The present invention relates to an implantable prosthesis for implantation in a bone such as a femur.
A femoral head-neck prosthesis that fails to replicate normal loading conditions will change the stress distribution through the femur. As mentioned in U.S. Pat. No. 4,998,937, according to Wolff's law these changes in stress distribution eventually cause alterations in the internal structure of the bone. Those portions subject to a lesser stress than before are likely to deteriorate and those subject to greater stress than before are likely to thicken. But if the stress is too great and applied over an extended period, bone cells may be killed.
As shown in
In most cases, the stem cannot be aligned exactly with the MTS axis for anatomical reasons, e.g., because the axis extends through the medial neck cortex above the lesser trochanter. Previous transosseous implants, such as the implants shown in the '915 and '120 patents, were installed in “offset” alignment so that the stem was aligned with axis AX-4, parallel to the MTS axis, e.g., offset from the axis so that the bore did not extend through the neck cortex. A disadvantage of “offset” alignment is that it creates a bending moment on the stem that may excessively strain parts of the femur, e.g., the femoral neck. Accordingly, other types of alignments may be desired in some femoral implant applications.
Additionally, previous stems have included longitudinal splines for preventing rotation of the stem. The splines are evenly spaced around the circumference of the stem. While the splines prevent rotation, they have the disadvantage of tending to cause the stem to deviate horizontally during implantation (known in the art as “going into varus”) as the implant is impacted or driven into the bore. Thus, an improved spline configuration is desired.
Also, femoral transosseous prostheses typically require at least two incisions. However, it would be desirable to minimize the number of incisions to reduce recovery time and the risk of infection.
One aspect of the invention is directed to a bone prosthesis for implantation at a joint. The prosthesis comprises a stem sized and shaped for implantation in a bone at the joint, the stem having a proximal portion, a distal portion and a longitudinal axis extending therethrough. The distal portion has an outer periphery including splined sections of longitudinally extending splines and non-splined sections separating the splined sections. The splined sections and non-splined sections being constructed and arranged for facilitating implantation and for inhibiting cracking of the bone.
In another aspect, the prosthesis comprises a stem adapted for implantation through a bore formed in a bone at the joint, the bore having an entrance at one side of the bone and an exit at an opposite side. The stem includes a distal portion and a distal tip at an end of the distal portion. The distal portion and distal tip are formed integrally as one piece. The distal portion has an outer periphery including splined sections of longitudinally extending splines. The tip has a smooth, curved leading edge and non-splined, smooth section disposed between the leading edge and the distal portion for facilitating insertion of the tip through the entrance and through the exit of the bore and for facilitating centering of the splines of the distal portion.
In yet another aspect, a prosthesis is adapted for transosseous implantation in a femur having a bore and an adjacent seat formed therein. The prosthesis comprises a collar, a neck mounted on one side of the collar, and a stem extending from the collar on the opposite side of the collar from the neck. The collar includes a lip for engaging the seat formed in the femur so as to inhibit withdrawal of the prosthesis from the seat and the bore while allowing compression of the prosthesis against the bone.
In still another aspect, the collar is sized and shaped for engaging the seat formed in the femur so as to inhibit withdrawal of the prosthesis from the seat and the bore while allowing compression of the prosthesis against the bone.
In an additional aspect, the prosthesis comprises a neck adapted to receive a ball thereon and having a neck longitudinal axis, a collar on which the neck is mounted and a stem extending from the collar on the opposite side of the collar from the neck. The stem includes a proximal portion adjacent the collar, a central portion and a distal portion opposite the proximal portion. The distal portion has a distal tip. The proximal and central portions being symmetric about a stem longitudinal axis. The stem longitudinal axis being angled relative to the neck longitudinal axis and forming an acute angle relative to the collar.
In another aspect, the prosthesis comprises a first assembly including a collar having a first side and a second side opposite the first side adapted to engage the femur. The first assembly also includes a neck fixed to the first side of the collar and adapted to receive a ball thereon. A second assembly includes a generally straight stem adapted for transosseous implantation in the bore. The second assembly is securable to the first assembly for extending from the second side of the collar.
In still another aspect, a method is adapted for implanting a femoral prosthesis. The femur has a shaft, a neck at the upper end of the shaft at the medial side of the femur, and a trabecular stream. The method comprises the steps of determining the axis of the trabecular stream of the femur, and forming a seat on the femoral neck. A bore is drilled along a line through the shaft of the femur co-linear with the medial trabecular stream generally at the lateral side of the femur so as to increase the bore length through the femur and to decrease the bending moment on the prosthesis. Finally, a stem of the prosthesis is inserted in the bore extending through the shaft to the lateral side of the femur so that a stem axis is co-linear with the medial trabecular stream.
In another aspect, the method comprises inserting a stem of the prosthesis in the bore and orienting the stem so that one of the non-splined sections is positioned superolaterally in the femur and another of the non-splined sections is positioned inferomedially in the femur.
In still another aspect, a prosthesis comprises a first assembly including a collar having a first side and a second side opposite the first side adapted to engage the femur, a neck mounted on a first side of the collar and adapted to receive a ball thereon, and a proximal stem secured to the second side of the collar. A second assembly includes a distal stem adapted for implantation in the bore, the second assembly being securable to the first assembly for extending from the proximal stem.
In yet another aspect, the prosthesis comprises a collar having a first side and a second side opposite the first side adapted to engage the femur. A neck is mounted on a first side of the collar and has a longitudinal neck axis. A stem is sized and shaped for implantation in a bore through the bone. The stem includes a proximal portion and a distal portion having a longitudinal distal axis generally co-linear with the neck axis and offset from the proximal portion.
In yet a further aspect, a method is adapted for implanting a femoral prosthesis in a femur. The prosthesis comprises a collar, and stem including a proximal portion, a distal portion and a cement restrictor around the proximal portion. The femur has a shaft and a neck at the upper end of the shaft at the medial side of the femur. The method comprises the steps of forming a seat on the femoral neck, and drilling a bore along a line through the shaft of the femur to extend from the neck of the femur down through the lateral side of the femur. The stem of the prosthesis is partially inserted in the bore extending through the shaft to the lateral side of the femur. Cement is placed around the proximal portion of the stem such that the restrictor inhibits the cement from flowing down toward the distal portion. In the final step, the prosthesis is impacted into the bone so that the collar contacts the seat.
In still another aspect, a method is adapted to incrementally adjust a location of a guide pin in forming a bore for transosseous prosthetic implantation. The method comprises withdrawing the guide pin from a first guide hole and determining a location of a final guide slot. Another step includes placing a side-cutting burr in the first guide hole and rotating the burr while forcing the burr against one edge of the hole to expand the hole and thereby form the final guide slot. A further step includes inserting the guide pin in the guide slot.
In yet another aspect, a guide for use during the implantation of a prosthesis comprises a cylindrical body having a top, a bottom, an inner wall and an outer wall. The inner wall defines an opening for allowing the shaft to pass therethrough. At least one passage extends from the top of the body to the bottom of the body for allowing fluid to pass through the guide for direct fluid contact with the reamer.
In still a further aspect, a stem for a femoral prosthesis adapted for transosseous implantation comprises a first diameter cylinder tapering to a smaller second diameter in a distal portion of the stem, and a medial side of the stem lying along a straight line.
FIGS. 29A-C, 30A-B, 31A-B show variations of a stem of the invention;
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Referring now to the drawings and in particular to
As implanted, the transosseous prosthesis 21 extends through a bore B generally from the resected femoral neck N diagonally across the medullary canal MC and out an opposite side of the femur. The prosthesis 21 will usually extend out posterolaterally (i.e., from the posterolateral side of the femur F), but might extend laterally or anterolaterally in cases of neutral version or retroversion, respectively. It should be noted that some features of the prosthesis 21 can be incorporated into non-transosseous, intramedullary prostheses. The prosthesis 21 is of the type that need not be cemented into the femur F, but is secured by mechanical interconnection of the prosthesis with the bone. The prosthesis 21 is constructed so that it is securely held in the bone from rotation (about its longitudinal axis) and toggling (perpendicular to the longitudinal axis, i.e., anterior-posterior and medial-lateral) motion, while permitting axial micromotion to achieve a natural bone loading condition thereby to preserve the bone.
Referring to
The neck 27 of the collar-neck assembly 23 extends upwardly from the upper surface 33 and is adapted to receive a ball 39 (shown in phantom in
In this embodiment, the neck 27 is disposed at an oblique angle α of about 94° relative to the upper surface 33 of the collar 25 (i.e., the neck is not perpendicular to the collar), but the neck may extend at an angle of between about 90° to about 100°. In conjunction with the intercept alignment discussed below, the longitudinal neck axis NA extends at an angle relative to a longitudinal stem axis SA of about 80, but the angle between the axis is suitably between about 3 and about 150. It is also contemplated that the neck axis NA and stem axis SA be parallel. The neck and stem axes may be disposed at a variety of angles relative to the collar 25. The angles are chosen to conform to the individual femur F. For example, it is contemplated within the scope of the invention for the neck 27 to extend perpendicular to the collar 25 while the stem 31 extends at an acute or oblique angle, or in the reverse, the neck extends obliquely or acutely and the stem extends perpendicular.
In this embodiment, the collar-neck assembly 23 is integrally formed as one piece. The stem 31 and collar-neck assembly can be joined by suitable joining means, such as described below. However, it is contemplated within the scope of this invention to form the collar 25, the neck 27 and the stem 31 integrally as one piece or any number of separate pieces.
Referring to
The lip 41 is a mechanical interlock between the collar 25 and the femur F that allows compression of the collar but also inhibits distraction. Forces that would tend to distract the prosthesis 21 from the femur F are likely to be minimal. The resistance to distraction achieved by the lateral collar lip 41 is expected to be necessary only until sufficient bone ingrowth into the collar 25 occurs. However, mechanical resistance to distraction may provide additional stability and encourage osseointegration in marginal cases.
The lip 41 extends from the lateral edge 36 of the collar 25, and may have a suitable radius at its base, such as between about 0.5 and 1.5 mm. The lip 41 is sized and shaped for an interference fit with a wall W (see
As shown in
In an alternative embodiment 23A shown in
A hole 49 in the extension 50 is sized and shaped to accept an impactor 51 to assemble the modular components (e.g., the stem and the collar) of the prosthesis (
Referring to
The proximal portion 57 of the stem 31 extends generally from the lower surface 35 of the collar 25 as installed. The proximal portion 57 is smooth, not splined, and most of the central portion 58 is likewise smooth, though it suitably includes grooves 60 adjacent its lower end as shown. The proximal portion 57 is cylindrical and the central portion 58 is conical or tapered as shown, though other shapes are contemplated within the scope of the invention. The stem 31 is suitably formed as a one-piece integral assembly, though it may be formed as separate pieces.
The distal portion 59 has splines 61 that can penetrate the femur F around the bore B through the posterolateral femoral cortex to ease insertion of the prosthesis 21 and to inhibit fracture of the femur. The splines 61 have an interference fit with the bore B of the femur F to thereby hold the prosthesis 21 securely against rotational movement about the stem axis SA after implantation, and encourage bone growth around the splines. However, although the splines 61 resist axial displacement of the prosthesis 21 relative to the femur F, the splines do not rigidly fix the prosthesis against axial micromotion.
As best shown in
As described above, the splines along the lateral side or medial side may interfere with proper alignment. In this embodiment, there are no splines along the lateral or medial sides. For example, at least about one-third of the outer periphery of the distal portion is non-splined and generally smooth. The splined and non-splined configuration of the distal portion 59 of the stem 31 inhibits deviation, improves alignment and thereby reduces the risk of assembly or impaction fracture. The configuration also increases rotational stability of the stem 31.
Referring to
In this embodiment, the distal tip 67 is formed integrally with the stem 31 so that no lateral incision is necessary to remove the tip. In other words, only one incision is necessary to implant the prosthesis 21.
Generally, the prostheses of the invention are made of cobalt-chrome, titanium or other suitable material. Referring to
Such porous coating 71 may be used instead of (or in addition to) the bone graft slots 45 on the lateral edge 36 of the collar 25. The porous coating 71 may increase friction against cancellous bone and increase initial implant stability.
The porous coating 71 may be applied to the lower surface 35 of the collar 25 in a variety of ways. In assemblies 23A, 23B, the collar is constructed of cobalt-chrome (Co—Cr) and porous coating 71 is applied to the lower surface and the lateral edge (
Alternatively, and as shown for assemblies 23C, 23D in
In assembly 23E shown in
Note that the coating is typically applied under heat or a combination of heat and pressure. In contrast, the stem 31 of this embodiment is not heat treated to inhibit warpage. The machining of the splines 61 causes residual stress, which may result in warpage of the stem 31 under heat treatment.
Due to the magnitude of forces transmitted through a relatively small area, it may be desirable to increase the strength of the coating, which can be achieved, for example, by increasing the size of the cobalt-chrome beads and/or increasing the number and pattern of reinforcing ribs on the lower surface 35 of the collar.
A method of an embodiment for implanting the prosthesis assures close replication of normal loading of the femur F (i.e., loading prior to implantation of the prosthesis). A femoral head-neck prosthesis that fails to replicate normal loading conditions will change the stress distribution through the femur F. As mentioned in the '937 patent, according to Wolff's law these changes in stress distribution eventually cause alterations in the internal structure of the bone. Those portions subject to a lesser stress than before are likely to deteriorate and those subject to greater stress than before are likely to thicken. But if the stress is too great and applied over an extended period, bone cells may be killed. To replicate normal loading, the method of the present invention aligns the stem of the prosthesis with the average compression loading vector for the particular femur, which vector is variable from person to person. The prosthesis may be suitably implanted in a manner similar to one of the implantation methods shown and described in the '120, '915 and '937 patents.
One method of implantation is a single incision anterior approach, a form of minimally invasive surgery (MIS). This approach has many advantages. The distal tip 67 of the stem 31 described above, in conjunction with the anterior approach, eliminates the need for an additional incision adjacent the bore exit through the lateral femoral cortex. Moreover, the placement of the anterior incision, combined with externally rotating and extending the femur F, conveniently tends to direct the bore B and the stem 31 toward the posterolateral femoral cortex. The approach allows for excellent acetabulum/femur visibility. It is an internervous approach and does not require cutting, splitting or dividing muscles, which can result in irreparable harm to the muscles. The approach promotes normal hip mechanics, immediate hip stability and reduced dislocation risk. Accordingly, it eliminates the need for postoperative immobilization and restrictions on hip motion. There is less tissue trauma, less blood loss, less postoperative pain, and pain medication. In general, the approach enables a faster recovery and fewer restrictions on postoperative activities.
When using the single incision anterior approach, an incision of approximately 7 cm to 10 cm in length (depending on the size and anatomy of the patient) is made between adjacent the anterior superior iliac spine and a point anterior to the tip of the greater trochanter with the patient in a supine position. The interval between the tensor facia lata muscle and the sartorius muscle is developed (i.e., made deeper and/or wider) and the anterior hip capsule is identified and incised. Retractors are then placed around the femoral neck. Next anatomic landmarks, such as locations on the pelvis and femur, are registered and stored in the memory of a computer positioning system. A hip skid is placed around the femoral head and the hip is dislocated by traction and external rotation. Additional anatomic landmarks, for example, on the femoral head and neck are registered to help localize the anatomic center of the femoral head. The MTS axis, which was radiographically determined before surgery, is displayed along with the femoral neck resection plane on a monitor of the computer.
A saw guide used for resecting the femoral head and a portion of the neck is positioned with computer assistance to a proper orientation with respect to the MTS. Once the saw guide has been properly placed, a saw is used to remove the femoral head and a portion of the neck. With computer assistance, the acetabular component is installed.
Next, the lower extremity of the patient is dropped toward the floor and externally rotated such that the foot is pointing outward. Retractors are placed around the proximal femur to elevate it toward the incision. In some instances, capsular bands need to be released to mobilize the proximal femur.
With the femur in an extended and externally rotated position, the position of the incision and muscle exposure is approximately aligned with the desired axis for creating the bore. The femoral neck is reamed with computer guidance keeping the reamer appropriately oriented with respect to the MTS. A guide is pressed into the reamed femoral neck and a guide sleeve is passed through the guide. A guide pin (not shown, see '915 and '120 patents) attached to a power drill is passed through the guide sleeve at the desired angled in relation to the MTS, which is determined using computer guidance. Using the drill, the pin is passed through the posterolateral femoral cortex. The pin alignment is reconfirmed in regard to degrees of anteversion and the angle between the pin and the lateral femoral cortex. If the pin is not properly aligned, the pin can be repositioned using the steps provided below. If the pin is properly aligned, the sleeve and guide are removed. The guide is placed over a cortical drill-reamer, and the reamer is passed over the guide pin. Using the power drill, the reamer is used to form the bore.
The proximal femoral seat is planed to the desired depth using computer assistance, trial implants are inserted, and the hip reduced (i.e., the ball is placed into the acetabular component). Computer assistance is again used to check restoration of leg length and femoral offset (i.e., horizontal distance between center of hip rotation and the femoral shaft).
Suitable computer systems include Surgical Navigational Technology, including Mini-Incision Hip Navigation, available from Medtronic of Minneapolis, Minn., VectorVision® Exactrac available from Brainlab AG of Munich, Germany, and Stryker® Navigation System available from Stryker Corporation of Kalamazoo, Mich. Suitable systems can use image-based or position-based tracking.
The method uniquely combines bone preserving technology (the transosseous prosthesis) with minimally invasive approaches and with computer assisted surgery. Bone preservation results in better outcomes and reduces the likelihood of implant failure. It will be understood that other approaches might be used, such as any standard hip replacement surgical approach, and including any minimally invasive approach.
As discussed above in the Background section, in most cases the stem cannot be aligned exactly with the MTS axis for anatomical reasons, e.g., because the axis extends through the medial neck cortex above the lesser trochanter. Previous transosseous implants, such as the implant shown in the '120 patent, were installed in “offset” alignment so that the stem was parallel to the MTS axis, e.g., offset from the axis so that the bore did not extend through the neck cortex. A disadvantage of “offset” alignment is that it creates a bending moment on the stem that may excessively strain parts of the femur F, e.g., the femoral neck N.
In one embodiment of this invention, the stem 31 is implanted on an “intercept” alignment shown in
The “intercept” alignment decreases the distance between the MTS axis and the stem 31 and thereby decreases the bending moment on the stem. Moreover, intercept alignment causes the bore B through the femur F to be longer than an offset alignment bore so that the stem contacts more femoral bone, especially the lateral cortex. The increased contact area between femur F and stem 31 should increase the torsional stability of the prosthesis.
Due to the increased length of the bore B and the density of the surrounding cortical bone C, there is an increased risk of thermal necrosis of the femur F during reaming of the bore. Accordingly, a cooling system may be used during reaming. For example, a fenestrated guide, indicated at 93 in
Ten passages 109 extend between the inner and outer walls 105, 107 from the top 101 to the bottom 103 of the body for allowing fluid 99 to pass through the guide 93 for direct fluid contact with the reamer 97 and the cortical bone C being cut by the reamer to thereby cool the reamer and bone. In the illustrated embodiment, the passages 109 include a plurality of fluid inlet passages for allowing fluid 99 to pass from the top 101 of the body to the bottom 103 of the body, and a plurality of outlet passages for allowing fluid to pass from the bottom of the body to the top of the body. It is understood that any of the passages can be used as either an inlet passage or an outlet passage.
With reference to
In another embodiment (
After reaming, the stem 31 is driven into the bore so that the splined sections 62a, 62p on the anterior and posterior sides of the stem engage the bone on the anterior and posterior sides of the bore B, respectively. The non-splined sections 63m, 631 are disposed inferomedially (broadly medially) and superolaterally (laterally), respectively, and not necessarily in contact with the bone. The splines 61 of the stem 31 bite into the walls of the bore B and the stem protrudes slightly through the oblique exit hole of the bore so that cortical bone C does not later grow over the end of the stem. Growth of bone over the end of the stem 31 would be undesirable since it would impede the ability of the prosthesis 21 to transmit loads from the hip to the upper femur.
Referring to FIGS. 11A-B, because the stem 31 of this embodiment is angled relative to the collar 25, the seat ST formed in the femoral neck is angled relative to the bore. In this embodiment, the mating portion 55 is angled relative to the stem longitudinal axis SA. In one method of forming the seat, the stem 31 is implanted so that the longitudinal axis of the mating portion 55 is aligned perpendicular with the angle of the seat to be formed (referred to as the anteversion of the femoral neck). A calcar planer 81 having a stud 83 along its central axis is then fitted in the cannula 79 of the mating portion to plane the neck N and thereby form the seat ST. The collar 25 is thereafter impacted onto the mating portion 55 of the stem 31, the angle of the mating portion ensuring that the lower surface 35 of the collar engages the main surface of the seat ST and so that the collar lateral edge 36, including its lip 41, engages the wall W of the seat. As can now be seen, the neck 27 of the prosthesis is adapted for implantation so that the neck axis NA is parallel or co-linear with the medial trabecular stream AX-3. Further, the stem 31 is adapted for implantation so that in its proximal portion 57 the stem axis SA is offset from the medial trabecular stream AX-3 and so that the distal portion 59 intersects the trabecular stream TS. Also, the lip 41 in the collar inhibits “pistoning” of the prosthesis 21 after implantation.
It is contemplated that a temporary axle (not shown) be placed in the cannula of the taper to guide the collar during impaction. Use of such an axle would likely require application of a counterforce to the distal end of the stem 31, and thus necessitate a second incision adjacent the exit of the bore B through the lateral femur. Once the collar 25 is implanted, an appropriately sized ball 39 is locked onto the neck 27. The ball 39 is received in the acetabulum or a prosthetic cup in the acetabulum (not shown).
The goal of “axial alignment” is to implant the prosthetic neck axis NA and stem axis SA (or at least the distal stem axis) co-linear with the MTS axis AX-3. Referring to
The prostheses and methods of this invention may be modified for axial alignment. For example, a prosthesis 121 shown in
Referring to
A variation of the method is shown in
A retrograde prostheses, such as prosthesis 221, and the associated installation methods achieve the goal of axial alignment of a trajectory-matched, compression-enabling Total Hip Arthroplasty (THA) prostheses for all femurs, regardless of neck angle NA.
Generally, axial alignment has several advantages:
Referring to
Experiments have demonstrated that horizontal or vertical deviation of the stem axis SA of five degrees or less from the MTS axis AX-3 significantly changed the strain in the proximal femur. A more horizontal alignment increases strain; a more vertical alignment decreases strain. Thus, it is desired to have the horizontal and vertical deviation of the stem axis SA with respect to the MTS axis AX-3 that is less than four degrees, and preferably less than two degrees. Data from laboratory testing conducted on an intact human femur showed that full strain restoration can be closely replicated if the load trajectory was aligned within one degree of the radiographically determined MTS axis. However, when the load trajectory varied from the radiographically determined MTS axis by approximately five degrees, the strain restoration varied significantly. As previously mentioned, too much strain causes bone to thicken, and too little strain causes bone to deteriorate.
Referring to
If, after passing a guide pin 405 (
Referring to
Referring to
All of these embodiments further decrease the risk of fracture as compared to the partially splined stem 31 of
In another embodiment shown in
As shown in
A suitable method of implantation is similar to that described above, especially with respect to prosthesis 21, except that the stem 31 and the collar 25 are left a few centimeters short of being fully seated and cement is injected around the proximal portion 57. As the stem and collar are driven further to a fully seated position, the stem and collar act as a syringe to pressurize the cement within the surrounding bone. Thereafter, any excess or extruded cement is removed. Note that the cement does not fill the area around the entire stem, or even fill all of the area of proximal femur, but rather is limited to the area around the proximal portion 57 of the stem 31.
Referring to
Testing of a prosthesis embodying aspects of the invention was performed and compared with prior art conventional prostheses. The inventive prosthesis was aligned on an intercept axis as described above. The testing showed that the prosthesis of the invention is superior to conventional prostheses in terms of restoring natural strain to the femur. The prosthesis reduced stress shielding and restored about 100% of strain (normalized or natural strain) to the proximal (upper) femur. Advantageously, the modular construction aids in consistently aligning the seat with the bore and in producing optimal strain. Relatedly, the splined configuration of the implant helps to ensure proper alignment of the stem. The lip in the collar inhibits “pistoning” of the prosthesis after implantation.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application claims priority from Provisional Application Ser. No. 60/589,173 filed on Jul. 17, 2004, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60589173 | Jul 2004 | US |