Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery

Information

  • Patent Grant
  • 11324591
  • Patent Number
    11,324,591
  • Date Filed
    Thursday, February 6, 2020
    4 years ago
  • Date Issued
    Tuesday, May 10, 2022
    2 years ago
Abstract
A prosthesis can comprise an expandable frame, a plurality of distal anchors and a plurality of proximal anchors. The anchors can extend outwardly from the frame. The frame can be configured to radially expand and contract for deployment within a body cavity. The frame and anchors can have one of many different shapes and configurations. For example, when the frame is in an expanded configuration, the frame can have a larger cross-sectional dimension in a middle portion of the frame and a smaller cross-sectional dimension in a proximal portion and a distal portion of the frame, wherein the middle portion is between the proximal and distal portions. As another example, the anchors can have looped ends, the entire anchor may loop out from the frame.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

Certain embodiments disclosed herein relate generally to prostheses for implantation within a lumen or body cavity. In particular, certain embodiments relate to expandable prostheses such as replacement heart valves, such as for the mitral valve, that are configured to atraumatically grasp intralumenal tissue.


Description of the Related Art

Human heart valves, which include the aortic, pulmonary, mitral and tricuspid valves, function essentially as one-way valves operating in synchronization with the pumping heart. The valves allow blood to flow downstream, but block blood from flowing upstream. Diseased heart valves exhibit impairments such as narrowing of the valve or regurgitation, which inhibit the valves' ability to control blood flow. Such impairments reduce the heart's blood-pumping efficiency and can be a debilitating and life threatening condition. For example, valve insufficiency can lead to conditions such as heart hypertrophy and dilation of the ventricle. Thus, extensive efforts have been made to develop methods and apparatuses to repair or replace impaired heart valves.


Prostheses exist to correct problems associated with impaired heart valves. For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves that can be delivered with less trauma to the patient than through open heart surgery. Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.


Development of prostheses including but not limited to replacement heart valves that can be compacted for delivery and then controllably expanded for controlled placement has proven to be particularly challenging. An additional challenge relates to the ability of such prostheses to be secured relative to intralumenal tissue, e.g., tissue within any body lumen or cavity, in an atraumatic manner. Further challenges arise when trying to controllably deliver and secure such prostheses in a location such as at a native mitral valve.


SUMMARY OF THE INVENTION

Embodiments of the present disclosure are directed to a prosthesis, such as but not limited to a replacement heart valve. Further embodiments are directed to methods of delivering a prosthesis into a body cavity and/or securing a prosthesis to intralumenal tissue. In some embodiments, a replacement heart valve and methods for delivering a replacement heart valve to a native heart valve, such as a mitral valve, are provided.


In some embodiments a prosthesis can comprise an expandable frame, a plurality of distal anchors and a plurality of proximal anchors. The anchors can extend outwardly from the frame. The frame can be configured to radially expand and contract for deployment within the body cavity. In some embodiments, when the frame is in an expanded configuration, the frame can have a larger cross-sectional dimension in a middle portion of the frame and a smaller cross-sectional dimension in a proximal portion and a distal portion of the frame, wherein the middle portion is between the proximal and distal portions. In some embodiments, at least some of the anchors comprise a loop that forms an atraumatic end of a corresponding anchor.


In some embodiments, a prosthesis can be configured to atraumatically grasp intralumenal tissue when deployed within a body cavity. The prosthesis can comprise an expandable frame comprising a proximal end and a distal end and having a longitudinal axis extending between the proximal end and the distal end. The frame can be configured to radially expand and contract for deployment within the body cavity, wherein when the frame is in an expanded configuration, the frame has a larger cross-sectional dimension in a middle portion of the frame and a smaller cross-sectional dimension in a proximal portion and a distal portion of the frame, wherein the middle portion is between the proximal and distal portions. The prosthesis can also include a plurality of generally distally extending anchors extending from the proximal portion of the frame and configured so that when the frame is in an expanded configuration each distally extending anchor has an end positioned radially outward from the middle portion of the frame, and a plurality of generally proximally extending anchors extending from the distal portion of the frame and configured so that when the frame is in an expanded configuration each proximally extending anchor has an end positioned radially outward form the middle portion of the frame and axially spaced from the ends of the distally extending anchors. At least some of the anchors can comprise a loop that forms an atraumatic end of the anchor The frame can be configured such that radial expansion of the frame causes the ends of the plurality of distally extending anchors and the ends of the plurality of proximally extending anchors to draw closer together.


A prosthesis according to certain embodiments can be configured to atraumatically grasp intralumenal tissue when deployed within a body cavity. The prosthesis can comprise an expandable frame, a plurality of proximal anchors each connected to the frame so that when the frame is in an expanded configuration an end of each proximal anchor is positioned radially outward from the frame and extends generally distally, and a plurality of distal anchors each connected to the frame so that when the frame is in an expanded configuration an end of each distal anchor is positioned radially outward from the frame and extends generally proximally, wherein the ends of the distal anchors are axially spaced from the ends of the proximal anchors when the frame is in an expanded configuration. In some embodiments, at least some of the anchors can comprise a looped end.


Alternatively, or in addition, in some embodiments, at least some of the anchors can comprise a loop. Each loop of these later embodiments can comprise first through fourth segments and an arcuate segment. The first and second segments can both extend in a first generally axial direction away from the frame. The third and fourth segments can extend radially outward from the frame in a second direction generally opposite the first direction, the third segment connected to the first segment and the fourth segment connected to the second segment. The arcuate segment can connect the third segment and the fourth segment that forms an atraumatic end of a corresponding anchor. In some embodiments, the frame is configured such that radial expansion of the frame causes the ends of the plurality of proximal anchors and the ends of the plurality of distal anchors to draw closer together.


In some embodiments, a prosthesis can be configured to atraumatically grasp intralumenal tissue when deployed within a body cavity. The prosthesis can comprise an expandable frame, a plurality of proximal anchors, and a plurality of distal anchors. The expandable frame can comprise a proximal end and a distal end and having a longitudinal axis extending between the proximal end and the distal end, the frame configured to radially expand and contract for deployment within the body cavity. The plurality of proximal anchors can each connect to the frame so that when the frame is in an expanded configuration an end of each proximal anchor is positioned radially outward from the frame and extends generally distally. The plurality of distal anchors can each connect to the frame so that when the frame is in an expanded configuration an end of each distal anchor is positioned radially outward from the frame and extends generally proximally, wherein the ends of the distal anchors are axially spaced from the ends of the proximal anchors when the frame is in an expanded configuration. At least some of the anchors can comprise a loop. Each of the anchors that comprises a loop can comprise at least a first segment extending in a first generally axial direction away from the frame, and a second segment and a third segment extending radially outward from the frame in a second direction generally opposite the first direction and coming together in an atraumatic end. The frame can be configured such that radial expansion of the frame causes the ends of the plurality of proximal anchors and the ends of the plurality of distal anchors to draw closer together.


According to some embodiments a prosthesis can be configured to atraumatically grasp intralumenal tissue when deployed within a body cavity. The prosthesis can comprise an expandable frame comprising a proximal end and a distal end and having a longitudinal axis extending between the proximal end and the distal end, the frame configured to radially expand and contract for deployment within the body cavity, a plurality of proximal anchors each connected to the frame so that when the frame is in an expanded configuration an end of each proximal anchor is positioned radially outward from the frame and extends generally distally, and a plurality of distal anchors each connected to the frame so that when the frame is in an expanded configuration an end of each distal anchor is positioned radially outward from the frame and extends generally proximally, wherein the ends of the distal anchors are axially spaced from the ends of the proximal anchors when the frame is in an expanded configuration. At least some of the anchors can comprise a loop and each loop can comprise first through fourth segments and an arcuate segment. The first and second segments can both extend in a first generally axial direction away from the frame. The third and fourth segments can extend radially outward from the frame in a second direction generally opposite the first direction, the third segment connected to the first segment and the fourth segment connected to the second segment. The arcuate segment can connect the third segment and the fourth segment that forms an atraumatic end of a corresponding anchor. The frame can be configured such that radial expansion of the frame causes the ends of the plurality of proximal anchors and the ends of the plurality of distal anchors to draw closer together.


Methods of delivering a prosthesis and/or securing the prosthesis to intralumenal tissue are also provided. In one embodiment, a method of delivering a replacement valve to a native mitral valve can comprise one or more of the following steps. Delivering a replacement valve mounted on a delivery device to the native mitral valve annulus while the replacement valve is in a radially compacted state, the replacement valve comprising a radially expandable frame comprising a proximal end, a distal end, a plurality of distal anchors extending generally proximally from the frame, and a plurality of proximal anchors extending generally distally from the frame. Positioning the replacement valve so that ends of the distal anchors are on a ventricular side of the native leaflets beyond a location where chordae tendineae connect to free ends of the native leaflets. Releasing at least a portion of the replacement valve from the delivery device to thereby expand the distal anchors radially outwardly to a first radial dimension. Moving the ends of the distal anchors toward the ventricular side of the native valve annulus with the distal anchors extending between at least some of the chordae tendineae to provide tension on the chordae tendineae. Further releasing the replacement valve from the delivery device to thereby expand the proximal anchors radially outwardly to a second radial dimension greater than the first radial dimension, wherein the proximal anchors upon further release of the replacement valve from the delivery device move into engagement with tissue on an atrial side of the native valve annulus while the distal anchors provide tension on the chordae tendineae.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the invention. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments.



FIG. 1A is a side view of an embodiment of a prosthesis.



FIG. 1B is a flat pattern view of the prosthesis of FIG. 1A.



FIG. 2A is a side view of an embodiment of a prosthesis.



FIG. 2B is a flat pattern view of the prosthesis of FIG. 2A.



FIG. 3A is a side view of an embodiment of a prosthesis.



FIG. 3B is a flat pattern view of the prosthesis of FIG. 3A.



FIG. 4 is a side view of an embodiment of a prosthesis.



FIG. 5 is a side view of an embodiment of a prosthesis.



FIG. 6A is a side view of an embodiment of a prosthesis configured as a replacement heart valve.



FIG. 6B is a bottom view of the prosthesis similar of FIG. 6A.



FIG. 7 is a side view of an embodiment of a prosthesis configured as a replacement heart valve.



FIG. 8A is a side view of an embodiment of a prosthesis.



FIG. 8B is a detail view of a portion of the prosthesis of FIG. 8A.



FIG. 9A is a side view of an embodiment of a prosthesis.



FIG. 9B is a bottom view of the prosthesis of FIG. 9A, configured as a replacement heart valve.



FIG. 10 is a schematic representation of a prosthesis positioned within the heart.



FIG. 10A is a detail schematic representation of the prosthesis positioned within the heart of FIG. 10.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present specification and drawings provide aspects and features of the disclosure in the context of several embodiments of prostheses, replacement heart valves, delivery devices and methods that are configured for use in the vasculature of a patient, such as for replacement of natural heart valves in a patient. These embodiments may be discussed in connection with replacing specific valves such as the patient's aortic or mitral valve. However, it is to be understood that the features and concepts discussed herein can be applied to products other than heart valve implants. For example, the controlled positioning, deployment, and securing features described herein can be applied to medical implants, for example other types of expandable prostheses, for use elsewhere in the body, such as within a vein, or the like. In addition, particular features of a valve, delivery device, etc. should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate.


With initial reference to FIG. 1A, an embodiment of a prosthesis 10 is shown. The illustrated prosthesis 10 includes a frame 20 that may be self-expanding or balloon expandable. The prosthesis may further include a replacement valve that can be designed to replace a damaged or diseased native heart valve such as a mitral valve. The replacement valve is not shown in this embodiment as to more clearly illustrate features of the frame 20, though it will be understood that a replacement valve is not required as part of the prosthesis. In addition, it will be understood that only a front portion of the frame 20 is shown for further ease of illustration.


The frame 20 can be made of many different materials, but is preferably made from metal. In some embodiments, the frame 20 can be made from a shape memory material, such as nitinol. A wire frame or a metal tube can be used to make the frame. The wire frame of a metal tube can be cut or etched to remove all but the desired metal skeleton. In some embodiments a metal tube is laser cut in a repeating pattern to form the frame. FIG. 1B illustrates the flat cut pattern of the frame shown in FIG. 1A. The flat pattern can be cut from a metal tube and then the tube can be bent and expanded to the shape shown in FIG. 1A. The frame 20 can further be expanded and/or compressed and/or otherwise worked to have the desired shape or shapes, such as for introduction and implantation.


As shown, the frame when in an expanded configuration, such as in a fully expanded configuration, has a bulbous or slightly bulbous shape, with a middle portion being larger than the proximal 32 and distal 34 ends. In some embodiments, the inside diameter of the both ends can be the same, or it can be bigger on one end than the other, while still having a middle portion larger than both the proximal and distal ends. In some embodiments, the effective diameter of the distal frame end is smaller than the effective diameter of the middle portion. The bulbous shape of the frame can advantageously allow the frame to engage a native valve annulus or other body cavity, while spacing the inlet and outlet from the heart or vessel wall. This can help reduce undesired contact between the prosthesis and the heart or vessel, such as the ventricular wall of the heart. In other embodiments, the frame may not have a bulbous portion, and can have substantially the same outer dimension along its entire length, or it may have one end larger than the other end. The prosthesis 10 and frame 20 may be similar to the replacement heart valves and associated frames disclosed in U.S. Pat. No. 8,403,983 and U.S. Publication Nos. 2010/0298931, 2011/0313515 and 2012/0078353 the entireties of each of which are hereby incorporated by reference and made a part of this specification. This is inclusive of the entire disclosure and is not in any way limited to the disclosure of the replacement heart valves and associated frames.


A number of struts collectively make up the frame 20. FIG. 1 illustrates the frame in an expanded configuration with a number of longitudinal struts 12 and undulating struts 14, with cells defined by the open spaces between the struts. The longitudinal struts may be arranged so that they are parallel or generally or substantially parallel to a longitudinal axis of the frame. The longitudinal axis of the frame may be defined as the central axis that extends through the center of the frame between the proximal 32 and distal 34 ends. Any number of configurations of struts can be used, such as the rings of undulating struts shown forming chevrons and diamonds, but also ovals, curves, and various other shapes. The illustrated embodiment includes two rings, or rows of chevrons shown in portion 16 and two rows of diamond-shaped cells shown in portion 18.


The frame 20 has a non-foreshortening portion 16 and a foreshortening portion 18. These portions can be defined by the frame 20 and the positioning of various types of struts along the frame 20. In FIG. 1 it can be seen that the longitudinal struts 12 span the length of the non-foreshortening portion 16, while undulating struts 14 form the foreshortening portion 18. When the frame is radially collapsed or compacted, the struts 14 become more parallel with respect to the longitudinal axis of the frame, causing an outer diameter of the frame to decrease and the longitudinal length of the frame to increase in the foreshortening portion 18. As the frame moves from a compacted position to an expanded position, the longitudinal length of the frame can decrease in the foreshortening portion 18. But, the frame length does not substantially change length in the non-foreshortening portion 16.


Foreshortening of the frame 20 can be used to engage and secure the prosthesis to intralumenal tissue in a body cavity, for example tissue at or adjacent a native valve, such as a native valve annulus and/or leaflets. Opposing anchors 22, 24 can be constructed on the frame 20 so that portions of the anchors, such as tips or ends 26, 28, move closer together as the frame foreshortens. As one example, this can allow the anchors 22, 24 to grasp tissue on opposite sides of the native mitral annulus to thereby secure the prosthesis at the mitral valve.


The anchors 22, 24 and anchor tips 26, 28 can be located anywhere along the frame 20 just so long as at least one of the anchors is either connected to the foreshortening portion 18 or the foreshortening portion is positioned between the anchors so that a portion of the anchors will be move closer together with expansion of the frame. As shown, the anchors 24 are connected to the foreshortening portion 18. The foreshortening portion can also be positioned anywhere along the frame, though it is shown towards the distal end 34. In some embodiments, both of the anchor tips 26, 28 are located in the foreshortening portion 18. In some embodiments, the foreshortening portion 18 may extend the entire length of the frame, such that there is no non-foreshortening portion 16.


Preferably, each of the anchors 22, 24 is positioned or extends generally radially outwardly from the frame 20 so that the anchor tips 26, 28 are generally spaced away or radially outward from the rest of the frame 20. For example, the anchor tips may be located radially outward from the middle portion of the frame, with the tips 26 and 28 being axially spaced from one another. In some embodiments, all or part of the structure connected to the anchor tip and extending radially from the frame, including one or more rings and/or struts, can be considered part of the anchor. The anchors can include a base located on the anchor on a side opposite the tip. The base can be for example where the anchor begins to extend from or away from the frame 20.


For example, proximal anchors 22 are shown having first 36 and second 38 struts forming a chevron and connected to longitudinal struts 12 at a base of the anchor. The first and second struts of the anchor 22 are bent at the base so that the anchor 22 extends radially outwardly from the frame as it extends generally distally towards the tip 26. The first and second struts can be connected to each other at a radially outward location to form an outwardly extending loop, and in some embodiments, the first and second struts can be joined at a third strut 40 that continues to extend outwardly and/or generally distally. Here the third strut 40 is a short strut. The anchor also includes an eyelet 46. As illustrated, the eyelet is located at the distal end 26, though the eyelet can be positioned in other locations along the anchor 22. The tips 26 of the proximal anchors may extend distally and be parallel or substantially parallel with the longitudinal axis of the frame, or as illustrated in FIG. 1A, the tips 26 may extend generally distally but still radially outwardly inclined or at an acute angle relative to the longitudinal axis of the frame.


As another example, the distal anchors 24 are shown having looped ends 48. The looped ends can be larger near the tip to form a type of elongated teardrop. In addition, the tips 28 may be substantially flat. The looped end may assist the frame in not getting caught up on structures at or near the treatment location. For example, each loop can be configured so that when the frame is deployed in-situ and expands, the movement of each loop from a delivered position to a deployed position can avoids getting caught on the papillary muscles.


Each distal anchor 24 is connected to the frame at a base 42. As illustrated in FIG. 1A, the base of the distal anchor may be at a location where the corners of adjacent cells meet, such that the base is proximal to the distal end 34 of the frame. In other embodiments, the base of the distal anchor may be at a distal most corner of a cell, which corresponds to a distal most point on the frame The distal anchors as illustrated extend from the base 42 generally distally before bending back around in an arcuate segment where the distal anchor extends generally proximally and radially outwardly from the frame. As shown, the anchors 24 may also generally distally and radially inwardly with respect to the frame such that the distal most point on the prosthesis has a smaller inside diameter than where the base 42 connects to the frame. The inside diameter at the distal most can be the same or substantially the same as the inside diameter of the proximal end, or may be smaller. The anchor as illustrated is bent around about 180 degrees so that the tip 28 extends in the opposite, proximal direction, which may be parallel or substantially parallel to the longitudinal axis of the frame. For example, in FIG. 1A it can be seen that the distal anchors 24 are bent further inward such that the ends of the anchors point proximally and are generally parallel with the longitudinal axis of the frame. Alternatively, the tip 28 may extend generally proximally but still extend radially outwardly inclined or at an acute angle relative to the longitudinal axis of the frame


It will be understood that the anchors can have various other configurations, including the various embodiments that follow. In some embodiments, each of the anchors can extend radially outwardly from the frame at an anchor base and terminate at an anchor tip. The anchors can be connected to the frame at one of many different locations including apices, junctions, other parts of struts, etc. The anchors can comprise first, second, third, or more spaced apart bending stages along the length of each anchor. The anchors can also extend either distally or proximally before and/or after one or more of the bending stages. A portion of the anchor may extend with the frame before or after any bending stages.


In the illustrated embodiment of FIG. 1A-B there are twelve distal anchors and twelve proximal anchors. In some embodiments there may be 6 anchors on one side and 12 on the other. Some embodiments may include different numbers of anchors. In addition, the distal and proximal anchors may be aligned so the tips point generally towards each other, or they may be spaced so that the tips point between two tips on the opposite side, as is illustrated in FIGS. 1A-B.


The anchor tips 26 and 28 as described above advantageously provide atraumatic surfaces that may be used to grasp intralumenal tissue without causing unnecessary or undesired trauma to tissue. For example, the proximal anchors tips 26 and distal anchor tips 28 may form flat, substantially flat, curved or other non-sharp surfaces to allow the tips to engage and/or grasp tissue, without necessarily piercing or puncturing through tissue.



FIGS. 2A-3B show prostheses similar to that of FIGS. 1A-B with two different styles of distal anchors 24. In FIGS. 2A-B, the looped end 48′ of the distal anchor is generally more elliptical with a curved tip as compared to the elongated teardrop shape of looped end 48 of FIGS. 1A-B. Otherwise the shape is substantially the same.


In FIGS. 3A-B, the distal anchors 24 are looped anchors rather than having looped ends. The looped anchor has a first base 42 and a second base 44 connected to the frame, wherein the first and second bases are at opposite corners of the same cell. Alternatively, the first and second bases may be located at the distal most corners of adjacent cells. The distal anchors 24 extends generally distally from the frame at the first base 42 but then is bent back around and begins to extend outwardly from the frame in a generally proximal direction. The distal anchor 24 then repeats this configuration in reverse towards the second base 44 such that the two sides of the looped anchor are mirror images of one another. It will be understood that the looped anchor can have other configurations and that it may not be symmetrical.


As illustrated in FIG. 3A, the tips 28 of the distal anchors are circumferentially aligned with the tips 26 of the proximal anchors, though in other embodiments, the tips 28 of the distal anchors may be circumferentially staggered between the tips 26 of the proximal anchors. In the embodiment of FIG. 3A, adjacent distal anchors 26 are spaced apart by one cell, though in other embodiments, adjacent distal anchors may be provided on adjacent cells. Thus, for example, instead of having six distal anchors and twelve proximal anchors as shown in FIG. 3A, there may be a 1:1 correspondence between proximal and distal anchors.


The illustrated looped distal anchor of FIGS. 3A-B is made up of the following segments. The first segment 50 extends generally longitudinally with the frame, extending distally or generally distally (e.g., slightly radially inward) with the frame. The strut is then bent so that a second segment 52 extends generally parallel with an adjacent undulating strut 14. The strut is then bent so that a third segment 54 begins to extend generally longitudinally and distally or generally distally, and then is bent back around to point in generally the opposite direction (e.g., in a proximal direction parallel or generally parallel with the longitudinal axis of the frame). The third segment 54 ends in the rounded tip 28 and then the anchor strut repeats to form the mirror image. After the third segment 54 bends back around to point in generally the opposite direction, in the embodiment illustrated the third segment may first extend radially outward at an acute angle relative to the longitudinal axis before bending into a portion that extends parallel or substantially parallel to the longitudinal axis. The paired third segments 54 extend parallel or generally parallel with one another from the second segment to the tip, though they may also move slightly towards or away from each other in some embodiments.



FIG. 4 shows a prosthesis similar to FIGS. 3A-B that also has looped distal anchors. In this embodiment the first segment 50 extends longitudinally in a distal direction from the frame and the strut is bent back on itself to point generally in the opposite (e.g., proximal) direction. The second segment is bent inward before extending parallel or generally parallel with its mirror image on the other side forming a nose and wing configuration similar to the shape of certain bicycle seats.


The proximal anchors 22 also have an elongated third strut 40. The proximal anchor 22 is shown having first 36 and second 38 struts forming a chevron and connected to longitudinal struts 12 at a base of the anchor. The first and second struts of the anchor 22 are bent at the base so that the anchor 22 extends radially outwardly from the frame as it extends towards the tip 26. The first and second struts join at a third strut 40 that continues to extend outwardly and is then bent such that the tip points distally and extends in a manner parallel or generally parallel with the longitudinal axis of the frame. The proximal anchor may or may not include an eyelet 46 along its length. The distal tip of the proximal anchors may have an atraumatic surface, such as an enlarged circular or curved end as illustrated. When the frame is in an expanded configuration, the distal anchors 24 may have tips 28 that are positioned radially outward of the tips 26 of the proximal anchors 22. Other embodiments may have the tips 26 being positioned outward of the tips 28. Such configurations are also possible with the other frames and prostheses described elsewhere herein.



FIG. 5 illustrated an embodiment similar to the prosthesis of FIG. 4 with twelve distal anchors instead of six. Because of this change, in one embodiment two anchors share the first segment 50 where the anchor base 42, 44 is connected to the frame. As illustrated, each of the proximal and distal anchors may be circumferentially aligned with each other, and each of the distal anchors corresponds to one of the cells


Turning now to FIGS. 6A-B, prosthesis and frame embodiments are shown similar to that of FIG. 4, including various other components of the prosthesis. A prosthesis can include one or more of a valve 60, a skirt 70 and a support band 80. The prosthesis can be a replacement heart valve similar to that and including features similar to those disclosed in U.S. patent application Ser. No. 13/165,721, filed Jun. 21, 2011, published as U.S. 2011/0313515; and Ser. No. 13/244,080, filed Sep. 23, 2011, published as 2012/0078353. The entire contents of both applications are hereby incorporated by reference herein and made a part of this specification. This is inclusive of the entire disclosure and is not in any way limited to the disclosure of the replacement heart valve.


The valve 60 can be a replacement heart valve which includes a plurality of valve leaflets 62. The plurality of valve leaflets 62 can function in a manner similar to the natural mitral valve, or to other valves in the vascular system. The plurality of valve leaflets 62 can open in a first position and then engage one another to close the valve in a second position. The plurality of valve leaflets 62 can be made to function as a one way valve such that flow in one direction opens the valve and flow in a second direction opposite the first direction closes the valve. The replacement heart valve 60 can be constructed so as to open naturally with the beating of the heart. For example, the plurality of valve leaflets 62 can open during diastole and close during systole.


In some embodiments, the leaflets 62 can be coupled to a skirt 70. For example, the proximal ends of the leaflets 62 can be connected to a proximal end of the skirt 70.


The skirt 70 can be used to at least partially control how fluid flows through and/or around the valve 60. The skirt 70 can surround at least a portion of the valve and be connected to the valve leaflets 62. In some embodiments, the skirt 70 can form an inner wall connected to and positioned within the frame 20. The skirt 70 can also be made to move with the foreshortening portion 18 of the frame 20.


The skirt 70 can extend the length of the frame 20 or it can extend along only part of the length of the frame 20. In some embodiments, the ends of the heart valve 60 can coincide with ends of the skirt 70. In addition, one or more of the ends of the frame 20 can coincide with the ends of the skirt 70. In the illustrated embodiment of FIGS. 6A-B, the proximal end of the skirt 70 and heart valve 60 are sewn together. The skirt 70 can not only extend to the distal end of the frame 20 but can also extend to the outside of the frame and is shown wrapped around each of the distal anchors 24.


Other shapes and configurations can also be used for the valve 60 and skirt 70. In some embodiments, the skirt 70 may extend along the length of the leaflets 62, but is not connected to them. In the illustrated embodiments, the skirt 70 is attached to the frame 20 and the leaflets 62 are attached to the skirt 70.


The skirt 70 can be constructed in multiple different ways. The skirt 70 can be made of knit polyester or another stretchable or flexible fabric. In some embodiments, the skirt 70 is made from a material that is more flexible than the valve leaflet material. The distal and/or proximal end of the skirt 70 can be straight, curved, or have any other desired configuration. For example, the skirt 70 is shown with undulations patterned to generally correspond to the undulations at the distal end 34 of the frame 20. It can be seen that the skirt 70 wraps around the struts at the distal end. The skirt 70 can be formed of one piece or multiple pieces. For example, the skirt 70 attached to the valve 60 can be one piece and then each distal anchor can be covered by a separate piece of material of the skirt 70. It is to be understood that other configurations of the skirt 70 can also be employed. For example, the anchors may remain uncovered, or only a portion may be covered.


Turning now to FIG. 7, another embodiment of the skirt 70 is shown. Here rather than the skirt 70 corresponding to the undulations at the distal end 34 of the frame 20, the skirt extends past the frame and is then wrapped around it. Thus, the skirt 70 extends from the inside of the frame 20 to the outside of the frame. The skirt can extend completely around the frame for ¼, ⅓, ½, or more of the length of the distal anchors. The skirt can also cover the distal anchors 24. In the illustrated embodiment, the skirt is a one piece skirt, but it will be understood that the skirt can be made of multiple pieces.


The skirt 70, and particularly portions that cover the distal anchors 24, can beneficially be used to help prevent leakage of blood flow around the heart valve. In addition, the skirt can encourage tissue in-growth between the skirt and the natural tissue. This may further help to prevent leakage of blood flow around the heart valve.


The prosthesis 10 can also include a support band 80 as is shown in FIGS. 6A-7. The support band 80 may be placed or positioned around or within the frame 20 at the proximal end 32. The support band 80 can be used to reinforce and/or constrain the frame 20. The support band 80 can help to control the expansion of the frame 20 from the compacted to the expanded state. The support band 80 can also be used to reduce the amount of motion that occurs at the proximal end 32 after the prosthesis 10 has been implanted at the mitral heart valve or other location.


In some embodiments, the support band 80 may comprise a polyester fabric band. The support band 80 may comprise a no-stretch or limited stretch material. Preferably the support band 80 is not made of an elastic material or a material known to have high elasticity. In some embodiments, the support band 80 is made from a material that is less flexible than the valve skirt material and/or the valve leaflet material. The distal and proximal ends of the support band 80 can be straight, curved, undulating with the undulations of frame, or any other desired configuration.


The support band 80 can be connected to the valve frame with a plurality of stitches, loops, knots, staples, or other types of connections. In some embodiments, the frame 20 can be sandwiched between two sides or layers of the support band 80. Preferably, the support band 80 is a single layer positioned within and attached to the frame 20 with a plurality of stitches around one or more of the longitudinal and/or undulating struts. In some embodiments, the support band 80 can be attached to the proximal end of the valve skirt 40.


Looking now at FIGS. 8A-B another embodiment of a prosthesis 10 is shown. FIGS. 8A-B show a prosthesis similar to that of FIG. 4 with a different style and configuration of distal anchor 24. In FIGS. 8A-B, the distal anchors are shorter than and spaced radially inward from the distal anchors of FIG. 4. Thus, as illustrated, the distal anchors 24 are not positioned as far radially outward as the proximal anchors, and the tips 28 may be positioned radially inward of the tips 26. As described further below, such a configuration may be advantageous in positioning and securing the prosthesis in a mitral valve or other body location. As shown particularly in FIG. 8B, the distal anchors 24 may comprise loops as described above, having a curved or arcuate atraumatic tip to minimize damage to body tissue.



FIGS. 9A-B show an embodiment of a prosthesis where the distal anchors do not comprise loops, but instead comprise single struts each extending distally from the corners where adjacent cells meet. As described with respect to embodiments above, these anchors may first extend distally or generally distally, and may further extend radially inward, before bending around to extend proximally or generally proximally, such as at an acute angle relative to the longitudinal axis of the frame. The tips 28 of the anchors may comprise an atraumatic surface, such as a flattened or curved enlarged tip. As illustrated, the tips 28 may be circumferentially staggered between tips 26 of the proximal anchors 22, as best shown in FIG. 9B. FIG. 9B also shows the frame 20 having a valve 60 and skirt 70 attached as described above.


In preferred embodiments, any of the prostheses 10 described above may be deployed into a heart valve annulus, and positioned when compacted so that the anchor tips 26, 28 of the opposing anchors 22, 24 are disposed on opposite sides of the native annulus 88 as shown in FIGS. 10 and 10A. As the replacement heart valve 10 is expanded, the opposing anchors are drawn closer together so as to grasp tissue on opposite sides of the native annulus 88 and securely hold the replacement heart valve 10 in position. As such, the replacement heart valve 10 can be held securely in position without requiring a substantial radial force against the native annulus. Because the anchor tips are preferably atraumatic, the grasping or engaging of tissue by the prosthesis minimizes damage to the native tissue. The foreshortening portion 18 can be used to move the anchor tips 26, 28 closer together as the replacement heart valve 10 moves to the expanded position to thereby engage the native valve annulus. The prosthesis can be deployed into a heart valve or otherwise deployed in manners similar to those described with respect to a replacement heart valve in U.S. Publication No. 2010/0298931 and 2012/0078353 the entireties of each of which are hereby incorporated by reference and made a part of this specification. This is inclusive of the entire disclosure and is not in any way limited to the disclosure related to deployment of a replacement heart valve.



FIGS. 10 and 10A show a schematic representation of the replacement heart valve 10 installed in a human heart 84. The heart is shown in cross-section, and represents typical anatomy, including a left atrium 78 and left ventricle 86. The left atrium 78 and left ventricle 86 communicate with one another through a mitral annulus 88. Also shown schematically is a native anterior mitral leaflet 90 having chordae tendineae 92 that connect a downstream end of the anterior mitral leaflet 90 and to the left ventricle 86.


In one preferred embodiment, a method is provided of delivering a replacement valve to a native mitral valve and atraumatically securing the replacement valve relative to the native mitral valve annulus 88. The replacement valve can be mounted on a delivery device and delivered to the native mitral valve annulus while the replacement valve is in a radially compacted state. The replacement valve may be positioned so that the ends or tips of the distal anchors are on a ventricular side of the native leaflets 90 beyond a location where chordae tendineae 92 connect to free ends of the native leaflets. At least a portion of the replacement valve can be released from the delivery device to thereby expand the distal anchors radially outwardly. At this time the distal anchors may extend between at least some of the chordae. The distal anchors (along with the frame) can be moved toward the ventricular side of the native valve annulus with the distal anchors extending between at least some of the chordae tendineae to provide tension on the chordae tendineae. With tension provided on the chordae tendineae, the replacement valve can be further released from the delivery device to thereby expand the proximal anchors radially outwardly. The proximal anchors upon further release of the replacement valve from the delivery device can move into engagement with tissue on an atrial side of the native valve annulus, such as with the atrial side of the native valve annulus.


The method just described may utilize any of the prostheses herein described, but may be particularly suitable for the prosthesis of FIGS. 8A-8B where the ends of the distal anchors are not positioned as far out radially as the ends of the proximal anchors when the frame is expanded. Thus, the distal anchors may have a suitable length for extending between and providing tension on the chordae tendineae, but need not and may not in some embodiments engage tissue with the tips 28. Thus, in some embodiments the some or all of the distal anchors remain spaced from tissue on the ventricular side of the native valve annulus after delivery and expansion. The interaction between the distal anchors and the chordae tendineae may therefore be sufficient to secure the distal end of the prosthesis, while the engagement of the proximal anchors with tissue on the atrial side of the native valve annulus will help further secure and orient the prosthesis


As illustrated in FIGS. 10 and 10A, the distal anchors may comprise loops, such as any of the looped structures previously described. The distal anchors may also be covered with a resilient material such as described above for the skirt 70 that promotes tissue growth with adjacent body tissue. Such material may also be useful to prevent paravalvular leakage. The atraumatic distal anchors may advantageously prevent snagging of the prosthesis on internal structures, such as the papillary muscles.


Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.


Similarly, this method of disclosure, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A method for deploying a self-expanding replacement valve prosthesis within a native valve having a native valve annulus, the method comprising: advancing the self-expanding replacement valve prosthesis into a heart in a radially compacted state, the self-expanding replacement valve prosthesis comprising: an expandable frame comprising a first end and a second end and having a longitudinal axis extending between the first end and the second end, the expandable frame configured to radially expand and contract for deployment within the native valve, wherein when the expandable frame is in an expanded configuration, the expandable frame has a larger cross-sectional dimension in a middle portion of the expandable frame and a smaller cross-sectional dimension at the first end and the second end of the expandable frame, the middle portion being between the first end and the second end;a plurality of generally longitudinal struts extending from the first end, each of the plurality of longitudinal struts comprising a mushroom-shaped tab;a plurality of anchors having ends positioned apart from the middle portion towards the second end, each of the plurality of anchors extending from a base attached to the expandable frame generally away from the first end before extending generally towards the first end and radially outwardly from the expandable frame, wherein each of the plurality of anchors is connected to the expandable frame at the base with a single strut which splits into two struts which connect at the end of the struts to form an atraumatic end;a first fabric portion covering at least a portion of the second end; anda plurality of second fabric portions each covering at least a portion of each of the plurality of anchors;expanding the self-expanding replacement valve prosthesis to an expanded configuration; andpositioning the anchors so that at least some of the anchors are located between chordae tendineae;wherein, after the positioning, the second end is located in a ventricle of the heart, the first end is located in an atrium of the heart, and the plurality of anchors are located on a ventricular side of the native valve annulus.
  • 2. The method of claim 1, wherein the self-expanding replacement valve prosthesis provides tension on the chordae tendineae after positioning.
  • 3. The method of claim 1, further comprising releasing the self-expanding replacement valve prosthesis from a delivery system.
  • 4. The method of claim 1, wherein at least some of the plurality of anchors atraumatically contact tissue.
  • 5. The method of claim 1, wherein the expandable frame comprises a plurality of cells formed by interconnected struts.
  • 6. The method of claim 5, wherein the base of each of the plurality of anchors is at a location where corners of two adjacent cells meet.
  • 7. The method of claim 5, wherein the base of each of the plurality of anchors is at a distalmost corner of a cell of the plurality of cells.
  • 8. The method of claim 5, wherein adjacent looped ends of the plurality of anchors are spaced apart by at least one cell.
  • 9. The method of claim 1, further comprising a valve body attached to the expandable frame.
  • 10. The method of claim 1, wherein, when the self-expanding replacement valve prosthesis is expanded within the native heart valve, the middle portion engages the native valve annulus.
  • 11. The method of claim 1, wherein the expanding occurs in the native valve annulus.
  • 12. The method of claim 1, wherein a distal end of each of the plurality of anchors is covered by the plurality of second fabric portions.
  • 13. The method of claim 1, wherein the two struts form a generally triangular loop.
  • 14. The method of claim 1, wherein the atraumatic end is substantially flat.
  • 15. The method of claim 1, wherein the expandable frame is bulbous.
  • 16. The method of claim 1, wherein, after the positioning, the second end of the expandable frame curves radially inwards to form a convex curve, and each of the plurality of anchors extends in a radially inward curve to form a convex curve that generally matches the convex curve of the expandable frame.
  • 17. The method of claim 1, wherein, after the positioning, the second end of the expandable frame tapers radially inwards and each of the plurality of anchors extends in a radially inward direction that generally matches the radially inward taper of the expandable frame.
  • 18. The method of claim 1, wherein the replacement valve prosthesis is a replacement mitral valve prosthesis.
  • 19. The method of claim 1, wherein the replacement valve prosthesis is a replacement tricuspid valve prosthesis.
  • 20. The method of claim 1, wherein the replacement valve prosthesis is a replacement atrioventricular valve prosthesis.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/947,168, filed Apr. 6, 2018, entitled “PROSTHESIS FOR ATRAUMATICALLY GRASPING INTRALUMENAL TISSUE AND METHODS OF DELIVERY”, which is a continuation of U.S. patent application Ser. No. 14/197,690, filed Mar. 5, 2014, entitled “PROSTHESIS FOR ATRAUMATICALLY GRASPING INTRALUMENAL TISSUE AND METHODS OF DELIVERY”, which claims the benefit of priority to U.S. Provisional Appl. No. 61/782,707, filed Mar. 14, 2013, entitled “PROSTHESIS FOR ATRAUMATICALLY GRASPING INTRALUMENAL TISSUE AND METHODS OF DELIVERY”. The entire contents of the above application(s) is/are hereby incorporated by reference and made a part of this specification. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (524)
Number Name Date Kind
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3739402 Cooley et al. Jun 1973 A
4056854 Boretos et al. Nov 1977 A
4079468 Liotta et al. Mar 1978 A
4204283 Bellhouse et al. May 1980 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4339831 Johnson Jul 1982 A
4340977 Brownlee et al. Jul 1982 A
4470157 Love Sep 1984 A
4477930 Totten et al. Oct 1984 A
4490859 Black et al. Jan 1985 A
4553545 Maass et al. Nov 1985 A
4777951 Cribier et al. Oct 1988 A
4865600 Carpentier et al. Sep 1989 A
4994077 Dobben Feb 1991 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5370685 Stevens Dec 1994 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5697382 Love et al. Dec 1997 A
5840081 Andersen et al. Nov 1998 A
5855601 Bessler et al. Jan 1999 A
5957949 Leonhardt et al. Sep 1999 A
6086612 Jansen Jul 2000 A
6113631 Jansen Sep 2000 A
6168614 Andersen et al. Jan 2001 B1
6251093 Valley et al. Jun 2001 B1
6312465 Griffin et al. Nov 2001 B1
6358277 Duran Mar 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6458153 Bailey et al. Oct 2002 B1
6482228 Norred Nov 2002 B1
6527800 McGuckin, Jr. et al. Mar 2003 B1
6582462 Andersen et al. Jun 2003 B1
6610088 Gabbay Aug 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6652578 Bailey et al. Nov 2003 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6695878 McGuckin, Jr. et al. Feb 2004 B2
6712836 Berg et al. Mar 2004 B1
6716207 Farnholtz Apr 2004 B2
6729356 Baker et al. May 2004 B1
6730118 Spenser et al. May 2004 B2
6746422 Noriega et al. Jun 2004 B1
6749560 Konstorum et al. Jun 2004 B1
6767362 Schreck Jul 2004 B2
6780200 Jansen Aug 2004 B2
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6875231 Anduiza et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
7018406 Seguin et al. Mar 2006 B2
7186265 Sharkawy et al. Mar 2007 B2
7192440 Andreas et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7276078 Spenser et al. Oct 2007 B2
7329278 Seguin et al. Feb 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7553324 Andreas et al. Jun 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7628805 Spenser et al. Dec 2009 B2
7748389 Salahieh et al. Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7803185 Gabbay Sep 2010 B2
7806919 Bloom et al. Oct 2010 B2
7815673 Bloom et al. Oct 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7892281 Seguin et al. Feb 2011 B2
7914569 Nguyen et al. Mar 2011 B2
7947075 Goetz et al. May 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7981151 Rowe Jul 2011 B2
7993392 Righini et al. Aug 2011 B2
8016877 Seguin et al. Sep 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8070800 Lock et al. Dec 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8075615 Eberhardt et al. Dec 2011 B2
8080054 Rowe Dec 2011 B2
8092520 Quadri Jan 2012 B2
8109996 Stacchino et al. Feb 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8136218 Millwee et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8157852 Bloom et al. Apr 2012 B2
8182528 Salahieh et al. May 2012 B2
8182530 Huber May 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8219229 Cao et al. Jul 2012 B2
8220121 Hendriksen et al. Jul 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8246675 Zegdi Aug 2012 B2
8246678 Salahieh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8353953 Giannetti et al. Jan 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414644 Quadri et al. Apr 2013 B2
8414645 Dwork et al. Apr 2013 B2
8444689 Zhang May 2013 B2
8449599 Chau et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8460368 Taylor et al. Jun 2013 B2
8470023 Eidenschink et al. Jun 2013 B2
8475521 Suri et al. Jul 2013 B2
8475523 Duffy Jul 2013 B2
8479380 Malewicz et al. Jul 2013 B2
8486137 Suri et al. Jul 2013 B2
8491650 Wiemeyer et al. Jul 2013 B2
8500733 Watson Aug 2013 B2
8500798 Rowe et al. Aug 2013 B2
8511244 Holecek et al. Aug 2013 B2
8512401 Murray, III et al. Aug 2013 B2
8518096 Nelson Aug 2013 B2
8518106 Duffy et al. Aug 2013 B2
8562663 Mearns et al. Oct 2013 B2
8579963 Tabor Nov 2013 B2
8579964 Lane Nov 2013 B2
8579965 Bonhoeffer et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8591570 Revuelta et al. Nov 2013 B2
8597348 Rowe et al. Dec 2013 B2
8617236 Paul et al. Dec 2013 B2
8640521 Righini et al. Feb 2014 B2
8647381 Essinger et al. Feb 2014 B2
8652145 Maimon et al. Feb 2014 B2
8652201 Oberti et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri Feb 2014 B2
8668733 Haug et al. Mar 2014 B2
8673000 Tabor et al. Mar 2014 B2
8679174 Ottma et al. Mar 2014 B2
8679404 Liburd et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8721708 Seguin et al. May 2014 B2
8721714 Kelley May 2014 B2
8728154 Alkhatib May 2014 B2
8728155 Montorfano et al. May 2014 B2
8740974 Lambrecht et al. Jun 2014 B2
8740976 Tran et al. Jun 2014 B2
8747458 Tuval et al. Jun 2014 B2
8747459 Nguyen et al. Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8758432 Solem Jun 2014 B2
8764818 Gregg Jul 2014 B2
8771344 Tran et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8771346 Tuval et al. Jul 2014 B2
8778020 Gregg et al. Jul 2014 B2
8784337 Voeller et al. Jul 2014 B2
8784478 Tuval et al. Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790387 Nguyen et al. Jul 2014 B2
8795356 Quadri Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8801776 House et al. Aug 2014 B2
8808356 Braido et al. Aug 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8828079 Thielen et al. Sep 2014 B2
8834564 Tuval et al. Sep 2014 B2
8845718 Tuval et al. Sep 2014 B2
8858620 Salahieh et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870950 Hacohen Oct 2014 B2
8876893 Dwork et al. Nov 2014 B2
8876894 Tuval et al. Nov 2014 B2
8876895 Tuval et al. Nov 2014 B2
8911455 Quadri et al. Dec 2014 B2
8926693 Duffy et al. Jan 2015 B2
8926694 Costello Jan 2015 B2
8939960 Rosenman et al. Jan 2015 B2
8945209 Bonyuet et al. Feb 2015 B2
8951299 Paul et al. Feb 2015 B2
8956404 Bortlein Feb 2015 B2
8961593 Bonhoeffer et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8974524 Yeung et al. Mar 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986371 Quill et al. Mar 2015 B2
8986372 Murry, III et al. Mar 2015 B2
8986375 Garde et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
8998979 Seguin et al. Apr 2015 B2
8998980 Shipley et al. Apr 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011521 Haug et al. Apr 2015 B2
9011523 Seguin Apr 2015 B2
9011524 Eberhardt Apr 2015 B2
9028545 Taylor May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9055937 Rowe et al. Jun 2015 B2
9066801 Kovalsky et al. Jun 2015 B2
9078749 Lutter et al. Jul 2015 B2
9078751 Naor Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9125738 Figulla et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9161834 Taylor et al. Oct 2015 B2
9173737 Hill et al. Nov 2015 B2
9180004 Alkhatib Nov 2015 B2
9186249 Rolando et al. Nov 2015 B2
9220594 Braido et al. Dec 2015 B2
9241790 Lane et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9277990 Klima et al. Mar 2016 B2
9277993 Gamarra et al. Mar 2016 B2
9289291 Gorman, III et al. Mar 2016 B2
9289296 Braido et al. Mar 2016 B2
9295551 Straubinger et al. Mar 2016 B2
9308087 Lane et al. Apr 2016 B2
9326815 Watson May 2016 B2
9331328 Eberhardt et al. May 2016 B2
9339382 Tabor et al. May 2016 B2
9351831 Braido et al. May 2016 B2
9351832 Braido et al. May 2016 B2
9364321 Alkhatib et al. Jun 2016 B2
9445897 Bishop et al. Sep 2016 B2
9456877 Weitzner et al. Oct 2016 B2
9480560 Quadri et al. Nov 2016 B2
9615921 Alkhatib et al. Apr 2017 B2
9681951 Ratz Jun 2017 B2
9681968 Goetz et al. Jun 2017 B2
9687343 Bortlein et al. Jun 2017 B2
9700329 Metzger et al. Jul 2017 B2
9700411 Klima et al. Jul 2017 B2
9730791 Ratz Aug 2017 B2
9795479 Lim et al. Oct 2017 B2
9833313 Board et al. Dec 2017 B2
9861473 Lafontaine Jan 2018 B2
9861476 Salahieh et al. Jan 2018 B2
9861477 Backus et al. Jan 2018 B2
9867698 Kovalsky et al. Jan 2018 B2
9877830 Lim et al. Jan 2018 B2
9889029 Li et al. Feb 2018 B2
9895225 Rolando et al. Feb 2018 B2
9925045 Creaven et al. Mar 2018 B2
10010414 Cooper Jul 2018 B2
10070954 Braido Sep 2018 B2
10098736 Carmi Oct 2018 B2
10117744 Ratz Nov 2018 B2
10179042 Braido Jan 2019 B2
10321992 Quill et al. Jun 2019 B2
10350062 Peterson Jul 2019 B2
10376361 Gross Aug 2019 B2
10470876 Gurovich Nov 2019 B2
10485660 Quadri Nov 2019 B2
10575948 Iamberger Mar 2020 B2
10583000 Ratz Mar 2020 B2
10583002 Lane Mar 2020 B2
10888421 Hariton Jan 2021 B2
11051934 Cooper Jul 2021 B2
11109964 Hacohen Sep 2021 B2
20010007956 Letac et al. Jul 2001 A1
20020016623 Kula et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020045929 Diaz Apr 2002 A1
20020052644 Shaolian et al. May 2002 A1
20030105517 White et al. Jun 2003 A1
20030120333 Ouriel et al. Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030176914 Rabkin et al. Sep 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030220683 Minasian et al. Nov 2003 A1
20040117009 Cali et al. Jun 2004 A1
20040133273 Cox Jul 2004 A1
20040167605 Elliott Aug 2004 A1
20040186561 McGuckin et al. Sep 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215325 Penn et al. Oct 2004 A1
20040225353 McGuckin et al. Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20050033398 Seguin Feb 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090887 Pryor Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050107872 Mensah et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050159811 Lane Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060020327 Lashinski et al. Jan 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060095115 Bladillah et al. May 2006 A1
20060173537 Yang et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060212110 Osborne et al. Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060293745 Carpentier et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070050021 Johnson Mar 2007 A1
20070100432 Case et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070255394 Ryan Nov 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080082164 Friedman Apr 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080097581 Shanley Apr 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080147183 Styrc Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080228254 Ryan Sep 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090138079 Tuval et al. May 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090182413 Burkart et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090270972 Lane Oct 2009 A1
20090276027 Glynn Nov 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281618 Hill et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090292350 Eberhardt et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20100049313 Alon Feb 2010 A1
20100114305 Kang et al. May 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100249911 Alkhatib Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100256723 Murray Oct 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100305685 Millwee et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110029067 McGuckin, Jr. et al. Feb 2011 A1
20110137397 Chau Jun 2011 A1
20110160836 Behan Jun 2011 A1
20110208297 Tuval et al. Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110224785 Hacohen Sep 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110313515 Quadri Dec 2011 A1
20120022639 Hacohen et al. Jan 2012 A1
20120022640 Gross Jan 2012 A1
20120041550 Salahieh et al. Feb 2012 A1
20120059454 Millwee et al. Mar 2012 A1
20120078353 Quadri et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120191174 Vinluan Jul 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120271398 Essinger et al. Oct 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20120310328 Olson et al. Dec 2012 A1
20130006294 Kashkarov et al. Jan 2013 A1
20130035759 Gross et al. Feb 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130131788 Quadri et al. May 2013 A1
20130144378 Quadri Jun 2013 A1
20130211508 Lane et al. Aug 2013 A1
20130253635 Straubinger et al. Sep 2013 A1
20130253642 Brecker Sep 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20130338766 Hastings et al. Dec 2013 A1
20130345786 Behan Dec 2013 A1
20140018912 Delaloye et al. Jan 2014 A1
20140025163 Padala et al. Jan 2014 A1
20140039611 Lane et al. Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052242 Revuelta et al. Feb 2014 A1
20140100651 Kheradvar et al. Apr 2014 A1
20140100653 Savage et al. Apr 2014 A1
20140142694 Tabor et al. May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172077 Bruchman et al. Jun 2014 A1
20140172083 Bruchman et al. Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140214153 Ottma et al. Jul 2014 A1
20140214154 Nguyen et al. Jul 2014 A1
20140214155 Kelley Jul 2014 A1
20140214160 Naor Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140222139 Nguyen et al. Aug 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140230515 Tuval et al. Aug 2014 A1
20140236288 Lambrecht et al. Aug 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140277390 Ratz Sep 2014 A1
20140277402 Essinger et al. Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140277427 Ratz et al. Sep 2014 A1
20140296973 Bergheim et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140309728 Dehdashtian et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140330368 Gloss et al. Nov 2014 A1
20140330371 Gloss et al. Nov 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140336754 Gurskis et al. Nov 2014 A1
20140343669 Lane et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350663 Braido et al. Nov 2014 A1
20140350666 Righini Nov 2014 A1
20140350668 Delaloye et al. Nov 2014 A1
20140350669 Gillespie et al. Nov 2014 A1
20140358223 Rafiee et al. Dec 2014 A1
20140364939 Deshmukh et al. Dec 2014 A1
20140364943 Conklin Dec 2014 A1
20140371842 Marquez et al. Dec 2014 A1
20140371844 Dale et al. Dec 2014 A1
20140371845 Tuval et al. Dec 2014 A1
20140371847 Madrid et al. Dec 2014 A1
20140371848 Murray, III et al. Dec 2014 A1
20140379067 Nguyen et al. Dec 2014 A1
20140379068 Thielen et al. Dec 2014 A1
20140379077 Tuval et al. Dec 2014 A1
20150005863 Para Jan 2015 A1
20150012085 Salahieh et al. Jan 2015 A1
20150018938 Von Segesser et al. Jan 2015 A1
20150018944 O'Connell et al. Jan 2015 A1
20150039083 Rafiee Feb 2015 A1
20150045880 Hacohen Feb 2015 A1
20150127093 Hosmer May 2015 A1
20150142103 Vidlund May 2015 A1
20150148731 McNamara et al. May 2015 A1
20150157457 Hacohen Jun 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150209141 Braido et al. Jul 2015 A1
20150272737 Dale et al. Oct 2015 A1
20150297346 Duffy et al. Oct 2015 A1
20150327994 Morriss et al. Nov 2015 A1
20150328001 McLean et al. Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20160000591 Lei et al. Jan 2016 A1
20160030169 Shahriari Feb 2016 A1
20160030170 Alkhatib et al. Feb 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160038281 Delaloye et al. Feb 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106537 Christianson et al. Apr 2016 A1
20160113765 Ganesan et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160143732 Glimsdale May 2016 A1
20160158010 Lim et al. Jun 2016 A1
20160166383 Lim et al. Jun 2016 A1
20160184097 Lim et al. Jun 2016 A1
20160199206 Lim et al. Jul 2016 A1
20160213473 Hacohen et al. Jul 2016 A1
20160235529 Ma et al. Aug 2016 A1
20160279386 Dale et al. Sep 2016 A1
20160310267 Zeng et al. Oct 2016 A1
20160331529 Marchand et al. Nov 2016 A1
20170056166 Ratz Mar 2017 A1
20170056169 Johnson Mar 2017 A1
20170128199 Gurovich May 2017 A1
20170128209 Morriss et al. May 2017 A1
20170216023 Lane et al. Aug 2017 A1
20170216575 Asleson et al. Aug 2017 A1
20170258614 Griffin Sep 2017 A1
20170325954 Perszyk Nov 2017 A1
20170348096 Anderson Dec 2017 A1
20170367823 Hariton et al. Dec 2017 A1
20180021129 Peterson Jan 2018 A1
20180055636 Valencia et al. Mar 2018 A1
20180085218 Eidenschink Mar 2018 A1
20180110534 Gavala et al. Apr 2018 A1
20190083254 Hariton Mar 2019 A1
20190083263 Hariton et al. Mar 2019 A1
20190167423 Hariton Jun 2019 A1
20190262129 Cooper et al. Aug 2019 A1
20200146814 Fung May 2020 A1
20200179109 Reimer Jun 2020 A1
20210177592 Lally Jun 2021 A1
20210212825 Pham Jul 2021 A1
Foreign Referenced Citations (103)
Number Date Country
2304325 Oct 2000 CA
2827556 Jul 2012 CA
102006052564 Dec 2007 DE
1171059 Jan 2002 EP
1255510 Nov 2002 EP
1259194 Nov 2002 EP
1281375 Feb 2003 EP
1369098 Dec 2003 EP
1472996 Nov 2004 EP
1734903 Dec 2006 EP
1827558 Sep 2007 EP
1239901 Oct 2007 EP
2124826 Dec 2009 EP
1935377 Mar 2010 EP
2237746 Oct 2010 EP
2238947 Oct 2010 EP
2285317 Feb 2011 EP
2308425 Apr 2011 EP
2319458 May 2011 EP
2398543 Dec 2011 EP
2496182 Sep 2012 EP
2566416 Mar 2013 EP
2745805 Jun 2014 EP
2749254 Jul 2014 EP
2750630 Jul 2014 EP
2777617 Sep 2014 EP
2815723 Dec 2014 EP
2815725 Dec 2014 EP
2898858 Jul 2015 EP
2967858 Jan 2016 EP
2926766 Feb 2016 EP
2985006 Feb 2016 EP
2168536 Apr 2016 EP
2262451 May 2017 EP
3184083 Jun 2017 EP
2446915 Jan 2018 EP
3057541 Jan 2018 EP
3037064 Mar 2018 EP
3046511 Mar 2018 EP
3142603 Mar 2018 EP
3294220 Mar 2018 EP
1264471 Feb 1972 GB
1315844 May 1973 GB
2398245 Aug 2004 GB
2002540889 Dec 2002 JP
2008541865 Nov 2008 JP
9749355 Dec 1997 WO
0061034 Oct 2000 WO
03092554 Nov 2003 WO
2004030569 Apr 2004 WO
2005011534 Feb 2005 WO
2006070372 Jul 2006 WO
2006085225 Aug 2006 WO
2006089236 Aug 2006 WO
2006127765 Nov 2006 WO
2007025028 Mar 2007 WO
2007058857 May 2007 WO
2007123658 Nov 2007 WO
2008013915 Jan 2008 WO
2008070797 Jun 2008 WO
2008103722 Aug 2008 WO
2008125153 Oct 2008 WO
2008150529 Dec 2008 WO
2009026563 Feb 2009 WO
2009033469 Mar 2009 WO
2009045331 Apr 2009 WO
2009053497 Apr 2009 WO
2009091509 Jul 2009 WO
2009094500 Jul 2009 WO
2009134701 Nov 2009 WO
2010005524 Jan 2010 WO
2010008549 Jan 2010 WO
2010022138 Feb 2010 WO
2010037141 Apr 2010 WO
2010040009 Apr 2010 WO
2010057262 May 2010 WO
2011025945 Mar 2011 WO
2011057087 May 2011 WO
2011111047 Sep 2011 WO
2011137531 Nov 2011 WO
2012177942 Dec 2012 WO
2013028387 Feb 2013 WO
2013075215 May 2013 WO
2013120181 Aug 2013 WO
2013175468 Nov 2013 WO
2013192305 Dec 2013 WO
2014018432 Jan 2014 WO
2014099655 Jun 2014 WO
2014110019 Jul 2014 WO
2014110171 Jul 2014 WO
2014121042 Aug 2014 WO
2014139545 Sep 2014 WO
2014145338 Sep 2014 WO
2014149865 Sep 2014 WO
2014163706 Oct 2014 WO
2014164364 Oct 2014 WO
2014194178 Dec 2014 WO
2014204807 Dec 2014 WO
2014205064 Dec 2014 WO
2014210124 Dec 2014 WO
2015077274 May 2015 WO
2015148241 Oct 2015 WO
2016016899 Feb 2016 WO
Non-Patent Literature Citations (52)
Entry
Backer, Ole De, MD, et al., “Percutaneous Transcatheter Mitral Valve Replacement—An Overview of Devices in Preclinical and Early Clinical Evaluation,” Contemporary Reviews in Interventional Cardiology, Circ Cardiovasc Interv. 2014;7:400-409, Applicant believes this may have been available as early as Jun. 2014.
Banai, Shmeul et al., The Journal of the American College of Cardiology, “Transapical Mitral Implantation of the Tiara Bioprosthesis Pre-Clinical Results,” Feb. 2014, <http://interventions.onlinejacc.org/article.aspx?articleid=1831234>.
Bavaria, Joseph E. M.D. et al.: “Transcatheter Mitral Valve Implantation: The Future Gold Standard for MR?,” Applicant requests the Examiner to consider this reference to be prior art as of Dec. 2010.
Bavaria, Joseph E. M.D.: “CardiAQ Valve Technologies: Transcatheter Mitral Valve Implantation,” Sep. 21, 2009.
Berreklouw, Eric, PhD, et al., “Sutureless Mitral Valve Replacement With Bioprostheses and Nitinol Attachment Rings: Feasibility In Acute Pig Experiments,” The Journal of Thoracic and Cardiovascular Surgery, vol. 142, No. 2, Aug. 2011 in 7 pages, Applicant believes this may have been available online as early as Feb. 7, 2011.
BioSpace, “CardiAQ Valve Technologies (CVT) Reports Cardiovascular Medicine Milestone: First-In-Humannonsurgical Percutaneous Implantation of a Bioprosthetic Mitral Heart Valve,” Jun. 14, 2012, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports/263900.
BioSpace, “CardiAQ Valve Technologies (CVT) Reports First-In-Human Percutaneous Transfemoral, Transseptal Implantation With Its Second Generation Transcatheter Bioprosthetic Mitral Heart Valve,” Jun. 23, 2015, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports-first-in/382370.
Boudjemline, Younes, et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves,” JACC, vol. 16, No. 2, Jul. 19, 2005:360-5.
“CardiAQTM Valve Technologies reports Successful First-in-Human Trans-Apical implantation of its Second Generation Transcatheter Mitral Valve,” CardiAQ Valve Technologies Press Release, May 20, 2014.
CardiAQ Valve Technologies, “Innovations in Heart Valve Therapy,” In3 San Francisco, Jun. 18, 2008, PowerPoint presentation in 19 slides.
Chiam, Paul T.L., et al., “Percutaneous Transcatheter Aortic Valve Implantation: Assessing Results, Judging Outcomes, and Planning Trials,” JACC: Cardiovascular Interventions, The American College of Cardiology Foundation, vol. 1, No. 4, Aug. 2008:341-50.
“Company Overview,” at TVT on Jun. 25, 2009.
Condado, Jose Antonio, et al., “Percutaneous Treatment of Heart Valves,” Rev Esp Cardio. 2006;59(12):1225-31, Applicant believes this may have been available as early as Dec. 2006.
Engager System, Precise Valve Positioning, Transcatheter Aortic Valve Implantation System, Transcatheter Aortic Valve Replacement—TAVR I Medtronic Engager, http://www.medtronic-engager.com/home/transcatheter-aortic-valve-repl., 2014 Medtronic, Inc. in 2 pages. Applicant believes this may have been available online as early as Aug. 25, 2013.
Fornell, Dave, “Transcatheter Mitral Valve replacement Devices in Development,” Diagnostic and Interventional Cardiology, Dec. 30, 2014, p. 3, <http://www.dicardiology.com/article/transcatheter-milral-valve-replacement-devices-development>.
Fanning, Jonathon P., et al., “Transcatheter Aortic Valve Implantation (TAVI): Valve Design And Evolution,” International Journal of Cardiology 168 (2013) 1822-1831, Applicant believes this may have been available as early as Oct. 3, 2013.
Feldman, Ted, MD. “Prospects for Percutaneous Valve Therapies,” Circulation 2007; 116:2866-2877. Applicant believes that this may be available as early as Dec. 11, 2007.
Fitzgerald, Peter J. M.D., “Tomorrow's Technology: Percutaneous Mitral Valve Replacement, Chordal Shortening, and Beyond,” Transcatheter Valve Therapies (TVT) Conference. Seattle, WA. Applicant believes this may have been available as early as Jun. 7, 2010.
Grube, E. et al., “Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome.” J Am Coll Cardiol. Jul. 3, 2007;50(1):69-76. Epub Jun. 6, 2007.
Horvath et al.: “Transapical Aortic Valve Replacement under Real-time Magnetic Resonance Imaging Guidance: Experimental Results with Balloon-Expandable and Self-Expanding Stents,” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038190/. Jun. 2011.
Karimi, Houshang, et al., “Percutaneous Valve Therapies,” SIS 2007 Yearbook, Chapter 11, pp. 1-11.
Kronemyer, Bob, “CardiAQ Valve Technologies: Percutaneous Mitral Valve Replacement,” Start Up—Windhover Review of Emerging Medical Ventures, vol. 14, Issue No. 6, Jun. 2009, pp. 48-49.
Leon, Martin B., et al., “Transcatheter Aortic Valve Replacement in Patients with Critical Aortic Stenosis: Rationale, Device Descriptions, Early Clinical Experiences, and Perspectives,” Semin. Thorac. Cardiovasc. Surg. 18:165-174, 2006 in 10 pages, Applicant believes this may have been available as early as the Summer of 2006.
Lutter, Georg, et al., “Off-Pump Transapical Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 36 (2009) 124-128, Applicant believes this may have been available as early as Apr. 25, 2009.
Ma, Liang, et al., “'Double-Crowned Valved Stents For Off-Pump Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 28 (2005) 194-199, Applicant believes this may have been available as early as Aug. 2005.
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: A Short-term Experience in Swine Model,” Applicant believes this may have been presented on May 2011 at TVT.
Mack, Michael M.D., “Advantages and Limitations of Surgical Mitral Valve Replacement; Lessons for the Transcatheter Approach,” Applicant believes this may have been available as early as Jun. 7, 2010. Applicant believes this may have been presented at the Texas Cardiovascular Innovative Ventures (TCIV) Conference in Dallas, TX on Dec. 8, 2010.
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: On-Going Experience in Swine Model,” Applicant believes this may have been presented on Nov. 2011 at TCT.
Masson, Jean-Bernard, et al., “Percutaneous Treatment of Mitral Regurgitation,” Circulation: Cardiovascular Interventions, 2:140-146, Applicant believes this may have been available as early as Apr. 14, 2009.
Neovasc corporate presentation, Oct. 2009, available at http://www.neovasc.com/investors/documents/Neovasc-Corporate-Presentation-October-2009.pdf.
NJ350: Vote for Your Favorite New Jersey Innovations, Jun. 27, 2014, http://www.kilmerhouse.com/2014/06/nj350-vote-for-your-favorite-new-jersey-innovations/.
Ostrovsky, Gene, “Transcatheter Mitral Valve Implantation Technology from CardiAQ,” medGadget, Jan. 15, 2010, available at: http://www.medgadget.com/2010/01/transcatheter_mitral_valve_implantation_technology_from_cardiaq.html.
Piazza, Nicoló, MD, et al., “Anatomy of the Aortic Valvar Complex and Its Implications for Transcatheter Implantation of the Aortic Valve,” Contemporary Reviews in Interventional Cardiology, Circ. Cardiovasc. Intervent., 2008;1:74-81, Applicant believes this may have been available as early as Aug. 2008.
Pluth, James R., M.D., et al., “Aortic and Mitral Valve Replacement with Cloth-Covered Braunwald-Cutter Prosthesis A Three-Year Follow-up,” The Annals Of Thoracic Surgery, vol. 20, No. 3, Sep. 1975, pp. 239-248.
Preston-Maher, Georgia L., et al., “A Technical Review of Minimally Invasive Mitral Valve Replacements,” Cardiovascular Engineering and Technology, vol. 6, No. 2, Jun. 2015, pp. 174-184. Applicant believes this may have been available as early as Nov. 25, 2014.
Quadri, Arshad M.D., “Transcatheter Mitral Valve Implantation (TMVI) (An Acute In Vivo Study),” Applicant believes this may have been presented on Sep. 22, 2010 at TCT.
Ratz, J. Brent et al., “Any experiences making an expandable stent frame?” Arch-Pub.com, Architecture Forums Modeling, Multiple forum postings from Feb. 3, 2009 to Feb. 4, 2009, http://www.arch-pub.com.
Ratz, J. Brent, “In3 Company Overview,” Jun. 24, 2009.
Ratz, J. Brent, “LSI EMT Spotlight,” May 15, 2009.
Ruiz, Carlos E., “Overview of Novel Transcatheter Valve Technologies,” Applicant believes this may have been presented on May 27, 2010 at EuroPCR.
Seidel, Wolfgang, et al., “A Mitral Valve Prosthesis and a Study of Thrombosis on Heart Valves in Dogs,” JSR—vol. II, No. 3—May 1962, submitted for publication Oct. 9, 1961.
Sondergaard, Lars, “CardiAQ TMVR FIH—Generation 2,” Applicants believe this may have been presented in 2014 at the TVT symposium.
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have Seen presented at EuroPCR 2013.
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have Seen presented at TCT 2013.
Spillner, J. et al., “New Sutureless ‘Atrial-Mitral-Valve Prosthesis’ For Minimally Invasive Mitral Valve Therapy,” Textile Research Journal, 2010, in 7 pages, Applicant believes this may have been available as early as Aug. 9, 2010.
Taramasso et al.: “New devices for TAVI: technologies and initial clinical experiences” http://www.nature.com/nrcardio/journal/v11/n3/full/nrcardio.2013.221.html?message-global=remove#access. Jan. 21, 2014.
Treede et al.: “Transapical transcatheter aortic valve implantation using the JenaValve™ system: acute and 30-day results of the multicentre CE-mark study.” http://ejcts.oxfordjournals.org/content/41/6/e131.long. Apr. 16, 2012.
“Update,” Applicant believes this may have been presented on Jun. 6, 2010 at TVT.
Van Mieghem, et al., “Anatomy of the Mitral Valvular Complez and Its Implications for Transcatheter Interventions for Mitral Regurgitation,” J. Am. Coll. Cardiol., 56:617-626 (Aug. 17, 2010).
Vu, Duc-Thang, et al., “Novel Sutureless Mitral Valve Implantation Method Involving A Bayonet Insertion And Release Mechanism: A Proof Of Concept Study In Pigs,” The Journal of Thoracic and Cardiovascular Surgery, vol. 143, No, 4, 985-988, Apr. 2012, Applicant believes this may have been available online as early as Feb. 13, 2012.
Wayback Machine, Cleveland Clinic Lerner Research Institute, Transcatheter Mitral Stent/Valve Prosthetic, https://web.archive.org/web/20130831094624/http://mds.clevelandclinic.org/Portfolio.aspx?n=331, indicated as archived on Aug. 31, 2013.
Webb, John G., et al., “Transcatheter Aortic Valve Implantation: The Evolution Of Prostheses, Delivery Systems And Approaches,” Archives of Cardiovascular Disease (2012) 105,153-159. Applicant believes this may have been available as early as Mar. 16, 2012.
Related Publications (1)
Number Date Country
20200170788 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
61782707 Mar 2013 US
Continuations (2)
Number Date Country
Parent 15947168 Apr 2018 US
Child 16783868 US
Parent 14197690 Mar 2014 US
Child 15947168 US