Prosthesis comprising a mesh and a strengthening means

Information

  • Patent Grant
  • 9839505
  • Patent Number
    9,839,505
  • Date Filed
    Tuesday, September 24, 2013
    11 years ago
  • Date Issued
    Tuesday, December 12, 2017
    7 years ago
Abstract
Prosthesis (1) comprising one porous mesh (2) comprising a first face and a second face opposite the first face, the prosthesis (1) comprising: —one porous strengthening means (6) which strengthens the mesh (2) and is intended to cover at least part of one of said first and second faces of the mesh (2), —fastening means for fastening the strengthening means (3) to the mesh (2), in a position fastened to the mesh (2), the strengthening means (6) covers a peripheral part (7) of one of said first and second faces of the mesh.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Stage Application of PCT/EP13/069860 under 35 USC §371 (a), which claims priority of French Patent Application Serial No. 12/58983 filed Sep. 25, 2012, the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.


The present invention relates to a prosthesis for medical or surgical use.


In the treatment of parietal insufficiencies, such as hernias and incisional hernias, the role of the prosthesis is to provide mechanical support to the surgical reconstruction. The prosthesis is often in the form of a piece of biocompatible textile which may or may not be accompanied by additional elements such as a coating in the form of a film, a set of needles, etc. The prosthesis is all the more effective, and its local tolerance all the better, if it integrates in the tissue intimately and at an early stage. To achieve intimate and early integration without formation of a peripheral fibrous shell, the pores of the prosthesis must be as widely open as possible to the outside, and its elasticity must allow it to follow the physiological deformations of the wall.


In a known manner, such prostheses, also called prosthetic fabrics or knits, have to meet a number of requirements, and in particular they need to have a mechanical strength in at least two perpendicular directions, be biocompatible, flexible and conformable, while having a certain capacity for elongation, in at least one direction, be porous and able to be sutured and recut, while at the same time being non-tear and run-proof, and, finally, they must be sterilizable. In general, the prostheses are knitted and made up of several sheets of interlaced yarns in order to meet all of these requirements. Thus, a large amount of foreign material is present in the long term in the body of the patient when the prosthetic material is not absorbable. This is undesirable, since the foreign material is likely to cause inflammation or fibrous shells in the body of the patient.


There is therefore a need for a prosthesis which has sufficient mechanical strength at least during the period of cell recolonization and which avoids any risk of recurrence, while at the same time having minimal material, and which can be put in place simply and quickly.


There is also a need for a prosthesis that would favour cell colonization and that may be secured to the biological tissues with fixation means such as staples or stitches without risking to damage the mesh forming the prosthesis or to create local tears, and if possible while implanting as less as possible of foreign material in the body of the patient.


The present invention aims to solve at least one of these problems by making available a prosthesis for medical or surgical use, comprising at least one porous mesh made of biocompatible material, said mesh comprising a first face and a second face opposite the first face, the prosthesis additionally comprising:

    • at least one strengthening means which strengthens the mesh and is intended to cover at least part of one of said first and second faces of the mesh,
    • at least fastening means for fastening the strengthening means to the mesh, wherein the strengthening means is porous, the pores of the mesh having dimensions larger than those of the pores of the strengthening means, and


      in a position fastened to the mesh, the strengthening means covers a peripheral part of one of said first and second faces of the mesh.


In the present document, “mesh” is understood as an arrangement or assembly of biocompatible yarns, fibres, monofilaments and/or multifilaments, for example a knit, woven fabric, nonwoven fabric, preferably openworked, that is to say provided with pores that promote cell recolonization. The mesh is sufficiently flexible to be folded back on itself at the time of its introduction into the biological cavity. The mesh can be produced from one or more layers of yarn arrangements. Such meshes are well known to a person skilled in the art. The mesh that can be used according to the invention can be supplied in any shape, e.g. rectangular, square, circular, oval, etc., and can then be cut in order to be adapted to the shape of the hernia defect. For example, the mesh can have the general shape of a disc or an oval. Alternatively, the mesh can have a generally square or rectangular shape.


In the present invention, the adjective “porous” refers to a material having pores, voids or alveoli that promote cell colonization. The larger the pores of the mesh, the greater its ability to allow cell colonization.


In the present document, “strengthening means” is understood as a means of modifying, in particular increasing, the mechanical strength of the mesh in at least one direction, preferably in at least two perpendicular directions. For example, if the mesh is a knit, the strengthening means can increase the tear strength and/or the resistance to elongation in multiple directions.


In the present document, “fastening means” is understood as a means permitting reversible fixation of the strengthening means to the mesh, so as to permit detachment by pulling, for example, on the strengthening means. Of course, renewed fixation of the strengthening means, for example for repositioning, is possible at the time of manufacture of the prosthesis according to the invention.


Thus, the means of fastening the mesh according to the invention gives the prosthesis locally different mechanical properties, making it possible to treat parietal insufficiencies according to local specific stresses. Moreover, the possibility of covering only part of the mesh makes it possible to limit the quantity of foreign material of the prosthesis of the invention compared to a prosthesis of which the mesh is completely covered. Moreover, the fastening means according to the invention permit reversible fixation of the strengthening means, which can thus be repositioned on the mesh.


In addition, the prosthesis of the invention, allows an excellent cell recolonization with as less as possible of implanted foreign material in the biological tissues, together with a high resitance against potential tearing or rupture of the mesh.


It is conceivable that these prostheses according to the invention are supplied in modular form with, on the one hand, a mesh and, on the other hand, a strengthening means to be fastened to the mesh.


The strengthening means of the invention can be in any conceivable form, for example in any geometric shape, such as an oval, circle, rectangle, square, etc.


The mesh and the strengthening means according to the invention can also be made available in the form of a band, such that the elements of the prosthesis can be cut out in the required dimensions before fastening them.


Moreover, the prosthesis according to the invention can be supplied in an already defined form, with the strengthening means already positioned on and fastened to the mesh.


The strengthening means is porous, and the pores of the mesh have dimensions larger than those of the pores of the strengthening means. Thus, the presence of the strengthening means on a localized part of the mesh gives the prosthesis mechanical strength and reduces the capacity for elongation in a region of the prosthesis designed to effectively fill a tissue defect. In the other regions, which are not intended to fill a defect, a mesh with less mechanical strength may suffice. It is thus possible to use a mesh with large pores facilitating cell colonization and reducing the overall quantity of foreign material in the body of the patient.


Preferably, the strengthening means comprises at least one piece of textile made of biocompatible material. In the present document, “textile” is understood as an arrangement or assembly of biocompatible yarns, fibres, monofilaments and/or multifilaments, for example a knit, woven fabric and nonwoven fabric. In one embodiment, the textile is a knit. In another embodiment, the textile is a nonwoven fabric. The covering of a part of the mesh is thus facilitated by the flexibility of the textile, which can be easily dimensioned.


In one embodiment, the fastening means are situated on the strengthening means and/or on one or both of said first and second faces of the mesh. The strengthening means is then easily fastened to one of the faces of the mesh.


Preferably, the fastening means comprise barbs. In the present document, “barb” means any hook made of any biocompatible material and integral with the arrangement of yarns forming the mesh or with the arrangement of yarns forming the strengthening means when the latter is in the form of a piece of textile, whether these hooks have been incorporated in said arrangement during manufacture (braiding, knitting, weaving etc.) or have been added afterwards. Examples of knits comprising such barbs are described in the document WO01/81667.


The presence of the barbs is advantageous in that they allow the textile of the strengthening means to be locked onto the mesh. This locking, which is effective even in a liquid environment, is sufficient to ensure the fixation of the strengthening means to the mesh while at the same time permitting release of the strengthening means in order to adjust the position thereof with respect to the mesh if need be. This gives the prosthesis according to the invention great flexibility and a great capacity for adaptation.


In one embodiment, the strengthening means comprises a bioabsorbable material, and the mesh comprises a partially bioabsorbable material.


In the present document, “bioabsorbable” or “biodegradable” is understood as the characteristic by which a material is absorbed and degraded by the biological tissues and disappears in vivo after a given period which, for example, can vary from several hours to several months, depending on the chemical nature of the material.


Thus, the bioabsorbable materials suitable for the yarns of the mesh or of the textile of the strengthening means of the present invention can be chosen from among polylactic acid (PLA), polyglycolic acid (PGA), oxidized cellulose, chitosan, polyphosphazene, polycaprolactone (PCL), polydioxanone (PDO), trimethylene carbonate (TMC), polyvinyl alcohol (PVA), polyhydroxyalkanoates (PHAs), polyamides, polyethers, copolymers thereof, and mixtures thereof. In the present invention, “partially bioabsorbable” refers to a material formed by the combination of a bioabsorbable material and of a non-bioabsorbable material.


The non-bioabsorbable materials suitable for the mesh and the textile of the strengthening means of the present invention can be chosen from among polyethylene terephthalate (PET), polyamides, aramids, expanded polytetrafluoroethylene, polyurethane, polyvinylidene difluoride (PVDF), polybutyl esters, PEEK (polyether ether ketone), polyolefins (such as polyethylene or polypropylene), copper alloys, silver alloys, platinum, medical grades of steel such as medical-grade stainless steel, and combinations thereof.


In another embodiment, the mesh is composed of a single material, in particular a partially bioabsorbable material.


Alternatively or in addition, the strengthening means is composed of a single material, in particular a bioabsorbable material.


In the configuration in which the mesh is composed of only a single partially bioabsorbable material and in which the strengthening means is composed of only a single bioabsorbable material, the prosthesis introduced into the human body initially comprises both the material of the mesh and also that of the strengthening means. During the weeks following the implantation, in particular permitting cell colonization, the bioabsorbable material disappears and the partially bioabsorbable material disappears in part. Thus, when the tissue defect has been filled by the cell recolonization, the materials constituting the prosthesis disappear at least partially. The overall quantity of residual foreign material in the body is thus greatly reduced. More precisely, the material of the strengthening means of the mesh is intended to completely disappear once the strengthening of the mesh has been rendered superfluous by the repair of the biological tissue. The material of the mesh is intended to partially disappear, so as to provide a minimal reinforcement over the entirety of the surface of the biological tissue treated by the prosthesis. This makes it possible to avoid any risk of recurrence, while at the same time permitting a reduction in the quantity of residual foreign material.


According to one alternative, the strengthening means comprises a partially bioabsorbable material, and the mesh comprises a bioabsorbable material.


According to one embodiment, the strengthening means is composed of a single material, in particular a partially bioabsorbable material.


Alternatively, the mesh is composed of a single material, in particular a bioabsorbable material.


Advantageously, the configuration in which the strengthening means is composed of a single partially bioabsorbable material, and in which the mesh is composed of a single bioabsorbable material, is intended for a case where it is chiefly necessary to maintain local reinforcement of the biological tissue and not reinforcement over the entirety of the surface of the prosthesis.


If necessary, the strengthening means may also be used to reinforce a central part fo the mesh. According to one embodiment, in a position fastened to the mesh, the strengthening means further covers a central part of one of said first and second faces of the mesh. With this configuration, it is possible to use a mesh of which the pores are of a considerable size. Indeed, the mechanical performance of the mesh, potentially reduced on account of the large size of the pores, is specifically compensated at the centre of the prosthesis by the strengthening means. Thus, the tissue integration of the prosthesis is improved without thereby compromising the reinforcement function needed at its centre to avoid a recurrence.


According to a embodiment, the strengthening means is made of partially bioabsorbable material and covers the central part of the mesh made of bioabsorbable material of which the size of the pores is greater than that of the pores of the strengthening means. This configuration is advantageous in that the mesh is reinforced at its centre and may thus have pores of greater dimensions. Moreover, the material of the mesh disappears over the course of time, whereas that of the strengthening means disappears partially in order to retain a sufficient mechanical stability in the area of the tissue defect, while limiting the quantity of foreign material present in the long term in the human body.


According to another configuration, it is advantageous to make available a prosthesis comprising a strengthening means made of bioabsorbable material covering the central part of the mesh made of partially absorbable material of which the size of the pores is larger than that of the pores of the strengthening means. The central reinforcement of the prosthesis is thus provided during the period of tissue rehabilitation, and the mesh with large pores remains partially on the entirety of the surface of the initial prosthesis while reducing the quantity of residual foreign material in the body.


In a position fastened to the mesh, the strengthening means covers a peripheral part of one of said first and second faces of the mesh. This configuration is particularly advantageous when the peripheral part of the prosthesis is intended to be fixed by staples or sutures to the biological wall. Indeed, the operation of stapling or suturing the mesh is susceptible to damaging the latter and even causing a local tear. Even though the mesh is designed so as not to propagate this tear, the presence of the strengthening means on the peripheral part of the mesh permits its mechanical reinforcement and affords added safety. This configuration makes it possible in fact to distribute, between the mesh and the strengthening means, the very local forces applied by the suturing or stapling of the prosthesis to the wall. Moreover, this peripheral reinforcement facilitates the deployment and positioning of the prosthesis by local stiffening of the mesh.


When covering a peripheral part of the mesh, it is possible to use a mesh with large pores and made of a partially absorbable material combined with a strengthening means made of bioabsorbable material, such that the strengthening means disappears once the prosthesis has been fixed to the biological wall.


In a configuration in which the size of the pores of the strengthening means is smaller than the size of the pores of the mesh, and the size of the pores of the mesh is too large to permit stapling, it is also very advantageous to use a strengthening means covering a peripheral part of the mesh.


According to one embodiment, at least a part of the strengthening means comprises a colour distinct from that of the mesh. This makes it easier for the surgeon to position and fix the prosthesis despite the lack of space and lack of visibility of the operating site. For example, when the strengthening means covers the peripheral part of the mesh, it is easy to identify the peripheral edges of the prosthesis according to the invention in order to fix it to the biological wall.


In one embodiment, the colour of the textile of the strengthening means and the colour of the mesh generate a contrast of 50% to 100%, preferably of 70% to 100%, according to the scale of contrast sensitivity defined for public buildings. In the present application, the contrast is determined according to the scale of contrast sensitivity (Functional Acuity Contrast Test) defined for public buildings by Dr Arthur Ginsburg, illustrated by Table I below:









TABLE I







contrast in %, according to the scale of contrast sensitivity defined for public buildings




















Beige
White
Grey
Black
Brown
Pink
Purple
Green
Orange
Blue
Yellow
Red























Red
78
84
32
38
7
57
28
24
62
13
82
0


Yellow
14
16
73
89
80
58
75
76
52
79
0


Blue
75
82
21
47
7
50
17
12
56
0


Orange
44
60
44
76
59
12
47
50
0


Green
72
80
11
53
18
43
6
0


Purple
70
79
5
56
22
40
0


Pink
51
65
37
73
53
0


Brown
77
84
26
43
0


Black
87
91
58
0


Grey
69
78
0


White
28
0


Beige
0









As will be seen from Table I above, the textile colour/mesh colour combinations suitable for the prosthesis of the invention can be chosen from among the following combinations: beige/red, beige/blue, beige/green, beige/purple, beige/pink, beige/brown, beige/black, beige/grey, white/red, white/blue, white/orange, white/green, white/purple, white/pink, white/brown, white/black, white/grey, grey/yellow, grey/black, black/yellow, black/orange, black/green, black/purple, black/pink, brown/yellow, brown/orange, brown/pink, pink/red, pink/yellow, pink/blue, purple/yellow, green/yellow, green/orange, orange/red, orange/yellow, orange/blue, blue/yellow, yellow/red.


Advantageously, the prosthesis comprises fixing means intended to fix the prosthesis to biological tissues. It is thus easy to fix the prosthesis according to the invention without having to use external elements such as staples, and without the need for suture points.


According to one embodiment, the fixing means are situated on the strengthening means and/or on one or both of said first and second faces of the mesh. This permits reinforced fixing of the prosthesis to biological tissue. For example, when the strengthening means is positioned between the biological wall and the mesh, the surface of the strengthening means and the surface of the mesh in contact with the wall to be strengthened can both have fixing means, so as to reinforce the fixing of the prosthesis to the wall.


The fixing means preferably comprise barbs. They are easily produced from the mesh and from the strengthening means by techniques well known to a person skilled in the art. Thus, when the fastening means are also barbs, the fastening means can have the function of the fixing means, and vice versa. The use of the prosthesis is thereby simplified.





Other aspects, aims and advantages of the present invention will become clearer from reading the following description of three embodiments thereof, which description is given as a non-limiting example and with reference to the attached drawings. In order to improve their legibility, the figures do not necessarily reflect the scale of all the elements shown. To make matters simpler in the remainder of the description, identical, similar or equivalent elements in the different embodiments bear the same reference numbers.



FIG. 1 shows a plan view of a prosthesis according to one embodiment of the invention.



FIG. 2 shows a plan view of a prosthesis according to another embodiment of the invention.



FIG. 3 shows a plan view of a prosthesis according to yet another embodiment of the invention.



FIG. 4 shows a sectional view of a fastening means of a prosthesis according to one embodiment of the invention.



FIG. 5 shows a sectional view of a fastening means of a prosthesis according to another embodiment of the invention.



FIG. 6 shows a plan view of a prosthesis according to a third embodiment of the invention.






FIG. 1 shows a plan view of a prosthesis 1 according to the invention suitable for medical or surgical use. The prosthesis 1 comprises a porous mesh 2 made of biocompatible material, and a strengthening means in the form of a piece of textile 3 made of porous biocompatible material. This piece of textile 3 covers a central part 4 of the mesh 2 so as to strengthen said part. The pores of the piece of textile 3 have a smaller size than that of the pores of the mesh 2, so as to give the mesh 2 mechanical strength and resistance to elongation at the location of the covering. The large size of the pores of the mesh 2, for example 1.5 mm×1.5 mm, or preferably 3 mm×3 mm, makes it possible to reduce the amount of residual foreign material in the body of the patient and to promote cell colonization.


The piece of textile 3 is fastened to the central part 4 of the mesh 2 by fastening means such as barbs 5, which are shown in FIG. 4. Although not visible in FIG. 1, the barbs 5 are present on the face of the piece of textile 3 in contact with the mesh 2. A piece of textile 3 of this kind, for example in the form of a knit comprising barbs 5 on one face, is described in WO01/81667. According to a variant shown in FIG. 5, the barbs 5 can also be present on both faces of the piece of textile 3, so as to form means for fixing to biological tissues.


According to another variant not shown, the barbs 5 are present on the first face of the mesh 2 for fastening to the strengthening means, for example the piece of textile 3. According to yet another possibility not shown, the barbs 5 are present on the first and second faces of the mesh 2. The barbs 5 of one of the faces of the mesh 2 can also serve there as means for fixing to biological tissues.


According to another combination not shown, the barbs 5 are present on the first and second faces of the mesh 2 and on the strengthening means, for example the piece of textile 3.


According to one possibility not visible in the figures, the material of the mesh 2 is composed of a bioabsorbable material, and the material of the strengthening means, for example the piece of textile 3, is composed of a partially bioabsorbable material. Over the course of time, the mesh 2 disappears and the residual non-bioabsorbable part of the strengthening means (for example the piece of textile 3) continues to strengthen the region of the tissue defect.



FIG. 2 shows a prosthesis 1 according to the invention comprising a mesh 2 and a strengthening means in the form of a porous nonwoven textile 6 covering a peripheral part 7 of the mesh 2 by being fastened thereto. This embodiment is particularly advantageous when the object is to strengthen the peripheral part 7 of the mesh 2 susceptible to fraying during the stapling to the biological tissues. The mesh 2 is then composed of a partially biodegradable material, so as to ensure a permanent reinforcement over the whole of the initial surface of the prosthesis 1. Advantageously, the porous nonwoven textile 6 is made of bioabsorbable material in order to ensure its strengthening function at the time of stapling and then to disappear and leave behind a minimal quantity of foreign material.


As is shown in FIG. 2, the mesh 2 has pores of a size larger than that of the pores of the porous nonwoven textile 6. Thus, after a period of time, and once the porous nonwoven textile 6 has disappeared, only the non-biodegradable portion of mesh 2 with large pores remains. Therefore, this prosthesis 1 leaves little residual foreign material in the body of the patient.



FIG. 3 shows the prosthesis 1 according to the invention comprising a first strengthening means, for example a piece of textile 3, on a central part 4 of a mesh 2, and a second strengthening means, for example a porous nonwoven textile 6, on a peripheral part 7 of the mesh 2.



FIG. 4 shows barbs 5 present on one face of the mesh 2 and/or of a strengthening means, for example a piece of textile 3, according to the invention. FIG. 5 shows barbs 5 present on both faces of the mesh 2 and/or of a strengthening means, for example a piece of textile 3, according to the invention.



FIG. 6 shows a prosthesis 1 according to the invention in which a mesh 2 has a first face covered by barbs 5 for fastening a strengthening means, for example the piece of textile 3. With the strengthening means 3 being positioned in the central part 4 of the mesh 2, the barbs 5 of the peripheral part 7 of the mesh 2 are not used and can serve as means for fixing to biological tissue.


It is also conceivable that the face of the strengthening means, for example the piece of textile 3, in contact with the biological tissue is covered by barbs 5 for additional fixation (not shown).


In one variant, barbs 5 can be provided on the first and second faces of the mesh 2, as is shown in FIG. 5, such that the prosthesis 1 can be fixed to the biological tissue from the first or the second face of the mesh 2.


Thus, the prosthesis 1 of the invention can have any type of shape and can be manufactured very easily. The prosthesis 1 is simple to use and advantageously leaves little residual foreign material in the body of the patient.


It goes without saying that the invention is not limited to the embodiments described above by way of example and instead comprises all the technical equivalents and the variants of the means described and their combinations.

Claims
  • 1. A prosthesis for medical or surgical use comprising: at least one porous mesh made of biocompatible material, the mesh comprising a first face, a second face opposite the first face, and a first set of barbs integral to and extending from the mesh and configured to attach the prosthesis to biological tissue, at least one strengthening means which strengthens the mesh and is intended to cover at least part of one of the first and second faces of the mesh, a second set of barbs integral to and extending from the strengthening means and configured to permit reversible fixation and renewed fixation of the strengthening means to the mesh, wherein the strengthening means is porous, pores of the mesh having dimensions larger than pores of the strengthening means, and, in a position fastened to the mesh, the strengthening means covers a peripheral part of one of the first and second faces of the mesh.
  • 2. The prosthesis according to claim 1, wherein the strengthening means comprises a bioabsorbable material and the mesh comprises a partially bioabsorbable material.
  • 3. The prosthesis according to claim 1, wherein the strengthening means comprises a partially bioabsorbable material and the mesh comprises a bioabsorbable material.
  • 4. The prosthesis according to claim 1, wherein the strengthening means further covers a central part of one of the first and second faces of the mesh.
  • 5. The prosthesis according to claim 1, wherein the first set of barbs are situated on one or both of the first and second faces of the mesh.
  • 6. The prosthesis according to claim 1, wherein the strengthening means comprises at least one piece of a textile made of biocompatible material.
  • 7. The prosthesis according to claim 6, wherein the textile comprises a color distinct from a color of the mesh.
  • 8. The prosthesis according to claim 7, wherein the color of the textile and the color of the mesh generate a contrast of 50% to 100% according to the scale of contrast sensitivity defined for public buildings.
  • 9. The prosthesis according to claim 7, wherein the color of the textile and the color of the mesh generate a contrast of 70% to 100% according to the scale of contrast sensitivity defined for public buildings.
  • 10. The prosthesis according to claim 7, wherein combinations of the color of the textile and the color of the mesh are selected from the group consisting of beige/red, beige/blue, beige/green, beige/purple, beige/pink, beige/brown, beige/black, beige/grey, white/red, white/orange, white/pink, white/brown, white/black, white/grey, grey/yellow, grey/black, black/yellow, black/orange, black/green, black/purple, black/pink, brown/yellow, brown/orange, brown/pink, pink/red, pink/yellow, pink/blue, purple/yellow, green/yellow, green/orange, orange/red, orange/yellow, orange/blue, blue/yellow, and yellow/red.
  • 11. A prosthesis for medical or surgical use comprising at least one porous mesh made of biocompatible material, the mesh comprising a first face, a second face opposite the first face, and a first set of barbs for attaching the mesh to biological tissue, a first nonwoven textile made of a porous biocompatible material which strengthens the mesh and covers a peripheral part of at least one of the first and second faces of the mesh, the first nonwoven textile including a second set of barbs for fastening the first nonwoven textile to the peripheral part of the mesh, wherein pores of the mesh have dimensions larger than pores of the first nonwoven textile.
Priority Claims (1)
Number Date Country Kind
12 58983 Sep 2012 FR national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/069860 9/24/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/048922 4/3/2014 WO A
US Referenced Citations (461)
Number Name Date Kind
1187158 Mcginley Jun 1916 A
3054406 Usher Sep 1962 A
3118294 Van Laethem Jan 1964 A
3124136 Usher Mar 1964 A
3272204 Charles et al. Sep 1966 A
3276448 Usher Oct 1966 A
3320649 Naimer May 1967 A
3364200 Ashton et al. Jan 1968 A
3570482 Emoto et al. Mar 1971 A
3718725 Hamano Feb 1973 A
4006747 Kronenthal et al. Feb 1977 A
4060081 Yannas et al. Nov 1977 A
4173131 Pendergrass et al. Nov 1979 A
4193137 Heck Mar 1980 A
4248064 Odham Feb 1981 A
4294241 Miyata Oct 1981 A
4307717 Hymes et al. Dec 1981 A
4338800 Matsuda Jul 1982 A
4476697 Schafer et al. Oct 1984 A
4487865 Balazs et al. Dec 1984 A
4500676 Balazs et al. Feb 1985 A
4511653 Play et al. Apr 1985 A
4527404 Nakagaki et al. Jul 1985 A
4591501 Cioca May 1986 A
4597762 Walter et al. Jul 1986 A
4603695 Ikada et al. Aug 1986 A
4631932 Sommers Dec 1986 A
4670014 Huc et al. Jun 1987 A
4709562 Matsuda Dec 1987 A
4748078 Doi et al. May 1988 A
4759354 Quarfoot Jul 1988 A
4769038 Bendavid et al. Sep 1988 A
4796603 Dahlke et al. Jan 1989 A
4813942 Alvarez Mar 1989 A
4841962 Berg et al. Jun 1989 A
4854316 Davis Aug 1989 A
4925294 Geshwind et al. May 1990 A
4931546 Tardy et al. Jun 1990 A
4942875 Hlavacek et al. Jul 1990 A
4948540 Nigam Aug 1990 A
4950483 Ksander et al. Aug 1990 A
4970298 Silver et al. Nov 1990 A
4976737 Leake Dec 1990 A
5002551 Linsky et al. Mar 1991 A
5015584 Brysk May 1991 A
5116357 Eberbach May 1992 A
5147374 Fernandez Sep 1992 A
5162430 Rhee et al. Nov 1992 A
5171273 Silver et al. Dec 1992 A
5176692 Wilk et al. Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5195542 Gazielly et al. Mar 1993 A
5196185 Silver et al. Mar 1993 A
5201745 Tayot et al. Apr 1993 A
5201764 Kelman et al. Apr 1993 A
5206028 Li Apr 1993 A
5217493 Raad et al. Jun 1993 A
5254133 Seid Oct 1993 A
5256418 Kemp et al. Oct 1993 A
5258000 Gianturco Nov 1993 A
5263983 Yoshizato et al. Nov 1993 A
5304595 Rhee et al. Apr 1994 A
5306500 Rhee et al. Apr 1994 A
5324775 Rhee et al. Jun 1994 A
5328955 Rhee et al. Jul 1994 A
5334527 Brysk Aug 1994 A
5339657 McMurray Aug 1994 A
5350583 Yoshizato et al. Sep 1994 A
5356432 Rutkow et al. Oct 1994 A
5368549 McVicker Nov 1994 A
5368602 de la Torre Nov 1994 A
5370650 Tovey et al. Dec 1994 A
5376375 Rhee et al. Dec 1994 A
5376376 Li Dec 1994 A
5397331 Himpens et al. Mar 1995 A
5399361 Song et al. Mar 1995 A
5413791 Rhee et al. May 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5428022 Palefsky et al. Jun 1995 A
5433996 Kranzler et al. Jul 1995 A
5441491 Verschoor et al. Aug 1995 A
5441508 Gazielly et al. Aug 1995 A
5456693 Conston et al. Oct 1995 A
5456711 Hudson Oct 1995 A
5466462 Rosenthal et al. Nov 1995 A
5480644 Freed Jan 1996 A
5487895 Dapper et al. Jan 1996 A
5490984 Freed Feb 1996 A
5512291 Li Apr 1996 A
5512301 Song et al. Apr 1996 A
5514181 Light et al. May 1996 A
5522840 Krajicek Jun 1996 A
5523348 Rhee et al. Jun 1996 A
5536656 Kemp et al. Jul 1996 A
5543441 Rhee et al. Aug 1996 A
5565210 Rosenthal et al. Oct 1996 A
5567806 Abdul-Malak et al. Oct 1996 A
5569273 Titone et al. Oct 1996 A
RE35399 Eisenberg Dec 1996 E
5593441 Lichtenstein et al. Jan 1997 A
5595621 Light et al. Jan 1997 A
5601571 Moss Feb 1997 A
5607474 Athanasiou et al. Mar 1997 A
5607590 Shimizu Mar 1997 A
5614587 Rhee et al. Mar 1997 A
5618551 Tardy et al. Apr 1997 A
5634931 Kugel Jun 1997 A
5639796 Lee Jun 1997 A
5665391 Lea Sep 1997 A
5667839 Berg Sep 1997 A
5676967 Williams et al. Oct 1997 A
5681568 Goldin et al. Oct 1997 A
5686090 Schilder et al. Nov 1997 A
5686115 Vournakis et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5695525 Mulhauser et al. Dec 1997 A
5697978 Sgro Dec 1997 A
5700476 Rosenthal et al. Dec 1997 A
5700477 Rosenthal et al. Dec 1997 A
5702416 Kieturakis et al. Dec 1997 A
5709934 Bell et al. Jan 1998 A
5711960 Shikinami Jan 1998 A
5716409 Debbas Feb 1998 A
5720981 Eisinger Feb 1998 A
5732572 Litton Mar 1998 A
5743917 Saxon Apr 1998 A
5749895 Sawyer et al. May 1998 A
5752974 Rhee et al. May 1998 A
5766246 Mulhauser et al. Jun 1998 A
5766631 Arnold Jun 1998 A
5769864 Kugel Jun 1998 A
5771716 Schlussel Jun 1998 A
5785983 Furlan et al. Jul 1998 A
5800541 Rhee et al. Sep 1998 A
5814328 Gunasekaran Sep 1998 A
5833705 Ken et al. Nov 1998 A
5840011 Landgrebe et al. Nov 1998 A
5861034 Taira et al. Jan 1999 A
5863984 Doillon et al. Jan 1999 A
5869080 McGregor et al. Feb 1999 A
5871767 Dionne et al. Feb 1999 A
5876444 Lai Mar 1999 A
5891558 Bell et al. Apr 1999 A
5899909 Claren et al. May 1999 A
5906937 Sugiyama et al. May 1999 A
5910149 Kuzmak Jun 1999 A
5911731 Pham et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5919232 Chaffringeon et al. Jul 1999 A
5919233 Knopf et al. Jul 1999 A
5922026 Chin Jul 1999 A
5931165 Reich et al. Aug 1999 A
5942278 Hagedorn et al. Aug 1999 A
5962136 Dewez et al. Oct 1999 A
5972022 Huxel Oct 1999 A
RE36370 Li Nov 1999 E
5993844 Abraham et al. Nov 1999 A
5994325 Roufa et al. Nov 1999 A
5997895 Narotam et al. Dec 1999 A
6001895 Harvey et al. Dec 1999 A
6008292 Lee et al. Dec 1999 A
6015844 Harvey et al. Jan 2000 A
6039686 Kovac Mar 2000 A
6042534 Gellman et al. Mar 2000 A
6042592 Schmitt Mar 2000 A
6043089 Sugiyama et al. Mar 2000 A
6051425 Morota et al. Apr 2000 A
6056688 Benderev et al. May 2000 A
6056970 Greenawalt et al. May 2000 A
6057148 Sugiyama et al. May 2000 A
6063396 Kelleher May 2000 A
6066776 Goodwin et al. May 2000 A
6066777 Benchetrit May 2000 A
6071292 Makower et al. Jun 2000 A
6077281 Das Jun 2000 A
6080194 Pachence et al. Jun 2000 A
6083522 Chu et al. Jul 2000 A
6090116 D'Aversa et al. Jul 2000 A
6113623 Sgro Sep 2000 A
6120539 Eldridge et al. Sep 2000 A
6132765 DiCosmo et al. Oct 2000 A
6143037 Goldstein et al. Nov 2000 A
6153292 Bell et al. Nov 2000 A
6162962 Hinsch et al. Dec 2000 A
6165488 Tardy et al. Dec 2000 A
6171318 Kugel et al. Jan 2001 B1
6174320 Kugel et al. Jan 2001 B1
6176863 Kugel et al. Jan 2001 B1
6179872 Bell et al. Jan 2001 B1
6180848 Flament et al. Jan 2001 B1
6197325 MacPhee et al. Mar 2001 B1
6197934 DeVore et al. Mar 2001 B1
6197935 Doillon et al. Mar 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6221109 Geistlich et al. Apr 2001 B1
6224616 Kugel May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6258124 Darois et al. Jul 2001 B1
6262332 Ketharanathan Jul 2001 B1
6264702 Ory et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6277397 Shimizu Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6290708 Kugel et al. Sep 2001 B1
6306079 Trabucco Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6312474 Francis et al. Nov 2001 B1
6319264 Tormala et al. Nov 2001 B1
6328686 Kovac Dec 2001 B1
6334872 Termin et al. Jan 2002 B1
6383201 Dong May 2002 B1
6391060 Ory et al. May 2002 B1
6391333 Li et al. May 2002 B1
6391939 Tayot et al. May 2002 B2
6408656 Ory et al. Jun 2002 B1
6410044 Chudzik et al. Jun 2002 B1
6413742 Olsen et al. Jul 2002 B1
6425924 Rousseau Jul 2002 B1
6428978 Olsen et al. Aug 2002 B1
6436030 Rehil Aug 2002 B2
6440167 Shimizu Aug 2002 B2
6443964 Ory et al. Sep 2002 B1
6447551 Goldmann Sep 2002 B1
6447802 Sessions et al. Sep 2002 B2
6448378 DeVore et al. Sep 2002 B2
6451032 Ory et al. Sep 2002 B1
6451301 Sessions et al. Sep 2002 B1
6454787 Maddalo et al. Sep 2002 B1
6477865 Matsumoto Nov 2002 B1
6479072 Morgan et al. Nov 2002 B1
6485503 Jacobs et al. Nov 2002 B2
6500464 Ceres et al. Dec 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6509031 Miller et al. Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514286 Leatherbury et al. Feb 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6540773 Dong Apr 2003 B2
6541023 Andre et al. Apr 2003 B1
6548077 Gunasekaran Apr 2003 B1
6554855 Dong Apr 2003 B1
6559119 Burgess et al. May 2003 B1
6566345 Miller et al. May 2003 B2
6575988 Rousseau Jun 2003 B2
6576019 Atala Jun 2003 B1
6596002 Therin et al. Jul 2003 B2
6596304 Bayon et al. Jul 2003 B1
6599323 Melican et al. Jul 2003 B2
6599524 Li et al. Jul 2003 B2
6599690 Abraham et al. Jul 2003 B1
6610006 Amid et al. Aug 2003 B1
6613348 Jain Sep 2003 B1
6616685 Rousseau Sep 2003 B2
6623963 Muller et al. Sep 2003 B1
6630414 Matsumoto Oct 2003 B1
6637437 Hungerford et al. Oct 2003 B1
6638284 Rousseau et al. Oct 2003 B1
6645226 Jacobs et al. Nov 2003 B1
6652594 Francis et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
6653450 Berg et al. Nov 2003 B1
6656206 Corcoran et al. Dec 2003 B2
6660280 Allard et al. Dec 2003 B1
6669735 Pelissier Dec 2003 B1
6670018 Fujita et al. Dec 2003 B2
6682760 Noff et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6706684 Bayon et al. Mar 2004 B1
6706690 Reich et al. Mar 2004 B2
6712859 Rousseau et al. Mar 2004 B2
6719795 Cornwall et al. Apr 2004 B1
6723335 Moehlenbruck et al. Apr 2004 B1
6726660 Hessel et al. Apr 2004 B2
6730299 Tayot et al. May 2004 B1
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6737371 Planck et al. May 2004 B1
6743435 DeVore et al. Jun 2004 B2
6746458 Cloud Jun 2004 B1
6752834 Geistlich et al. Jun 2004 B2
6755868 Rousseau Jun 2004 B2
6773723 Spiro et al. Aug 2004 B1
6783554 Amara et al. Aug 2004 B2
6790213 Cherok et al. Sep 2004 B2
6790454 Abdul Malak et al. Sep 2004 B1
6800082 Rousseau Oct 2004 B2
6833408 Sehl et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6852330 Bowman et al. Feb 2005 B2
6869938 Schwartz et al. Mar 2005 B1
6872227 Sump et al. Mar 2005 B2
6893653 Abraham et al. May 2005 B2
6896904 Spiro et al. May 2005 B2
6926723 Mulhauser et al. Aug 2005 B1
6936276 Spiro et al. Aug 2005 B2
6939562 Spiro et al. Sep 2005 B2
6949625 Tayot Sep 2005 B2
6966918 Schuldt-Hempe et al. Nov 2005 B1
6971252 Therin et al. Dec 2005 B2
6974679 Andre et al. Dec 2005 B2
6974862 Ringeisen et al. Dec 2005 B2
6977231 Matsuda Dec 2005 B1
6984392 Bechert et al. Jan 2006 B2
6988386 Okawa et al. Jan 2006 B1
7011688 Gryska et al. Mar 2006 B2
7021086 Ory et al. Apr 2006 B2
7022358 Eckmayer et al. Apr 2006 B2
7025063 Snitkin et al. Apr 2006 B2
7041868 Greene et al. May 2006 B2
7060103 Carr, Jr. et al. Jun 2006 B2
RE39172 Bayon et al. Jul 2006 E
7070558 Gellman et al. Jul 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7094261 Zotti et al. Aug 2006 B2
7098315 Schaufler Aug 2006 B2
7101381 Ford et al. Sep 2006 B2
7115220 Dubson et al. Oct 2006 B2
7156804 Nicolo Jan 2007 B2
7156858 Schuldt-Hempe et al. Jan 2007 B2
7175852 Simmoteit et al. Feb 2007 B2
7192604 Brown et al. Mar 2007 B2
7207962 Anand et al. Apr 2007 B2
7214765 Ringeisen et al. May 2007 B2
7226611 Yura et al. Jun 2007 B2
7229453 Anderson et al. Jun 2007 B2
7252837 Guo et al. Aug 2007 B2
7279177 Looney et al. Oct 2007 B2
7331199 Ory et al. Feb 2008 B2
7393319 Merade et al. Jul 2008 B2
7556598 Rao Jul 2009 B2
7594921 Browning Sep 2009 B2
7614258 Cherok et al. Nov 2009 B2
7615065 Priewe et al. Nov 2009 B2
7662169 Wittmann Feb 2010 B2
7670380 Cauthen, III Mar 2010 B2
7682381 Rakos et al. Mar 2010 B2
7709017 Tayot May 2010 B2
7718556 Matsuda et al. May 2010 B2
7732354 Fricke et al. Jun 2010 B2
7785334 Ford et al. Aug 2010 B2
7789888 Bartee et al. Sep 2010 B2
7799767 Lamberti et al. Sep 2010 B2
7806905 Ford et al. Oct 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7828854 Rousseau et al. Nov 2010 B2
7900484 Cherok et al. Mar 2011 B2
7931695 Ringeisen Apr 2011 B2
8052759 Dupic et al. Nov 2011 B2
8079023 Chen Dec 2011 B2
8100924 Browning Jan 2012 B2
8123817 Intoccia et al. Feb 2012 B2
8142515 Therin et al. Mar 2012 B2
8157821 Browning Apr 2012 B2
8157822 Browning Apr 2012 B2
8182545 Cherok et al. May 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8206632 Rousseau et al. Jun 2012 B2
8215310 Browning Jul 2012 B2
8317872 Adams Nov 2012 B2
8323675 Greenawalt Dec 2012 B2
8343232 Adzich et al. Jan 2013 B2
8366787 Brown et al. Feb 2013 B2
8435307 Paul May 2013 B2
8470355 Skalla et al. Jun 2013 B2
8562633 Cully et al. Oct 2013 B2
8574627 Martakos et al. Nov 2013 B2
8709094 Stad et al. Apr 2014 B2
8734471 Deitch May 2014 B2
8753360 Gleiman et al. Jun 2014 B2
8758800 Stopek et al. Jun 2014 B2
8784294 Goddard Jul 2014 B2
8814887 Walther et al. Aug 2014 B2
8828092 Toso et al. Sep 2014 B2
8834864 Odar et al. Sep 2014 B2
8846060 Archibald et al. Sep 2014 B2
8865215 Ladet et al. Oct 2014 B2
8877233 Obermiller et al. Nov 2014 B2
8911504 Mathisen et al. Dec 2014 B2
8920370 Sholev et al. Dec 2014 B2
8956373 Ford et al. Feb 2015 B2
8962006 Bayon et al. Feb 2015 B2
8968762 Ladet et al. Mar 2015 B2
8979935 Lozier et al. Mar 2015 B2
9034357 Stopek May 2015 B2
9113993 Lee Aug 2015 B2
9211175 Stopek et al. Dec 2015 B2
9216075 Bailly et al. Dec 2015 B2
20020087174 Capello Jul 2002 A1
20020095218 Carr et al. Jul 2002 A1
20030086975 Ringeisen May 2003 A1
20030106346 Matsumoto Jun 2003 A1
20030114937 Leatherbury et al. Jun 2003 A1
20030133967 Ruszczak et al. Jul 2003 A1
20030225355 Butler Dec 2003 A1
20040034373 Schuldt-Hempe et al. Feb 2004 A1
20040054376 Ory et al. Mar 2004 A1
20040059356 Gingras Mar 2004 A1
20040101546 Gorman et al. May 2004 A1
20050002893 Goldmann Jan 2005 A1
20050021058 Negro Jan 2005 A1
20050085924 Darois et al. Apr 2005 A1
20050113849 Popadiuk et al. May 2005 A1
20050137512 Campbell et al. Jun 2005 A1
20050142161 Freeman et al. Jun 2005 A1
20050148963 Brennan Jul 2005 A1
20050175659 Macomber et al. Aug 2005 A1
20050232979 Shoshan Oct 2005 A1
20050267521 Forsberg Dec 2005 A1
20050288691 Leiboff Dec 2005 A1
20060116696 Odermatt et al. Jun 2006 A1
20060135921 Wiercinski et al. Jun 2006 A1
20060147501 Hillas et al. Jul 2006 A1
20060216320 Kitazono et al. Sep 2006 A1
20060252981 Matsuda et al. Nov 2006 A1
20060253203 Alvarado Nov 2006 A1
20060282103 Fricke et al. Dec 2006 A1
20070088391 McAlexander et al. Apr 2007 A1
20070129736 Solecki Jun 2007 A1
20070198040 Buevich et al. Aug 2007 A1
20070299538 Roeber Dec 2007 A1
20080091276 Deusch et al. Apr 2008 A1
20080109017 Herweck et al. May 2008 A1
20080113001 Herweck et al. May 2008 A1
20080172071 Barker Jul 2008 A1
20080255593 St-Germain Oct 2008 A1
20090035341 Wagener et al. Feb 2009 A1
20090036996 Roeber Feb 2009 A1
20090068250 Gravagna et al. Mar 2009 A1
20090105526 Piroli Torelli et al. Apr 2009 A1
20090163936 Yang et al. Jun 2009 A1
20090187197 Roeber et al. Jul 2009 A1
20090192530 Adzich et al. Jul 2009 A1
20090204129 Fronio Aug 2009 A1
20090216338 Gingras et al. Aug 2009 A1
20090270999 Brown Oct 2009 A1
20090281558 Li Nov 2009 A1
20090318752 Evans et al. Dec 2009 A1
20100104608 Abuzaina et al. Apr 2010 A1
20100318108 Datta et al. Dec 2010 A1
20110015760 Kullas Jan 2011 A1
20110144667 Horton et al. Jun 2011 A1
20110190795 Hotter et al. Aug 2011 A1
20110238094 Thomas et al. Sep 2011 A1
20110251699 Ladet Oct 2011 A1
20110257666 Ladet et al. Oct 2011 A1
20120016388 Houard et al. Jan 2012 A1
20120029537 Mortarino Feb 2012 A1
20120065727 Reneker et al. Mar 2012 A1
20120082712 Stopek et al. Apr 2012 A1
20120116425 Intoccia et al. May 2012 A1
20120150204 Mortarino et al. Jun 2012 A1
20120165937 Montanari et al. Jun 2012 A1
20120179175 Hammell Jul 2012 A1
20120179176 Wilson et al. Jul 2012 A1
20120197415 Montanari et al. Aug 2012 A1
20130158571 Meneghin Jun 2013 A1
20140044861 Boey et al. Feb 2014 A1
20140364684 Lecuivre Dec 2014 A1
Foreign Referenced Citations (141)
Number Date Country
1317836 May 1993 CA
201879864 Jun 2011 CN
19544162 Apr 1997 DE
19718903 Dec 1997 DE
19751733 Dec 1998 DE
19832634 Jan 2000 DE
10019604 Oct 2001 DE
10120942 Oct 2001 DE
10043396 Jun 2002 DE
0194192 Sep 1986 EP
0248544 Dec 1987 EP
0263360 Apr 1988 EP
0276890 Aug 1988 EP
0372969 Jun 1990 EP
0531742 Mar 1993 EP
544485 Jun 1993 EP
0552576 Jul 1993 EP
0611561 Aug 1994 EP
614650 Sep 1994 EP
0621014 Oct 1994 EP
0625891 Nov 1994 EP
0637452 Feb 1995 EP
0664132 Jul 1995 EP
0705878 Apr 1996 EP
0719527 Jul 1996 EP
0774240 May 1997 EP
0797962 Oct 1997 EP
0800791 Oct 1997 EP
827724 Mar 1998 EP
0836838 Apr 1998 EP
0847727 Jun 1998 EP
0876808 Nov 1998 EP
0895762 Feb 1999 EP
898944 Mar 1999 EP
1017415 Jul 2000 EP
1036545 Sep 2000 EP
1052319 Nov 2000 EP
1055757 Nov 2000 EP
1090590 Apr 2001 EP
1 216 717 Jun 2002 EP
1 216 718 Jun 2002 EP
0693523 Nov 2002 EP
1273312 Jan 2003 EP
1315468 Jun 2003 EP
1382728 Jan 2004 EP
1484070 Dec 2004 EP
1561480 Aug 2005 EP
1645232 Apr 2006 EP
1674048 Jun 2006 EP
1691606 Aug 2006 EP
1782848 May 2007 EP
2229918 Sep 2010 EP
2 305 132 Apr 2011 EP
2404571 Jan 2012 EP
2866729 May 2015 EP
2244853 Apr 1975 FR
2257262 Aug 1975 FR
2 308 349 Nov 1976 FR
2453231 Oct 1980 FR
2612392 Sep 1988 FR
2715309 Jul 1995 FR
2715405 Jul 1995 FR
2 724 563 Mar 1996 FR
2730406 Aug 1996 FR
2744906 Aug 1997 FR
2766698 Feb 1999 FR
2771622 Jun 1999 FR
2773057 Jul 1999 FR
2774277 Aug 1999 FR
2779937 Dec 1999 FR
2859624 Mar 2005 FR
2863277 Jun 2005 FR
2876020 Apr 2006 FR
2884706 Oct 2006 FR
2929834 Oct 2009 FR
2953709 Jun 2011 FR
2962645 Jan 2012 FR
1174814 Dec 1969 GB
2 051 153 Jan 1981 GB
2306110 Apr 1997 GB
H0332677 Feb 1991 JP
H05237128 Sep 1993 JP
H09137380 May 1997 JP
H11146888 Jun 1999 JP
2008538300 Oct 2008 JP
2011078767 Apr 2011 JP
8902445 Mar 1989 WO
8908467 Sep 1989 WO
9012551 Nov 1990 WO
9206639 Apr 1992 WO
9220349 Nov 1992 WO
9311805 Jun 1993 WO
9310731 Jun 1993 WO
9318174 Sep 1993 WO
9417747 Aug 1994 WO
9507666 Mar 1995 WO
9518638 Jul 1995 WO
9532687 Dec 1995 WO
9603091 Feb 1996 WO
9608277 Mar 1996 WO
9609795 Apr 1996 WO
9614805 May 1996 WO
9641588 Dec 1996 WO
9735533 Oct 1997 WO
9835632 Aug 1998 WO
9849967 Nov 1998 WO
9905990 Feb 1999 WO
9906079 Feb 1999 WO
9906080 Feb 1999 WO
9951163 Oct 1999 WO
0016821 Mar 2000 WO
0067663 Nov 2000 WO
0115625 Mar 2001 WO
0180773 Nov 2001 WO
0181667 Nov 2001 WO
0207648 Jan 2002 WO
0217853 Mar 2002 WO
WO 0222047 Mar 2002 WO
02078568 Oct 2002 WO
03002168 Jan 2003 WO
2004004600 Jan 2004 WO
2004071349 Aug 2004 WO
2004078120 Sep 2004 WO
2004103212 Dec 2004 WO
2005011280 Feb 2005 WO
2005013863 Feb 2005 WO
2005018698 Mar 2005 WO
2005048708 Jun 2005 WO
2005105172 Nov 2005 WO
2006018552 Feb 2006 WO
2006023444 Mar 2006 WO
2007048099 Apr 2007 WO
2009031035 Mar 2009 WO
2009071998 Jun 2009 WO
2010043978 Apr 2010 WO
2011007062 Jan 2011 WO
2011026987 Mar 2011 WO
2011038740 Apr 2011 WO
WO 2011119845 Sep 2011 WO
2012007579 Jan 2012 WO
2014001508 Jan 2014 WO
Non-Patent Literature Citations (32)
Entry
Malette, W. G. et al., “Chitosan, A New Hemostatic,” Ann Th. Surg., Jul. 1983, pp. 55-58, 36.
Langenbech, M. R. et al., “Comparison of biomaterials in the early postoperative period,” Surg Endosc., May 2003, pp. 1105-1109, 17 (7).
Bracco, P. et al., “Comparison of polypropylene and polyethylene terephthalate (Dacron) meshes for abdominal wall hernia repair: A chemical and morphological study,” Hernia, 2005, pp. 51-55, 9 (1), published online Sep. 2004.
Klinge, U. et al., “Foreign Body Reaction to Meshes Used for the Repair of Abdominal Wall Hernias,” Eur J. Surg, Sep. 1999, pp. 665-673, 165.
Logeart, D. et al., “Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. II. Degradation and molecular weight effect,” Eur. J. Cell. Biol., Dec. 1997, pp. 385-390, 74(4).
Haneji, K. et al., “Fucoidan extracted from Cladosiphon Okamuranus Tokida Induces Apoptosis of Human T-cell Leukemia Virus Type 1-Infected T-Cell Lines and Primary Adult T-Cell Leukemia Cells,” Nutrition and Cancer, 2005, pp. 189-201, 52(2), published online Nov. 2009.
Junge, K. et al., “Functional and Morphologic Properties of a Modified Mesh for Inguinal Hernia Repair,” World J. Surg., Sep. 2002, pp. 1472-1480, 26.
Klinge, U. et al., “Functional and Morphological Evaluation of a Low-Weight, Monofilament Polypropylene Mesh for Hernia Repair,” J. Biomed. Mater. Res., Jan. 2002, pp. 129-136, 63.
Welty, G. et al., “Functional impairment and complaints following incisional hernia repair with different polypropylene meshes,” Hernia, Aug. 2001; pp. 142-147, 5.
Varum, K. et al., “In vitro degradation rates of partially N-acetylated chitosans in human serum,” Carbohydrate Research, Mar. 1997, pp. 99-101, 299.
Haroun-Bouhedja, F. et al., “In Vitro Effects of Fucans on MDA-MB231 Tumor Cell Adhesion and Invasion,” Anticancer Res., Jul.-Aug. 2002, pp. 2285-2292, 22(4).
Scheidbach, H. et al., “In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: An experimental study in pigs,” Surg. Endosc., Feb. 2004, pp. 211-220,18(2).
Blondin, C. et al., “Inhibition of Complement Activation by Natural Sulfated Polysaccharides (Fucans) from Brown Seaweed,” Molecular Immuol., Mar. 1994, pp. 247-253, 31(4).
Zvyagintseva, T. et al., “Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds,” Comparative Biochem and Physiol, Jul. 2000, pp. 209-215,126(3).
Rosen, M. et al., “Laparoscopic component separation in the single-stage treatment of infected abdominal wall prosthetic removal,” Hernia, 2007, pp. 435-440, 11, published online Jul. 2007.
Amid, P., “Lichtenstein tension-free hernioplasty: Its inception, evolution, and principles,” Hernia, 2004; pp. 1-7, 8, published online Sep. 2003.
Boisson-Vidal, C. et al., “Neoangiogenesis Induced by Progenitor Endothelial Cells: Effect of Fucoidan From Marine Algae,” Cardiovascular & Hematological Agents in Medicinal Chem., Jan. 2007, pp. 67-77, 5(1).
O'Dwyer, P. et al., “Randomized clinical trial assessing impact of a lightweight or heavyweight mesh on chronic pain after inguinal hernia repair,” Br. J. Surg., Feb. 2005, pp. 166-170, 92(2).
Muzzarelli, R. et al., “Reconstruction of parodontal tissue with chitosan,” Biomaterials, Nov. 1989, pp. 598-604, 10.
Haroun-Bouhedja, F. et al., “Relationship between sulfate groups and biological activities of fucans,” Thrombosis Res., Dec. 2000, pp. 453-459, 100(5).
Blondin, C. et al., “Relationships between chemical characteristics and anticomplementary activity of fucans,” Biomaterials, Mar. 1996, pp. 597-603, 17(6).
Strand, S. et al., “Screening of Chitosans and Conditions for Bacterial Flocculation,” Biomacromolecules, Mar. 2001, 126-133, 2.
Kanabar, V. et al., “Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle,” Br. J. Pharmacol., Oct. 2005, pp. 370-777, 146(3).
Hirano, S. et al., “The blood biocompatibility of chitosan and N-acylchitosans,” J. Biomed. Mater. Res., Apr. 1985, 413-417, 19.
Rao, B. et al., “Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential,” J. Biomed. Mater. Res., Jan. 1997, pp. 21-28, 34.
Prokop, A. et al., “Water Soluble Polymers for Immunoisolation I: Complex Coacevation and Cytotoxicity,” Advances in Polymer Science, Jul. 1998, pp. 1-51, 136.
Collins, R. et al., “Use of collagen film as a dural substitute: Preliminary animal studies,” Journal of Biomedical Materials Research, Feb. 1991, pp. 267-276, vol. 25.
Dr. S. Raz, “The Karl Mayer Guide to Tehnical Textiles,” Jan. 2000, pp. 1-36, Obertshausen, Germany.
Chen, G. et al., “A Hybrid Network of Synthetic Polymer Mesh and Collagen Sponge,” The Royal Society of Chemistry 2000, Chem. Commun., Jul. 2000, pp. 1505-1506.
European Office Action issued in corresponding European Patent Application No. 13774096.5 dated Oct. 4, 2016, 5 pages.
European Office Action dated Apr. 11, 2016 in corresponding European Patent Application No. 13774096.5, 6 pages.
International Search Report for PCT/EP13/069860 date of completion is Jan. 15, 2014 (3 pages).
Related Publications (1)
Number Date Country
20150238299 A1 Aug 2015 US