Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery

Information

  • Patent Grant
  • 9730791
  • Patent Number
    9,730,791
  • Date Filed
    Wednesday, March 5, 2014
    10 years ago
  • Date Issued
    Tuesday, August 15, 2017
    7 years ago
Abstract
A prosthesis can comprise an expandable frame, a plurality of distal anchors and a plurality of proximal anchors. The anchors can extend outwardly from the frame. The frame can be configured to radially expand and contract for deployment within a body cavity. The frame and anchors can have one of many different shapes and configurations. For example, when the frame is in an expanded configuration, the proximal anchors can extend a significant distance away from the exterior of the frame, such as a length equal to or greater than about one half the diameter of the frame. As another example, the anchors can have looped ends.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


Certain embodiments disclosed herein relate generally to prostheses for implantation within a lumen or body cavity. In particular, certain embodiments relate to expandable prostheses such as replacement heart valves, such as for the mitral valve, that are configured to atraumatically grasp intralumenal tissue.


Description of the Related Art


Human heart valves, which include the aortic, pulmonary, mitral and tricuspid valves, function essentially as one-way valves operating in synchronization with the pumping heart. The valves allow blood to flow downstream, but block blood from flowing upstream. Diseased heart valves exhibit impairments such as narrowing of the valve or regurgitation, which inhibit the valves' ability to control blood flow. Such impairments reduce the heart's blood-pumping efficiency and can be a debilitating and life threatening condition. For example, valve insufficiency can lead to conditions such as heart hypertrophy and dilation of the ventricle. Thus, extensive efforts have been made to develop methods and apparatuses to repair or replace impaired heart valves.


Prostheses exist to correct problems associated with impaired heart valves. For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves that can be delivered with less trauma to the patient than through open heart surgery. Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.


Development of prostheses including but not limited to replacement heart valves that can be compacted for delivery and then controllably expanded for controlled placement has proven to be particularly challenging. An additional challenge relates to the ability of such prostheses to be secured relative to intralumenal tissue, e.g., tissue within any body lumen or cavity, in an atraumatic manner. These replacement valves are often intended to at least partially block blood flow. However, a problem occurs when blood flows around the valve on the outside of the prosthesis. For example, in the context of replacement heart valves, paravalvular leakage has proven particularly challenging.


SUMMARY OF THE INVENTION

Embodiments of the present disclosure are directed to a prosthesis, such as but not limited to a replacement heart valve. In some embodiments a prosthesis can comprise an expandable frame, a plurality of distal anchors and a plurality of proximal anchors. The anchors can extend outwardly from the frame. The frame can be configured to radially expand and contract for deployment within the body cavity. When the frame is in an expanded configuration, the proximal anchors can extend a significant distance away from the exterior of the frame, such as a length of about one-half or more the diameter of the frame. In some embodiments, at least some of the anchors comprise a loop that forms an atraumatic end of a corresponding anchor. In some embodiments, an outer skirt may be positioned annularly around an exterior of the expandable frame and be connected to some of the anchors to create an axial barrier to fluid flow exterior to the frame when deployed within the body cavity.


Further embodiments are directed to methods of delivering a prosthesis, e.g. a replacement heart valve, methods of securing a prosthesis to intralumenal tissue, and methods of using a prosthesis to create a barrier to fluid flow exterior to the prosthesis (e.g., to prevent paravalvular leakage).


In some embodiments, a prosthesis can be configured to grasp intralumenal tissue when deployed within a body cavity. The prosthesis can comprise an expandable frame, a plurality of proximal anchors connected to the frame, and a plurality of distal anchors connected to the frame. The expandable frame can comprise a proximal end and a distal end and a longitudinal axis extending therethrough, the frame configured to collapse radially for delivery and to expand radially upon deployment. The plurality of proximal anchors can be expandable to a configuration wherein a portion of each of the proximal anchors extends generally distally and an end of each of the proximal anchors is positioned radially outward from the frame. The plurality of distal anchors can be expandable to a configuration wherein a portion of each of the distal anchors extends generally proximally and an end of each of the distal anchors is positioned radially outward from the frame. Expansion of the frame from a first at least partially collapsed size to a second expanded size can cause the ends of the proximal anchors and the ends of the distal anchors to draw closer together. At least some of the plurality of proximal anchors can be configured to expand to a radial distance from a central longitudinal axis of the frame that is about 150% or more of a radius of the frame when the frame is in an expanded configuration.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the invention. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments.



FIG. 1 is a side view of a frame for a prosthesis.



FIG. 2 is an embodiment of a prosthesis configured as a replacement heart valve.



FIG. 3 is an embodiment of a prosthesis configured as a replacement heart valve.



FIG. 4 is an embodiment of a prosthesis configured as a replacement heart valve.



FIG. 5 is a schematic representation of a prosthesis positioned within the heart.



FIG. 6 is a detail schematic representation of the prosthesis positioned within the heart of FIG. 5.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present specification and drawings provide aspects and features of the disclosure in the context of several embodiments of prostheses, replacement heart valves, delivery devices and methods that are configured for use in the vasculature of a patient, such as for replacement of natural heart valves in a patient. These embodiments may be discussed in connection with replacing specific valves such as the patient's aortic or mitral valve. However, it is to be understood that the features and concepts discussed herein can be applied to products other than heart valve implants. For example, the controlled positioning, deployment, and securing features described herein can be applied to medical implants, for example other types of expandable prostheses, for use elsewhere in the body, such as within a vein, or the like. In addition, particular features of a valve, delivery device, etc. should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate.


With initial reference to FIG. 1, an embodiment of a prosthesis 10 is shown. The illustrated prosthesis 10 includes a frame 20 that may be self-expanding or balloon expandable. The frame 20 can include a proximal end 32, a distal end 34 and proximal 22 and distal 24 anchors. The anchors can allow the frame to engage a native valve annulus or other tissue to be implanted at a target location. The prosthesis 10 can include one or more of a valve 60, an outer skirt 30, and a valve skirt 70 as will be described in more detail below. The valve 60 can be designed to replace a damaged or diseased native heart valve such as a mitral valve; though it will be understood that a replacement valve is not required as part of the prosthesis.


The prosthesis can be a replacement heart valve similar to that and including features similar to those disclosed in U.S. Provisional Appl. No. 61/782,707, filed Mar. 14, 2013 and 61/789,783 filed Mar. 15, 2013, U.S. Pat. No. 8,403,983 and U.S. Publication Nos. 2010/0298931, 2011/0313515 and 2012/0078353 the entireties of each of which are hereby incorporated by reference and made a part of this specification. This is inclusive of the entire disclosure and is not in any way limited to the disclosure of the replacement heart valve.


The frame 20 can be made of many different materials, but is preferably made from metal. In some embodiments, the frame 20 can be made from a shape memory material, such as nitinol. A wire frame or a metal tube can be used to make the frame. The wire frame of a metal tube can be cut or etched to remove all but the desired metal skeleton. In some embodiments a metal tube is laser cut in a repeating pattern to form the frame. The flat pattern can be cut from a metal tube and then the tube can be bent and expanded to the shape shown in FIG. 1. The frame 20 can further be expanded and/or compressed and/or otherwise worked to have the desired shape or shapes, such as for introduction and implantation.


As shown, the frame when in an expanded configuration, such as in a fully expanded configuration, has a cylindrical or slightly cylindrical shape, where a middle portion is substantially similar in shape and size as the proximal 32 and distal 34 ends. The frame can be a substantially cylindrical shape with the same or substantially the constant cross-sectional dimension or diameter from the proximal end to the distal end. The cylindrical shape of the frame, in combination with the anchors described below, can advantageously allow the frame to float within a native valve while the anchors engage a native valve annulus or other body cavity and spacing the inlet and outlet of the frame away from the heart or vessel wall. This can help reduce undesired contact between the prosthesis and the heart or vessel, such as the ventricular wall of the heart. The prosthesis 10 and frame 20 may be similar to the replacement heart valves and associated frames disclosed in U.S. Provisional Appl. No. 61/782,707, filed Mar. 14, 2013 and 61/789,783 filed Mar. 15, 2013, U.S. Pat. No. 8,403,983 and U.S. Publication Nos. 2010/0298931 and 2011/0313515 the entireties of each of which are hereby incorporated by reference and made a part of this specification. This is inclusive of the entire disclosure and is not in any way limited to the disclosure of the replacement heart valves and associated frames.


A number of struts collectively make up the frame 20. FIG. 1 illustrates the frame in an expanded configuration with a number of longitudinal struts 12 and undulating struts 14, with cells 16, 18 defined by the open spaces between the struts. The longitudinal struts may be arranged so that they are parallel or generally or substantially parallel to a longitudinal axis of the frame. The longitudinal axis of the frame may be defined as the central axis that extends through the center of the frame between the proximal 32 and distal 34 ends. Any number of configurations of struts can be used, such as the rings of undulating struts shown forming chevrons and diamonds, but also ovals, curves, and various other shapes. The illustrated embodiment includes two rows of diamond-shaped cells 16 at the top or adjacent the proximal end and then a row of sideways diamond-shaped cells 18 at the bottom or near the distal end. These sideways diamond-shapes are made of two longitudinal struts 12 that are offset from one another, or one is higher than the other, and then an undulating strut 14 connects the longitudinal struts 12 at the top and bottom of the cell. The sideways diamond-shapes alternate between sides as to which side is higher and which is lower. So a first sideways diamond-shaped cell 18A has a low left side and a high right side, and a second sideways diamond-shaped 18B had a high left side and a low right side, where the high right side of cell 18A shares the same longitudinal strut 12 as the high left side of cell 18B.


Some of the struts can include one or more eyelet 46. As illustrated, a plurality of eyelets, here five, are located along one of the longitudinal struts 12 as part of the sideways diamond-shaped cells. One or more eyelets can be positioned in other locations along the frame and/or anchors. The eyelets 46 may be used to attach features such as the valve 60, outer skirt 30, and/or valve skirt 70 to the frame 20.


The frame 20 as illustrated is foreshortening. The foreshortening can be defined by the frame 20 and the positioning of various types of struts along the frame 20. When the frame is radially collapsed or compacted, the struts 14 become more parallel with respect to the longitudinal axis of the frame, causing cells 16 and 18 to collapse, causing an outer diameter of the frame to decrease and the longitudinal length of the frame to increase. As the frame moves from a compacted position to an expanded position, the cells 16 and 18 widen sideways and the longitudinal length of the frame can decrease. It will be appreciated while in some embodiments the entire length of the frame 20 is foreshortening, in other embodiments such as embodiments of the prostheses described in the patents and applications incorporated by reference herein, only a portion of the frame is foreshortening.


Foreshortening of the frame 20 can be used to engage and secure the prosthesis to intralumenal tissue in a body cavity, for example tissue at or adjacent a native valve, such as a native valve annulus and/or leaflets. Opposing anchors 22, 24 can be constructed on the frame 20 so that portions of the anchors, such as tips or ends 26, 28, move closer together as the frame foreshortens. As one example, this can allow the anchors 22, 24 to grasp tissue on opposite sides of the native mitral annulus to thereby secure the prosthesis at the mitral valve.


The anchors 22, 24 and anchor tips 26, 28 can be located anywhere along the frame 20 just so long as at least one of the anchors is either connected to a foreshortening portion or a foreshortening portion is positioned between the anchors so that a portion of the anchors will be move closer together with expansion of the frame. As shown in FIG. 1, the foreshortening portion extends the entire or substantially the entire length of the frame.


Preferably, each of the anchors 22, 24 is positioned or extends generally radially outwardly from the frame 20 so that the anchor tips 26, 28 are generally spaced away or radially outward from the rest of the frame 20. For example, the anchor tips may be located radially outward from the middle portion of the frame, with the tips 26 and 28 being axially spaced from one another. In some embodiments, all or part of the structure connected to the anchor tip and extending radially from the frame, including one or more rings and/or struts, can be considered part of the anchor. The anchors can include a base located on the anchor on a side opposite the tip. The base can be for example where the anchor begins to extend from or away from the frame 20.


For example, the distal anchors 24 are shown having looped anchors. Each looped anchor has a first base 42 and a second base 44 connected to the frame, wherein the first and second bases are at the distal-most corners of adjacent cells. Alternatively, the first and second bases may be located at adjacent corners of the same cell, or at opposite corners of the same cell if for example the cells adjacent the distal end of the frame have the same configuration as the cells shown in FIG. 1 at the proximal end of the frame. The distal anchors 24 extend generally distally away from the frame and are bent near the base 42 to extend radially outward away from the frame along a first segment 50. Then the anchor is bent to point proximally or generally proximally along a second segment 52 ending in the tip 28. The tips 28 of the distal anchors may be curved or arcuate atraumatic tips. The ends of the distal anchors can extend proximally and be parallel or substantially parallel with the longitudinal axis of the frame, or they may extend generally proximally but still radially outwardly inclined or at an acute angle relative to the longitudinal axis of the frame. The distal anchor 24 then repeats this configuration in reverse towards the second base 44 such that the two sides of the looped anchor are mirror images of one another.


In addition, as illustrated in FIG. 1, adjacent distal anchors share one strut so that each distal anchor is directly adjacent another distal anchor. In other embodiments, distal anchors can be spaced apart, for example with at least a cell 18 or two cells 18 located between the distal anchors. It will be understood that the distal anchors can have other configurations such as described in the applications included in the appendix and that the distal anchors may not be symmetrical.


The proximal anchors 22 are shown having looped anchors of a similar shape and configuration as the distal anchors 24. It can be seen that each proximal anchor extends from or near the proximal end of the frame at bases 54 and 56 located on adjacent proximal-most corners of cells 16. In the embodiment illustrated in FIG. 1, the proximal anchors are longer than the distal anchors, and as such, the proximal anchors may extend further away from the frame. As shown the anchors extend proximally at the bases 54, 56 and are then bent to segment 58 which extends radially outwardly away from the frame in a generally distal direction. Then the proximal anchor is bent to point distally or generally distally along a second segment 60 ending in the tip 26. The tips 26 of the proximal anchors may be curved or arcuate atraumatic tips. The ends of the proximal anchors can extend distally and be parallel or substantially parallel with the longitudinal axis of the frame, or they may extend generally distally but still radially outwardly inclined or at an acute angle relative to the longitudinal axis of the frame. Another embodiment, described below with respect to FIG. 6, has the ends of the proximal anchors becoming perpendicular to the longitudinal axis of the frame.


In addition, adjacent proximal anchors can share the same base where the anchors are bent outward from the frame, or may be considered to extend from the same corner on cell 16. In other embodiments, proximal anchors can be spaced apart so that there is at least a ½ cell or one cell located between the proximal anchors. It will be understood that the proximal anchors can have other configurations such as described in the applications included in the appendix and that the proximal anchors may not be symmetrical. As illustrated in FIG. 1, between the bases 54 and 56 of each proximal anchor, there may also be located a longitudinally extending strut 80 extending proximally, e.g. from the proximal-most corner of a cell 16 in the second row of cells from the proximal end. These struts 80 may terminate at their proximal ends in an enlarged portion such as a tab 8 that may facilitate holding or retaining the proximal end of the frame, such as in a delivery system as described below.


In some embodiments, in an expanded state such as shown in FIG. 1, at least some of the proximal anchors can extend to a radial distance from an exterior surface of the frame that is ½ (or about ½) or more of the expanded diameter of the frame. In some embodiments, all of the proximal anchors extend at least to this radial distance. In even further embodiments, all of the proximal and distal anchors extend at least to this radial distance. In other embodiments, the radial distance of one or more of the ends of the anchors from a central longitudinal axis passing through the middle of the frame may be 150% (or about 150%) or more, 180% (or about 180%) or more, 200% (or about 200%) or more, 220% (or about 220%) or more, or 250% (or about 250%) or more of the radius of the frame when the frame and the anchors are in expanded configurations. For example, if the radius of the frame is 16 mm and a proximal anchor end is spaced 9 mm from the exterior of the frame, that proximal anchor extends 25 mm from the central longitudinal axis of the frame, and is 156.25% of the radius of the frame.


In some embodiments the diameter of the frame 20 may be in the range of 20-40 mm (or about 20 to about 40 mm), more preferably 25-35 mm (or about 25 to about 35 mm) when expanded. The outermost tip diameter may be greater than the frame diameter as described above and may be in the range of 40-60 mm (or about 40 to about 60 mm), and in some embodiments may be about 50 mm when the frame diameter is about 30 mm. In some embodiments the length of the prosthesis, from proximal to distal end, when compressed, is between 20-40 mm (or about 20 to about 40 mm), more preferably 25 to 30 mm (or about 25 to about 30 mm), for example about 29 mm. When expanded, the prosthesis may have a length between 15 to 20 mm (or about 15 to 20 mm), more preferably 17 to 18 mm (or about 17 to about 18 mm).


The distal anchors 24 can be positioned to be not as far radially outward as the proximal anchors, and the tips 28 may be positioned radially inward of the tips 26. As described further below, such a configuration may be advantageous in positioning and securing the prosthesis in a mitral valve or other body location. In some embodiments, as illustrated in FIG. 1, the ends or tips 26 of the proximal anchors 22 are positioned further radially outward from the frame 20 than the ends of tips 28 distal anchors 24 when the frame and the anchors are in an expanded configuration, e.g., when they are fully expanded. In other embodiments, the distal anchors and proximal anchors can be positioned at the same radial outward dimension, or the distal anchors may even be positioned further outward than the proximal anchors. In further embodiments, some of the proximal anchors (or distal anchors) may extend to a first radial distance, and others of the proximal anchors (or distal anchors) may extend to a second radial distance, where the first radial distance is greater than the second radial distance. The distal anchors in FIG. 1 are shown to be circumferentially staggered with respect to the proximal anchors, meaning that the tips 26 of the proximal anchors are not aligned, and are circumferentially in between the tips 28 of the distal anchors. In other embodiments, the tips 26 and 28 may be circumferentially aligned.


It will be understood that the anchors can have various other configurations. In some embodiments, each of the anchors can extend radially outwardly from the frame at an anchor base and terminate at an anchor tip. The anchors can be connected to the frame at one of many different locations including apices, junctions, other parts of struts, etc. The anchors can comprise first, second, third, or more spaced apart bending stages along the length of each anchor. The anchors can also extend either distally or proximally before and/or after one or more of the bending stages. A portion of the anchor may extend with the frame before or after any bending stages. As shown, the anchors 22, 24 may comprise loops as described above, having a curved or arcuate atraumatic tip to minimize damage to body tissue. Further details that may be incorporated and/or interchanged with the features described herein are disclosed in U.S. Provisional Appl. No. 61/782,707, filed Mar. 14, 2013 and 61/789,783 filed Mar. 15, 2013, U.S. Pat. No. 8,403,983 and U.S. Publication Nos. 2010/0298931, 2011/0313515 and 2012/0078353, incorporated by reference herein.


In one embodiment the prosthesis has nine distal anchors and nine proximal anchors. Any number of proximal and distal anchors may be used. In other embodiments, instead of a 1:1 correspondence between anchors, other ratios, such as a 9:6 or a 9:3 correspondence between the anchors, are possible.


With respect to the number of cells and rows of cells, when there are nine proximal anchors and nine distal anchors, there may be two rows of nine cells 16 each. The cells in the second row can share struts 14 from the first row. A third row at the distal end can have a different cell configuration with sideways diamonds as illustrated in FIG. 1, and can for example have eighteen cells 18, with each cell 18 sharing a strut from a cell in the second row. In other embodiments, the third row can include cells similar in shape to cells 16 in the first and second rows. In another embodiment, a frame may have one or more rows of diamond-shaped cells, where the number of cells per row is 12 or some other number.


The anchor tips 26 and 28 as described above advantageously provide atraumatic surfaces that may be used to grasp intralumenal tissue without causing unnecessary or undesired trauma to tissue. For example, the proximal anchors tips 26 and distal anchor tips 28 may form flat, substantially flat, curved or other non-sharp surfaces to allow the tips to engage and/or grasp tissue, without necessarily piercing or puncturing through tissue. A looped end or looped anchor may assist the frame in not getting caught up on structures at or near the treatment location. For example, each loop can be configured so that when the frame is deployed in-situ and the anchors expand away from the frame, the movement of each loop from a delivered position to a deployed position avoids getting caught on the papillary muscles.


The prosthesis 10 may include a valve 60 as can be seen in schematically in FIG. 6. The valve 60 can be a replacement heart valve which includes a plurality of valve leaflets. The plurality of valve leaflets can function in a manner similar to the natural mitral valve, or to other valves in the vascular system. The plurality of valve leaflets can open in a first position and then engage one another to close the valve in a second position. The plurality of valve leaflets can be made to function as a one way valve such that flow in one direction opens the valve and flow in a second direction opposite the first direction closes the valve. The replacement heart valve 60 can be constructed so as to open naturally with the beating of the heart. For example, the plurality of valve leaflets can open during diastole and close during systole.


In some embodiments, the leaflets can be coupled to a valve skirt 70. For example, FIG. 2 shows a seam 62 where the proximal ends of the leaflets can be connected to the valve skirt 70.


The valve skirt 70 can be used to at least partially control how fluid flows through and/or around the valve 60. The valve skirt 70 can surround at least a portion of the valve and be connected to the valve leaflets. In some embodiments, the valve skirt 70 can form an inner wall connected to and positioned within the frame 20. For example the skirt 70 can connect to the frame at the eyelets 46, such as by stitching. The skirt may also be attached directing to the struts, typically also by stitching. The valve skirt 70 can also be made to move with the foreshortening portion of the frame 20.


The valve skirt 70 can extend the length of the frame 20 or it can extend along only part of the length of the frame 20. In some embodiments, the ends of the heart valve 60 can coincide with ends of the valve skirt 70. In addition, one or more of the ends of the frame 20 can coincide with the ends of the valve skirt 70. In the illustrated embodiment of FIG. 2, the proximal end of the valve skirt 70 is positioned proximally from the proximal end of the heart valve 60 as indicated by the seam 62. The valve skirt 70 can not only extend to the distal end of the frame 20 but can also extend to the outside of the frame and is shown attached to and extending to the tip 28 of each distal anchor 24. As shown, the skirt 70 is sewn to each distal anchor.


Other shapes and configurations can also be used for the valve 60 and valve skirt 70. In some embodiments, the valve skirt 70 may extend along the length of the leaflets, but is not connected to them. In the illustrated embodiments, the valve skirt 70 is attached to the frame 20 and the leaflets are attached to the valve skirt 70, such as at the seam 62 in FIG. 2.


The valve skirt 70 can be constructed in multiple different ways. The valve skirt 70 can be made a layer of resilient material, such as knit polyester or another stretchable or flexible fabric. In some embodiments, the valve skirt 70 is made from a material that is more flexible than the valve leaflet material. The distal and/or proximal end of the skirt 70 can be straight, curved, or have any other desired configuration. For example, the valve skirt 70 is shown with a straight proximal end at the proximal end 32 of the frame. In other embodiments the skirt distal end can be patterned to generally correspond to the undulations at one end of the frame 20. The valve skirt 70 can be formed of one piece or multiple pieces. For example, the valve skirt 70 attached to the valve 60 can be one piece and then each distal anchor can be covered by a separate piece of material of the valve skirt 70. It is to be understood that other configurations of the valve skirt 70 can also be employed. For example, the anchors may remain uncovered, or only a portion may be covered.


In another embodiment of the valve skirt 70, the end can extend past the frame and can be wrapped around it. Thus, the valve skirt 70 can extend from the inside of the frame 20 to the outside of the frame. The skirt can extend completely around the frame for ¼, ⅓, ½, or more of the length of the distal anchors. Such an embodiment is shown and described with respect to FIGS. 7A-7B of Provisional Appl. No. 61/782,707. The skirt 70 can also cover the distal anchors 24 as is shown in FIGS. 7A and 7B of Provisional Appl. No. 61/782,707 and in FIG. 2 herein. The skirt can be a one piece skirt, but it will be understood that the skirt can be made of multiple pieces.


The valve skirt 70, and particularly portions that cover the distal anchors 24, can beneficially be used to help prevent leakage of blood flow around the heart valve. In addition, the skirt can encourage tissue in-growth between the skirt and the natural tissue. This may further help to prevent leakage of blood flow around the heart valve.


Continuing to look to FIG. 2, an outer skirt or apron 30 is shown that may also form part of the prosthesis 10. FIG. 2 shows the outer skirt 30 attached to the frame 20 at the tips 26 of the proximal anchors. The outer skirt 30 can have a portion shaped to correspond generally with the shape of an outer portion of the frame 20. For example, a first portion 64 of the outer skirt 30 can have a cylindrical or generally cylindrical shape with an inner diameter that substantially corresponds in size to, or may be larger or slightly larger than, an outer diameter of the frame 20. The outer skirt 30 can have a second portion 66 with an annular shape that extends away from the first portion 64 to an outer border with a diameter larger than the diameter of the first portion. As illustrated in FIG. 2, the second portion 66 is shown flaring outward from the first portion 64 and extending generally perpendicularly from the first portion 64. Thus, the illustrated second portion forms an annular ring comprising a proximal edge and a distal edge, wherein a diameter of the proximal edge is larger than a diameter of the distal edge.


The outer skirt 30 can attach to the frame, and more preferably attach to the anchors, in one of many different ways. The outer skirt 30 can be sewn to the frame and/or valve skirt. The outer skirt 30 can also be wrapped around a portion of the frame and then sewn to itself. In the embodiment illustrated in FIG. 2, the second portion 66 is attached to the proximal anchors 22. For example, a plurality of circumferentially spaced tabs 68 extending radially outward from the proximal edge of the second portion 66 can be used to attach the outer skirt 30 to the proximal anchors. The tabs 68 can be wrapped around the tip 26 (e.g., through the loop) of a proximal anchor and connected to the second portion. The tabs 68 themselves may also form sleeves that are configured to surround at least a portion of the proximal anchors. In some embodiments, the proximal anchors 22 can include eyelets that may be used to secure the skirt to the anchor. The tab 68 can be attached to the eyelet 46, for example by stitching.


In one embodiment, the outer skirt 30 is only attached to the frame via the proximal anchors, and the first portion 64 remains unattached to any portion of the frame or any anchors. In another embodiment, the outer skirt is both attached to the proximal anchors and to the middle portion of the frame. As illustrated in FIG. 2, the second portion 66 attached to the anchors extends inwardly from the proximal anchors 22. The first portion 64 then extends distally from the second portion 66 and terminates in a distal edge, which may be free or which may attach to the middle portion of the frame 20 or the skirt 70. In other embodiments, the first portion 64 may also be attached to portions of the frame and/or the distal anchors. In some embodiments, the distal edge of the skirt 30 may be spaced radially outward from the frame when the frame is in an expanded configuration. In addition, the distal edge of the skirt 30 may extend to the distal end of the frame, or it may be spaced proximally therefrom as illustrated in FIG. 2.


In some embodiments, the outer skirt 30 can attach to the frame at a distal end of the skirt, or at some other location and then curve up and out towards the proximal anchors. Thus, the outer skirt may not have a distinct first portion and second portion. In still other embodiments, the outer skirt may extend along a substantial portion of the frame. Additional examples of outer skirt features that may be incorporated and/or interchanged with the features described herein are found in U.S. Provisional Application No. 61/789,783 filed Mar. 15, 2013 incorporated by reference herein.



FIGS. 3 and 4 show additional embodiments of the outer skirt 30′, 30″. In FIG. 3, the outer skirt 30′ extends along a substantial part of the frame and extends between proximal and distal anchors. The outer skirt 30′ in this embodiment may be one single piece, or may be formed from multiple pieces stitched or otherwise connected together. The tabs 68′ may form sleeves that are configured to surround at least a portion of the proximal anchors to attach the outer skirt to the proximal anchors. As shown in one embodiment, proximal portions of the proximal anchors remain uncovered by the outer skirt 30′. The outer skirt 30′ at the proximal anchors can form an annular ring similar to the second portion 66 of FIG. 2 and can form a substantially cylindrical portion similar to the first portion 64 of FIG. 2. The distal end of the outer skirt 30′ can attach and/or cover the distal anchors 24. In some embodiments, the distal end of the outer skirt 30′ extends to the distal anchors 24 but does not cover or connect to them. In addition, a valve skirt 70 may also be used which may create some overlap of skirts in some embodiments.


In FIG. 4 the outer skirt 30″ is shown attached to the distal ends of the proximal anchors 22 with tabs 68″. The outer skirt 30″ then extends proximally to essentially the base of the proximal anchor. From that point, the outer skirt extends distally towards the distal end. Again the outer skirt may or may not attach to the distal anchors. In the illustrated embodiment of FIG. 4, the outer skirt 30″ wraps around each of the distal anchors.


Turning now to FIG. 6, a detail view of an embodiments is shown where the proximal anchors 22 can include eyelets 46 that may be used to secure the skirt to the anchor. In this embodiment, the proximal anchor has an end 26 that instead of extending generally distally, it extends generally radially outwardly, and as illustrated extends in a direction perpendicular or substantially perpendicular to the longitudinal axis of the frame. The tab 68 can be attached to the eyelet 46, for example by stitching. As shown, the eyelet 46 is positioned at the end of the anchor, but it will be understood that it can be spaced proximally from the end. In some embodiments, the proximal anchors can be looped anchors or have a looped end. A small tab can be passed through the looped anchor or looped end and connected to the skirt to form a loop on the skirt. Further, the outer skirt 30 may attach directly to the eyelets 46 without the need for tabs 68.


In some embodiments, the outer skirt 30 can be part of, or connected to, the valve skirt 70, such as being connected to the valve skirt 70 at or near the distal end 34 of the frame.


The outer skirt 30 can be constructed in multiple different ways and may be made of similar material to the valve skirt 70. The outer skirt 30 can be made of a layer of resilient material, such as knit polyester or another stretchable or flexible fabric. In some embodiments, the outer skirt 30 is made from a material that is more flexible than the valve leaflet material. The distal and/or proximal end of the outer skirt 30 can be straight, curved, or have any other desired configuration. The outer skirt 30 can be formed of one piece or multiple pieces. For example, the outer skirt 30 attached to the frame 20 can be one piece and then each proximal anchor 22 can be covered by a separate piece of material of the outer skirt 30. It is to be understood that other configurations of the outer skirt 30 can also be employed. For example, the anchors may remain uncovered, or only a portion may be covered.


The outer skirt 30 can beneficially prevent axial flow of fluid around an exterior of the prosthesis. For example, with the outer skirt 30 be positioned annularly around an exterior of the expandable frame and secured to at least some of the plurality of proximal anchors, the outer skirt creates an axial barrier to fluid flow exterior to the frame when deployed within a body cavity. In addition, the skirt can encourage tissue in-growth between the skirt and the natural tissue. This may further help to prevent leakage of blood flow around the heart valve.


In one embodiment, the outer skirt 30 can be used to help prevent leakage of blood flow around a heart valve, such as a mitral valve, when the prosthesis is placed in a native heart valve. For example, the outer skirt 30 can engage an atrial side of the mitral valve. The proximal anchors can also engage the mitral valve forcing the outer skirt 30 into close contact with the valve to block flow from passing through the mitral valve from outside of the frame.


In preferred embodiments, the prostheses 10 in the form of a replacement heart such as described above may be deployed into a heart valve annulus. The prosthesis 10 may be delivered into the mitral valve in a radially compacted or collapsed configuration and positioned when compacted so that the anchor tips 26, 28 of the opposing anchors 22, 24 are disposed on opposite sides of the native annulus 98 as shown in FIGS. 5 and 6. In FIG. 5, the valve 60 and skirts are not shown for ease of illustration. As the replacement heart valve 10 is expanded, the opposing anchors expand outward away from the frame are may be drawn closer together due to foreshortening of the frame. The anchors may grasp tissue on opposite sides of the native annulus 98 and securely hold the replacement heart valve 10 in position. As such, the replacement heart valve 10 can be held securely in position without requiring a substantial radial force against the native annulus. Because the anchor tips are preferably atraumatic, the grasping or engaging of tissue by the prosthesis minimizes damage to the native tissue. The prosthesis can be deployed into a heart valve or otherwise deployed in manners similar to those described with respect to a replacement heart valve in U.S. Publication Nos. 2010/0298931 and 2012/0078353 the entireties of each of which are hereby incorporated by reference and made a part of this specification.



FIGS. 5 and 6 show a schematic representation of the replacement heart valve 10 installed in a human heart 84. The heart is shown in cross-section, and represents typical anatomy, including a left atrium 78 and left ventricle 86. The left atrium 78 and left ventricle 86 communicate with one another through a mitral annulus 98. Also shown schematically is a native anterior mitral leaflet 90 having chordae tendineae 92 that connect a downstream end of the anterior mitral leaflet 90 and to the left ventricle 86. FIG. 6 shows an enlarged view of a slightly different prosthesis implanted at the native mitral annulus.


In one preferred embodiment, a method is provided of delivering a replacement valve to a native mitral valve and atraumatically securing the replacement valve relative to the native mitral valve annulus 98. The replacement valve can be mounted on a delivery device and delivered to the native mitral valve annulus while the replacement valve is in a radially compacted state. The replacement valve may be positioned so that the ends or tips of the distal anchors are on a ventricular side of the native leaflets 90 beyond a location where chordae tendineae 92 connect to free ends of the native leaflets. At least a portion of the replacement valve can be released from the delivery device to thereby expand the distal anchors radially outwardly. At this time the distal anchors may extend between at least some of the chordae. The distal anchors (along with the frame) can be moved toward the ventricular side of the native valve annulus with the distal anchors extending between at least some of the chordae tendineae to provide tension on the chordae tendineae. With tension provided on the chordae tendineae, the replacement valve can be further released from the delivery device to thereby expand the proximal anchors radially outwardly. The proximal anchors upon further release of the replacement valve from the delivery device can move into engagement with tissue on an atrial side of the native valve annulus, such as with the atrial side of the native valve annulus.


The method just described may utilize any of the prostheses herein described, including those described in the patent and applications incorporated by reference. The illustrated prosthesis where the ends of the distal anchors are not positioned as far out radially as the ends of the proximal anchors when the frame is expanded can beneficially be used in this method. Thus, the distal anchors may have a suitable length for extending between and providing tension on the chordae tendineae, but need not and may in some embodiments not engage tissue with the tips 28, such as shown in FIG. 6. Thus, in some embodiments some or all of the distal anchors remain spaced from tissue on the ventricular side of the native valve annulus after delivery and expansion. The interaction between the distal anchors and the chordae tendineae may therefore be sufficient to secure the distal end of the prosthesis, while the engagement of the proximal anchors with tissue on the atrial side of the native valve annulus will help further secure and orient the prosthesis


As illustrated in FIGS. 5 and 6, the distal anchors may comprise loops, such as any of the looped structures previously described. The proximal and/or distal anchors may also be covered with a resilient material such as described above for the outer skirt 30 and valve skirt 70 that promotes tissue growth with adjacent body tissue. Such material may also be useful to prevent paravalvular leakage. The atraumatic distal anchors may advantageously prevent snagging of the prosthesis on internal structures, such as the papillary muscles.


When the prosthesis is in an expanded configuration within the native mitral heart valve, the engagement of the proximal anchors 22 with tissue on the atrial side of the native mitral valve causes at least a portion of the outer skirt 30 to also engage the tissue on the atrial side of the native mitral valve. A portion of the outer skirt extends distally from the proximal anchors toward the ventricle. Because the diameter of the outer skirt decreases to a size of close or the same in dimension as the frame, the outer skirt form a barrier to blood flow around the outside or external to the frame. The outer skirt 30 can be forced against the outside of the frame 20 by the native leaflets. Where the native leaflets do not force the outer skirt 30 against the frame, or where the contact is not as strong, the outer skirt 30 is still present to block, or impede blood flow. It will be understood that having multiple contact points between the native valve and the outer skirt can allow the outer skirt to securely cover areas where there are fewer contacts between the two. As described above, the outer skirt may also promote tissue growth with tissue that it contacts.


In addition, due to the preferred outer dimension of the anchors relative to the diameter or radius of the frame in some embodiments, when the frame is radially expanded such that the proximal and/or distal anchors engage tissue at or around the native mitral valve annulus, the frame may move reciprocally in an axial direction relative to the native mitral valve annulus in a constrained floating manner. The one or more of the anchors 22, 24 can be made to flex to provide this reciprocal movement; for example, around the bends between the segments 50, 56 and the base of the anchors. The frame does not exert a significant amount of radial force to the native mitral valve annulus or adjacent tissues, and the frame is primarily secured with the anchors. When in use, the frame may then move relative to the anchor ends as the heart is beating.


The embodiments described in FIGS. 1-6 above may have further advantages. As illustrated in FIG. 1, some embodiments have only 3 rows of cells or less, which makes the prosthesis longitudinally shorter and therefore easier to navigate when collapsed through tortuous pathways (e.g., percutaneously). Because of the dimensions of the anchors relative to the size of the frame, the frame itself may be made relatively smaller, which also helps facilitate a lower profile for the prosthesis helpful for delivery and implantation. Moreover, having a prosthesis that can “float” within a native annulus may be usable for a wider variety of patient anatomies, as one or a fewer number of radial sizes of the frames can be used to fit a greater number of patients. In such embodiments, because the anchors are configured to extend further from the frame, these prostheses are still able to securely grasp native tissue as the anchors can expand to different diameters depending on how they are constrained with a body cavity. In the context of a replacement heart valve, the frame (and the associated valve body) may have the same size across multiple patient sizes, and the anchors can either be configured to expand to different diameters, or different anchor arrangements may be used for different frames.


Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.


Similarly, this method of disclosure, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A prosthesis configured to grasp intralumenal tissue when deployed within a body cavity, the prosthesis comprising: an expandable frame portion comprising a proximal end and a distal end and a longitudinal axis extending therethrough, the expandable frame portion comprising a plurality of foreshortening cells configured to collapse radially for delivery and to expand radially upon deployment, the expandable frame portion being configured to longitudinally foreshorten upon radial expansion;a plurality of proximal anchors extending from the expandable frame portion and expandable from a collapsed configuration to an expanded configuration, wherein in the expanded configuration, each proximal anchor extends proximally away from the proximal end of the expandable frame portion and then turns to extend radially outwardly from the expandable frame portion;a plurality of distal anchors extending from the expandable frame portion and expandable from a collapsed configuration to an expanded configuration, wherein in the expanded configuration, each distal anchor extends distally away from the distal end of the expandable frame portion and then turns to extend proximally, each distal anchor extending to an end positioned radially outward from the expandable frame portion; anda skirt comprising: a distal portion extending along an exterior of the expandable frame portion and the distal anchors; anda proximal portion sized to extend along at least a portion of the plurality of proximal anchors, wherein an end of the proximal portion is positioned further radially outward from the longitudinal axis than the ends of the distal anchors wherein the entirety of the proximal portion of the skirt is spaced distally from the proximal end of the expandable frame portion;wherein the proximal anchors and distal anchors are separated by the plurality of foreshortening cells such that the proximal anchors and distal anchors are configured to be drawn closer together along the longitudinal axis when the expandable frame portion foreshortens; andwherein each distal anchor extends distally from the expandable frame portion along a first segment, the first segment being substantially parallel with the longitudinal axis.
  • 2. The prosthesis of claim 1, wherein at least some of the proximal anchors and/or distal anchors comprise looped ends.
  • 3. The prosthesis of claim 1, wherein all of the plurality of proximal anchors and the plurality of distal anchors comprise looped ends.
  • 4. The prosthesis of claim 2, wherein at least some of the anchors comprising looped ends are connected to the expandable frame portion at a first base and a second base spaced apart from each other.
  • 5. The prosthesis of claim 2, wherein at least some of the anchors comprising looped ends are connected to the expandable frame portion by a single strut.
  • 6. The prosthesis of claim 1, wherein the expandable frame portion, the plurality of proximal anchors and the plurality of distal anchors are formed from a single piece of material.
  • 7. The prosthesis of claim 1, wherein the ends of at least some of the proximal anchors and/or distal anchors are substantially parallel with the longitudinal axis when the expandable frame portion is at least partially expanded and the proximal and distal anchors are in their expanded configurations.
  • 8. The prosthesis of claim 1, wherein the ends of at least some of the proximal anchors are substantially perpendicular with the longitudinal axis when the expandable frame portion is at least partially expanded and the proximal anchors are in their expanded configurations.
  • 9. A replacement mitral valve comprising the prosthesis of claim 1, wherein when the expandable frame portion is in an expanded configuration, the expandable frame portion is positionable within a native mitral valve annulus such that: the distal anchors are positionable within the ventricle and have portions that extend generally proximally toward a ventricular side of the native mitral valve annulus.
  • 10. The replacement mitral valve of claim 9, wherein the distal anchors are positionable within the ventricle and extend proximally to ends spaced distally from the native mitral valve annulus.
  • 11. The replacement mitral valve of claim 9, wherein the distal anchors are positionable within the ventricle and extend proximally to ends that engage the native mitral valve annulus.
  • 12. The replacement mitral valve of claim 9, wherein the proximal anchors atraumatically engage tissue on an atrial side of the native mitral valve annulus.
  • 13. The prosthesis of claim 1, wherein each proximal anchor turns to extends distally after extending proximally from the proximal end of the expandable frame portion.
  • 14. The prosthesis of claim 1, wherein each proximal anchor comprises a cell which extends proximally away from the proximal end of the expandable frame portion and then turns to extend radially outwardly from the expandable frame portion.
  • 15. The prosthesis of claim 1, wherein in the expanded configuration, each of the plurality of distal anchors is bent to extend radially outwardly away from the first segment along a second segment and is then bent to extend proximally along a third segment.
  • 16. The prosthesis of claim 1, wherein adjacent proximal anchors extend from a same corner of a foreshortening cell.
  • 17. The prosthesis of claim 1, wherein the expandable frame portion comprises a first row of foreshortening cells and a second row of foreshortening cells, wherein the one or more foreshortening cells of the first row comprise a shape which is different from a shape of one or more of the foreshortening cells of the second row.
  • 18. The prosthesis of claim 1, wherein the proximal anchors are each connected to the expandable frame portion at a first base and a second base spaced apart from each other and wherein a longitudinal strut extends between at least one of the proximal anchors.
  • 19. The prosthesis of claim 1, wherein the plurality of distal anchors are approximately equally spaced around a periphery of the expandable frame portion.
  • 20. A prosthesis configured to grasp intralumenal tissue when deployed within a native mitral valve, the prosthesis comprising: an expandable frame portion comprising a proximal end and a distal end and a longitudinal axis extending therethrough, the expandable frame portion comprising a plurality of foreshortening cells configured to collapse radially for delivery and to expand radially upon deployment;a proximal anchoring portion extending from the expandable frame portion and expandable from a collapsed configuration to an expanded configuration, wherein when the proximal anchoring portion is in an expanded configuration: at least a portion of the proximal anchoring portion extends proximally; andat least a portion of the proximal anchoring portion extends radially outwardly in a direction generally perpendicular to the longitudinal axis, the portion of the proximal anchoring portion that extends radially outwardly being sized and shaped to contact an atrial side of a native valve annulus;a distal anchoring portion extending from the expandable frame portion and expandable from a collapsed configuration to an expanded configuration, the distal anchoring portion comprising a plurality of distal anchors which are each connected to the expandable frame portion at a first base and a second base spaced apart from each other, wherein when the distal anchoring portion is in an expanded configuration: at least a portion of each distal anchor extends radially outward from the expandable frame portion; andat least one distal anchor comprises at least one bend, the end of the at least one distal anchor extending toward the proximal end of the expandable frame portion; anda skirt annularly positioned around an exterior of the expandable frame portion to create an axial barrier to fluid flow exterior to the expandable frame portion when deployed within the body cavity, the skirt comprising: a first portion sized and shaped to extend along and follow the shape of the exterior of expandable frame portion when the expandable frame portion is in an expanded configuration, the first portion having a proximal end and a distal end,a second portion configured to be positioned radially between the expandable frame portion and the distal anchoring portion when the expandable frame portion is in an expanded configuration, the second portion extending from the distal end of the first portion and extending at least along an inwardly facing surface of the distal anchoring portion; anda third portion extending radially outward from the expandable frame portion when the expandable frame portion is in an expanded configuration, the third portion extending radially outward from a location spaced from the proximal end of the expandable frame portion, the third portion extending from the proximal end of the first portion and extending along at least a portion of the plurality of proximal anchors, wherein an end of the third portion is positioned further radially outward from the longitudinal axis than the ends of the distal anchors; anda plurality of locking tabs extending proximally, wherein when the expandable frame portion is in an expanded configuration the plurality of locking tabs extend proximally of the expandable frame portion and the proximal anchoring portion.
  • 21. The prosthesis of claim 20, wherein the expandable frame portion is configured to longitudinally foreshorten upon radial expansion and wherein the proximal anchoring portion and at least the plurality of anchors of the distal anchoring portion are separated by the plurality of foreshortening cells such that the proximal anchoring portion and at least the plurality of anchors of the distal anchoring portion are configured to be drawn closer together along the longitudinal axis when the expandable frame portion foreshortens.
  • 22. The prosthesis of claim 20, wherein the third portion of the skirt extends in a direction generally perpendicular to the longitudinal axis.
  • 23. The prosthesis of claim 20, wherein the third portion of the skirt forms an annular ring.
  • 24. The prosthesis of claim 20, wherein the entirety of the third portion of the skirt is positioned distal of proximal ends of the foreshortening cells.
  • 25. A prosthesis configured to grasp intralumenal tissue when deployed within a native mitral valve, the prosthesis comprising: an expandable frame portion comprising a proximal end and a distal end and a longitudinal axis extending therethrough, the expandable frame portion comprising a proximal row of foreshortening cells and a distal row of foreshortening cells, the foreshortening cells configured to collapse radially for delivery and to expand radially upon deployment, the expandable frame portion being configured to longitudinally foreshorten upon radial expansion;a plurality of proximal anchors extending from the expandable frame portion and expandable from a collapsed configuration to an expanded configuration, each of the proximal anchors extending from junctions between the proximal row of foreshortening cells, wherein in an expanded configuration, ends of the plurality of proximal anchors are positioned radially outwardly relative from the expandable frame portion and extend in a direction substantially perpendicular to the longitudinal axis, the ends being axially positioned distal of the proximal end of the expandable frame portion;a plurality of distal anchors extending from the expandable frame portion and expandable from a collapsed configuration to an expanded configuration, each of the distal anchors connected to a base at a distal portion of the distal row of foreshortening cells, wherein in an expanded configuration, ends of the plurality of distal anchors are positioned radially outwardly relative from the expandable frame portion and the axial length between the base and the ends is less than a length of the cells of the distal row when in an expanded configuration; anda skirt annularly positioned around an exterior of the expandable frame portion to create an axial barrier to fluid flow exterior to the expandable frame portion when deployed within the body cavity, the skirt comprising: a generally cylindrical portion having a proximal end and a distal end; anda ring-shaped portion extending radially outward from the frame at a location axially spaced from the proximal end to prevent axial flow of fluid around an exterior of the prosthesis, the ring-shaped portion comprising an inner edge extending from the proximal end of generally cylindrical portion of the skirt, the ring-shaped portion extending radially outwardly from the inner edge to an outer edge;wherein the proximal anchors and distal anchors are configured to be drawn closer together along the longitudinal axis when the expandable frame portion foreshortens.
  • 26. The prosthesis of claim 25, wherein the expandable frame portion comprises a plurality of longitudinally extending struts, wherein one or more of the longitudinally extending struts extends distally from an apex of a foreshortening cell and comprises at least one eyelet extending through the longitudinally extending strut for attaching a valve to the expandable frame.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Appl. No. 61/782,707, filed Mar. 14, 2013, 61/789,783, filed Mar. 15, 2013, and 61/798,115 filed Mar. 15, 2013. The entire contents of the above applications are hereby incorporated by reference and made a part of this specification. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (697)
Number Name Date Kind
865203 Mustonen et al. Sep 1907 A
1306391 Romanoff Jun 1919 A
3312237 Mon et al. Apr 1967 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3739402 Cooley et al. Jun 1973 A
4056854 Boretos et al. Nov 1977 A
4079468 Liotta et al. Mar 1978 A
4204283 Bellhouse et al. May 1980 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4339831 Johnson Jul 1982 A
4340977 Brownlee et al. Jul 1982 A
4470157 Love Sep 1984 A
4477930 Totten et al. Oct 1984 A
4490859 Black et al. Jan 1985 A
4553545 Maass et al. Nov 1985 A
4655771 Wallsten Apr 1987 A
4733665 Palmaz Mar 1988 A
4776337 Palmaz Oct 1988 A
4777951 Cribier et al. Oct 1988 A
4865600 Carpentier et al. Sep 1989 A
4908028 Colon et al. Mar 1990 A
4950227 Savin et al. Aug 1990 A
4994077 Dobben Feb 1991 A
5049154 Quadri Sep 1991 A
5133725 Quadri Jul 1992 A
5197978 Hess Mar 1993 A
5282826 Quadri Feb 1994 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5344427 Cottenceau et al. Sep 1994 A
5370685 Stevens Dec 1994 A
5397355 Marin Mar 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5439446 Barry Aug 1995 A
5449385 Religa et al. Sep 1995 A
5474563 Myler et al. Dec 1995 A
5509930 Love Apr 1996 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5575818 Pinchuk Nov 1996 A
5607444 Lam Mar 1997 A
5607469 Frey Mar 1997 A
5669919 Sanders et al. Sep 1997 A
5697382 Love et al. Dec 1997 A
D390957 Fontaine Feb 1998 S
5713952 Vanney et al. Feb 1998 A
5725519 Penner Mar 1998 A
5769812 Stevens et al. Jun 1998 A
5807398 Shaknovich Sep 1998 A
5810873 Morales Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855601 Bessler et al. Jan 1999 A
5868777 Lam Feb 1999 A
5868782 Frantzen Feb 1999 A
5876437 Vanney et al. Mar 1999 A
5879381 Moriuch et al. Mar 1999 A
5902334 Dwyer et al. May 1999 A
5935108 Katoh Aug 1999 A
5954764 Parodi Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5992000 Humphrey et al. Nov 1999 A
6004328 Solar Dec 1999 A
6015431 Thornton et al. Jan 2000 A
6042606 Frantzen Mar 2000 A
6053940 Wijay Apr 2000 A
6086612 Jansen Jul 2000 A
6113612 Swanson et al. Sep 2000 A
6113631 Jansen Sep 2000 A
6132458 Staehle et al. Oct 2000 A
6152937 Peterson et al. Nov 2000 A
6159237 Alt Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6168616 Brown, III Jan 2001 B1
6251093 Valley et al. Jun 2001 B1
6280466 Kugler et al. Aug 2001 B1
6306141 Jervis Oct 2001 B1
6309416 Swanson et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6336938 Kavteladze et al. Jan 2002 B1
6352543 Cole Mar 2002 B1
6358277 Duran Mar 2002 B1
6409759 Peredo Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440163 Swanson et al. Aug 2002 B1
6440164 DeMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6475237 Drasler et al. Nov 2002 B2
6482228 Norred Nov 2002 B1
6511491 Grudem et al. Jan 2003 B2
6517573 Pollock Feb 2003 B1
6527800 McGuckin, Jr. et al. Mar 2003 B1
6533812 Swanson et al. Mar 2003 B2
6551303 Van Tassei et al. Apr 2003 B1
6582462 Andersen et al. Jun 2003 B1
6602281 Klein Aug 2003 B1
6610088 Gabbay Aug 2003 B1
6641606 Ouriel et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
D484979 Fontaine Jan 2004 S
6676698 McGuckin et al. Jan 2004 B2
6682537 Ouriel et al. Jan 2004 B2
6695878 McGuckin et al. Feb 2004 B2
6712836 Berg et al. Mar 2004 B1
6723123 Kazatchkov et al. Apr 2004 B1
6730118 Spenser et al. May 2004 B2
6733523 Shaolian et al. May 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6767362 Schreck Jul 2004 B2
6780200 Jansen Aug 2004 B2
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6830584 Sequin Dec 2004 B1
6858034 Hijlkema et al. Feb 2005 B1
6875231 Anduiza et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908477 McGuckin, Jr. et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6926732 Derus et al. Aug 2005 B2
6929660 Ainsworth et al. Aug 2005 B1
6936058 Forde et al. Aug 2005 B2
6960219 Grudem et al. Nov 2005 B2
6979350 Moll et al. Dec 2005 B2
7014653 Ouriel et al. Mar 2006 B2
7018401 Hyodoh et al. Mar 2006 B1
7018406 Seguin et al. Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7044134 Khairkhahan et al. May 2006 B2
7044962 Elliott May 2006 B2
7044966 Svanidze et al. May 2006 B2
7087088 Berg et al. Aug 2006 B2
7147660 Chobotov et al. Dec 2006 B2
7147661 Chobotov et al. Dec 2006 B2
7153322 Alt Dec 2006 B2
7186265 Sharkawy et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7252682 Seguin Aug 2007 B2
D553747 Fliedner Oct 2007 S
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7328270 Reents et al. Feb 2008 B1
7329278 Seguin et al. Feb 2008 B2
7374571 Pease et al. May 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7422602 Grudem et al. Sep 2008 B2
7425219 Quadri Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7534261 Friedman May 2009 B2
7585321 Cribier Sep 2009 B2
7608114 Levine et al. Oct 2009 B2
7615072 Rust et al. Nov 2009 B2
7618446 Andersen et al. Nov 2009 B2
7628805 Spenser et al. Dec 2009 B2
7632298 Hijlkema et al. Dec 2009 B2
7748389 Salahieh et al. Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
D622387 Igaki Aug 2010 S
D622388 Igaki Aug 2010 S
7771463 Ton et al. Aug 2010 B2
7771472 Hedricksen et al. Aug 2010 B2
7785360 Freitag Aug 2010 B2
7803185 Gabbay Sep 2010 B2
7806917 Xiao Oct 2010 B2
7806919 Bloom et al. Oct 2010 B2
7815589 Meade et al. Oct 2010 B2
7815673 Bloom et al. Oct 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7846203 Cribier Dec 2010 B2
7871435 Carpentier Jan 2011 B2
7892281 Seguin et al. Feb 2011 B2
D635261 Rossi Mar 2011 S
D635262 Rossi Mar 2011 S
7914569 Nguyen et al. Mar 2011 B2
7947075 Goetz et al. May 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7972377 Lane Jul 2011 B2
7972378 Tabor et al. Jul 2011 B2
7981151 Rowe Jul 2011 B2
7993392 Righini et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8016870 Chew et al. Sep 2011 B2
8016877 Seguin et al. Sep 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8070800 Lock et al. Dec 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8075615 Eberhardt et al. Dec 2011 B2
8080054 Rowe Dec 2011 B2
8092520 Quadri Jan 2012 B2
8109996 Stacchino Feb 2012 B2
8136218 Millwee et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8157852 Bloom et al. Apr 2012 B2
8167926 Hartley et al. May 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8177799 Orban, III May 2012 B2
8182528 Salahieh et al. May 2012 B2
8182530 Huber May 2012 B2
8216261 Solem Jul 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8219229 Cao et al. Jul 2012 B2
8220121 Hendriksen et al. Jul 2012 B2
8221482 Cottone et al. Jul 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
D665079 Zago Aug 2012 S
D665080 Zago Aug 2012 S
8236045 Benichou et al. Aug 2012 B2
8246675 Zegdi Aug 2012 B2
8246678 Salahieh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8317854 Ryan et al. Nov 2012 B1
8323335 Rowe et al. Dec 2012 B2
8337541 Quadri et al. Dec 2012 B2
8353953 Giannetti et al. Jan 2013 B2
8361137 Perouse Jan 2013 B2
8361537 Shanley Jan 2013 B2
8398708 Meiri et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8408214 Spenser Apr 2013 B2
8414644 Quadri et al. Apr 2013 B2
8414645 Dwork et al. Apr 2013 B2
8444689 Zhang May 2013 B2
8449466 Duhay et al. May 2013 B2
8449599 Chau et al. May 2013 B2
8449625 Campbell et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8470023 Eidenschink et al. Jun 2013 B2
8470024 Ghione et al. Jun 2013 B2
8475521 Suri et al. Jul 2013 B2
8475523 Duffy Jul 2013 B2
8479380 Malewicz et al. Jul 2013 B2
8491650 Wiemeyer et al. Jul 2013 B2
8500798 Rowe et al. Aug 2013 B2
8511244 Holecek et al. Aug 2013 B2
8512401 Murray, III et al. Aug 2013 B2
8518106 Duffy et al. Aug 2013 B2
8535368 Headley, Jr. et al. Sep 2013 B2
8562663 Mearns et al. Oct 2013 B2
8579964 Lane et al. Nov 2013 B2
8579965 Bonhoeffer et al. Nov 2013 B2
8584849 McCaffrey Nov 2013 B2
8585749 Shelso Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8591570 Revuelta et al. Nov 2013 B2
8597348 Rowe et al. Dec 2013 B2
8617236 Paul et al. Dec 2013 B2
8623075 Murray, III et al. Jan 2014 B2
8640521 Righini et al. Feb 2014 B2
8647381 Essinger et al. Feb 2014 B2
8652145 Maimon et al. Feb 2014 B2
8652201 Oberti et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8668730 McGuckin, Jr. et al. Mar 2014 B2
8668733 Haug et al. Mar 2014 B2
8672992 Orr Mar 2014 B2
8673000 Tabor et al. Mar 2014 B2
8679174 Ottma et al. Mar 2014 B2
8679404 Liburd et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8707957 Callister et al. Apr 2014 B2
8721707 Boucher et al. May 2014 B2
8721708 Sequin et al. May 2014 B2
8721714 Kelley May 2014 B2
8728154 Alkhatib May 2014 B2
8728155 Montorfano et al. May 2014 B2
8740974 Lambrecht et al. Jun 2014 B2
8740976 Tran et al. Jun 2014 B2
8747458 Tuval et al. Jun 2014 B2
8747459 Nguyen et al. Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8753384 Leanna Jun 2014 B2
8758432 Solem Jun 2014 B2
8764814 Solem Jul 2014 B2
8764818 Gregg Jul 2014 B2
8771344 Tran et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8771346 Tuval et al. Jul 2014 B2
8777975 Kashkarov et al. Jul 2014 B2
8778020 Gregg et al. Jul 2014 B2
8784478 Tuval et al. Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790387 Nguyen et al. Jul 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8828079 Thielen et al. Sep 2014 B2
8834564 Tuval et al. Sep 2014 B2
8845718 Tuval et al. Sep 2014 B2
8852267 Cattaneo Oct 2014 B2
8870947 Shaw Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8876883 Rust Nov 2014 B2
8876893 Dwork et al. Nov 2014 B2
8876895 Tuval et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8911455 Quadri et al. Dec 2014 B2
8926693 Duffy et al. Jan 2015 B2
8926694 Costello Jan 2015 B2
8945209 Bonyuet et al. Feb 2015 B2
8951299 Paul et al. Feb 2015 B2
8961583 Hojeibane et al. Feb 2015 B2
8961593 Bonhoeffer et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8974524 Yeung et al. Mar 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986375 Garde et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
8998979 Seguin et al. Apr 2015 B2
8998980 Shipley et al. Apr 2015 B2
9005270 Perkins et al. Apr 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011521 Haug et al. Apr 2015 B2
9011523 Seguin Apr 2015 B2
9011524 Eberhardt Apr 2015 B2
9023100 Quadri et al. May 2015 B2
9028545 Taylor May 2015 B2
9029418 Dove et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9055937 Rowe et al. Jun 2015 B2
9078749 Lutter et al. Jul 2015 B2
9078751 Naor Jul 2015 B2
9125738 Figulla et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9161834 Taylor et al. Oct 2015 B2
20010007956 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010047180 Grudem et al. Nov 2001 A1
20010047200 White Nov 2001 A1
20020016623 Kula et al. Feb 2002 A1
20020022853 Swanson et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020045929 Diaz Apr 2002 A1
20020052644 Shaolian et al. May 2002 A1
20020055772 McGuckin et al. May 2002 A1
20020077695 Swanson et al. Jun 2002 A1
20020111619 Keast et al. Aug 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020183827 Derus et al. Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030040792 Gabbay Feb 2003 A1
20030083679 Grudem et al. May 2003 A1
20030105517 White et al. Jun 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030120263 Ouriel et al. Jun 2003 A1
20030120330 Ouriel et al. Jun 2003 A1
20030120333 Ouriel et al. Jun 2003 A1
20030130729 Paniagua Jul 2003 A1
20030176914 Rabkin et al. Sep 2003 A1
20030187499 Swanson et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030220683 Minasian et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040087900 Thompson et al. May 2004 A1
20040093058 Cottone et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040102842 Jansen May 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040133273 Cox Jul 2004 A1
20040186561 McGuckin, Jr. et al. Sep 2004 A1
20040193261 Berreklou Sep 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215325 Penn et al. Oct 2004 A1
20040225353 McGuckin, Jr. et al. Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040243230 Navia et al. Dec 2004 A1
20040249433 Freitag Dec 2004 A1
20050033398 Seguin Feb 2005 A1
20050038470 van der Burg et al. Feb 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090887 Pryor Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050107872 Mensah et al. May 2005 A1
20050125020 Meade et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050154444 Quadri Jul 2005 A1
20050159811 Lane Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050203616 Cribier Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216079 Macoviak Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240204 Grudem et al. Oct 2005 A1
20050251251 Cribier Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060020247 Kagan et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020334 Lashinski et al. Jan 2006 A1
20060052802 Sterman et al. Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060095115 Bladillah et al. May 2006 A1
20060106454 Osborne et al. May 2006 A1
20060116625 Renati et al. Jun 2006 A1
20060129235 Seguin et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060173537 Yang et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060212110 Osborne et al. Sep 2006 A1
20060224232 Chobotov Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20060293745 Carpentier et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070016286 Hermann et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070050021 Johnson Mar 2007 A1
20070067016 Jung Mar 2007 A1
20070100432 Case et al. May 2007 A1
20070118206 Colgan et al. May 2007 A1
20070118207 Amplatz et al. May 2007 A1
20070123798 Rahamimov May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070185559 Shelso Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070219620 Eells et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070250151 Pereira Oct 2007 A1
20070255391 Hojeibane et al. Nov 2007 A1
20070255394 Ryan Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270937 Leanna Nov 2007 A1
20070293940 Schaeffer et al. Dec 2007 A1
20080009934 Schneider et al. Jan 2008 A1
20080021546 Patz et al. Jan 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082164 Friedman Apr 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080097571 Denison et al. Apr 2008 A1
20080097581 Shanley Apr 2008 A1
20080114441 Rust et al. May 2008 A1
20080125853 Boyle et al. May 2008 A1
20080125859 Salahieh et al. May 2008 A1
20080133003 Seguin Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080147183 Styrc Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080208307 Ben-Muvhar et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080228254 Ryan Sep 2008 A1
20080243233 Ben-Muvhar et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080262596 Xiao Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20080275549 Rowe Nov 2008 A1
20080275550 Kheradvar et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090012602 Quadri Jan 2009 A1
20090054976 Tuval et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076585 Hendriksen Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082844 Zacharias et al. Mar 2009 A1
20090082847 Zacharias et al. Mar 2009 A1
20090088832 Chew et al. Apr 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099643 Hyodoh et al. Apr 2009 A1
20090099653 Suri et al. Apr 2009 A1
20090125096 Chu et al. May 2009 A1
20090125104 Hoffman May 2009 A1
20090132035 Roth et al. May 2009 A1
20090132037 Hoffman et al. May 2009 A1
20090138069 Hoffman May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090149946 Dixon Jun 2009 A1
20090157175 Benichou Jun 2009 A1
20090163934 Raschdorf et al. Jun 2009 A1
20090171438 Chuter et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177262 Oberti et al. Jul 2009 A1
20090182407 Leanna et al. Jul 2009 A1
20090182413 Burkart et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090216314 Quadri Aug 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090248132 Bloom et al. Oct 2009 A1
20090248133 Bloom et al. Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090270972 Lane Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281618 Hill et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090292350 Eberhardt et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20100004740 Sequin et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049306 House et al. Feb 2010 A1
20100082089 Quadri et al. Apr 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100114299 Ben Muvhar et al. May 2010 A1
20100114305 Kang et al. May 2010 A1
20100121461 Sobrino-Serrano et al. May 2010 A1
20100161027 Orr Jun 2010 A1
20100179633 Solem Jul 2010 A1
20100179647 Carpenter et al. Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100249911 Alkhatib Sep 2010 A1
20100256723 Murray Oct 2010 A1
20100262157 Silver et al. Oct 2010 A1
20100274345 Rust Oct 2010 A1
20100280606 Naor Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100305685 Millwee et al. Dec 2010 A1
20100312333 Navia et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110022164 Quinn et al. Jan 2011 A1
20110022165 Oba et al. Jan 2011 A1
20110022166 Dahlgren et al. Jan 2011 A1
20110022169 Ryan et al. Jan 2011 A1
20110029067 McGuckin, Jr. et al. Feb 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110166644 Keeble et al. Jul 2011 A1
20110178597 Navia et al. Jul 2011 A9
20110208297 Tuval et al. Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110224780 Tabor et al. Sep 2011 A1
20110224785 Hacohen Sep 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120016411 Tuval Jan 2012 A1
20120022639 Hacohen et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120041550 Salahieh et al. Feb 2012 A1
20120059452 Boucher et al. Mar 2012 A1
20120059454 Millwee et al. Mar 2012 A1
20120078353 Quadri et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120179239 Quadri et al. Jul 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120259405 Weber et al. Oct 2012 A1
20120271398 Essinger et al. Oct 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120303116 Gorman, III Nov 2012 A1
20120310328 Olson et al. Dec 2012 A1
20120323316 Chau et al. Dec 2012 A1
20130006294 Kashkarov Jan 2013 A1
20130018458 Yohanan et al. Jan 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130110227 Quadri et al. May 2013 A1
20130131788 Quadri et al. May 2013 A1
20130131793 Quadri et al. May 2013 A1
20130138203 Quadri et al. May 2013 A1
20130138207 Quadri et al. May 2013 A1
20130144375 Giasolli et al. Jun 2013 A1
20130144378 Quadri et al. Jun 2013 A1
20130144380 Quadri et al. Jun 2013 A1
20130144381 Quadri et al. Jun 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130172983 Clerc et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130184813 Quadri et al. Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130211508 Lane Aug 2013 A1
20130253635 Straubinger et al. Sep 2013 A1
20130253642 Brecker Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310928 Morriss Nov 2013 A1
20130345786 Behan Dec 2013 A1
20140005764 Schroeder Jan 2014 A1
20140018912 Delaloye et al. Jan 2014 A1
20140039611 Lane et al. Feb 2014 A1
20140046427 Michalak Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052242 Revuelta et al. Feb 2014 A1
20140067054 Chau et al. Mar 2014 A1
20140088685 Yevzlin et al. Mar 2014 A1
20140100651 Kheradvar et al. Apr 2014 A1
20140100653 Savage et al. Apr 2014 A1
20140142694 Tabor et al. May 2014 A1
20140155990 Nyuli et al. Jun 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172083 Bruchman et al. Jun 2014 A1
20140172085 Quadri et al. Jun 2014 A1
20140172086 Quadri et al. Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140214153 Ottma et al. Jul 2014 A1
20140214154 Nguyen et al. Jul 2014 A1
20140214155 Kelley Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140214160 Naor Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140222139 Nguyen et al. Aug 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140236288 Lambrecht et al. Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257476 Montorfano et al. Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277402 Essinger et al. Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140277423 Alkhatib et al. Sep 2014 A1
20140277427 Ratz et al. Sep 2014 A1
20140296973 Bergheim et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140309728 Dehdashtian et al. Oct 2014 A1
20140309731 Quadri et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140330368 Gloss et al. Nov 2014 A1
20140330371 Gloss et al. Nov 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140331475 Duffy et al. Nov 2014 A1
20140336754 Gurskis et al. Nov 2014 A1
20140343669 Lane et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350666 Righini Nov 2014 A1
20140350668 Delaloye et al. Nov 2014 A1
20140358221 Ho et al. Dec 2014 A1
20140364939 Deshmukh et al. Dec 2014 A1
20140364943 Conklin Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140371842 Marquez et al. Dec 2014 A1
20140371845 Tuval et al. Dec 2014 A1
20140371847 Madrid et al. Dec 2014 A1
20140371848 Murray, III et al. Dec 2014 A1
20140379067 Nguyen et al. Dec 2014 A1
20140379068 Thielen et al. Dec 2014 A1
20140379077 Tuval et al. Dec 2014 A1
20150005873 Chang et al. Jan 2015 A1
20150012085 Salahieh et al. Jan 2015 A1
20150018938 Von Segesser et al. Jan 2015 A1
20150018944 O'Connell et al. Jan 2015 A1
20150032153 Quadri et al. Jan 2015 A1
20150066140 Quadri Mar 2015 A1
20150081009 Quadri Mar 2015 A1
20150142100 Morriss May 2015 A1
20150142103 Vidlund May 2015 A1
20150148731 McNamara et al. May 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150196390 Ma et al. Jul 2015 A1
Foreign Referenced Citations (71)
Number Date Country
2304325 Oct 2000 CA
2 827 556 Jul 2012 CA
3128704 Feb 1983 DE
10 2006 052 564 Dec 2007 DE
0 657 147 Jun 1995 EP
1 47 996 Nov 2004 EP
1 255 510 Apr 2007 EP
1 772 104 Apr 2007 EP
1 264 471 Feb 1972 GB
1315 844 May 1973 GB
2245495 Jan 1992 GB
2 398 245 Aug 2004 GB
2002-540889 Dec 2002 JP
2008-541865 Nov 2008 JP
WO 9749355 Dec 1997 WO
WO 0053104 Sep 2000 WO
WO 0061034 Oct 2000 WO
WO 0135861 May 2001 WO
WO 0135870 May 2001 WO
WO 0172239 Oct 2001 WO
WO 0236048 May 2002 WO
WO 03092554 Nov 2003 WO
WO 03028522 Jan 2004 WO
WO 2004014257 Feb 2004 WO
WO 2004014474 Feb 2004 WO
WO 2004058097 Jul 2004 WO
WO 2005011534 Feb 2005 WO
WO 2005041810 May 2005 WO
WO 2005087140 Sep 2005 WO
WO 2006070372 Jul 2006 WO
WO 2006085304 Aug 2006 WO
WO 2006089236 Aug 2006 WO
WO 2006127765 Nov 2006 WO
WO 2007025028 Mar 2007 WO
WO 2007034488 Mar 2007 WO
WO 2007058857 May 2007 WO
WO 2007123658 Nov 2007 WO
WO 2007134290 Nov 2007 WO
WO 2008005535 Jan 2008 WO
WO 2008013915 Jan 2008 WO
WO 2008070797 Jun 2008 WO
WO 2008091515 Jul 2008 WO
WO 2008103722 Aug 2008 WO
WO 2008150529 Dec 2008 WO
WO 2009026563 Feb 2009 WO
WO 2009033469 Mar 2009 WO
WO 2009045331 Apr 2009 WO
WO 2009052188 Apr 2009 WO
WO 2009053497 Apr 2009 WO
WO 2009091509 Jul 2009 WO
WO 2009094500 Jul 2009 WO
WO 2009134701 Nov 2009 WO
WO 2009137359 Nov 2009 WO
WO 2009155561 Dec 2009 WO
WO 2010008549 Jan 2010 WO
WO 2010037141 Apr 2010 WO
WO 2010040009 Apr 2010 WO
WO 2010057262 May 2010 WO
WO 2010098857 Sep 2010 WO
WO 2009149462 Jan 2011 WO
WO 2010138853 Feb 2011 WO
WO 2011025945 Mar 2011 WO
WO 2011137531 Nov 2011 WO
WO 2011109801 Jan 2012 WO
WO 2011109813 Jan 2012 WO
WO 2012035279 Mar 2012 WO
WO 2012162228 Nov 2012 WO
WO 2012177942 Dec 2012 WO
WO 2013028387 Feb 2013 WO
WO 2013012801 Apr 2013 WO
WO 2013086413 Jun 2013 WO
Non-Patent Literature Citations (78)
Entry
US 8,062,357, 11/2011, Salahieh et al. (withdrawn)
U.S. Appl. No. 14/186,989, filed Feb. 21, 2014, Quadri et al.
U.S. Appl. No. 14/197,639, filed Mar. 5, 2014, Ratz et al.
U.S. Appl. No. 14/197,690, filed Mar. 5, 2014, Ratz et al.
U.S. Appl. No. 29,484,001, filed Mar. 5, 2014, Pesce et al.
CardiAQ Valve Technologies, “Innovations in Heart Valve Therapy,” In3 San Francisco, Jun. 18, 2008, PowerPoint presentation in 19 slides.
European Extended Search Report, re EP Application No. 14159271.7, dated Jul. 23, 2014.
European Extended Search Report, re EP Application No. 14159378.0, dated Jul. 24, 2014.
European Extended Search Report, re EP Application No. 14159090.1, dated Jul. 22, 2014.
U.S. Appl. No. 61/331,799, filed May 5, 2010, Lane et al.
U.S. Appl. No. 61/393,860, filed Oct. 15, 2010, Lane et al.
U.S. Appl. No. 61/414,879, filed Nov. 17, 2010, Lane et al.
U.S. Appl. No. 14/598,568, filed Jan. 16, 2015, Quadri et al.
U.S. Appl. No. 14/628,034, filed Feb. 20, 2015, Rabito et al.
U.S. Appl. No. 14/702,233, filed May 1, 2015, Arshad et al.
U.S. Appl. No. 14/716,507, filed May 19, 2015, Ratz et al.
Neovasc Surgical Products, “Neovasc Surgical Products: An Operating Division of Neovasc Inc.,” dated Apr. 2009.
Kronemyer, Bob: “CardiAQ Valve Technologies: Percutaneous Mitral Valve Replacement,” Start Up—Windhover Review of Emerging Medical Ventures, vol. 14, Issue No. 6, Jun. 2009, pp. 48-49.
Bavaria, Joseph E. M.D.: “CardiAQ Valve Technologies: Transcatheter Mitral Valve Implantation,” Sep. 21, 2009.
Ostrovsky, Gene: “Transcatheter Mitral Valve Implantation Technology from CardiAQ,” medGadget, Jan. 15, 2010, available at: http://www.medgadget.com/2010/01/transcatheter—mitral—valve—implantation—technology—from—cardiaq.html.
“Company Overview,” Jun. 25, 2009 at TVT.
“Update,” Applicant believes this may have been presented on Jun. 6, 2010 at TVT.
Banai, Shmuel, et al., Tiara: A Novel Catheter-Based Mitral Valve Bioprosthesis, Initial Experiments and Short-Term Pre-Clinical Results, Journal of the American College of Cardiology, vol. 60, No. 15, 2012. Applicant believes that this may have been available online as early as Sep. 12, 2012.
Berreklouw, Eric, MD, PhD, et al., “Sutureless Mitral Valve Replacement With Bioprostheses and Nitinol Attachment Rings: Feasibility in Acute Pig Experiments,” The Journal of Thoracic and Cardiovascular Surgery, vol. 142, No. 2, Aug. 2011 in 7 pages, Applicant believes this may have been available online as early as Feb. 4, 2011.
Boudjemline, Younes, MD, et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves,” JACC, vol. 46, No. 2, Jul. 19, 2005:360-5.
Brinkman, William T., MD, et al., Transcatheter Cardiac Valve Interventions, Surg Clin N Am 89 (2009) 951-966, Applicant believes this may have been available as early as Aug. 2009.
Chiam, Paul T.L., et al., “Percutaneous Transcatheter Aortic Valve Implantation: Assessing Results, Judging Outcomes, and Planning Trials,” JACC: Cardiovascular Interventions, The American College of Cardiology Foundation, vol. 1, No. 4, Aug. 2008:341-50.
Condado, Jose Antonio, et al., “Percutaneous Treatment of Heart Valves,” Rev Esp Cardio. 2006;59(12):1225-31, Applicant believes this may have been available as early as Dec. 2006.
Engager System, Precise Valve Positioning, Transcatheter Aortic Valve Implantation System, Transcatheter Aortic Valve Replacement—TAVR I Medtronic Engager, http://www.medtronic-engager.com/home/transcatheter-aortic-valve-repl., 2014 Medtronic, Inc. in 2 pages. Applicant believes this may have been available online as early as Aug. 25, 2013.
Fanning, Jonathon P., et al., “Transcatheter Aortic Valve Implantation (TAVI): Valve Design and Evolution,” International Journal of Cardiology 168 (2013) 1822-1831, Applicant believes this may have been available as early as Aug. 20, 2013.
Fitzgerald, Peter J. M.D., “Tomorrow's Technology: Percutaneous Mitral Valve Replacement, Chordal Shortening, and Beyond,” Transcatheter Valve Therapies (TVT) Conference. Seattle, WA. Applicant believes this may have been available as early as Jun. 7, 2010.
Gillespie, Matthew J., MD, et al., “Sutureless Mitral Valve Replacement: Initial Steps Toward a Percutaneous Procedure,” Ann Thorac Surg. Aug. 2013; 96(2).
Grube, Eberhard, MD, et al., “Percutaneous Implantation of the CoreValve Self-Expanding Valve Prosthesis in High-Risk Patients With Aortic Valve Disease, The Siegburg First-in-Man Study” Journal of the American Heart Association, 2006; 114:1616-1624, originally published online Oct. 2, 2006.
JenaValve Technology, “The JenaValve—The Prosthesis”, 2011 JenaValve Technology in 1 page.
Karimi, Houshang, MD, et al., “Percutaneous Valve Therapies,” SIS 2007 Yearbook, Chapter 11, pp. 1-11.
Lauten, Alexander, et al., “Experimental Evaluation of the JenaClip Transcatheter Aortic Valve,” Catheterization and Cardiovascular Interventions 74:514-519, published online May 11, 2009, Applicant believes this may have been available online as early as Apr. 27, 2009.
Leon, Martin B., MD, et al., “Transcatheter Aortic Valve Replacement in Patients with Critical Aortic Stenosis: Rationale, Device Descriptions, Early Clinical Experiences, and Perspectives,” Semin. Thorac. Cardiovasc. Surg. 18:165-174, 2006 in 10 pages, Applicant believes this may have been available as early as the Summer of 2006.
Lozonschi, Lucian, MD, et al., “Transapical Mitral Valved Stent Implantation,” Ann Thorac Surg 2008;86:745-8 in 4 pages, Applicant believes this may have been available as early as Sep. 2008.
Lutter, G., et al.: “Transcatheter Mitral Valve Replacement—Early Animal Results,” Universitätsklinikum, Schleswig-Holstein, unknown publication date.
Lutter, Georg, et al., “Off-Pump Transapical Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 36 (2009) 124-128, Applicant believes this may have been available as early as Apr. 25, 2009.
Ma, Liang, et al., “Double-Crowned Valved Stents for Off-Pump Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 28 (2005) 194-199, Applicant believes this may have been available as early as Aug. 2005.
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: A Short-term Experience in Swine Model,” Applicant believes this may have been presented on May 2011 at TVT.
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: On-Going Experience in Swine Model,” Applicant believes this may have been presented on Nov. 2011 at TCT.
Masson, Jean-Bernard, et al., “Percutaneous Treatment of Mitral Regurgitation,” Circulation: Cardiovascular Interventions, 2:140-146, Applicant believes this may have been available as early as Apr. 14, 2009.
Ostrovsky, Gene, “A Trial of Zenith Fenestrated AAA Endovascular Graft Goes on,” medGadget, Aug. 1, 2008, available at: :http://www.medgadget.com/2008/08/a—trial—of—zenith—fenestrated—aaa—endovascular—graft—goes—on.html.
Pluth, James R., M.D., et al., “Aortic and Mitral Valve Replacement with Cloth-Covered Braunwald-Cutter Prosthesis, A Three-Year Follow-up,” The Annals of Thoracic Surgery, vol. 20, No. 3, Sep. 1975, pp. 239-248.
Quadri, Arshad M.D., “Transcatheter Mitral Valve Implantation (TMVI) (An Acute In Vivo Study),” Applicant believes this may have been presented on Sep. 22, 2010 at TCT.
Ratz, J. Brent, “In3 Company Overview,” Jun. 24, 2009.
Ratz, J. Brent, “LSI EMT Spotlight,” May 15, 2009.
Ruiz, Carlos E., “Overview of Novel Transcatheter Valve Technologies,” Applicant believes this may have been presented on May 27, 2010 at EuroPCR.
Seidel, Wolfgang, et al., “A Mitral Valve Prosthesis and a Study of Thrombosis on Heart Valves in Dogs,” JSR—vol. II, No. 3—May 1962, submitted for publication Oct. 9, 1961.
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at EuroPCR May 2013.
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at TCT Oct. 2013.
Spillner, J. et al., “New Sutureless ‘Atrial-Mitral-Valve Prosthesis’ For Minimally Invasive Mitral Valve Therapy,” Textile Research Journal, 2010, in 7 pages, Applicant believes this may have been available as early as Aug. 9, 2010.
Vu, Duc-Thang, MD, et al., “Novel Sutureless Mitral Valve Implantation Method Involving a Bayonet Insertion and Release Mechanism: A Proof of Concept Study in Pigs,” The Journal of Thoracic and Cardiovascular Surgery, vol. 143, No. 4, 985-988, Apr. 2012, Applicant believes this may have been available online as early as Feb. 11, 2012.
Walther, Thomas et al., “Transapical Approach for Sutureless Stent-Fixed Aortic Valve Implantation: Experimental Results,” European Journal of Cardio-thoracic Surgery 29 (2006) 703-708, Applicant believes this may have been available as early as May 2006.
Webb, John G., et al., “Transcatheter Aortic Valve Implantation: The Evolution of Prostheses, Delivery Systems and Approaches,” Archives of Cardiovascular Disease (2012) 105, 153-159, Applicant believes this may have been available as early as Mar. 16, 2012.
Banai et al.: “Transapical Mitral Implantation of the Tiara Bioprosthesis,” JACC: Cardiovascular Interventions, vol. 7, No. 2, Feb. 2014:154-62.
Bavaria, Joseph E. M.D. et al.: “Transcatheter Mitral Valve Implantation: The Future Gold Standard for MR?,” Applicant requests the Examiner to consider this reference to be prior art as of Dec. 2010.
BioSpace, “CardiAQ Valve Technologies (CVT) Reports Cardiovascular Medicine Milestone: First-In-Humannonsurgical Percutaneous Implantation of a Bioprosthetic Mitral Heart Valve,” Jun. 14, 2012, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports/263900.
Businesswire.com, “CardiAQ Valve Technologies (CVT) Discloses Successful Results of Acute In Vivo Study of Its Novel Transcatheter Mitral Valve Implantation (TMVI) System,” Sep. 28, 2009.
Businesswire.com, CardiAQ Valve Technologies, “CardiAQ Valve Technologies (“CVT”) to disclose data during ‘EuroPCR 2010’ about the world's first successful in vivo transcatheter delivery of a mitral heart valve implant,” Irvine, California, May 20, 2010.
CardiAQ Valve Technologies Company Fact Sheet 2009.
Diagnostic and Interventional Cardiology, “Neovasc Announces Publication of Tiara Transcatheter Mitral Valve Preclinical Data in JACC,” Sep. 18, 2012, p. 1, http://www.dicardiology.com/content/neovasc-announces-publication-tiara-transcatheter-mitral-valve-preclinical-data-jacc.
Diagnostic and Interventional Cardiology, “Neovasc Announces Successful Human Implant of Tiara Transcatheter Mitral Valve,” Feb. 18, 2014, p. 1, <http://www.dicardiology.com/article/neovasc-announces-successful-human-implant-tiara-transcatheter-mitral-valve>.
Diagnostic and Interventional Cardiology, “Neovasc Receives First U.S. Patent for its Tiara Transcatheter Mitral Valve Replacement Technology,” Nov. 15, 2013, p. 1, <http://www.dicardiology.com/content/neovasc-receives-first-us-patent-its-tiara-transcatheter-mitral- valve-replacement-technology>.
Feldman, Ted, MD. “Prospects for Percutaneous Valve Therapies,” Circulation 2007;116:2866-2877. Applicant believes that this may be available as early as Dec. 11, 2007.
Grube, E. et al, “Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome.” J Am Coll Cardiol. Jul. 3, 2007;50(1):69-76. Epub Jun. 6, 2007.
Horvath et al.: “Transapical Aortic Valve Replacement under Real-time Magnetic Resonance Imaging Guidance: Experimental Results with Balloon-Expandable and Self-Expanding Stents,” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038190/. Jun. 2011.
Mack, Michael M.D., “Advantages and Limitations of Surgical Mitral Valve Replacement; Lessons for the Transcatheter Approach,” Applicant believes this may have been available as early as Jun. 7, 2010. Applicant believes this may have been presented at the Texas Cardiovascular Innovative Ventures (TCIV) Conference in Dallas, TX on Dec. 8, 2010.
Neovasc corporate presentation, Oct. 2009, available at http://www.neovasc.com/investors/documents/Neovasc-Corporate-Presentation-October-2009.pdf.
Piazza, Nicoló, MD, et al., “Anatomy of the Aortic Valvar Complex and Its Implications for Transcatheter Implantation of the Aortic Valve,” Contemporary Reviews in Interventional Cardiology, Circ. Cardiovasc. Intervent., 2008;1:74-81, Applicant believes this may have been available as early as Aug. 2008.
Ratz, J. Brent et al., “Any experiences making an expandable stent frame?” Arch-Pub.com, Architecture Forums: Modeling, Multiple forum postings from Feb. 3, 2009 to Feb. 4, 2009, http://www.arch-pub.com.
Ratz, J. Brent et al., “Fabric, Skin, Cloth expansion . . . best approach?,” AREA by Autodesk, 3ds Max: Modeling, Forum postings from Feb. 18, 2009 to Feb. 19, 2009, http://area.autodesk.com.
Ratz, J. Brent et al., “Isolating Interpolation,” Arch-Pub.com, Architecture Forums: Animation and Rigging, Forum postings from Feb. 9, 2009 to Feb. 10, 2009, http://www.arch-pub.com.
Treede et al.: “Transapical transcatheter aortic valve implantation using the JenaValve™ system: acute and 30-day results of the multicentre CE-mark study.” http://ejcts.oxfordjournals.org/content/41/6/e131.long. Apr. 16, 2012.
Van Mieghem, et al., “Anatomy of the Mitral Valvular Complez and Its Implications for Transcatheter Interventions for Mitral Regurgitation,” J. Am. Coll. Cardiol., 56:617-626 (Aug. 17, 2010).
Wayback Machine, Neovasc Ostial Products Overview, https://web.archive.org/web/20090930050359/https://www.neovasc.com/vascular-products/ostialproducts/default.php, indicated as archived on Sep. 30, 2008.
Related Publications (1)
Number Date Country
20140277390 A1 Sep 2014 US
Provisional Applications (3)
Number Date Country
61789783 Mar 2013 US
61782707 Mar 2013 US
61798115 Mar 2013 US