalum, tantalum alloys, aluminum, etc.), ceramics, polyethylene, biocompatible polymers, and other materials known in the prosthetic arts.


In one embodiment, the natural caudal facet surface has been removed, and fixation element 56 attaches prosthesis 50 to a vertebra 70 via a pedicle in an orientation and position that places bearing surface 54 in approximately the same location as the natural facet joint surface the prosthesis replaces. In an alternative embodiment, the bearing surface 54 may be placed in a location different than the natural facet joint surface, either more medial or more lateral, more cephalad or more caudad, and/or rotated from the natural anatomical orientation and orientation. In addition, in other embodiments the caudal component can be attached to the vertebral body in addition to the pedicle or to the vertebral body alone.


As shown in the embodiment of FIGS. 4-7, fixation element 56 is a screw attached to bearing element 54 via a hole 58 formed in bearing element 52 and is inserted into a pedicle portion 72 of vertebra 70. Other possible fixation elements include stems, corkscrews, wire, staples, adhesives, bone cements, and other materials known in the prosthetic arts. Fixation element 56 can also be inserted into the vertebral body in addition to or in place of the pedicle.


In this embodiment, bearing element 52 has a serrated fixation surface 57 adapted to contact a contact portion 74 of vertebra 70. This optional fixation surface 57 helps prevent rotation of the bearing element 52. In addition, fixation surface 57 may be coated with bone ingrowth material, and any optional serrations increase the surface area for bone ingrowth. As shown in FIG. 5, in this embodiment the entire bearing surface 54 is posterior to surface 57 and contact portion 74.


Prosthesis 50 may be used to form the caudal portion of a facet joint with either a natural cephalad facet joint portion or an artificial cephalad facet joint prosthesis.



FIGS. 7A-F show the artificial facet joint prosthesis according to one embodiment of this invention apart from the vertebrae. As shown, cephalad bearing surface 40 and caudal bearing surface 54 meet to form an artificial facet joint. As seen best in FIG. 7B, the width of caudal bearing surface 54 along its transverse axis is greater than the width of cephalad bearing surface 40 along its transverse axis. This feature helps align the cephalad and caudal joints during implant. In addition, this feature permits the point of contact between the two bearing surface to change with flexion, extension, left and right rotation and lateral bending of the patient's spine.


The prostheses of FIGS. 4-7 may be implanted without special tools. One embodiment of the invention, however, includes an installation fixture to assist with the implantation procedure. FIGS. 8-14 show installation tools used to implant two artificial facet joints, i.e., two cephalad facet joint prostheses and two corresponding caudal facet joint prostheses. The invention also includes installation tools for implanting a single facet joint prosthesis, two caudal facet joint prostheses, two cephalad facet joint prostheses, a caudal and cephalad joint prosthesis, or any other combination of facet joint prostheses.


As shown in FIGS. 8 and 9, installation fixture 80 has alignment elements 82 to align the cephalad bearing elements 38 and caudal bearing elements 52. In this embodiment, the alignment elements are two dowels for each bearing element. Alignment elements 82 mate with corresponding alignment elements in the bearing elements, such as holes 84 (shown, e.g., in FIG. 7B) formed in cephalad bearing elements 38 and caudal bearing elements 52. Other alignment elements may be used, of course, such as pins, grooves, indentations, etc. Attachment elements such as screws 86 attach the bearing elements 38 and 52 to the installation fixture via screw holes 88 (shown, e.g., in FIG. 7B) formed in the bearing elements and in installation fixture 80.


When attached to installation fixture 80, cephalad and caudal bearing surfaces 40 and 54 are in contact and in proper alignment with respect to each other, as shown in FIG. 8. In one embodiment, the cephalad and caudal bearing surfaces 40 and 54 are preloaded to be in compression when attached to installation fixture 80. To bring the pairs of bearing surfaces in proper alignment with respect to the patient's vertebrae, the spacing between the pairs of bearing surfaces might need to be adjusted. In the embodiment of FIGS. 8, 9 and 11-14, installation fixture 80 has two bearing support components 90 and 92 that move in a controlled manner with respect to each other. Specifically, in this embodiment a threaded shaft 94 extends between support components 90 and 92. Shaft 94 engages bores formed in support components 90 and 92; one or both of the bores are threaded so that rotation of shaft 94 causes support components 90 and 92 to move towards or away from each other. Shaft 94 may be provided with a thumbwheel 96 or other actuator for ease of use. One or more guide rods 98 may be provided to maintain the alignment of support components 90 and 92. Other means of moving the cephalad/caudal bearing elements pairs with respect to each other may be used, such as a guided or unguided sliding connection between installation fixture elements.


In use, after preparing the implant site by removal of all or a portion of existing natural cephalad and caudal facet joint portions of the cephalad and caudal vertebrae 60 and 70, respectively, of the spine motion segment, bearing elements 38 and 52 are attached to installation fixture 80 as described above. The spacing between the bearing element pairs is then adjusted using thumbwheel 96 to align the fixation holes 58 of caudal bearing elements 52 with the proper fixation screw insertion sites in the pedicle portions of the caudal vertebra (or other suitable location), thus placing the artificial facet joints in positions corresponding to the position of natural facet joints or in any other position desired by the physician, including positions that do not correspond to the position of natural facet joints. Passages aligning with holes 58 are formed and in the pedicle—or into another part of the caudal vertebra near or adjacent to the pedicle—using a drill, awl, pedicle probe, or other tool known in the surgical arts. Fixation screws 56 are then inserted through holes 58 into the pedicle or other portion of the caudal vertebra to attach the caudal bearing elements as well as the entire prosthesis and installation fixture to the caudal vertebra 70, as shown in FIGS. 11 and 12. Alternatively, self-tapping screws or other caudal fixation elements may be used, thereby eliminating the need to pre-fomm the passages.


Thereafter, the cephalad bearing elements are attached to the cephalad vertebra 60. In one embodiment, an insertion path is first determined for each fixation element, then a passage is formed along the insertion path corresponding to cephalad bearing element holes 46 (e.g., in the lamina at the base of the spinous process and through the lamina on the other side, through only one lamina portion, through the spinous process, etc.). Fixation screws 42 can then be inserted through the holes 46 into the passages. Alternatively, self-tapping screws or other caudal fixation elements may be used, thereby eliminating the need to pre-form the passages.


After all four bearing elements have been affixed, the installation fixture 80 may be detached and removed. Installation fixture 80 may be used to implant fewer than four bearing elements, of course.



FIGS. 10, 13 and 14 show a tool that may be used to define the insertion path (location, orientation, etc.) for the fixation element of the left cephalad bearing element. For example, the tool may be used to guide the formation of a cephalad bearing element attachment passage for the left bearing element. A corresponding mirror image tool may be used for the right cephalad bearing element. In alternative embodiments, a single tool may be used for defining the insertion path for both left and right cephalad bearing elements.


As shown, tool 100 has a handle 102 and an alignment interface (such as dowels 104 in tool 100 and holes 106 in fixture 80) to align the tool in the proper orientation with respect to installation fixture 80 and a cephalad facet joint bearing element. With the caudal and cephalad bearing elements still attached to installation fixture 80 and preferably with caudal bearing elements already affixed to the caudal vertebra 70, tool 100 engages installation fixture through the alignment interface as shown in FIGS. 13 and 14. In this position, tool 100 may be used to define an insertion path for the cephalad fixation elements.


In the embodiment shown in FIGS. 10, 13 and 14, the insertion path guide is a drill guide 108 supported by arms 110 and 112 and is aligned with hole 46 in cephalad bearing element 38 by the alignment interface between installation fixture 80 and guide tool 100. In this embodiment, drill guide 108 is a tube, but other guide elements may be used, such as a guide groove or surface. A drill bit 114 may be inserted through drill guide 108 to form an insertion passage, such as a passage through a lamina portion of the cephalad vertebra. A fixation screw may then be inserted through the passage in the cephalad vertebra and into the Morse taper connection of hole 46 (or other type connection, as discussed above) of cephalad bearing element 38. As discussed above, the fixation screw may be coated with a bone ingrowth material. Alternatively, a self-tapping screw may be used, thereby removing the need to pre-form a passage.


A mirror image tool may then be used to define an insertion path or to form a hole for the right cephalad bearing element, which is then affixed to the vertebral body in the same way. The installation fixture is then removed, such as by unscrewing screws 86.


As mentioned above, in alternative embodiments the guide tool may be used to define a path for a self-tapping screw or other fixation element that does not require the use of a drill. In those embodiments, element 108 may be used to define a path for the self-tapping screw or other fixation element. The fixation element path may be through only a single lamina portion, through the spinous process alone, or any other suitable path.


In some embodiments, the entire prosthesis other than the bearing surface may be coated with bone ingrowth material.


The above described embodiments of this invention are merely descriptive of its principles and are not to be limited. The scope of this invention instead shall be determined from the scope of the following claims, including their equivalents.

Claims
  • 1. A method for providing articulating surfaces for facet joint articular facets comprising: installing a prosthesis comprising first and second artificial facet joints located on contralateral sides of a spine, the installation of each artificial facet joint comprising: removing at least a portion of a superior articular facet of a first vertebra and an inferior articular face of a second vertebra, the second vertebra immediately above the first vertebra;placing an inferior implant having a first fixation element comprising a first screw and having a generally convex articulating surface in a space created by the removed portion of the inferior articular facet of the second vertebra;fixing the inferior implant to the second vertebra by extending the first fixation element through a lamina or spinous process of the second vertebra without attachment of the first fixation element to the pedicle of the second vertebra;placing a superior implant having a second fixation element comprising a second screw and having a generally curved articulating surface in a space created by the removed portion of the superior articular facet of the first vertebra; andfixing the superior implant to the first vertebra by extending the second fixation screw element through a hole formed through a pedicle portion of the first vertebra;wherein the articulating surface of the superior implant and the articulating surface of the inferior implant are positioned to articulate with one another following the fixation of the superior implant to the pedicle portion of the first vertebra and the fixation of the inferior implant to the lamina or spinous process of the second vertebra; andwherein the steps of placing superior and inferior implants in their respective spaces further comprise: attaching the superior implant and inferior implant of the first artificial facet joint to alignment elements of a first bearing support component;attaching the superior and inferior implants of the second artificial facet joint to alignment elements of a second bearing support component, the first and second bearing support components extending in a parallel, spaced relationship and being connected to each other at corresponding ends by a threaded shaft; andadjusting the spacing between the bearing support components via the threaded shaft to align the first and second artificial facet joints with screw insertion sites of the first and second vertebrae.
  • 2. The method of claim 1, wherein fixing the superior implant further comprises contacting the first vertebra with a serrated fixation surface of the superior implant.
  • 3. The method of claim 1, wherein the alignment elements comprise dowels.
  • 4. The method of claim 1, wherein the alignment elements comprise grooves or indentations.
  • 5. The method of claim 1, further comprising drilling a translaminar hole for the first fixation element.
  • 6. The method of claim 1, wherein the threaded shaft further comprises a thumbwheel.
  • 7. The method of claim 1, wherein at least one of the first and second screws is a self-tapping screw.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of pending U.S. application Ser. No. 11/276,541, filed Mar. 3, 2006, entitled “Prostheses, Tools, and Methods for Replacement of Natural Facet Joints with Artificial Facet Joint Surfaces,” now abandoned, which is a continuation of U.S. application Ser. No. 10/438,294, filed May 14, 2003, and entitled “prostheses, Tools and Methods for Replacement of Natural Facet Joints with Artificial Facet Joint Surfaces,” now abandoned. These applications are incorporated by reference as if fully set forth herein.

US Referenced Citations (384)
Number Name Date Kind
1308451 Schachat Jul 1919 A
2502902 Tofflemire Apr 1950 A
2930133 Thompson Mar 1960 A
2959861 Stromquist Nov 1960 A
3596656 Kaute Aug 1971 A
3710789 Ersek Jan 1973 A
3726279 Barefoot et al. Apr 1973 A
3867728 Stubstad et al. Feb 1975 A
3875595 Froning Apr 1975 A
3941127 Froning Mar 1976 A
4040130 Laure Aug 1977 A
4123848 Emmerich et al. Nov 1978 A
4156296 Johnson et al. May 1979 A
4210317 Spann et al. Jul 1980 A
4231121 Lewis Nov 1980 A
4271836 Bacal et al. Jun 1981 A
4349921 Kuntz Sep 1982 A
4394370 Jefferies Jul 1983 A
4472840 Jefferies Sep 1984 A
4502161 Wall Mar 1985 A
4554914 Kapp et al. Nov 1985 A
4611581 Steffee Sep 1986 A
4633722 Beardmore et al. Jan 1987 A
4693722 Wall Sep 1987 A
4697582 William Oct 1987 A
4710075 Davison Dec 1987 A
4759769 Hedman et al. Jul 1988 A
4772287 Ray et al. Sep 1988 A
4778472 Homsy et al. Oct 1988 A
4795469 Oh Jan 1989 A
4805602 Puno et al. Feb 1989 A
4863477 Monson Sep 1989 A
4904260 Ray et al. Feb 1990 A
4911718 Lee et al. Mar 1990 A
4917701 Morgan Apr 1990 A
4932975 Main et al. Jun 1990 A
4950270 Bowman et al. Aug 1990 A
4955916 Carignan et al. Sep 1990 A
4957495 Kluger Sep 1990 A
4987904 Wilson Jan 1991 A
5000165 Watanabe Mar 1991 A
5015255 Kuslich May 1991 A
5019081 Watanabe May 1991 A
5047055 Bao et al. Sep 1991 A
5062845 Kuslich et al. Nov 1991 A
5070623 Barnes Dec 1991 A
5071437 Steffee Dec 1991 A
5092866 Breard et al. Mar 1992 A
5098434 Serbousek Mar 1992 A
5108399 Eitenmuller et al. Apr 1992 A
5129900 Asher et al. Jul 1992 A
5147404 Downey Sep 1992 A
5171280 Baumgartner Dec 1992 A
5192326 Bao et al. Mar 1993 A
5258031 Salib et al. Nov 1993 A
5261910 Warden et al. Nov 1993 A
5284655 Bogdansky et al. Feb 1994 A
5300073 Ray et al. Apr 1994 A
5303480 Chek Apr 1994 A
5306308 Gross et al. Apr 1994 A
5306309 Wagner et al. Apr 1994 A
5312409 McLaughlin et al. May 1994 A
5314429 Goble May 1994 A
5314476 Prewett et al. May 1994 A
5314486 Zang et al. May 1994 A
5314489 Hoffman et al. May 1994 A
5314492 Hamilton et al. May 1994 A
5329933 Graf Jul 1994 A
5334203 Wagner Aug 1994 A
5348026 Davidson Sep 1994 A
5350380 Goble et al. Sep 1994 A
5360448 Thramann Nov 1994 A
5370697 Baumgartner Dec 1994 A
5401269 Buttner-Janz et al. Mar 1995 A
5405390 O'Leary et al. Apr 1995 A
5413576 Rivard May 1995 A
5415659 Lee et al. May 1995 A
5415661 Holmes May 1995 A
5425773 Boyd et al. Jun 1995 A
5437669 Yuan et al. Aug 1995 A
5437672 Alleyne Aug 1995 A
5443483 Kirsch Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5458642 Beer et al. Oct 1995 A
5458643 Oka et al. Oct 1995 A
5470333 Ray Nov 1995 A
5474551 Finn et al. Dec 1995 A
5474555 Puno et al. Dec 1995 A
5491882 Walston et al. Feb 1996 A
5496318 Howland et al. Mar 1996 A
5501684 Schlapfer et al. Mar 1996 A
5507823 Walston et al. Apr 1996 A
5510396 Prewett et al. Apr 1996 A
5514180 Heggeness et al. May 1996 A
5527312 Ray Jun 1996 A
5534028 Bao et al. Jul 1996 A
5534030 Navarro et al. Jul 1996 A
5545229 Parsons et al. Aug 1996 A
5556431 Buttner-Janz Sep 1996 A
5562738 Boyd et al. Oct 1996 A
5569247 Morrison Oct 1996 A
5571189 Kuslich Nov 1996 A
5571191 Fitz Nov 1996 A
5575792 Errico et al. Nov 1996 A
5577995 Walker et al. Nov 1996 A
5587695 Warmerdam Dec 1996 A
5599311 Raulerson Feb 1997 A
5603713 Aust et al. Feb 1997 A
5609641 Johnson et al. Mar 1997 A
5643258 Robioneck et al. Jul 1997 A
5643263 Simonson Jul 1997 A
5645597 Krapiva Jul 1997 A
5645599 Samani Jul 1997 A
5649930 Kertzner Jul 1997 A
5653762 Pisharodi Aug 1997 A
5658338 Tullos et al. Aug 1997 A
5662651 Tornier et al. Sep 1997 A
5672175 Martin Sep 1997 A
5674295 Ray et al. Oct 1997 A
5674296 Bryan et al. Oct 1997 A
5676701 Yuan et al. Oct 1997 A
5678317 Stefanakos Oct 1997 A
5683391 Boyd Nov 1997 A
5683392 Richelsoph et al. Nov 1997 A
5683464 Wagner et al. Nov 1997 A
5683466 Vitale Nov 1997 A
5688274 Errico et al. Nov 1997 A
5690630 Errico et al. Nov 1997 A
5700268 Bertin Dec 1997 A
5702450 Bisserie Dec 1997 A
5704941 Jacober et al. Jan 1998 A
5716415 Steffee Feb 1998 A
5725527 Biedermann et al. Mar 1998 A
5733284 Martin Mar 1998 A
5738585 Hoyt, III et al. Apr 1998 A
5741255 Krag et al. Apr 1998 A
5741261 Moskovitz et al. Apr 1998 A
5766253 Brosnahan, III Jun 1998 A
5776135 Errico et al. Jul 1998 A
5782833 Haider Jul 1998 A
5797911 Sherman et al. Aug 1998 A
5800433 Benzel et al. Sep 1998 A
5824093 Ray et al. Oct 1998 A
5824094 Serhan et al. Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5836948 Zucherman et al. Nov 1998 A
5860977 Zucherman et al. Jan 1999 A
5863293 Richelsoph Jan 1999 A
5865846 Bryan et al. Feb 1999 A
5866113 Hendriks et al. Feb 1999 A
5868745 Alleyne Feb 1999 A
5879350 Sherman et al. Mar 1999 A
5879396 Walston et al. Mar 1999 A
5885285 Simonson Mar 1999 A
5885286 Sherman et al. Mar 1999 A
5891145 Morrison et al. Apr 1999 A
5893889 Harrington Apr 1999 A
RE36221 Breard et al. Jun 1999 E
5947893 Agrawal et al. Sep 1999 A
5947965 Bryan Sep 1999 A
5964760 Richelsoph Oct 1999 A
5984926 Jones Nov 1999 A
6001130 Bryan et al. Dec 1999 A
6004353 Masini Dec 1999 A
6010503 Richelsoph et al. Jan 2000 A
6014588 Fitz Jan 2000 A
6019759 Rogozinski Feb 2000 A
6019792 Cauthen Feb 2000 A
6022350 Ganem Feb 2000 A
6039763 Shelokov Mar 2000 A
6048342 Zucherman et al. Apr 2000 A
6050997 Mullane Apr 2000 A
6053917 Sherman et al. Apr 2000 A
6063121 Xavier et al. May 2000 A
6066325 Wallace et al. May 2000 A
6068630 Zucherman et al. May 2000 A
RE36758 Fitz Jun 2000 E
6074391 Metz-Stavenhagen et al. Jun 2000 A
6077262 Schläpfer et al. Jun 2000 A
6080157 Cathro et al. Jun 2000 A
6086590 Margulies et al. Jul 2000 A
6090111 Nichols Jul 2000 A
6113600 Drummond et al. Sep 2000 A
6113637 Gill et al. Sep 2000 A
6120510 Albrektsson et al. Sep 2000 A
6132430 Wagner Oct 2000 A
6132462 Li Oct 2000 A
6132464 Martin Oct 2000 A
6132465 Ray et al. Oct 2000 A
6165177 Wilson et al. Dec 2000 A
6190388 Michelson et al. Feb 2001 B1
6193724 Chan Feb 2001 B1
6193758 Huebner Feb 2001 B1
6200322 Branch et al. Mar 2001 B1
6214012 Karpman et al. Apr 2001 B1
6224602 Hayes May 2001 B1
6231575 Krag May 2001 B1
6248105 Schläpfer et al. Jun 2001 B1
6280443 Gu et al. Aug 2001 B1
6290703 Ganem Sep 2001 B1
6293949 Justis et al. Sep 2001 B1
6302890 Leone, Jr. Oct 2001 B1
6309391 Crandall et al. Oct 2001 B1
6312431 Asfora Nov 2001 B1
6340361 Kraus et al. Jan 2002 B1
6340477 Anderson Jan 2002 B1
6342054 Mata Jan 2002 B1
6361506 Saenger et al. Mar 2002 B1
6368320 Le Couedic et al. Apr 2002 B1
6419703 Fallin et al. Jul 2002 B1
6440169 Elberg et al. Aug 2002 B1
6443954 Bramlet et al. Sep 2002 B1
6451021 Ralph et al. Sep 2002 B1
6471705 Biedermann et al. Oct 2002 B1
6514253 Yao Feb 2003 B1
6520963 McKinley Feb 2003 B1
6524315 Selvitelli et al. Feb 2003 B1
6540749 Schäfer et al. Apr 2003 B2
6547790 Harkey, III et al. Apr 2003 B2
6554843 Ou Apr 2003 B1
6565565 Yuan et al. May 2003 B1
6565572 Chappius May 2003 B2
6565605 Goble et al. May 2003 B2
6572617 Senegas Jun 2003 B1
6579319 Goble et al. Jun 2003 B2
6585740 Schlapfer et al. Jul 2003 B2
6585769 Muhanna et al. Jul 2003 B1
6607530 Carl et al. Aug 2003 B1
6610091 Reiley Aug 2003 B1
6619091 Heffe Sep 2003 B2
6623485 Doubler et al. Sep 2003 B2
6626909 Chin Sep 2003 B2
6632226 Chan Oct 2003 B2
6638281 Gorek Oct 2003 B2
6645214 Brown et al. Nov 2003 B2
6648891 Kim Nov 2003 B2
6669698 Tromanhauser et al. Dec 2003 B1
6669729 Chin Dec 2003 B2
6712818 Michelson Mar 2004 B1
6712849 Re et al. Mar 2004 B2
6736815 Ginn May 2004 B2
6749361 Hermann et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6770095 Grinberg et al. Aug 2004 B2
6783527 Drewry et al. Aug 2004 B2
6790233 Brodke et al. Sep 2004 B2
6802844 Ferree Oct 2004 B2
6811567 Reiley Nov 2004 B2
6902567 Del Medico Jun 2005 B2
6902580 Fallin et al. Jun 2005 B2
6908465 von Hoffmann et al. Jun 2005 B2
6949123 Reiley Sep 2005 B2
6974478 Reiley et al. Dec 2005 B2
6979299 Peabody et al. Dec 2005 B2
7011658 Young Mar 2006 B2
7044969 Errico et al. May 2006 B2
7051451 Augostino et al. May 2006 B2
7220262 Hynes May 2007 B1
7294127 Leung et al. Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7309338 Cragg Dec 2007 B2
7445635 Fallin et al. Nov 2008 B2
7547324 Cragg et al. Jun 2009 B2
20010012938 Zucherman et al. Aug 2001 A1
20010020170 Zucherman et al. Sep 2001 A1
20020004683 Michelson Jan 2002 A1
20020013585 Gournay et al. Jan 2002 A1
20020013588 Landry et al. Jan 2002 A1
20020029039 Zucherman et al. Mar 2002 A1
20020042613 Mata Apr 2002 A1
20020052603 Nickols et al. May 2002 A1
20020065557 Goble et al. May 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020082601 Toyama et al. Jun 2002 A1
20020120272 Yuan et al. Aug 2002 A1
20020123752 Schultheiss et al. Sep 2002 A1
20020151895 Soboleski et al. Oct 2002 A1
20030004572 Goble et al. Jan 2003 A1
20030055427 Graf Mar 2003 A1
20030069603 Little et al. Apr 2003 A1
20030125740 Khanna Jul 2003 A1
20030181914 Johnson et al. Sep 2003 A1
20030191532 Goble et al. Oct 2003 A1
20030195631 Ferree Oct 2003 A1
20030204259 Goble et al. Oct 2003 A1
20030204261 Eisermann et al. Oct 2003 A1
20030233148 Ferree Dec 2003 A1
20040006391 Reiley Jan 2004 A1
20040049205 Lee et al. Mar 2004 A1
20040049273 Reiley Mar 2004 A1
20040049274 Reiley Mar 2004 A1
20040049275 Reiley Mar 2004 A1
20040049276 Reiley Mar 2004 A1
20040049277 Reiley Mar 2004 A1
20040049278 Reiley Mar 2004 A1
20040049281 Reiley Mar 2004 A1
20040059429 Amin et al. Mar 2004 A1
20040111154 Reiley Jun 2004 A1
20040116927 Graf Jun 2004 A1
20040127989 Dooris et al. Jul 2004 A1
20040143264 McAfee Jul 2004 A1
20040204710 Patel et al. Oct 2004 A1
20040204718 Hoffman Oct 2004 A1
20040230201 Yuan et al. Nov 2004 A1
20040230304 Yuan et al. Nov 2004 A1
20050010291 Stinson et al. Jan 2005 A1
20050015146 Louis et al. Jan 2005 A1
20050027361 Reiley Feb 2005 A1
20050043799 Reiley Feb 2005 A1
20050055096 Serhan et al. Mar 2005 A1
20050080486 Fallin et al. Apr 2005 A1
20050119748 Reiley et al. Jun 2005 A1
20050131406 Reiley et al. Jun 2005 A1
20050137705 Reiley Jun 2005 A1
20050137706 Reiley Jun 2005 A1
20050143818 Yuan et al. Jun 2005 A1
20050149190 Reiley Jul 2005 A1
20050234552 Reiley Oct 2005 A1
20050240264 Tokish, Jr. et al. Oct 2005 A1
20050240265 Kuiper et al. Oct 2005 A1
20050240266 Kuiper et al. Oct 2005 A1
20050251256 Reiley Nov 2005 A1
20050261770 Kuiper et al. Nov 2005 A1
20050267579 Reiley et al. Dec 2005 A1
20050283238 Reiley Dec 2005 A1
20060009847 Reiley Jan 2006 A1
20060009848 Reiley Jan 2006 A1
20060009849 Reiley Jan 2006 A1
20060029186 De Villiers et al. Feb 2006 A1
20060041311 McLeer Feb 2006 A1
20060052785 Augostino et al. Mar 2006 A1
20060058791 Broman et al. Mar 2006 A1
20060079895 McLeer Apr 2006 A1
20060085072 Funk et al. Apr 2006 A1
20060085075 McLeer Apr 2006 A1
20060100707 Stinson et al. May 2006 A1
20060100709 Reiley et al. May 2006 A1
20060122703 Aebi et al. Jun 2006 A1
20060149375 Yuan et al. Jul 2006 A1
20060184180 Augostino et al. Aug 2006 A1
20060265070 Stinson et al. Nov 2006 A1
20070079517 Augostino et al. Apr 2007 A1
20070088358 Yuan et al. Apr 2007 A1
20070093833 Kuiper et al. Apr 2007 A1
20070168029 Yuan et al. Jul 2007 A1
20070233256 Ohrt et al. Oct 2007 A1
20070255411 Reiley Nov 2007 A1
20070265706 Reiley et al. Nov 2007 A1
20070276374 Broman et al. Nov 2007 A1
20070282445 Reiley Dec 2007 A1
20080015583 Reiley Jan 2008 A1
20080015585 Berg et al. Jan 2008 A1
20080015696 Reiley Jan 2008 A1
20080045954 Reiley et al. Feb 2008 A1
20080082171 Kuiper et al. Apr 2008 A1
20080086213 Reiley Apr 2008 A1
20080091200 Kuiper et al. Apr 2008 A1
20080091201 Reiley Apr 2008 A1
20080091202 Reiley Apr 2008 A1
20080091204 Kuiper et al. Apr 2008 A1
20080091205 Kuiper et al. Apr 2008 A1
20080091210 Reiley Apr 2008 A1
20080091268 Reiley Apr 2008 A1
20080097437 Reiley Apr 2008 A1
20080097438 Reiley Apr 2008 A1
20080097439 Reiley Apr 2008 A1
20080097440 Reiley et al. Apr 2008 A1
20080097446 Reiley et al. Apr 2008 A1
20080097609 Reiley Apr 2008 A1
20080097612 Reiley Apr 2008 A1
20080097613 Reiley et al. Apr 2008 A1
20080103501 Ralph et al. May 2008 A1
20080119845 Stone et al. May 2008 A1
20080125814 Yuan et al. May 2008 A1
20080132951 Reiley et al. Jun 2008 A1
20080140121 McLeer Jun 2008 A1
20080177308 McLeer Jul 2008 A1
20080177309 McLeer Jul 2008 A1
20080177310 Reiley Jul 2008 A1
20080177332 Reiley et al. Jul 2008 A1
20080200953 Reiley et al. Aug 2008 A1
20080249568 Kuiper et al. Oct 2008 A1
Foreign Referenced Citations (45)
Number Date Country
10135771 Jul 2001 DE
10312755 Oct 2003 DE
1103226 May 2001 EP
1205152 May 2002 EP
1254639 Nov 2002 EP
2726459 May 1996 FR
2749155 Dec 1997 FR
2844180 Mar 2004 FR
S970323 Jun 1998 IE
59010807 Jan 1984 JP
10082605 Mar 1998 JP
10179622 Jul 1998 JP
WO 9505783 Mar 1995 WO
WO 9600049 Jan 1996 WO
WO 9848717 Nov 1998 WO
WO 9856301 Dec 1998 WO
WO 9905995 Feb 1999 WO
WO 9923963 May 1999 WO
WO 9960957 Dec 1999 WO
WO 9965412 Dec 1999 WO
WO 0038582 Jul 2000 WO
WO 0062684 Oct 2000 WO
WO 0106939 Feb 2001 WO
WO 0115638 Mar 2001 WO
WO 0128442 Apr 2001 WO
WO 0130248 May 2001 WO
WO 0139678 Jun 2001 WO
WO 0167972 Sep 2001 WO
WO 0197721 Dec 2001 WO
WO 0200270 Jan 2002 WO
WO 0200275 Jan 2002 WO
WO 0202024 Jan 2002 WO
WO 0202158 Jan 2002 WO
WO 0234150 May 2002 WO
WO 0243603 Jun 2002 WO
WO 02071960 Sep 2002 WO
WO 02089712 Nov 2002 WO
WO 03020143 Mar 2003 WO
WO 03041618 May 2003 WO
WO 03075805 Sep 2003 WO
WO 03101350 Dec 2003 WO
WO 2004071358 Aug 2004 WO
WO 2004103227 Dec 2004 WO
WO 2004103228 Dec 2004 WO
WO 2005009301 Feb 2005 WO
Non-Patent Literature Citations (27)
Entry
Ochoa et al.; U.S. Appl. No. 12/377,546 entitled “Spinal implant,” filed Feb. 13, 2009.
Hewko, Brian; U.S. Appl. No. 12/377,552 entitled “Spinal implant,” filed Feb. 13, 2009.
Kuiper et al; U.S. Appl. No. 11/577,967 entitled “Crossbar Spinal Prosthesis having a Modular Design and Systems for Treating Spinal Pathologies,” filed Apr. 25, 2007.
McLeer, Thomas, U.S. Appl. No. 11/934,719 entitled “Polymeric Joint Complex and Methods of Use” filed Nov. 2, 2007.
Quest et al.; U.S. Appl. No. 12/099,068 entitled “Measurement and trialing system and methods for orthopedic device component selection,” filed Apr. 7, 2008.
Reiley, Mark; U.S. Appl. No. 12/176,280 entitled “Facet arthroplasty devices and methods,” filed Jul. 18, 2008.
Funk et al; U.S. Appl. No. 12/186,461 entitled “Implantable orthopedic device component selection instrument and methods,” filed Aug. 5, 2008.
Abraham, D.J. et al. “Indications and Trends in Use in Cervical Spinal Fusions.” Orthop Clin North Am. Oct. 1998; 29(4):731-44.
Farfan, H.F. “Effects of Torsion on The Intervertebral Joints.” The Canadian Journal of Surgery, Jul. 1969; 12(3):336-41.
Farfan, H.F. et al. “The Relation of Facet Orientation to Intervertebral Disc Failure.” The Canadian Journal of Surgery, Apr. 1967; 10(2):179-85.
Farfan, H.F. The Pathological Anatomy of Degenerative Spondylolisthesis. A Cadaver Study. Spine. Sep.-Oct. 1980; 5(5):412-8.
Goh, J.C. et al. “Influence of PLIF cage size on lumbar spine stability.” Spine. Jan. 2000, 25(1) Medline abstract (one page).
Head, W.C.“Wagner surface replacement arthroplasty of the hip.” Analysis of fourteen failures in forty-one hips. J Bone Joint Surg. Am; Mar. 1981, 63(3), Medline abstract (one page).
Khoo, L.T. et al. “A biomechanical analysis of the effects of lumbar fusion on the adjacent vetebral motion segment.” Proceedings of the 2000 Annual Meeting of the North American Spine Society, New Orleans, pp. 127-128.
Kirkaldy-Willis, W.H. et al. “Pathology and Pathogenesis of Lumbar Spondylosis and Stenosis.” Spine. Dec. 1978; 3(4):319-28.
Kotani, Y. et al. The effects of spinal fixation and destabilization on the biomechanical and histologic properties of spinal ligaments. An in vivo study. Spine, Mar. 15, 1998, 23(6), Medline abstract (2 pages).
Lemaire, J.P. et al. “Intervertebral disc prosthesis: results and prospects for the year 2000.” Clinical Orthopaedics and Related Research. 1997; No. 337, pp. 64-76.
Lombardi, J.S. et al. “Treatment of Degenerative Spondylolisthesis.” Spine. 1985; 10(9): 821-7.
McMillin, C. R. et al. Artificial Spinal Discs with up to Five Years Follow-up. 20th Annual Meeting of the Society for Biomaterials (Abstract) 1994; p. 89.
Nagata, H. et al. “The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbrosacral motion”. Spine, Dec. 1993; 18(16):2471-2479, (9 pages).
Nibu, K. et al. “Multidirectional stabilizing potential of BAK interbody spinal fusion system for anterior surgery.” J Spinal Discord, Aug. 1997; 10(4), Medline abstract (one page).
Posner, I. et al. A “Biomechanical Analysis of the Clinical Stability of the Lumbar and Lumbosacral Spine.” Spine. 1982; 7(4): 374-389.
Rosenberg, N.J. “Degenerative Spondylolisthesis. Predisposing Factors.” The Journal of Bone and Joint Surgery. 1975; 57-A(4): 467-74.
Szpalski, M., et al. Spine Arthroplasty: A Historical Review. Eur Spine J. 2002; 11(Suppl. 2): S65-S84.
Tsantrizos, A. et al. “Segmental stability and compressive strength of posterior lumbar interbody fusion implants.” Spine, Aug. 1, 2000; 25(15), Medline abstract (one page).
UCR Pedicle Screw System from SeaSpine (information available at http://www.seaspine.com/ UCR—Pedicle—Screw—System.html). Accessed Dec. 5, 2005.
Victrex of Lancashire, Great Britain. (information on Victrex available at http://www.matweb.com). Accessed Dec. 5, 2005.
Related Publications (1)
Number Date Country
20080275505 A1 Nov 2008 US
Continuations (2)
Number Date Country
Parent 11276541 Mar 2006 US
Child 12163738 US
Parent 10438294 May 2003 US
Child 11276541 US