Prosthesis comprising a three-dimensional and openworked knit

Information

  • Patent Grant
  • 11612472
  • Patent Number
    11,612,472
  • Date Filed
    Monday, October 7, 2019
    5 years ago
  • Date Issued
    Tuesday, March 28, 2023
    a year ago
Abstract
The present invention relates to a prosthesis (100) comprising an openworked three-dimensional knit (101) comprising a front face and a rear face, each face being formed with one or more laps of yarns defining pores on said face, the front face being bound to the rear face by connecting yarns defining a spacer, characterized in that the connecting yarns are distributed so that they define an entanglement of yarns crossing each other at the spacer, without obstructing the pores of the front and rear faces.
Description

The invention relates to a prosthesis comprising an openworked three-dimensional knit, for example useful as a wall reinforcement in parietal and/or visceral surgery.


By three-dimensional knit, in the sense of the present application, is meant a knit having a front face and a rear face, each face being formed with one or more laps of yarns, the front face being bound to the rear face through connecting yarns defining a spacer. The presence of the spacer thereby provides some thickness to the knit: such three-dimensional knits may be obtained with a knitting machine of the warp type or two-bed Rachel type.


By openworked knit, in the sense of the present application, is meant the feature according to which the knit has pores, or further open voids, cells, holes or orifices, either regularly distributed or not, promoting cell colonization. The pores may appear in any kinds of shapes such as for example, spheres, channels, hexagonal shapes.


The spacer as defined above may be formed either with certain yarns of the lap(s) of one of the two faces, which regularly leave their original face for producing a stitch on the other face, and then return to their original lap, or on the contrary with one or more laps of yarns which are dedicated to the spacer and which run to and fro from one face to the other of the knit without being significantly involved in producing each face.


Openworked three-dimensional knits with a spacer connecting the front face to the rear face of the knit are already known. Thus document WO99/05990 describes openworked three-dimensional knits, the spacer of which is produced by one or more laps of connecting yarns dedicated to the formation of said spacer. As indicated in this document, the connecting yarns extend perpendicularly from one face towards the other and form transverse channels parallel with each other.


When they are subject to a compressive force, tending to press the front face of the knit onto its rear face, or tensile force, the knits as described in WO99/05990 may see the spacer «be laid down» or “fall” under this stress, so as to reach a position almost parallel to each of both faces: such a phenomenon causes sliding of the front face relatively to the rear face, this may cause a shift of the pores of the front face relatively to the pores of the rear face. The knit undergoes a «flattening» phenomenon and the walls of the pores of one face may move and obstruct the pores of the other face. The knit then loses its capability of promoting cell recolonization. Moreover, it is no longer possible to see in transparence through the knit, which may be a difficulty for the surgeon upon setting into place a reinforcement prosthesis for example made from such a knit.


Thus, it would be desirable to have a prosthesis comprising an openworked three-dimensional knit, having a spacer capable of withstanding compression and tension, in particular with view to avoiding deformation, and in particular with a view to avoiding collapse, of the knit when the latter is subject to such stresses. It would also be desirable to provide such an improved prosthesis without having to add too much of material forming the knit, in a view to limit foreign material intended to be implanted in the body of a patient.


The object of the present invention is to provide a prosthesis comprising an openworked three-dimensional knit retaining its three-dimensional structure even when it is subject to compressive forces, for example from one face onto the other, or to tensile forces.


The present invention relates to a prosthesis comprising at least one openworked three-dimensional knit comprising two opposite faces, for example a front face and a rear face, each face being formed with one or more laps of yarns defining pores on said face, one face being bound to the opposite face by connecting yarns defining a spacer, characterized in that the connecting yarns are distributed so that they define an entanglement of yarns which cross each other at the spacer, without obstructing the pores of the two opposite faces.


Thus, unlike the knits of the prior art, the connecting yarns of the knit of the prosthesis according to the invention do not form parallel channels with each other and perpendicular to the faces of the knit. On the contrary, in the knit of the prosthesis according to the invention, the yarns of the spacer run from one face to the other of the knit obliquely and not in parallel, i.e. these yarns cross each other, giving the spacer an «X profile» («X-stitch») or «crossed profile». In the knit of the prosthesis according to the invention, at least part of the connecting yarns forming the spacer cross each other, giving the knit significant stability of its three-dimensional structure, even when the knit is subject to compressive forces, tending to press its front face onto its rear face. Thus, in the knit of the prosthesis according to the invention, the spacer does not tend to place itself in a position parallel to both faces of the knit when the knit is subject to compressive forces, and the front face does not slide relatively to the rear face. With the knit of the prosthesis according to the invention, the front face remains facing the rear face, without any shift, when the knit is subject to compressive forces. Thus, the pores of the front face and the pores of the rear face, which for example are facing each other when the knit is at rest, remain in the same relative position even when the knit is subject to compressive forces. The transparence of the knit of the prosthesis according to the invention may thereby be maintained in both situations.


Further, the knit of the prosthesis according to the invention retains a good capability for cell recolonization, even under compression or under tension, the pores of the front face not being obstructed by yarns forming the walls of the pores of the rear face. The knit of the prosthesis according to the invention retains its three-dimensional structure even under compression or under tension.


Resistance to suture of the knit of the prosthesis according to the invention is also excellent.


In one embodiment, one face being formed with r rows and n columns of stitches, located facing r′ rows and n′ columns of stitches forming the opposite face, with at least one portion of the connecting yarns, at either regular row number intervals or not, connects a column ni of one of the two faces to the column (ni′+x), wherein x ranges from 2 to 5, of the opposite face, and, at either regular row number intervals or not, connects a column nj of one of the two faces to the column (nj′−x′) of the opposite face, wherein x′ ranges from 2 to 5.


In one embodiment, the row number intervals are regular. An optimum entanglement of connecting yarns crossing each other is thereby obtained.


In one embodiment, x=x′, for example, x=x′=2. This means that either regularly or not, each connecting yarn connects a column ni of one of the two faces, not to the column ni′ located facing the column ni on the opposite face, but to the column (ni′+2) of the opposite face, i.e. to a column of the opposite face shifted by two columns in a first direction with respect to the column ni′ of the opposite face. Thus, the connecting yarn is not perpendicular to the faces of the knit but is oblique relatively to these faces. Further, either regularly or not, this yarn also connects a column nj, which may for example be the column (ni′+2) above or not, of one of the two faces to another column (nj′−2) of the opposite face, i.e. shifted by two columns in the direction opposite to the first direction. Thus, on the whole of the knit of the prosthesis according to the invention, connecting yarns regularly cross each other at the spacer. The three-dimensional stability of the spacer, and therefore of the knit, is reinforced.


In another embodiment, x=x′=3. In such a case, each connecting yarn runs back on the opposite face to a column shifted by three columns relatively to its original column of the starting face, in one direction and then in the other. In still another embodiment, x=x′=4. In such a case, each connecting yarn runs back onto the opposite face, to a column shifted by four columns relatively to its original column of the starting face, in one direction and then in the other.


In another embodiment, x is different from x′. For example, the connecting yarn is shifted by 2 columns when it connects one of the two faces to the opposite face in a lateral direction of the knit and is then shifted by 3 columns when it again connects one of the two faces to the opposite face, in the opposite lateral direction.


In one embodiment of the invention, the connecting yarns are yarns from at least one lap among the laps forming both opposite faces. In such an embodiment, the knit of the prosthesis according to the invention preferably does not comprise any additional yarn laps for producing the spacer. Thus, this is, for example, one or more of the lap(s) making up the front face which include(s) at regular intervals, stitches caught with the stitches of one or more of the lap(s) of the rear face, in order to ensure the connection between both faces. With such embodiments it is possible to limit the amount of yarns present in the knit of the prosthesis according to the invention, while obtaining a spacer having a good resistance to compressive forces. Thus, the pores of the front face and the pores of the rear face remain in the same relative position even when the knit is subject to compressive forces. The transparence of the knit is maintained even when the knit is subject to compressive forces. In addition, embodiments where the connecting yarns are yarns from at least one lap among the laps forming both opposite faces allow obtaining an optimal combination between on one hand the three-dimensional porous structure of the knit, for a good cell colonization, and on the other hand the thickness of the knit, which must not be too great in order to facilitate the introduction of the knit in a trocar in case the prosthesis is implanted via a trocar.


In another embodiment, the connecting yarns are yarns from one or more laps dedicated to the formation of the spacer. With such embodiments it is possible to use different yarns for forming the spacer with respect to the yarns used for forming the front face and/or the rear face, and to thus impart different properties, for example resorption properties to the spacer.


Both opposite faces, for example the front face and the rear face and the spacer of the knit of the prosthesis according to the invention may be made in any biocompatible, monofilament and/or multi-filament yarn either bioresorbable or not, customarily used in the making of prosthetic knits.


In embodiments, the connecting yarns define in addition a set of parallel or oblique yarns not crossing each other and not obstructing the pores of the two opposite faces. This set of parallel or oblique yarns not crossing each other and not obstructing the pores of the two opposite faces form additional connections between the front and the rear face which, in particular when such connecting yarns are yarns from one lap from the laps forming both opposite faces, bring additional resistance to compressive force to the knitted structure. In particular, the stability of the three-dimensional structure of the knit is increased, and the knit thus obtained shows a three-dimensional structure particularly capable of resisting to flattening and collapsing when a compressive force is applied onto the knit.


The present invention further relates to a prosthesis comprising at least one openworked three-dimensional knit comprising two opposite faces, for example a front face and a rear face, each face being formed with one or more laps of yarns defining pores on said face, one face being bound to the opposite face by connecting yarns defining a spacer, the connecting yarns being distributed so that they define an entanglement of yarns crossing each other at the spacer, without obstructing the pores of the two opposite faces, said knit being obtainable by knitting on a knitting machine of the warp or Rachel type comprising two opposite beds, each respectively with m and m′ needles, the needles m of one bed facing the needles m′ of the opposite bed, the connecting yarns being distributed over at least one guide bar BE1, said bar BE1 having at least one lateral movement in one direction from one needle mi of one of the two beds to a needle (mi′+x) of the opposite bed, wherein x ranges from 2 to 5, and a lateral movement in the opposite direction from one needle mj of one of the two beds to a needle (mj′−x′) of the opposite bed, wherein x′ ranges from 2 to 5.


Thus, during the knitting of the knit, a connecting yarn leaves a needle mi of one face in order to connect either regularly or not, not the needle mi′ of the opposite face, but a needle shifted by 2, 3, 4 or 5 needles in a first direction with respect to the needle mi′. Also, either regularly or not, the connecting yarn connects a needle mj of one face to a needle of the opposite face, shifted by 2, 3, 4 or 5 needles in the direction opposite to the first direction relatively to the needle mj′.


In an embodiment of the prosthesis according to the invention, the knit is formed by knitting threaded yarns, one full stitch, one empty stitch, on four guide bars BAV, BE1, BAR1 and BAR2, the bars BAV and BE1 forming two laps of yarns producing the front face, the bars BAR1 and BAR2 forming two laps of yarns producing the rear face and the bar BE1 forming the spacer. In such embodiments, it is the yarns of the front face which achieve the connection between both faces and which therefore form the spacer. Thus, the bar BE1 is involved in both the formation of a lap of the front face and in the formation of the spacer.


In an embodiment of the prosthesis according to the invention, the knit is formed by knitting threaded yarns, one full stitch, one empty stitch, on four guide bars BAV, BE1, BAR1 and BAR2, the bars BAV and BE1 forming two laps of yarns producing the front face, the bars BAR1 and BAR2 forming two laps of yarns producing the rear face and the bar BE1 forming the spacer, said laps being knitted according to the scheme below according to the ISO 11676 standard:


BAV:4.3.2.2/1.0.1.1/1.2.1.1/1.0.1.1/1.2.1.1/1.0.1.1/1.2.3.3/4.5.4.4/4.3.4.4/4.5.4.4/4.3.4.4/4.5.4.4//


BE1:1.2.3.3/4.5.1.2/4.3.4.4/4.5.4.4/4.3.4.4/4.5.4.4/4.3.2.2/1.0.4.3/1.2.1.1/1.0.1.1/1.2.1.1/1.0.1.1//


BAR1:4.4.4.3/2.2.1.0/1.1.1.2/1.1.1.0/1.1.1.2/1.1.1.0/1.1.1.2/3.3.4.5/4.4.4.3/4.4.4.5/4.4.4.3/4.4.4.5//


BAR2:1.1.1.2/3.3.4.5/4.4.4.3/4.4.4.5/4.4.4.3/4.4.4.5/4.4.4.3/2.2.1.0/1.1.1.2/1.1.1.0/1.1.1.2/1.1.1.0//


In such a method, yarns of the front face are essentially the ones which achieve the connection between both faces and therefore the spacer. Thus, the bar BE1 is involved in both the formation of a lap of the front face and in the formation of the spacer.


Alternatively, the knit is formed by knitting threaded yarns, one full stitch, one empty stitch, on four guide bars BAV, BE1, BAR1 and BAR2, the bars BAV and BE1 forming two laps of yarns producing the front face, the bars BAR1 and BAR2 forming two laps of yarns producing the rear face and the bar BE1 forming the spacer, said laps being knitted according to the scheme below according to the ISO 11676 standard:


BAV:4.3.2.2/1.0.1.1/1.2.1.1/1.0.1.1/1.2.1.1/1.0.1.1/1.2.3.3/4.5.4.4/4.3.4.4/4.5.4.4/4.3.4.4/4.5.4.4//


BE1:1.2.3.3/4.5.2.1/4.3.4.5/4.5.4.4/4.3.4.5/4.5.4.4/4.3.2.2/1.0.3.4/1.2.1.0/1.0.1.1/1.2.1.0/1.0.1.1//


BAR1:4.4.4.3/2.2.1.0/1.1.1.2/1.1.1.0/1.1.1.2/1.1.1.0/1.1.1.2/3.3.4.5/4.4.4.3/4.4.4.5/4.4.4.3/4.4.4.5//


BAR2:1.1.1.2/3.3.4.5/4.4.4.3/4.4.4.5/4.4.4.3/4.4.4.5/4.4.4.3/2.2.1.0/1.1.1.2/1.1.1.0/1.1.1.2/1.1.1.0//


In such a method, the bar BE1 is still involved in both the formation of a lap of the front face and in the formation of the spacer, but its scheme has been modified so that the connecting yarns define in addition a set of parallel or oblique yarns not crossing each other and not obstructing the pores of the two opposite faces. Such an embodiment brings additional connections between the front and the rear faces: such additional connections between the front and the rear face, with connecting yarns which are yarns from a lap of the front face, bring additional resistance to compressive force to the knitted structure, as well as an optimum thickness to the three-dimensional structure of the knit.


In another embodiment of the prosthesis according to the invention, the knit is formed by knitting threaded yarns 1 full stitch, 1 empty stitch, on six guide bars BAV1, BAV2, BE1, BE2, BAR1 and BAR2, the bars BAV1 and BAV2 forming two laps of yarns forming the front face, the bars BAR1 and BAR2 forming two laps of yarns producing the rear face and the bars BE1 and BE2 forming the spacer, said laps being knitted according to the scheme below according to the ISO 11676 standard:


BAV1: 1.0.1.1/1.2.1.1/1.0.1.1/2.3.2.2/2.1.2.2/2.3.3.3/4.5.4.4/4.3.4.4/4.5.4.4/3.2.3.3/3.4.3.3/3.2.2.2//


BAV2: 4.5.4.4/4.3.4.4/4.5.4.4/3.2.3.3/3.4.3.3/3.2.2.2/1.0.1.1/1.2.1.1/1.0.1.1/2.3.2.2/2.1.2.2/2.3.3.3//


BE1: 1.1.1.0/1.0.1.0/1.0.1.1/1.1.1.0/2.3.2.3/2.3.2.2/2.2.2.3/2.3.2.3/2.3.2.2/2.2.2.3/1.0.1.0/1.0.1.1//


BE2: 2.2.2.3/2.3.2.3/2.3.2.2/2.2.2.3/1.0.1.0/1.0.1.1/1.1.1.0/1.0.1.0/1.0.1.1/1.1.1.0/2.3.2.3/2.3.2.2//


BAR1: 2.2.1.0/1.1.1.2/1.1.1.0/1.1.2.3/2.2.2.1/2.2.2.3/3.3.4.5/4.4.4.3/4.4.4.5/4.4.3.2/3.3.3.4/3.3.3.2//


BAR2: 3.3.4.5/4.4.4.3/4.4.4.5/4.4.3.2/3.3.3.4/3.3.3.2/2.2.1.0/1.1.1.2/1.1.1.0/1.1.2.3/2.2.2.1/2.2.2.3//


In such a method, the spacer is formed by means of two bars BE1 and BE2, the yarns of which are dedicated to the formation of the spacer.


In an embodiment, at least one of the faces of the knit of the prosthesis according to the invention is covered with an anti-adhesion coating, in particular in order to avoid the formation of undesired post-surgical severe fibrous adhesions.


By «anti-adhesion» in the sense of the present application, is meant a smooth and non-porous biocompatible material or coating which does not provide any space for cell recolonization and avoiding that surrounding organs adhere onto the prosthesis.


The anti-adhesion material or coating may be selected from bioresorbable materials, non-bioresorbable materials and mixtures thereof.


Non-bioresorbable anti-adhesion materials may be selected from polytetrafluoroethylene, polysiloxanes, polyurethanes, stainless steels, derivatives of precious metals and their mixtures.


Preferentially, said anti-adhesion material or coating is bioresorbable: bioresorbable materials suitable for said anti-adhesion coating may be selected from collagens, for example oxidized collagen, oxidized celluloses, polyacrylates, trimethylene carbonates, caprolactones, dioxanones, glycolic acid, lactic acid, glycolides, lactides, polysaccharides for example chitosans, polyglucuronic acids, hyaluronic acids, dextrans, fucans, polyethylene glycols, glycerol and mixtures thereof.


In an embodiment of the invention, the material forming the anti-adhesion coating is a hydrophilic bioresorbable material, preferably selected from the group formed by collagens, polysaccharides and mixtures thereof. Among the collagens which may be used according to the invention, mention may be made of:


1) collagen, the helical structure of which is at least partly thermo-denaturated, without any hydrolytic degradation, the preparation method of which is described in WO99/06080 the contents of which is incorporated to the present application by reference,


2) native, non-heated, film collagen with or without glycerin, crosslinked by gamma irradiation or by any other chemical or physical means,


3) and/or mixtures thereof.


Among the polysaccharides which may used as a resorbable hydrophilic material according to the invention, mention may be made of oxidized cellulose, hyaluronic acid, starch, chitosan, crosslinked dextrans and/or mixtures thereof. All these materials are well known to one skilled in the art. As an oxidized cellulose suitable for the present invention, mention may be made of the product sold under the trade name of «Interceed®» by Ethicon. As hyaluronic acid suitable for the present invention, mention may be made of the product sold under the trade name of «Hyalobarrier®» by Fidia Advanced Biopolymers, or of the product sold under the trade name of «Seprafilm®» by Genzyme.


During the implantation of the prosthesis according to the invention, for example as a wall reinforcement during the treatment of a hernia, the anti-adhesion coating provides protection at least during the initial healing phase to the knit of the prosthesis at the location where this adherent coating is present, i.e. the covered face(s) of the knit is(are) not exposed to inflammatory cells such as granulocytes, monocytes, macrophages or further giant multi-nucleated cells generally activated by the surgical gesture. Indeed, at least during the initial healing phase, the duration of which may vary from about 5 to 10 days, only the anti-adhesion coating is accessible by the different factors such as proteins, enzymes, cytokines or cells of the inflammatory line.


In the case when the anti-adhesion coating consists of non-resorbable materials, it thus protects the knit before and after implantation, over the whole period of implantation of the prosthesis.


Moreover, by means of the anti-adhesion coating, the surrounding fragile tissues such as hollow viscera are for example in particular protected from the formation of undesired post-surgical severe fibrous adhesions.


In the case when the anti-adhesion material comprises a bioresorbable material, it is preferable to select a bioresorbable material which is not resorbed before several days so that the anti-adhesion coating may ensure its function of protecting the surrounding organs during the days following the operation, and, until cell rehabilitation of the prosthesis protects these organs in turn.


In an embodiment, the anti-adhesion coating is in the form of a bioresorbable textile. For example, the bioresorbable textile comprises oxidized cellulose. Such a textile is for example described in US2007/0032805, the contents of which is incorporated into the present application by reference.


In an embodiment, the anti-adhesion coating is in the form of a bioresorbable film.


In an embodiment, the anti-adhesion coating is a film of a mixture of collagen and glycerol: the preparation of such a film is described in U.S. Pat. Nos. 6,451,032, 6,165,488 and 6,391,939, the contents of which are incorporated into the present application by reference.


In an embodiment, the anti-adhesion coating is a film of a mixture of collagen and chitosan. The preparation of such a film is for example described in document US2010/0016872, the contents of which is incorporated into the present application by reference.


In an embodiment, the anti-adhesion coating is a film of a mixture of collagen and of fucan as described in document US-2009-0005867, the contents of which is incorporated into the present application by reference.


In an embodiment, the anti-adhesion coating is a film of a polysaccharide derivative as described in U.S. Pat. No. 6,264,702, the contents of which is incorporated into the present application by reference.


In an embodiment, the anti-adhesion coating is a film of cellulose as described in document WO2010/052585, the contents of which is incorporated into the present application by reference.


In an embodiment, the prosthesis according to the invention further comprises at least one textile layer in addition to said openworked three-dimensional knit, said textile layer being attached to one face of said knit. The textile layer may be any mesh, woven fabric, knit, non-woven fabric, made in a biocompatible material, in particular by means of biocompatible yarns, such as for example multifilament yarns, monofilament yarns and combinations thereof. Preferably, the textile is openworked. The textile may be a knit either identical or different from said openworked three-dimensional knit; it may thus be made according to the same weaves or not, with the same yarns or with different yarns.


Said textile layer may have the same shape as the shape of the openworked three-dimensional knit or a different shape. The textile layer may be attached to one face of the openworked three-dimensional knit in a continuous way or in a discrete way, by any attachment means, such as for example by sewing, by adhesive, by welding or by a combination of these means.


In an embodiment, as the openworked three-dimensional knit is in the form of a continuous part having a periphery, the textile layer has a shape with a periphery substantially identical with that of said part, said knit and said textile layer being attached to each other at their respective periphery, said textile layer being provided with a central aperture.


Preferably, when the prosthesis comprises an anti-adhesion coating as described above and a textile layer as described above, the anti-adhesion coating is present on the face of the knit opposite to the face where the textile layer is attached.


In such an embodiment, the textile layer, because of the presence of its central aperture, forms a kind of skirt which may effectively be used by the surgeon upon implanting the prosthesis, as an attachment means, by suturing this skirt to the abdominal wall.





The invention will be better understood from the detailed description and the examples which follow, as well as with the figures wherein:



FIG. 1 is a view of the weave of a knit of a prosthesis according to the invention,



FIG. 2 is a view of the weave of a knit of another embodiment of a prosthesis according to the invention,



FIG. 3 is a scanning electron microscope view of one face of the knit obtained with the weave of FIG. 1,



FIG. 4 is a top view of an embodiment of a prosthesis according to the invention,



FIG. 5 is a top view of another embodiment of a prosthesis according to the invention,



FIG. 6 is a view of the weave of a knit of another embodiment of a prosthesis according to the invention,



FIG. 7 is a scanning electron microscope view of one face of the knit obtained with the weave of FIG. 6.





With reference to FIG. 4, a prosthesis 100 according to the invention is illustrated, comprising an openworked three-dimensional knit 101 comprising a front face 102 and a rear face (not visible in the figure): this knit 101 may be produced according to Example 1 below or according to Example 2 or according to Example 3 below. Thus, each face of the knit 101 is formed with one or more laps of yarns defining pores on said face, a face being bound to the opposite face by connecting yarns defining a spacer, the connecting yarns are distributed so that they define an entanglement of yarns which cross each other at the spacer, without obstructing the pores of the two opposite faces.


In the illustrated example, the knit 101 is in the form of a round part and has a circular periphery 101a. The prosthesis 100 further comprises a textile layer 103, having a periphery 103a substantially identical with that of the knit 101. The textile layer 103 is attached through its periphery 103a to the periphery 101a of the knit 101, and it has a central aperture 104: the textile layer 103 thereby forms a free skirt 105. During the implantation of the prosthesis 100 at a defect of the abdominal wall, for example in the treatment of a hernia, the surgeon may suture this free skirt 105 to the abdominal wall in order to effectively attach the prosthesis 100.


The prosthesis 100 further comprises an anti-adhesion coating in the form of a film 106 covering the rear face of the knit 101. In the illustrated example, the film 106 slightly juts out from the peripheries (101a, 103a) of the knit 101 and of the textile layer 103. Preferably, the film is obtained from a mixture of oxidized collagen and glycerol as described in U.S. Pat. Nos. 6,451,032, 6,165,488 and 6,391,939.


Such a film 106 prevents the formation of post-surgical fibrous adhesions.


By the properties of the three-dimensional knit as mentioned in Examples 1, 2 and 3 below, the prosthesis according to the invention as described in FIG. 4 has excellent three-dimensional stability and therefore a good capability for cell recolonization, even when the prosthesis is subject to pressure forces tending to press both faces against each other, as this may be accomplished by abdominal pressure. The prosthesis according to the invention also has excellent resistance to suture.


In FIG. 5, for which the references designating the same elements as for FIG. 4 have been retained, is illustrated a prosthesis 100 similar to the one of FIG. 4, but the openworked three-dimensional knit 101 has the shape of a globally rectangular part.


The present application also describes a method for treating hernia consisting of providing a prosthesis according to the invention and of implanting it at the hernial defect: for example the face of the knit covered with the anti-adhesion coating is placed facing the abdominal cavity while the non-covered face, either provided or not with an additional textile layer forming a skirt, is placed facing the abdominal wall, with view to cell recolonization. When the prosthesis comprises a skirt as described above, the surgeon may directly attach the skirt of the prosthesis to the abdominal wall by means of sutures or clamps.


EXAMPLE 1

A knit suitable for the prosthesis according to the invention is produced with 50 decitex multi-filament polyester yarns, number of filaments per yarn: 22.


The knit is produced on a two-bed Rachel knitting machine with 6 threaded guide bars 1 full stitch, 1 empty stitch, according to the following weave according to the ISO 11676 standard:


BAV1: 1.0.1.1/1.2.1.1/1.0.1.1/2.3.2.2/2.1.2.2/2.3.3.3/4.5.4.4/4.3.4.4/4.5.4.4/3.2.3.3/3.4.3.3/3.2.2.2//


BAV2: 4.5.4.4/4.3.4.4/4.5.4.4/3.2.3.3/3.4.3.3/3.2.2.2/1.0.1.1/1.2.1.1/1.0.1.1/2.3.2.2/2.1.2.2/2.3.3.3//


BE1: 1.1.1.0/1.0.1.0/1.0.1.1/1.1.1.0/2.3.2.3/2.3.2.2/2.2.2.3/2.3.2.3/2.3.2.2/2.2.2.3/1.0.1.0/1.0.1.1//


BE2: 2.2.2.3/2.3.2.3/2.3.2.2/2.2.2.3/1.0.1.0/1.0.1.1/1.1.1.0/1.0.1.0/1.0.1.1/1.1.1.0/2.3.2.3/2.3.2.2//


BAR1: 2.2.1.0/1.1.1.2/1.1.1.0/1.1.2.3/2.2.2.1/2.2.2.3/3.3.4.5/4.4.4.3/4.4.4.5/4.4.3.2/3.3.3.4/3.3.3.2//


BAR2: 3.3.4.5/4.4.4.3/4.4.4.5/4.4.3.2/3.3.3.4/3.3.3.2/2.2.1.0/1.1.1.2/1.1.1.0/1.1.2.3/2.2.2.1/2.2.2.3//


This weave is illustrated in FIG. 1, in which the bars BAV1, BAV2, BE1, BE2, BAR1 and BAR2, are indicated with for each bar the path of a yarn (indicated in solid lines). In this figure, the numbers 1, 2, 3, . . . 12 indicate the rows of stitches of the front face; the numbers 1′, 2′, 3′, . . . , 12′ indicate the rows of stitches of the rear face. Also in this figure, a vertical sequence of points represents two columns of stitches, both front and rear, facing each other. In FIG. 1, the columns are indicated as n, n′, (n+1), (n′+1), (n+2) and (n′+2).


In the present example the yarns of the BAV1 and BAV2 bars form the front face, the yarns of the BE1 and BE2 bars form the spacer and the yarns of the BAR1 and BAR2 bars form the rear face. In the present example, the connecting yarns are therefore yarns from laps dedicated to the formation of the spacer, i.e. the laps obtained with the BE1 and BE2 bars.


The weave followed for the front face produces a front face comprising pores. Also, the weave followed for the rear face produces a face comprising pores. The pores of the front face are substantially facing the pores of the rear face.


As this appears in FIG. 1, the yarn of the BE1 bar, at the row 4′ and at the column n′ of the rear face, does not connect column n of the 5th row of the front face, but it connects column (n+2). By doing this, it connects the rear face to the front face obliquely and not perpendicularly to these faces. Next, this yarn at the row 10′ of the rear face, connects column (n′+2) to column n at the 11th row of the front face. In the present example, x and x′ as defined in the present application are therefore each equal to 2.


The yarn of the BE2 bar is also involved in the formation of the spacer, symmetrically to the yarn of the BE1 bar.


Thus, the spacer obtained is formed with connecting yarns which regularly cross each other.


The thereby obtained spacer is particularly resistant to compressive forces tending to press the front face onto the rear face. Subject to such forces, the spacer does neither collapse nor lie down thereby retaining its three-dimensional structure to the knit.


The obtained knit has the following properties:


1°) Thickness: 1.7 mm


By its structure, the knit of the present example substantially retains its height even when it is subject to a compressive force tending to press its front face onto the rear face.


2°) Transparence and size of the pores for both front and rear faces:

    • small pores (width×height): 2.0×2.4 mm
    • large pores (width×height): 2.1×2.5 mm


By the structure of the knit of the present example, the pores of the front face remain facing the pores of the rear face, even when the knit is subject to a compressive force tending to compress its front face onto its rear face.



FIG. 3 is a view taken with a scanning electron microscope of one face of the knit of the present example. As this is apparent from this view, the pores of the front face are distinctly seen (the closest to the apparatus taking the photograph) and it is also possible to distinguish in the background the pores of the rear face: the pores of the front face and those of the rear face are facing each other. Thus, the knit has excellent transparence which allows the surgeon to handle a prosthesis comprising such a knit with facility and to easily position it, in particular with respect to the surrounding organs. Indeed, the knit of the prosthesis allows the surgeon to have good visibility in transparence of the surrounding organs.


3°) Suture strength, as measured according to the NF S94-8012007 standard “Reinforcement implants set into place via a vaginal route for an urge and/or prolapsus urinary incontinence cure for pelvic organs—pre-clinical tests and clinical tests”—§ 5.2.3, 5 samples 50×100 mm, USP 2/0 suture yarn, crosshead speed: 100 mm/min

    • in the warp direction: 30±3 N
    • in the weft direction: 46±2 N


The above test is conducted on a tensile testing machine Hounsfield H5KS-SN 0589.


The knit retains its three-dimensional structure even when it is subject to compressive forces tending to press its front face onto its rear face.


This knit is useful for manufacturing reinforcement prosthesis for example for repairing hernias. It is sufficient to cut out the intended shape, for example a rectangular (see FIG. 5) or circular shape (see FIG. 4), in the knit of the present example in order to obtain a prosthesis which may be used as a wall reinforcement for treating hernia. A prosthesis according to the invention may consist of a knit according to the present example, alone, cut to the intended shape. Alternatively, the prosthesis may further comprise an anti-adhesion coating and/or one or more additional textile layers, as described with reference to FIGS. 4 and 5.


EXAMPLE 2

A knit suitable for the prosthesis according to the invention is produced with 88 dtex monofilament polyester yarns.


The knit is produced on a two-bed Rachel knitting machine with 4 threaded guide bars, 1 full stitch, 1 empty stitch, according to the following weave, according to the ISO 11676 standard:


BAV:4.3.2.2/1.0.1.1/1.2.1.1/1.0.1.1/1.2.1.1/1.0.1.1/1.2.3.3/4.5.4.4/4.3.4.4/4.5.4.4/4.3.4.4/4.5.4.4//


BE1:1.2.3.3/4.5.1.2/4.3.4.4/4.5.4.4/4.3.4.4/4.5.4.4/4.3.2.2/1.0.4.3/1.2.1.1/1.0.1.1/1.2.1.1/1.0.1.1//


BAR1:4.4.4.3/2.2.1.0/1.1.1.2/1.1.1.0/1.1.1.2/1.1.1.0/1.1.1.2/3.3.4.5/4.4.4.3/4.4.4.5/4.4.4.3/4.4.4.5//


BAR2:1.1.1.2/3.3.4.5/4.4.4.3/4.4.4.5/4.4.4.3/4.4.4.5/4.4.4.3/2.2.1.0/1.1.1.2/1.1.1.0/1.1.1.2/1.1.1.0


This weave is illustrated in FIG. 2, in which the bars BAV, BE1, BAR1, and BAR2, are indicated with for each bar the path of a yarn (indicated in solid line). In this figure, the numbers 1, 2, 3, . . . 15 indicate the rows of the stitches of the front face; the numbers 1′, 2′, 3′, . . . , 14′ indicate the rows of the stitches of the rear face. Also on this figure, a vertical sequence of points illustrates two columns of stitches, both front and rear, facing each other. In FIG. 2, the columns are indicated as n, n′, (n+1), (n′+1), (n+2), (n′+2), (n+3), (n′+3), (n+4) and (n′+4).


In the present example, the yarns of the BAV and BE1 bars form the front face, the yarns of the BAR1 and BAR2 bars form the rear face. In the present example, the connecting yarns are therefore yarns from a lap of the front face, i.e. the lap obtained with the BE1 bar. Thus, in the present example, there are no laps of connecting yarns dedicated to the formation of the spacer.


The weave followed for the front face produces a front face comprising pores. Also, the weave followed for the rear face produces a face comprising pores. The pores of the front face are substantially facing the pores of the rear face.


As this appears in FIG. 2, the yarn forming the spacer is the yarn of the BE1 bar which, at row no 2 and at column (n+4), connects the front face to row no 2′ of the rear face and to the column (n′+1) (see the arrow in the figure). By doing this, it rejoins the front face to the rear face obliquely and not perpendicularly to these faces: in this example, the yarn is shifted by three columns and x′, as defined in the present application, is equal to 3. This yarn then connects row 2′, column (n′+1) of the rear face to row 3, column (n+3) of the front face. By doing this it rejoins the rear face to the front face obliquely and not perpendicularly to these faces: in this example, the yarn is shifted by two columns and x, as defined in the present application, is equal to 2.


Next this yarn connects the 8th row and column n of the front face to row 8′, column (n′+3) of the rear face (see the arrow in the figure). By doing this, it rejoins the front face to the rear face obliquely and not perpendicularly to these faces and x is equal to 3. Next, the yarn connects row 8′, column (n′+3) of the rear face to row 9, column (n+1) of the front face and here, x′ is equal to 2.


Thus, the obtained spacer is formed with connecting yarns which regularly cross each other thereby generating an optimum entanglement of yarns not parallel with each other.


The thereby obtained spacer is particularly resistant to compressive forces tending to press the front face onto the rear face. Subject to such forces, the spacer neither collapses nor lies down parallel to the front and rear faces, thereby retaining its three-dimensional knitted structure.


This knit is useful for manufacturing reinforcement prosthesis for example for repairing hernias. It is sufficient to cut out the intended shape, for example a rectangular (see FIG. 4) or circular shape (see FIG. 5), in the knit of the present example in order to obtain a prosthesis which may be used as a wall reinforcement for treating a hernia. A prosthesis according to the invention may consist of a knit according to the present example, alone, cut out to the intended shape. Alternatively, the prosthesis may further comprise an anti-adhesion coating and/or one or more additional textile layers, as described with reference to FIGS. 4 and 5.


EXAMPLE 3

A knit suitable for the prosthesis according to the invention is produced with 88 dtex monofilament polyester yarns.


The knit is produced on a two-bed Rachel knitting machine with 4 threaded guide bars, 1 full stitch, 1 empty stitch, according to the following weave, according to the ISO 11676 standard:


BAV:4.3.2.2/1.0.1.1/1.2.1.1/1.0.1.1/1.2.1.1/1.0.1.1/1.2.3.3/4.5.4.4/4.3.4.4/4.5.4.4/4.3.4.4/4.5.4.4//


BE1:1.2.3.3/4.5.2.1/4.3.4.5/4.5.4.4/4.3.4.5/4.5.4.4/4.3.2.2/1.0.3.4/1.2.1.0/1.0.1.1/1.2.1.0/1.0.1.1//


BAR1:4.4.4.3/2.2.1.0/1.1.1.2/1.1.1.0/1.1.1.2/1.1.1.0/1.1.1.2/3.3.4.5/4.4.4.3/4.4.4.5/4.4.4.3/4.4.4.5//


BAR2:1.1.1.2/3.3.4.5/4.4.4.3/4.4.4.5/4.4.4.3/4.4.4.5/4.4.4.3/2.2.1.0/1.1.1.2/1.1.1.0/1.1.1.2/1.1.1.0


This weave is illustrated in FIG. 6, in which the bars BAV, BE1, BAR1, and BAR2, are indicated with for each bar the path of a yarn (indicated in solid line). In this figure, the numbers 1, 2, 3, . . . 15 indicate the rows of the stitches of the front face; the numbers 1′, 2′, 3′, . . . , 14′ indicate the rows of the stitches of the rear face. Also on this figure, a vertical sequence of points illustrates two columns of stitches, both front and rear, facing each other. In FIG. 6, the columns are indicated as n, n′, (n+1), (n′+1), (n+2), (n′+2), (n+3), (n′+3), (n+4) and (n′+4).


In the present example, the yarns of the BAV and BE1 bars form the front face, the yarns of the BAR1 and BAR2 bars form the rear face. In the present example, the connecting yarns are therefore yarns from a lap of the front face, i.e. the lap obtained with the BE1 bar. Thus, in the present example, there are no laps of connecting yarns dedicated to the formation of the spacer.


The weave followed for the front face produces a front face comprising pores. Also, the weave followed for the rear face produces a face comprising pores. The pores of the front face are substantially facing the pores of the rear face.


As this appears in FIG. 6, the yarn forming the spacer is the yarn of the BE1 bar which, at row no 2 and at column (n+4), connects the front face to row no 2′ of the rear face and to the column (n′+1). By doing this, it rejoins the front face to the rear face obliquely and not perpendicularly to these faces: in this example, the yarn is shifted by three columns and x′, as defined in the present application, is equal to 3. This yarn then connects row 2′, column (n′+1) of the rear face to row 3, column (n+3) of the front face. By doing this it rejoins the rear face to the front face obliquely and not perpendicularly to these faces: in this example, the yarn is shifted by two columns and x, as defined in the present application, is equal to 2.


This yarn also connects the 8th row and column n of the front face to row 8′, column (n′+3) of the rear face. By doing this, it rejoins the front face to the rear face obliquely and not perpendicularly to these faces and x is equal to 3. Next, the yarn connects row 8′, column (n′+3) of the rear face to row 9, column (n+1) of the front face and here, x′ is equal to 2.


Thus, the obtained spacer comprises connecting yarns which regularly cross each other thereby generating an optimum entanglement of yarns not parallel with each other.


In addition, in the present example, the yarn of the BE1 bar forms additional connections between the front face and the rear face, in which the connecting yarns do not cross each other: these additional connections may be seen on FIG. 6 at rows 3, 5, 9 and 11.


Indeed, at row no 3 and at column (n+3), the yarn connects the front face to row no 3′ of the rear face and to the column (n′+4). By doing this, it rejoins the front face to the rear face obliquely and not perpendicularly to these faces: in this example, the yarn is shifted by one column. This yarn then connects row 3′, column (n′+4) of the rear face to row 4, column (n+4) of the front face. By doing this it rejoins the rear face to the front face perpendicularly to these faces, with no shift of column. The same phenomenon is repeated starting at row 5.


In addition, at row no 9 and at column (n+1), the yarn connects the front face to row no 9′ of the rear face and to the column n′. By doing this, it rejoins the front face to the rear face obliquely and not perpendicularly to these faces: in this example, the yarn is shifted by one column. This yarn then connects row 9′, column n′ of the rear face to row 10, column n of the front face. By doing this it rejoins the rear face to the front face perpendicularly to these faces, with no shift of column. The same phenomenon is repeated starting at row 11.


Such additional connections between the front and the rear face, with connecting yarns which are yarns from a lap of the front face, bring additional resistance to compressive force to the knitted structure.


The thereby obtained spacer is particularly resistant to compressive forces tending to press the front face onto the rear face. Subject to such forces, the spacer neither collapses nor lies down parallel to the front and rear faces, thereby retaining its three-dimensional knitted structure.


The obtained knit has the following properties:


1°) Thickness: 1.3 mm


By its structure, the knit of the present example substantially retains its height even when it is subject to a compressive force tending to press its front face onto the rear face.


2°) Transparence and size of the pores for both front and rear faces:

    • pores (width×height): 2.0×3.3 mm


By the structure of the knit of the present example, the pores of the front face remain facing the pores of the rear face, even when the knit is subject to a compressive force tending to compress its front face onto its rear face.



FIG. 7 is a view taken with a scanning electron microscope of one face of the knit of the present example. As this is apparent from this view, the pores of the front face and of the rear face are aligned on each other so that it is possible to clearly see the background behind the knit through the knit: the pores of the front face and those of the rear face are facing each other. Thus, the knit has excellent transparence which allows the surgeon to handle a prosthesis comprising such a knit with facility and to easily position it, in particular with respect to the surrounding organs. Indeed, the knit of the prosthesis allows the surgeon to have good visibility in transparence of the surrounding organs.


3°) Suture strength, as measured according to the NF S94-8012007 standard “Reinforcement implants set into place via a vaginal route for an urge and/or prolapsus urinary incontinence cure for pelvic organs—pre-clinical tests and clinical tests”—§ 5.2.3, 5 samples 50×100 mm, USP 2/0 suture yarn, crosshead speed: 100 mm/min

    • in the warp direction: 46±3 N
    • in the weft direction: 50±6 N


The above test is conducted on a tensile testing machine Hounsfield H5KS-SN 0589.


The knit retains its three-dimensional structure even when it is subject to compressive forces tending to press its front face onto its rear face.


This knit is useful for manufacturing reinforcement prosthesis for example for repairing hernias. It is sufficient to cut out the intended shape, for example a rectangular (see FIG. 4) or circular shape (see FIG. 5), in the knit of the present example in order to obtain a prosthesis which may be used as a wall reinforcement for treating a hernia. A prosthesis according to the invention may consist of a knit according to the present example, alone, cut out to the intended shape. Alternatively, the prosthesis may further comprise an anti-adhesion coating and/or one or more additional textile layers, as described with reference to FIGS. 4 and 5.

Claims
  • 1. A method of treating a hernia defect comprising: introducing at least one openworked three-dimensional knit into a body of a patient, the at least one openworked three-dimensional knit including two opposite faces, a first face and a second face, each first and second face being formed with one or several laps of yarns defining pores on said first and second faces, said pores of the first face and the pores of the second face being substantially aligned on each other providing the knit with transparence, said first face being bound to said second face by connecting yarns defining a spacer, wherein the connecting yarns are distributed so that said connecting yarns define a crisscrossing set of yarns crossing each other at the spacer, without obstructing the pores of the two opposite faces, wherein the pores of the first face and the pores of the second face remain in the same relative position when the knit is subject to compressive forces thereby maintaining the transparence of the knit, andplacing the at least one openworked three-dimensional knit at the hernial defect with the first face facing the abdominal cavity and the second face facing the abdominal wall.
  • 2. The method of claim 1, wherein the connecting yarns are yarns from at least one lap from the laps forming the opposite faces.
  • 3. The method of claim 1, wherein the connecting yarns are yarns from one or more laps dedicated to the formation of the spacer.
  • 4. The method of claim 1, wherein the spacer has an X-profile.
  • 5. The method of claim 1, wherein the first face includes r rows and n columns of stitches facing r′ rows and n′ columns of stitches of the second face, with at least one portion of the connecting yarns connecting a column ni of the n columns of stitches of the first face to a column (ni′+x) of n′ columns of stitches of the second face, wherein x ranges from 2 to 5, and connecting a column nj of the n columns of stitches of the first face to a column (nj′−x′) of n′ columns of stitches of the second face, wherein x′ ranges from 2 to 5.
  • 6. The method of claim 5, wherein x=x′.
  • 7. The method of claim 5, wherein x=x′=2.
  • 8. The method of claim 5, wherein x is different from x′.
  • 9. The method of claim 1, wherein the second face includes an additional textile layer attached thereto.
  • 10. The method of claim 9, further comprising attaching the additional textile layer directly to the abdominal wall to promote cell colonization into the second face of the knit.
  • 11. The method of claim 10, wherein the additional textile layer is a skirt including a central aperture.
  • 12. The method of claim 1, wherein the first face includes an anti-adhesion coating thereon.
  • 13. The method of claim 12, wherein the anti-adhesion coating is bioresorbable.
  • 14. The method of claim 13, wherein the anti-adhesion coating is in the form of a bioresorbable textile.
  • 15. The method of claim 14, wherein the bioresorbable textile includes oxidized cellulose.
  • 16. The method of claim 13, wherein the anti-adhesion coating is in the form of a bioresorbable film.
  • 17. The method of claim 13, wherein the anti-adhesion coating is a film includes one or more of collagen, glycerol or chitosan.
  • 18. The method of claim 9, wherein the openworked three-dimensional knit is in the form of a continuous part having a periphery, the additional textile layer being provided with a central aperture, and the first face covered with an anti-adhesion coating.
  • 19. A method of treating a hernia defect comprising: introducing at least one openworked three-dimensional knit into a body of a patient, the at least one openworked three-dimensional knit including two opposite faces, a first face and a second face, each first and second face being formed with one or several laps of yarns defining pores on said first and second faces, said first face being bound to said second face by connecting yarns defining a spacer, wherein the connecting yarns are distributed so that said connecting yarns define a crisscrossing set of yarns crossing each other at the spacer, without obstructing the pores of the two opposite faces, said second face including an additional textile layer attached thereto,placing the at least one openworked three-dimensional knit at the hernial defect with the first face facing the abdominal cavity and the second face facing the abdominal wall, andattaching the additional textile layer directly to the abdominal wall to promote cell colonization into the second face of the knit.
  • 20. The method of claim 19, wherein the additional textile layer is a skirt including a central aperture.
  • 21. The method of claim 19, wherein the first face includes an anti-adhesion coating thereon.
Priority Claims (1)
Number Date Country Kind
11/52167 Mar 2011 FR national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/419,860 filed Jan. 30, 2017, which is a continuation of U.S. patent application Ser. No. 14/003,529 filed Sep. 6, 2013, now issued U.S. Pat. No. 9,554,887, which is a National Stage Application of PCT/EP12/54709, filed Mar. 16, 2012, under 35 U.S.C. 371(a), which claims benefit of and priority to French Patent Application Serial No. 11/52167 filed Mar. 16, 2011, the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.

US Referenced Citations (467)
Number Name Date Kind
1187158 Mcginley Jun 1916 A
3054406 Usher Sep 1962 A
3118294 Van Laethem Jan 1964 A
3124136 Usher Mar 1964 A
3272204 Artandi et al. Sep 1966 A
3276448 Kronenthal Oct 1966 A
3320649 Naimer May 1967 A
3364200 Ashton et al. Jan 1968 A
3570482 Shigeru et al. Mar 1971 A
3718725 Hamano Feb 1973 A
4006747 Kronenthal et al. Feb 1977 A
4060081 Yannas et al. Nov 1977 A
4173131 Melton et al. Nov 1979 A
4193137 Heck Mar 1980 A
4248064 Odham Feb 1981 A
4294241 Miyata Oct 1981 A
4307717 Hymes et al. Dec 1981 A
4338800 Matsuda Jul 1982 A
4476697 Schafer et al. Oct 1984 A
4487865 Balazs et al. Dec 1984 A
4500676 Balazs et al. Feb 1985 A
4511653 Play et al. Apr 1985 A
4527404 Nakagaki et al. Jul 1985 A
4591501 Cioca May 1986 A
4597762 Walter et al. Jul 1986 A
4603695 Ikada et al. Aug 1986 A
4631932 Sommers Dec 1986 A
4670014 Huc et al. Jun 1987 A
4709562 Matsuda Dec 1987 A
4748078 Doi et al. May 1988 A
4759354 Quarfoot Jul 1988 A
4769038 Bendavid et al. Sep 1988 A
4796603 Dahlke et al. Jan 1989 A
4813942 Alvarez Mar 1989 A
4841962 Berg et al. Jun 1989 A
4854316 Davis Aug 1989 A
4925294 Geshwind et al. May 1990 A
4931546 Tardy et al. Jun 1990 A
4942875 Hlavacek et al. Jul 1990 A
4948540 Nigam Aug 1990 A
4950483 Ksander et al. Aug 1990 A
4970298 Silver et al. Nov 1990 A
4976737 Leake Dec 1990 A
5002551 Linsky et al. Mar 1991 A
5015584 Brysk May 1991 A
5116357 Eberbach May 1992 A
5147374 Fernandez Sep 1992 A
5162430 Rhee et al. Nov 1992 A
5171273 Silver et al. Dec 1992 A
5176692 Wilk et al. Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5195542 Gazielly et al. Mar 1993 A
5196185 Silver et al. Mar 1993 A
5201745 Tayot et al. Apr 1993 A
5201764 Kelman et al. Apr 1993 A
5206028 Li Apr 1993 A
5217493 Raad et al. Jun 1993 A
5254133 Seid Oct 1993 A
5256418 Kemp et al. Oct 1993 A
5258000 Gianturco Nov 1993 A
5263983 Yoshizato et al. Nov 1993 A
5304595 Rhee et al. Apr 1994 A
5306500 Rhee et al. Apr 1994 A
5324775 Rhee et al. Jun 1994 A
5328955 Rhee et al. Jul 1994 A
5334527 Brysk Aug 1994 A
5339657 Mcmurray Aug 1994 A
5350583 Yoshizato et al. Sep 1994 A
5356432 Rutkow et al. Oct 1994 A
5368549 Mcvicker Nov 1994 A
5368602 Torre Nov 1994 A
5370650 Jonathan et al. Dec 1994 A
5376375 Rhee et al. Dec 1994 A
5376376 Li Dec 1994 A
5397331 Himpens et al. Mar 1995 A
5399361 Song et al. Mar 1995 A
5413791 Rhee et al. May 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5428022 Palefsky et al. Jun 1995 A
5433996 Kranzler et al. Jul 1995 A
5441491 Verschoor et al. Aug 1995 A
5441508 Gazielly et al. Aug 1995 A
5456693 Conston et al. Oct 1995 A
5456711 Hudson Oct 1995 A
5466462 Rosenthal et al. Nov 1995 A
5480644 Freed Jan 1996 A
5487895 Dapper et al. Jan 1996 A
5490984 Freed Feb 1996 A
5512291 Li Apr 1996 A
5512301 Song et al. Apr 1996 A
5514181 Light et al. May 1996 A
5522840 Krajicek Jun 1996 A
5523348 Rhee et al. Jun 1996 A
5536656 Kemp et al. Jul 1996 A
5543441 Rhee et al. Aug 1996 A
5565210 Rosenthal et al. Oct 1996 A
5567806 Abdul-Malak et al. Oct 1996 A
5569273 Titone et al. Oct 1996 A
RE35399 Eisenberg Dec 1996 E
5593441 Lichtenstein et al. Jan 1997 A
5595621 Light et al. Jan 1997 A
5601571 Moss Feb 1997 A
5607474 Athanasiou et al. Mar 1997 A
5607590 Shimizu Mar 1997 A
5614587 Rhee et al. Mar 1997 A
5618551 Tardy et al. Apr 1997 A
5634931 Kugel Jun 1997 A
5639796 Lee Jun 1997 A
5665391 Lea Sep 1997 A
5667839 Berg Sep 1997 A
5676967 Williams et al. Oct 1997 A
5681568 Goldin et al. Oct 1997 A
5686090 Schilder et al. Nov 1997 A
5686115 Vournakis et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5695525 Mulhauser et al. Dec 1997 A
5697978 Sgro Dec 1997 A
5700476 Rosenthal et al. Dec 1997 A
5700477 Rosenthal et al. Dec 1997 A
5702416 Kieturakis et al. Dec 1997 A
5709934 Bell et al. Jan 1998 A
5711960 Shikinami Jan 1998 A
5716409 Debbas Feb 1998 A
5720981 Eisinger Feb 1998 A
5732572 Litton Mar 1998 A
5743917 Saxon Apr 1998 A
5749895 Sawyer et al. May 1998 A
5752974 Rhee et al. May 1998 A
5766246 Mulhauser et al. Jun 1998 A
5766631 Arnold Jun 1998 A
5769864 Kugel Jun 1998 A
5771716 Schlussel Jun 1998 A
5785983 Furlan et al. Jul 1998 A
5800541 Rhee et al. Sep 1998 A
5814328 Gunasekaran Sep 1998 A
5833705 Ken et al. Nov 1998 A
5840011 Landgrebe et al. Nov 1998 A
5861034 Taira et al. Jan 1999 A
5863984 Doillon et al. Jan 1999 A
5869080 Mcgregor et al. Feb 1999 A
5871767 Dionne et al. Feb 1999 A
5876444 Lai Mar 1999 A
5891558 Bell et al. Apr 1999 A
5899909 Claren et al. May 1999 A
5906937 Sugiyama et al. May 1999 A
5910149 Kuzmak Jun 1999 A
5911731 Pham et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5919232 Chaffringeon et al. Jul 1999 A
5919233 Knopf et al. Jul 1999 A
5922026 Chin Jul 1999 A
5931165 Reich et al. Aug 1999 A
5942278 Hagedorn et al. Aug 1999 A
5962136 Dewez et al. Oct 1999 A
5972022 Huxel Oct 1999 A
RE36370 Li Nov 1999 E
5993844 Abraham et al. Nov 1999 A
5994325 Roufa et al. Nov 1999 A
5997895 Narotam et al. Dec 1999 A
6001895 Harvey et al. Dec 1999 A
6008292 Lee et al. Dec 1999 A
6015844 Harvey et al. Jan 2000 A
6039686 Robert Mar 2000 A
6042534 Gellman et al. Mar 2000 A
6042592 Schmitt Mar 2000 A
6043089 Sugiyama et al. Mar 2000 A
6051425 Morota et al. Apr 2000 A
6056688 Benderev et al. May 2000 A
6056970 Greenawalt et al. May 2000 A
6057148 Sugiyama et al. May 2000 A
6063396 Kelleher May 2000 A
6066776 Goodwin et al. May 2000 A
6066777 Benchetrit May 2000 A
6071292 Makower et al. Jun 2000 A
6077281 Das Jun 2000 A
6080194 Pachence et al. Jun 2000 A
6083522 Chu et al. Jul 2000 A
6090116 D Aversa et al. Jul 2000 A
6113623 Sgro Sep 2000 A
6120539 Eldridge et al. Sep 2000 A
6132765 Dicosmo et al. Oct 2000 A
6143037 Goldstein et al. Nov 2000 A
6153292 Bell et al. Nov 2000 A
6162962 Hinsch et al. Dec 2000 A
6165488 Tardy et al. Dec 2000 A
6171318 Kugel et al. Jan 2001 B1
6174320 Kugel et al. Jan 2001 B1
6176863 Kugel et al. Jan 2001 B1
6179872 Bell et al. Jan 2001 B1
6180848 Flament et al. Jan 2001 B1
6197325 Macphee et al. Mar 2001 B1
6197934 Devore et al. Mar 2001 B1
6197935 Doillon et al. Mar 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6221109 Geistlich et al. Apr 2001 B1
6224616 Kugel May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6258124 Darois et al. Jul 2001 B1
6262332 Ketharanathan Jul 2001 B1
6264702 Ory et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6277397 Shimizu Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6290708 Kugel et al. Sep 2001 B1
6306079 Trabucco Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6312474 Francis et al. Nov 2001 B1
6319264 Tormala et al. Nov 2001 B1
6328686 Robert Dec 2001 B1
6334872 Termin et al. Jan 2002 B1
6383201 Dong May 2002 B1
6391060 Ory et al. May 2002 B1
6391333 Li et al. May 2002 B1
6391939 Tayot et al. May 2002 B2
6408656 Ory et al. Jun 2002 B1
6410044 Chudzik et al. Jun 2002 B1
6413742 Olsen et al. Jul 2002 B1
6425924 Rousseau Jul 2002 B1
6428978 Olsen et al. Aug 2002 B1
6436030 Rehil Aug 2002 B2
6440167 Shimizu Aug 2002 B2
6443964 Ory et al. Sep 2002 B1
6447551 Goldmann Sep 2002 B1
6447802 Sessions et al. Sep 2002 B2
6448378 Devore et al. Sep 2002 B2
6451032 Ory et al. Sep 2002 B1
6451301 Sessions et al. Sep 2002 B1
6454787 Maddalo et al. Sep 2002 B1
6477865 Matsumoto Nov 2002 B1
6479072 Morgan et al. Nov 2002 B1
6485503 Jacobs et al. Nov 2002 B2
6500464 Ceres et al. Dec 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6509031 Miller et al. Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514286 Leatherbury et al. Feb 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6540773 Dong Apr 2003 B2
6541023 Andre et al. Apr 2003 B1
6548077 Gunasekaran Apr 2003 B1
6554855 Dong Apr 2003 B1
6559119 Burgess et al. May 2003 B1
6566345 Miller et al. May 2003 B2
6575988 Rousseau Jun 2003 B2
6576019 Atala Jun 2003 B1
6596002 Therin et al. Jul 2003 B2
6596304 Bayon et al. Jul 2003 B1
6599323 Melican et al. Jul 2003 B2
6599524 Li et al. Jul 2003 B2
6599690 Abraham et al. Jul 2003 B1
6610006 Amid et al. Aug 2003 B1
6613348 Jain Sep 2003 B1
6616685 Rousseau Sep 2003 B2
6623963 Mueller et al. Sep 2003 B1
6630414 Matsumoto Oct 2003 B1
6637437 Hungerford et al. Oct 2003 B1
6638284 Rousseau et al. Oct 2003 B1
6645226 Jacobs et al. Nov 2003 B1
6652594 Francis et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
6653450 Berg et al. Nov 2003 B1
6656206 Corcoran et al. Dec 2003 B2
6660280 Allard et al. Dec 2003 B1
6669735 Pelissier Dec 2003 B1
6670018 Fujita et al. Dec 2003 B2
6682760 Noff et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6706684 Bayon et al. Mar 2004 B1
6706690 Reich et al. Mar 2004 B2
6712859 Rousseau et al. Mar 2004 B2
6719795 Bryan et al. Apr 2004 B1
6723335 Moehlenbruck et al. Apr 2004 B1
6726660 Hessel et al. Apr 2004 B2
6730299 Tayot et al. May 2004 B1
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6737371 Planck et al. May 2004 B1
6743435 Devore et al. Jun 2004 B2
6746458 Cloud Jun 2004 B1
6752834 Geistlich et al. Jun 2004 B2
6755868 Rousseau Jun 2004 B2
6773723 Spiro et al. Aug 2004 B1
6783554 Amara et al. Aug 2004 B2
6790213 Cherok et al. Sep 2004 B2
6790454 Abdul et al. Sep 2004 B1
6800082 Rousseau Oct 2004 B2
6833408 Sehl et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6852330 Bowman et al. Feb 2005 B2
6869938 Schwartz et al. Mar 2005 B1
6872227 Sump et al. Mar 2005 B2
6893653 Abraham et al. May 2005 B2
6896904 Spiro et al. May 2005 B2
6926723 Mulhauser et al. Aug 2005 B1
6936276 Spiro et al. Aug 2005 B2
6939562 Spiro et al. Sep 2005 B2
6949625 Tayot Sep 2005 B2
6966918 Schuldt-Hempe et al. Nov 2005 B1
6971252 Therin et al. Dec 2005 B2
6974679 Andre et al. Dec 2005 B2
6974862 Ringeisen et al. Dec 2005 B2
6977231 Matsuda Dec 2005 B1
6984392 Bechert et al. Jan 2006 B2
6988386 Okawa et al. Jan 2006 B1
7011688 Gryska et al. Mar 2006 B2
7021086 Ory et al. Apr 2006 B2
7022358 Eckmayer et al. Apr 2006 B2
7025063 Snitkin et al. Apr 2006 B2
7041868 Greene et al. May 2006 B2
7060103 Carr et al. Jun 2006 B2
RE39172 Bayon et al. Jul 2006 E
7070558 Gellman et al. Jul 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7094261 Zotti et al. Aug 2006 B2
7098315 Schaufler Aug 2006 B2
7101381 Ford et al. Sep 2006 B2
7115220 Dubson et al. Oct 2006 B2
7156804 Nicolo Jan 2007 B2
7156858 Schuldt-Hempe et al. Jan 2007 B2
7175852 Simmoteit et al. Feb 2007 B2
7192604 Brown et al. Mar 2007 B2
7207962 Anand et al. Apr 2007 B2
7214765 Ringeisen et al. May 2007 B2
7226611 Yura et al. Jun 2007 B2
7229453 Anderson et al. Jun 2007 B2
7252837 Guo et al. Aug 2007 B2
7279177 Looney et al. Oct 2007 B2
7331199 Ory et al. Feb 2008 B2
7393319 Merade et al. Jul 2008 B2
7556598 Rao Jul 2009 B2
7594921 Browning Sep 2009 B2
7614258 Cherok et al. Nov 2009 B2
7615065 Priewe et al. Nov 2009 B2
7662169 Wittmann Feb 2010 B2
7670380 Cauthen, III et al. Mar 2010 B2
7682381 Rakos et al. Mar 2010 B2
7709017 Tayot et al. May 2010 B2
7718556 Matsuda et al. May 2010 B2
7732354 Fricke et al. Jun 2010 B2
7785334 Ford et al. Aug 2010 B2
7789888 Bartee et al. Sep 2010 B2
7799767 Lamberti et al. Sep 2010 B2
7806905 Ford et al. Oct 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7828854 Rousseau et al. Nov 2010 B2
7900484 Cherok et al. Mar 2011 B2
7931695 Ringeisen Apr 2011 B2
8052759 Dupic et al. Nov 2011 B2
8079023 Chen Dec 2011 B2
8100924 Browning Jan 2012 B2
8123817 Intoccia et al. Feb 2012 B2
8142515 Therin et al. Mar 2012 B2
8157821 Browning Apr 2012 B2
8157822 Browning Apr 2012 B2
8182545 Cherok et al. May 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8206632 Rousseau et al. Jun 2012 B2
8215310 Browning Jul 2012 B2
8317872 Adams Nov 2012 B2
8323675 Greenawalt Dec 2012 B2
8343232 Adzich et al. Jan 2013 B2
8366787 Brown et al. Feb 2013 B2
8435307 Paul May 2013 B2
8470355 Skalla et al. Jun 2013 B2
8562633 Cully et al. Oct 2013 B2
8574627 Martakos et al. Nov 2013 B2
8709094 Stad et al. Apr 2014 B2
8734471 Deitch May 2014 B2
8753360 Gleiman et al. Jun 2014 B2
8758800 Stopek et al. Jun 2014 B2
8784294 Goddard Jul 2014 B2
8814887 Walther et al. Aug 2014 B2
8828092 Toso et al. Sep 2014 B2
8834864 Odar et al. Sep 2014 B2
8846060 Archibald et al. Sep 2014 B2
8865215 Ladet et al. Oct 2014 B2
8877233 Obermiller et al. Nov 2014 B2
8911504 Mathisen et al. Dec 2014 B2
8920370 Sholev et al. Dec 2014 B2
8933290 Lefranc et al. Jan 2015 B2
8956373 Ford et al. Feb 2015 B2
8962006 Bayon et al. Feb 2015 B2
8968762 Ladet et al. Mar 2015 B2
8979935 Lozier et al. Mar 2015 B2
9034357 Stopek May 2015 B2
9113993 Lee Aug 2015 B2
9186235 Ory et al. Nov 2015 B2
9211175 Stopek et al. Dec 2015 B2
9216075 Bailly et al. Dec 2015 B2
9242026 Bayon et al. Jan 2016 B2
9554887 Lecuivre et al. Jan 2017 B2
20020034901 Fujita et al. Mar 2002 A1
20020087174 Capello Jul 2002 A1
20020095218 Carr et al. Jul 2002 A1
20020133236 Rousseau Sep 2002 A1
20030086975 Ringeisen May 2003 A1
20030114937 Leatherbury et al. Jun 2003 A1
20030133967 Ruszczak et al. Jul 2003 A1
20030225355 Butler Dec 2003 A1
20040034373 Schuldt-Hempe et al. Feb 2004 A1
20040054376 Ory et al. Mar 2004 A1
20040059356 Gingras Mar 2004 A1
20040101546 Gorman et al. May 2004 A1
20050002893 Goldmann Jan 2005 A1
20050021058 Negro Jan 2005 A1
20050085924 Darois et al. Apr 2005 A1
20050113849 Popadiuk et al. May 2005 A1
20050137512 Campbell et al. Jun 2005 A1
20050142161 Freeman et al. Jun 2005 A1
20050148963 Brennan Jul 2005 A1
20050175659 Macomber et al. Aug 2005 A1
20050228408 Fricke et al. Oct 2005 A1
20050232979 Shoshan Oct 2005 A1
20050267521 Forsberg Dec 2005 A1
20050288691 Leiboff Dec 2005 A1
20060116696 Odermatt et al. Jun 2006 A1
20060135921 Wiercinski et al. Jun 2006 A1
20060147501 Hillas et al. Jul 2006 A1
20060216320 Kitazono et al. Sep 2006 A1
20060252981 Matsuda et al. Nov 2006 A1
20060253203 Alvarado Nov 2006 A1
20060282103 Fricke et al. Dec 2006 A1
20070088391 Mcalexander et al. Apr 2007 A1
20070129736 Solecki Jun 2007 A1
20070198040 Buevich et al. Aug 2007 A1
20070299538 Roeber Dec 2007 A1
20080091276 Deusch et al. Apr 2008 A1
20080109017 Herweck et al. May 2008 A1
20080113001 Herweck et al. May 2008 A1
20080172071 Barker Jul 2008 A1
20080255593 St-Germain Oct 2008 A1
20090035341 Wagener et al. Feb 2009 A1
20090036907 Bayon et al. Feb 2009 A1
20090036996 Roeber Feb 2009 A1
20090068250 Gravagna et al. Mar 2009 A1
20090105526 Piroli et al. Apr 2009 A1
20090163936 Yang et al. Jun 2009 A1
20090187197 Roeber et al. Jul 2009 A1
20090192530 Adzich et al. Jul 2009 A1
20090204129 Fronio Aug 2009 A1
20090216338 Gingras et al. Aug 2009 A1
20090270999 Brown Oct 2009 A1
20090281558 Li et al. Nov 2009 A1
20090318752 Evans et al. Dec 2009 A1
20100104608 Abuzaina et al. Apr 2010 A1
20100318108 Datta et al. Dec 2010 A1
20110015760 Kullas Jan 2011 A1
20110144667 Horton et al. Jun 2011 A1
20110190795 Hotter et al. Aug 2011 A1
20110238094 Thomas et al. Sep 2011 A1
20110251699 Ladet et al. Oct 2011 A1
20110257666 Ladet et al. Oct 2011 A1
20120016388 Houard et al. Jan 2012 A1
20120029537 Mortarino Feb 2012 A1
20120065727 Reneker et al. Mar 2012 A1
20120082712 Stopek et al. Apr 2012 A1
20120116425 Intoccia et al. May 2012 A1
20120150204 Mortarino et al. Jun 2012 A1
20120165937 Montanari et al. Jun 2012 A1
20120179175 Hammell et al. Jul 2012 A1
20120179176 Wilson et al. Jul 2012 A1
20120197415 Montanari et al. Aug 2012 A1
20140044861 Boey et al. Feb 2014 A1
20140364684 Lecuivre et al. Dec 2014 A1
Foreign Referenced Citations (138)
Number Date Country
1317836 May 1993 CA
201879864 Jun 2011 CN
19544162 Apr 1997 DE
19718903 Dec 1997 DE
19751733 Dec 1998 DE
19832634 Jan 2000 DE
10019604 Oct 2001 DE
10120942 Oct 2001 DE
10043396 Jun 2002 DE
0194192 Sep 1986 EP
0248544 Dec 1987 EP
0263360 Apr 1988 EP
0276890 Aug 1988 EP
0372969 Jun 1990 EP
0531742 Mar 1993 EP
0544485 Jun 1993 EP
0552576 Jul 1993 EP
0611561 Aug 1994 EP
0614650 Sep 1994 EP
0621014 Oct 1994 EP
0625891 Nov 1994 EP
0637452 Feb 1995 EP
0664132 Jul 1995 EP
0705878 Apr 1996 EP
0719527 Jul 1996 EP
0774240 May 1997 EP
0797962 Oct 1997 EP
0800791 Oct 1997 EP
0827724 Mar 1998 EP
0836838 Apr 1998 EP
0847727 Jun 1998 EP
0876808 Nov 1998 EP
0895762 Feb 1999 EP
0898944 Mar 1999 EP
1017415 Jul 2000 EP
1036545 Sep 2000 EP
1052319 Nov 2000 EP
1055757 Nov 2000 EP
1090590 Apr 2001 EP
1158082 Nov 2001 EP
1216717 Jun 2002 EP
1216718 Jun 2002 EP
0693523 Nov 2002 EP
1315468 Jun 2003 EP
1382728 Jan 2004 EP
1484070 Dec 2004 EP
1561480 Aug 2005 EP
1645232 Apr 2006 EP
1674048 Jun 2006 EP
1691606 Aug 2006 EP
1782848 May 2007 EP
2229918 Sep 2010 EP
2244853 Apr 1975 FR
2257262 Aug 1975 FR
2308349 Nov 1976 FR
2453231 Oct 1980 FR
2612392 Sep 1988 FR
2715309 Jul 1995 FR
2715405 Jul 1995 FR
2724563 Mar 1996 FR
2730406 Aug 1996 FR
2744906 Aug 1997 FR
2766698 Feb 1999 FR
2771622 Jun 1999 FR
2773057 Jul 1999 FR
2774277 Aug 1999 FR
2779937 Dec 1999 FR
2859624 Mar 2005 FR
2863277 Jun 2005 FR
2876020 Apr 2006 FR
2884706 Oct 2006 FR
2929834 Oct 2009 FR
2953709 Jun 2011 FR
1174814 Dec 1969 GB
2051153 Jan 1981 GB
2306110 Apr 1997 GB
H0332677 Feb 1991 JP
H05237128 Sep 1993 JP
H09137380 May 1997 JP
H11146888 Jun 1999 JP
2002518129 Jun 2002 JP
2003517318 May 2003 JP
2008538300 Oct 2008 JP
2009503281 Jan 2009 JP
2011078767 Apr 2011 JP
8902445 Mar 1989 WO
8908467 Sep 1989 WO
9012551 Nov 1990 WO
9206639 Apr 1992 WO
9220349 Nov 1992 WO
9310731 Jun 1993 WO
9311805 Jun 1993 WO
9318174 Sep 1993 WO
9417747 Aug 1994 WO
9507666 Mar 1995 WO
9518638 Jul 1995 WO
9532687 Dec 1995 WO
9603091 Feb 1996 WO
9608277 Mar 1996 WO
9609795 Apr 1996 WO
9614805 May 1996 WO
9641588 Dec 1996 WO
9735533 Oct 1997 WO
9835632 Aug 1998 WO
9849967 Nov 1998 WO
9905990 Feb 1999 WO
9906079 Feb 1999 WO
9906080 Feb 1999 WO
9951163 Oct 1999 WO
0016821 Mar 2000 WO
0067663 Nov 2000 WO
0115625 Mar 2001 WO
0180773 Nov 2001 WO
0181667 Nov 2001 WO
0207648 Jan 2002 WO
0217853 Mar 2002 WO
0250352 Jun 2002 WO
02078568 Oct 2002 WO
03002168 Jan 2003 WO
2004004600 Jan 2004 WO
2004071349 Aug 2004 WO
2004078120 Sep 2004 WO
2004103212 Dec 2004 WO
2005011280 Feb 2005 WO
2005013863 Feb 2005 WO
2005018698 Mar 2005 WO
2005048708 Jun 2005 WO
2005105172 Nov 2005 WO
2006018552 Feb 2006 WO
2006023444 Mar 2006 WO
2007048099 Apr 2007 WO
2009031035 Mar 2009 WO
2009071998 Jun 2009 WO
2010043978 Apr 2010 WO
2010052585 May 2010 WO
2011007062 Jan 2011 WO
2011026987 Mar 2011 WO
2011038740 Apr 2011 WO
Non-Patent Literature Citations (34)
Entry
Amid, P., “Lichtenstein tension-free hernioplasty: Its inception, evolution, and principles,” Hernia, 2004; pp. 1-7, 8, published online Sep. 2003.
Australian Office Action dated Apr. 6, 2016 in corresponding Australian Patent Application No. 2012228190, 3 pages.
Blondin, C. et al., “Inhibition of Complement Activation by Natural Sulfated Polysaccharides (Fucans) from Brown Seaweed,” Molecular Immuol., Mar. 1994, pp. 247-253, 31(4).
Blondin, C. et al., “Relationships between chemical characteristics and anticomplementary activity of fucans,” Biomaterials, Mar. 1996, pp. 597-603, 17(6).
Boisson-Vidal, C. et al., “Neoangiogenesis Induced by Progenitor Endothelial Cells: Effect of Fucoidan From Marine Algae,” Cardiovascular & Hematological Agents in Medicinal Chem., Jan. 2007, pp. 67-77, 5(1).
Bracco, P. et al., “Comparison of polypropylene and polyethylene terephthalate (Dacron) meshes for abdominal wall hernia repair: A chemical and morphological study,” Hernia, 2005, pp. 51-55, 9 (1), published online Sep. 2004.
Canadian Office Action dated Nov. 6, 2017 in corresponding Canadian Patent Application No. 2,829,710, 3 pages.
Collins, R. et al., “Use of collagen film as a dural substitute: Preliminary animal studies,” Journal of Biomedical Materials Research, Feb. 1991, pp. 267-276, vol. 25.
Ellouali, M. et al., “Antitumor Activity of Low Molecular Weight Fucans Extracted from Brown Seaweed Ascophyllum nodosum,” Anticancer Res., Nov.-Dec. 1993, pp. 2011-2020, 12 (6A).
Haneji, K. et al., “Fucoidan extracted from Cladosiphon Okamuranus Tokida Induces Apoptosis of Human T-cell Leukemia Virus Type 1-lnfected T-Cell Lines and Primary Adult T-Cell Leukemia Cells,” Nutrition and Cancer, 2005, pp. 189-201, 52(2),published online Nov. 2009.
Haroun-Bouhedja, F. et al., “In Vitro Effects of Fucans on MDA-MB231 Tumor Cell Adhesion and Invasion,” Anticancer Res., Jul.-Aug. 2002, pp. 2285-2292, 22(4).
Haroun-Bouhedja, F. et al., “Relationship between sulfate groups and biological activities of fucans,” Thrombosis Res., Dec. 2000, pp. 453-459, 100(5).
Hirano, S. et al., “The blood biocompatibility of chitosan and N-acylchitosans,” J. Biomed. Mater. Res., Apr. 1985, 413-417, 19.
International Search Report for PCT/EP12/54709 date of completion is Jun. 22, 2012 (3 pages).
JP Office Action dated Jan. 29, 2016 in corresponding JP Patent Application No. 2013-558462, together with English language translation.
Junge, K. et al., “Functional and Morphologic Properties of a Modified Mesh for Inguinal Hernia Repair,” World J. Surg., Sep. 2002, pp. 1472-1480, 26.
Kanabar, V. et al., “Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle,” Br. J. Pharmacol., Oct. 2005, pp. 370-777, 146(3).
Klinge, U. et al., “Foreign Body Reaction to Meshes Used for the Repair of Abdominal Wall Hernias,” Eur J. Surg, Sep. 1999, pp. 665-673, 165.
Klinge, U. et al., “Functional and Morphological Evaluation of a Low-Weight, Monofilament Polypropylene Mesh for Hernia Repair,” J. Biomed. Mater. Res., Jan. 2002, pp. 129-136, 63.
Langenbech, M. R. et al., “Comparison of biomaterials in the early postoperative period,” Surg Endosc., May 2003, pp. 1105-1109, 17 (7).
Logeart, D. et al., “Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. II. Degradation and molecular weight effect,” Eur. J. Cell. Biol., Dec. 1997, pp. 385-390, 74(4).
Malette, W. G. et al., “Chitosan, a New Hemostatic,” Ann Th. Surg., Jul. 1983, pp. 55-58, 36.
Muzzarelli, R. et al., “Reconstruction of parodontal tissue with chitosan,” Biomaterials, Nov. 1989, pp. 598-604, 10.
Notice of Allowance issued by the Japanese Patent Office in corresponding Japanese Patent Application No. 2013-558462 dated Oct. 4, 2016 with English summary, 5 pages.
O'Dwyer, P. et al., “Randomized clinical trial assessing impact of a lightweight or heavyweight mesh on chronic pain after inguinal hernia repair,” Br. J. Surg., Feb. 2005, pp. 166-170, 92(2).
Preliminary Search Report from French Patent Office dated Dec. 20, 2006, 3 pages.
Prokop, A. et al., “Water Soluble Polymers for Immunoisolation I: Complex Coacevation and Cytotoxicity,” Advances in Polymer Science, Jul. 1998, pp. 1-51, 136.
Rao, B. et al., “Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential,” J. Biomed. Mater. Res., Jan. 1997, pp. 21-28, 34.
Rosen, M. et al., “Laparoscopic component separation in the single-stage treatment of infected abdominal wall prosthetic removal,” Hernia, 2007, pp. 435-440, 11, published online Jul. 2007.
Scheidbach, H. et al., “In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: An experimental study in pigs,” Surg. Endosc., Feb. 2004,pp. 211-220,18(2).
Strand, S. et al., “Screening of Chitosans and Conditions for Bacterial Flocculation,” Biomacromolecules, Mar. 2001, 126-133, 2.
Varum, K. et al., “In vitro degradation rates of partially N-acetylated chitosans in human serum,” Carbohydrate Research, Mar. 1997, pp. 99-101, 299.
Welty, G. et al., “Functional impairment and complaints following incisional hernia repair with different polypropylene meshes,” Hernia, Aug. 2001; pp. 142-147, 5.
Zvyagintseva, T. et al., “Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds,” Comparative Biochem and Physiol, Jul. 2000, pp. 209-215,126(3).
Related Publications (1)
Number Date Country
20200030074 A1 Jan 2020 US
Continuations (2)
Number Date Country
Parent 15419860 Jan 2017 US
Child 16594539 US
Parent 14003529 US
Child 15419860 US