Prosthesis system including tibial bearing component

Information

  • Patent Grant
  • 10278827
  • Patent Number
    10,278,827
  • Date Filed
    Friday, September 16, 2016
    8 years ago
  • Date Issued
    Tuesday, May 7, 2019
    5 years ago
Abstract
According to one example, a tibial bearing component for articulation with a medial condyle and a lateral condyle of a femoral component in a knee replacement procedure is disclosed. The tibial bearing component can include a distal surface and an articular surface opposing the distal surface. The articular surface can include a medial compartment and a lateral compartment configured for articulation with the medial condyle and the lateral condyle of the femoral component, respectively. The lateral compartment can have a lateral articular track with a lateral anterior-posterior extent. The lateral articular track can comprise a plurality of distal-most points along a proximal surface of the lateral compartment that are contacted by the lateral condyle during rollback of the femoral component. The medial compartment can differ in configuration from the lateral compartment and can have an anterior lip height of between about 9 mm and about 13 mm.
Description
FIELD

The present subject matter relates to orthopedic procedures and, more particularly, to prostheses, systems and methods used in knee arthroplasties.


BACKGROUND

Orthopedic procedures and prostheses are commonly utilized to repair and/or replace damaged bone and tissue in the human body. For example, a knee arthroplasty can be used to restore natural knee function by repairing damaged or diseased articular surfaces of the femur and/or tibia. An incision is made into the knee joint to expose the bones comprising the joint. Cut guides are used to guide the removal of the articular surfaces that are to be replaced. Prostheses are used to replicate the articular surfaces. Knee prostheses can include a femoral component implanted on the distal end of the femur, which articulates with a tibial bearing component and a tibial component implanted on the proximal end of a tibia to replicate the function of a healthy natural knee. Various types of arthroplasties are known including a total knee arthroplasty, where all of the articulating compartments of the joint are repaired with prosthetic components.


OVERVIEW

This disclosure pertains generally to provisional tibial prostheses, systems, and methods. The present inventors have recognized, among other things that for knee prostheses, such as in a total knee arthroplasty, a medial condyle of the femoral component can experience less anterior-posterior translation relative to the lateral condyle during flexion of the knee joint. This can result in external rotation and a medial pivoting motion for the femoral component during femoral rollback. Considering these kinematics, the present inventors have designed tibial implants with medial and lateral compartments that can accommodate such motions of the femoral component in a more desirable fashion. Thus, the present inventors propose a medial compartment for the tibial bearing component that can be configured to provide a high degree of conformity and constraint with the medial condyle of the femoral component, and a lateral compartment of the tibial bearing component that can be shaped to facilitate external rollback of the lateral condyle of the femoral component in deep flexion.


Medial Stability


In view of the above, the present inventors have designed a family of tibial bearing components that can have at least eleven different stock sizes so as to achieve more compatible combinations when used with a family of tibia components that can have at least nine different stock sizes and a family of femoral components that can have at least twelve different stock sizes. Due to the number of components and the designed compatibility between various sizes in the respective families, twenty four combinations of the at least eleven different stock sizes of the family of tibial bearing components can be compatible for operable use with the at least twelve different stock sizes of the family of femoral components. More particularly, because of the designed compatibility between so many different sizes of femoral components and tibial bearing components, in a worst case scenario a conformity between the femoral component and the tibial bearing component in extension can have at most a congruency ratio of 1.1:1, and over half (54%) of the conformities between the various sizes of tibial bearing component and the various sizes of femoral component can have a medial congruency ratio of 1:1.


The present inventors further recognize that by increasing the conformity between the medial condyle of the femoral component and the medial compartment of the tibial bearing component, greater medial stability of the medial condyle can be achieved with an increase in contact area. Thus, the inventors propose tibial bearing articular surface constructions that can facilitate greater conformity (and hence larger contact areas) and examples where compatible combinations of differently sized femoral and tibial bearing components from respective families of components can be combined to achieve more desirable larger contact areas. Such examples can achieve an arrangement where a minimum of 31% of an overall surface area of the medial compartment can be contacted with the femoral component in 0° flexion, and a minimum of 13% of the overall surface area of the medial compartment can be contacted with the femoral component in 45° flexion. According to further examples, an arrangement where an average of 54% of an overall surface area of the medial compartment can be contacted with the femoral component in 0° flexion and an average of 38% of the overall surface area of the medial compartment can be contacted with the femoral component in 45° flexion. The present inventors also propose an anterior lip height for the medial compartment of the tibial bearing component of between 9 mm and 13 mm (depending on the size of the tibial bearing components). This anterior lip height can provide for greater anterior subluxation resistance to provide greater constraint to the medial condyle of the femoral component.


Lateral Mobility


To facilitate greater mobility of the lateral condyle of the femoral component relative to the lateral compartment of the tibial bearing component, the present inventors propose that a sagittal geometry of the lateral compartment of the tibial bearing component can be configured to have two separate radii comprising an anterior radius and a posterior radius. The posterior radius when viewed in a transverse plane arcs about the dwell point (a point of inflection on the articular surface where the articular surface has a deepest distal extent) of the medial compartment to facilitate external rotation of the femoral component for deep flexion. Additionally, in some examples the dwell point of the lateral condyle can be positioned to further facilitate rollback of the lateral condyle of the femoral component for deep flexion. In particular, for the family of differently sized tibial bearing components with an anterior tibial slope of 0°, an anterior-posterior location of the lateral dwell point as a percentage of the total anterior-posterior extent of the tibial bearing component can be between about 65% and about 69% of the total anterior-posterior extent as measured from an anterior most point of the tibial bearing component to a posterior most point.


To further illustrate the apparatuses and systems disclosed herein, the following non-limiting examples are provided:


Example 1 is a tibial bearing component for articulation with a medial condyle and a lateral condyle of a femoral component in a knee replacement procedure, the tibial bearing component can include a distal surface and an articular surface opposing the distal surface. The articular surface can include a medial compartment and a lateral compartment configured for articulation with the medial condyle and the lateral condyle of the femoral component, respectively. The lateral compartment can have a lateral articular track with a lateral anterior-posterior extent, the lateral articular track can comprise a plurality of distal-most points along a proximal surface of the lateral compartment that are contacted by the lateral condyle during rollback of the femoral component. The medial compartment can differ in configuration from the lateral compartment and can have an anterior lip height of between about 9 mm and about 13 mm.


In Example 2, the subject matter of Example 1 can optionally include the lateral compartment can have an anterior portion and a posterior portion, the anterior portion can define the lateral articular track as a nominally straight line when projected onto a transverse plane of the tibial bearing component, the posterior portion can define the lateral articular track with a curved line toward the medial compartment when projected onto the transverse plane of the tibial bearing component.


In Example 3, the subject matter of Example 2 can optionally include wherein the lateral compartment can have a first sagittal radius in the anterior portion and can have a second sagittal radius in the posterior portion.


In Example 4, the subject matter of any one or more of Examples 1-3 can optionally include the medial compartment has a medial articular track with a medial anterior-posterior extent that differs from the lateral anterior-posterior extent. The medial articular track can comprise a plurality of distal-most points along a proximal surface of the medial compartment that are contacted by the medial femoral condyle during rollback of the femoral component. The medial compartment can define the medial articular track as a nominally straight line when projected onto the transverse plane of the bearing component and the medial articular track has a single sagittal radius.


In Example 5, the subject matter of Example 4 can optionally include the medial compartment can be configured to have a medial dwell point a distance between about 61% and about 66% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


In Example 6, the subject matter of any one or more of Examples 1-4 can optionally include the lateral compartment can be configured to have a lateral dwell point a distance between about 65% and about 69% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


In Example 7, the subject matter of any one or more of Examples 1-6 can optionally include the medial compartment can be configured relative to the medial condyle to have between about 31% and about 63% of an overall surface area thereof contacted by the medial condyle of the femoral component with the femoral component in 0° flexion.


In Example 8, the subject matter of any one or more of Examples 1-6 can optionally include the medial compartment can be configured to have between about a 1.1 congruence ratio and about a 1.1:1 congruence ratio with the medial condyle, the congruence ratio can comprise a ratio of the similarity between a sagittal radius of the medial compartment and a sagittal radius of the medial condyle.


Example 9 is a system for knee arthroplasty that can include a family of femoral components having at least twelve different stock sizes and a family of tibial bearing components having at least eleven different stock sizes. Each of the femoral components can include a medial condyle and a lateral condyle. Each of the tibial bearing components can include a distal surface and an articular surface opposing the distal surface. The articular surface can include a medial compartment and a lateral compartment configured for articulation with the medial condyle and the lateral condyle of the femoral component, respectively. The family of tibial bearing components can be configured such that twenty four combinations of the at least eleven different stock sizes of the family of tibial bearing components are compatible for operable use with the at least twelve different stock sizes of the family of femoral components and at least nine different stock sizes of a family of tibial components.


In Example 10, the subject matter of Example 9 can optionally include the family of femoral components and the family of tibial bearing components can be configured such that between about 31% and about 63% of an overall surface area of the medial compartment is contacted by the medial condyle of the femoral component with the femoral component in 0° flexion.


In Example 11, the subject matter of any one or more of Examples 9-10 can optionally include the medial compartment can be configured to have between about a 1.1 congruence ratio and about a 1.1:1 congruence ratio with the medial condyle, the congruence ratio can comprise a ratio of the similarity between a sagittal radius of the medial compartment and a sagittal radius of the medial condyle.


In Example 12, the subject matter of any one or more of Examples 9-11 can optionally include the medial compartment can be configured to have a medial dwell point a distance between about 61% and about 66% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


In Example 13, the subject matter of any one or more of Examples 9-12 can optionally include ten of the at least twelve different stock sizes of the family of femoral components can be compatible for operable use with ten of the at least eleven different stock sizes of the family of tibial bearing components.


In Example 14, the subject matter of any one or more of Examples 9-13 can optionally include eight of the at least twelve different stock sizes of the family of femoral components can be compatible for operable use with six of the at least eleven different stock sizes of the family of tibial bearing components.


In Example 15, the subject matter of any one or more of Examples 9-14 can optionally include nine out of the at least eleven different stock sizes of the family of tibial bearing components can be compatible with no more than two of the at least twelve stock sizes of the family of femoral components, and no more than four of the at least twelve different stock sizes of the family of femoral components can be compatible for operable use with two of the at least eleven different stock sizes of the tibial bearing components.


In Example 16, the subject matter of any one or more of Examples 9-15 can optionally include the medial compartment can have an anterior lip height of between about 9 mm and about 13 mm.


In Example 17, the subject matter of any one or more of Examples 9-16 can optionally include the medial compartment has a medial articular track having a medial anterior-posterior extent that differs from a lateral anterior-posterior extent. The medial articular track can comprise a plurality of distal-most points along a proximal surface of the medial compartment that are contacted by the medial femoral condyle during rollback of the femoral component. The medial compartment can define the medial articular track as a nominally straight line when projected onto the transverse plane of the bearing component and the medial articular track has a single sagittal radius.


Example 18 is a tibial bearing component for articulation with a medial condyle and a lateral condyle of a femoral component in a knee replacement procedure, the tibial bearing component can include a distal surface and an articular surface opposing the distal surface. The articular surface can include a medial compartment and a lateral compartment configured for articulation with the medial condyle and the lateral condyle of the femoral component, respectively. The lateral compartment can be configured to have a lateral dwell point a distance between about 65% and about 69% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


In Example 19, the subject matter of Example 18 can optionally include the medial compartment can differ in configuration from the lateral compartment and can have an anterior lip height of between about 9 mm and about 13 mm.


In Example 20, the subject matter of any one or more of Examples 18-19 can optionally include the lateral compartment has a lateral articular track with a lateral anterior-posterior extent. The lateral articular track can comprise a plurality of distal-most points along a proximal surface of the lateral compartment that are contacted by the lateral condyle during rollback of the femoral component. The lateral compartment can have an anterior portion and a posterior portion, the anterior portion can define the lateral articular track as a nominally straight line when projected onto a transverse plane of the tibial bearing component, the posterior portion can define the lateral articular track with a curved line toward the medial compartment when projected onto the transverse plane of the tibial bearing component.


In Example 21, the subject matter of Example 20 can optionally include wherein the lateral compartment can have a first sagittal radius in the anterior portion and can have a second sagittal radius in the posterior portion.


In Example 22, the apparatuses or method of any one or any combination of Examples 1-21 can optionally be configured such that all elements or options recited are available to use or select from.


These and other examples and features of the present apparatuses and systems will be set forth in part in the following Detailed Description. This Overview is intended to provide non-limiting examples of the present subject matter—it is not intended to provide an exclusive or exhaustive explanation. The Detailed Description below is included to provide further information about the present apparatuses and systems.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals can describe similar components in different views. Like numerals having different letter suffixes can represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various examples discussed in the present document.



FIG. 1 shows a schematic view of a proximal end of a natural tibia, with normal medial and lateral condyle motion in accordance with an example of the present application.



FIG. 2 shows a femoral component assembled with a tibial bearing component in accordance with an example of the present application.



FIG. 2A shows a cross-section of the femoral component and the tibial bearing component of FIG. 2 in a coronal plane in accordance with an example of the present application.



FIG. 3 illustrates laxity envelopes and allowable anterior-posterior translation of the femoral component of FIGS. 2 and 2A relative to the tibial bearing component of FIGS. 2 and 2A in accordance with an example of the present application.



FIGS. 4A to 4D shows plots of the laxity envelopes of FIG. 3 relative to a prior art system in accordance with an example of the present application.



FIG. 5 is a plan view of a proximal surface of a tibial bearing component including features such as a medial compartment and a lateral compartment in accordance with an example of the present application.



FIG. 5A is a cross-sectional view in a coronal plane of the tibial bearing component of FIG. 5 in accordance with an example of the present application.



FIGS. 5B and 5C show a medial side of the tibial bearing component of FIG. 5 including the medial compartment in accordance with an example of the present application.



FIGS. 6 and 6A show a lateral side of the tibial bearing component of FIG. 5 in accordance with an example of the present application.



FIG. 7 shows a sizing chart for a family of tibial bearing components relative to a family of femoral components, tibial components and tibial bearing components in accordance with an example of the present application.



FIG. 8 is a plan view with contact areas between the femoral condyles and the tibial bearing component compartments shown at different degrees of flexion of the femoral component in accordance with an example of the present application.





DETAILED DESCRIPTION

The present application relates tibial prostheses, systems, and methods. The systems, for example, can include a tibial bearing component, and a femoral component.



FIG. 1 shows a schematic view of a proximal end 10 of a natural tibia 12 according to an example of the present application. The natural tibia 12 can include a lateral condyle 14 and a medial condyle 16.


The lateral condyle 14 can differ in shape and size relative to the medial condyle 16. FIG. 1 illustrates an amount of anterior-posterior translation of the lateral femoral condyle superimposed on the lateral condyle 14 and a medial femoral condyle superimposed on the medial condyle 16. Typically, the medial femoral condyle can experience relatively less anterior-posterior translation relative to the lateral femoral condyle during flexion of the knee joint. This can result in external rotation and a medial pivoting motion for the natural femur during femoral rollback. FIG. 1 provides an example where the medial femoral condyle undergoes about 1.5 mm of anterior-posterior translation relative to about 18 mm of anterior-posterior translation of the lateral femoral condyle from about −5° to about 120° degrees of flexion.


In a total knee arthroplasty (referred to simply as a “TKA”) both of the medial and lateral condyles of the femur can be resected. Similarly, the tibia can be resected to remove the medial articular surface and the lateral articular surface using a cutting apparatus. Other portions of the knee, e.g., the intercondylar eminence, ACL can also be removed. Depending on the type of TKA, features such as the PCL can be spared or can also be removed. Prostheses can be implanted on the femur and the tibia providing for the replaced articular surfaces. Although shown in reference to a TKA and corresponding implants, the techniques and methods described herein are also applicable to other knee arthroplasty procedures such as a partial knee arthroplasty (e.g., a unicompartmental knee arthroplasty).



FIGS. 2 and 2A show an assembly 100 of a femoral component 110 with a tibial bearing component 112 for a TKA according to one example. As shown in FIG. 2, the femoral component 110 can include articular surfaces 114 (only one is shown in FIG. 2) and proximal surfaces 116. As shown in FIG. 2A, the articular surfaces 114 can include a medial condyle 118 and a lateral condyle 120. The tibial bearing component 112 can include an articular surface 122 and a distal surface 124. The articular surface 122 can include a medial compartment 126 and a lateral compartment 128.


The femoral component 110 can comprise a femoral component that is compatible with the Zimmer Biomet Persona® knee system manufactured by Zimmer Biomet Holding, Inc. of Warsaw, Ind. The construction of the femoral component is variously described in U.S. Pat. Nos. 8,858,643, 9,072,607, 8,690,954, 8,764,838, 8,932,365 and United States Application Publication No. 2012/0323336, the disclosures of which are incorporated by reference in their entirety. Thus, the specific features of the femoral component 110 will not be described in great detail herein.


As shown in the example of FIGS. 2 and 2A, the tibial bearing component 112 is compatible with and configured for operable use with the femoral component 110. In particular, the articular surface 122 of the tibial bearing component 112 can be configured to receive the articular surfaces 114 of the femoral component 110 thereon and can be configured to allow for movement of the femoral component 110 relative thereto in a manner that simulates the kinematics of a natural knee (e.g., allow for rollback of the femoral component 110 in flexion including anterior-posterior translation).


The proximal surfaces 116 of the femoral component 110 can be configured to receive and couple to resected distal surfaces of the femur. As shown in FIG. 2A, the articular surfaces 114 can comprise the medial condyle 118 and the lateral condyle 120. The articular surface 122 can comprise the medial compartment 126 and the lateral compartment 128. As shown in FIG. 2A, the medial compartment 126 and the lateral compartment 128 can be configured for articulation with the medial condyle 118 and the lateral condyle 120 of the femoral component 110, respectively. The articular surface 122 can be arranged opposing the distal surface 124. The distal surface 124 can be shaped to interface with a proximal surface of a tibial tray (not shown) that can be affixed to a resected proximal surface of the tibia (not shown).



FIG. 3 shows a plan view of the articular surface 122 of the tibial bearing component 112 according to one example. Although the tibial bearing component 112 is shown having a cutout that allows a cruciate-retaining configuration in FIG. 3 and other FIGURES herein, the tibial bearing component 112 can have other designs including a posterior stabilized configuration and/or an ultra-congruent configuration according to other examples that are not intended for cruciate-retaining configuration.


Various aspects of the articular surface 122 discussed in further detail subsequently allow the tibial bearing component 112 to provide a desired stability to the medial condyle 118 (FIG. 2A) of the femoral component 110 (FIG. 2A) while additionally providing a desired mobility to the lateral condyle 120 (FIG. 2A) of the femoral component 110 (FIG. 2A). FIGS. 3 and 4 illustrate and are accompanied by discussion of the desired stable medial condyle and mobile lateral condyle in terms of laxity ranges. FIGS. 5 to 6A and 8 illustrate and are accompanied by discussion of various features of the configuration of the medial and lateral bearing compartments 126, 128 that can improve stabilization of the medial condyle and additionally can improve mobility of the lateral condyle during flexion. A sizing scheme is presented in FIG. 7 for sizing various of the tibial bearing components and femoral components of the respective families in a manner such that they can be used in combination to better achieve the desired stable medial condyle and mobile lateral condyle.


In FIG. 3, the medial compartment 126 and the lateral compartment 128 are illustrated having different average anterior-posterior laxity from 0° to 120° flexion as shown by circles 130L and 130M. As shown in the graphs of FIGS. 4A to 4D, the laxity can comprise a degree of change in the anterior-posterior position of the lateral condyle and the medial condyle plotted against degrees of flexion of the femoral component. Graphs 150 of FIG. 4A and 152 of FIG. 4B, are plots of the lateral condyle 118 and the medial condyle 120, respectively, for a cruciate retained configuration of the tibial bearing component 112 of FIG. 3. As exhibited by the graph 152 of FIG. 4B the medial condyle 118 (FIG. 2A) when used with the tibial component 112 can be relatively more stabilized (has a tighter laxity range as indicated by area 154 of FIG. 4B) when measured against a commercially available knee component design (as indicated by area 156 of FIG. 4B), a cruciate retained configuration of the Persona® knee system, manufactured by Zimmer Biomet Holdings, Inc., of Warsaw, Ind. Similarly, graph 150 of FIG. 4A shows the lateral condyle 120 (FIG. 2A) when used with the tibial bearing component 112 can have more have more mobility (has a larger laxity range as indicated by area 158 of FIG. 4A) when measured against the same commercially available Persona® knee system (as indicated by area 159 of FIG. 4A).


Graphs 160 of FIG. 4C and 162 of FIG. 4D are plots of the lateral condyle and the medial condyle, respectively, for a cruciate sacrificed configuration of the tibial bearing component as described herein. As exhibited by the graph 162 of FIG. 4D, the medial condyle of the femoral component can be relatively more stabilized (has a tighter laxity range as indicated by area 166 of FIG. 4D) when measured against a commercially available knee component design (as indicated by area 164 of FIG. 4D), a cruciate sacrificed configuration of the Persona® knee system, manufactured by Zimmer Biomet Holdings, Inc., of Warsaw, Ind. Similarly, graph 160 of FIG. 4C shows the lateral femoral condyle can have relatively more mobility (has a larger laxity range as indicated by area 168 of FIG. 4C) when measured against the same commercially available Persona® knee system (as indicated by area 170 of FIG. 4C).



FIGS. 5, 5A, 5B, and 5C are views of a tibial bearing component 212 according to an example of the present application. Tibial bearing component 212 can be substantially similar to tibial bearing component 112 previously described herein and adds further detail regarding aspects of the construction of the tibial bearing component. As shown in FIG. 5, the tibial bearing component 212 can include an articular surface 214, a periphery 216, a posterior cutout 218 and an anterior relief space 219. The articular surface 214 can include a medial compartment 220, a lateral compartment 222 and an intercondylar eminence 224.


As previously described, the articular surface 214 can be contacted by the condyles (not shown) of a femoral component when operably assembled in the knee. The condyles of the femoral component can contact the medial and lateral compartments 220, 222. More particularly, the medial compartment 220 and the lateral compartment 222 can be configured (e.g. are dish shaped) for articulation with the medial condyle and the lateral condyle of the femoral component, respectively (as shown in FIG. 2A). The articular surface 214 (sometimes referred to as the proximal surface herein) can be generally opposed by a distal surface 215 as shown in FIGS. 5A and 5C. The periphery 216 can comprise sidewalls connecting with the distal surface 215 and the articular surface 214. The medial compartment 220 can differ in configuration from the lateral compartment 222 as will be explained in further detail subsequently. For example, the medial compartment 220 can have a different size and shape relative to the lateral compartment 222. For example, the anterior-posterior curvature of the lateral compartment 222 can differ from that of the medial compartment 220. Similarly, as shown in FIG. 5C and FIG. 6A, a medial-lateral curvature of the lateral compartment 222 can differ from a medial-lateral curvature of the medial compartment 220.


As shown in the example of FIG. 5, the lateral compartment 222 can have a lateral articular track 226 having a lateral anterior-posterior extent LAP. The lateral articular track 226 can comprise a plurality of distal-most points along the proximal surface 214 of the lateral compartment 222 that are contacted by the lateral femoral condyle during rollback of the femoral component. Similarly, the medial compartment 220 can have a medial articular track 228 having a medial anterior-posterior extent MAP that differs from the lateral anterior-posterior extent LAP. The medial articular track 228 can comprise a plurality of distal-most points along the proximal surface 214 of the medial compartment 220 that are contacted by the medial femoral condyle during rollback of the femoral component.


As shown in FIGS. 5, 6 and 6A, in one example the lateral compartment 222 can have an anterior portion 230 and a posterior portion 232. The anterior portion 230 can define the lateral articular track 226 as a nominally straight line 231 when projected onto a transverse plane of the tibial bearing component 212. The posterior portion 232 can define the lateral articular track 226 as a curved line 233 toward the medial compartment 220 when projected onto the transverse plane of the tibial bearing component 212.


In contrast, the medial articular track 228 can define a nominally straight line 235 when projected onto the transverse plane of the tibial bearing component 212, and the medial articular track 228 defined by the medial compartment 220 can be comprised of a uniform single curve having only a single sagittal radius R as shown in FIG. 5C. The nominally straight line that can be defined by the medial articular track 228 can be substantially parallel to the nominally straight line defined by the anterior portion 230 of the lateral articular track 226 in some cases.


For convenience, the present discussion refers to points, tracks or lines of contact between tibial bearing component 212 and the femoral component along the articular tracks 226, 228. However, it is of course appreciated that each potential point or line of contact (i.e., any of the points along one of the articular tracks 226, 228) is not truly a point or line, but rather an area of contact as illustrated in FIG. 8. These areas of contact may be relatively larger or smaller depending on various factors, such as prosthesis materials, the amount of pressure applied at the interface between tibial bearing component 212 and femoral component, relative shapes of the tibial bearing component 212 relative to the femoral component, and the like. Moreover, it is appreciated that some of the factors affecting the size of the contact area may change dynamically during prosthesis use, such as the amount of applied pressure at the femoral/tibial interface during walking, climbing stairs or crouching, for example. For purposes of the present discussion, a contact point may be taken as the point at the geometric center of the area of contact. The geometric center, in turn, refers to the intersection of all straight lines that divide a given area into two parts of equal moment about each respective line. Stated another way, a geometric center may be said to be the average (i.e., arithmetic mean) of all points of the given area. Similarly, a line or track is the central line of contact passing through and bisecting an elongate area of contact.


Both the medial compartment 220 and the lateral compartment 222 can included dwell points 234 and 236. The dwell points 234 and 236 can comprise distal-most points along the medial articular track 228 and the lateral articular track 226, respectively. As shown in TABLES 1 below, the medial compartment 220 can be configured to have the medial dwell point 234 a distance between about 61% and about 66% of a total anterior-posterior extent T of the tibial bearing component 212 as measured from an anterior most point A of the tibial bearing component 212 to a posterior most point P of the tibial bearing component 212.











TABLE 1





With




Anterior Slope

% of A/P Dwell point to



Name
overall Medial A/P







MC
1-2/AB
61%



3-4/AB
61%



4-5/CD
64%



6-7/CD
62%



8-9/CD
61%



4-5/EF
66%



6-7/EF
64%



8-11/EF
63%



8-11/GH
66%



12/GH
65%



12/J
64%


















TABLE 2





With




Anterior Slope

% of A/P Dwell point to



Name
overall Lateral A/P







MC
1-2/AB
69%



3-4/AB
68%



4-5/CD
69%



6-7/CD
67%



8-9/CD
65%



4-5/EF
69%



6-7/EF
68%



8-11/EF
66%



8-11/GH
67%



12/GH
67%



12/J
65%









As shown in TABLE 2, the lateral compartment 222 can be configured to have the lateral dwell point 236 a distance between about 65% and about 69% of the total anterior-posterior extent T of the tibial bearing component 212 as measured from the anterior most point A to the posterior most point P of the tibial bearing component 212.


As shown in FIG. 5, the posterior cutout 218 is sized and positioned to accommodate a posterior cruciate ligament upon implantation of tibial bearing component 212. The intercondylar eminence 224 can comprise an intercondylar ridge of the articular surface 214 that can be disposed between the medial and lateral compartments 220, 222. The intercondylar eminence 224 can extend generally anterior-posterior from the posterior cutout 218 to the anterior relief space 219. Thus, the intercondylar ridge defined by the intercondylar eminence 224 can be disposed between the medial and lateral dished medial and lateral compartments 220, 222 and occupies the available anterior-posterior space therebetween.



FIG. 5A shows a cross-section through the bearing component in a coronal plane and illustrates the medial-lateral radii R1 and R2 of each of the medial compartment 220 and the lateral compartment 222. These radii can be the same for the medial and lateral or differ according to various examples. FIG. 5A additionally illustrates the distal surface 215, the periphery 216, and the intercondylar eminence 224. As shown in FIG. 5A, the periphery 216 can be shaped to mate with corresponding features of a sidewall of a tibial tray (now shown) such as to create an interference fit.



FIGS. 5B and 5C show a medial side of the tibial bearing component 212 in further detail including the medial compartment 220. As shown in FIG. 5C, the tibial bearing component 212 can have an anterior lip height 240 of between about 9 mm and about 13 mm as measured from the dwell point 234 to a proximal most point of the medial compartment 220. FIG. 5C shows the medial compartment 220 in cross-section along a sagittal plane and shows the medial compartment 220 can have a single sagittal radius RSM.



FIGS. 6 and 6A show a lateral side of the tibial bearing component 212 in further detail including the lateral compartment 222 from a different perspective than those of FIGS. 5 to 5C. FIG. 6 shows the lateral compartment 222 can have an anterior portion 230 and a posterior portion 232. Recall from FIG. 5, the anterior portion 230 can define the lateral articular track 226 as a nominally straight line 231 when projected onto a transverse plane of the tibial bearing component 212. The posterior portion 232 can define the lateral articular track 226 as a curved line 233 toward the medial compartment 220 when projected onto the transverse plane of the tibial bearing component 212. FIG. 6A shows the lateral compartment 222 in cross-section and shows the lateral compartment 222 can have a first sagittal radius RSL1 in the anterior portion and a second sagittal radius RSL2 in the posterior portion with the transition between the first sagittal radius RSL1 and the second sagittal radius RSL2 indicated by the line P.


The tibial bearing components and the femoral components described herein can each be available as a family of tibial bearing components and a family of femoral components, respectively. The family of tibial bearing components can be of a same design class (e.g., be shaped to be cruciate regaining) and can have different stock sizes (e.g., from a small stature size A to a largest size J). Similarly, the family of femoral bearing components can be a same design class (e.g., be shaped to articulate with a cruciate retaining configured tibial bearing component) and can have different stock sizes (e.g., from a small stature size 1 to a largest size 12).



FIG. 7 shows a sizing chart for the family of tibial components 312 relative to the family of femoral components 314. More particularly, the sizing chart shows the family of femoral components 314 can have at least twelve different stock sizes 1 to 12. As previously discussed and illustrated, each femoral component can be of a same design class and can include a medial condyle and a lateral condyle. The family of tibial components 312 can have at least nine different stock sizes A to J. As shown in FIG. 7, the family of tibial bearing components 313 can be configured such that eleven stock sizes exist and that combinations of the at least nine different stock sizes of the family of tibial components are compatible for operable use (e.g. to facilitate a desired articulation similar to that of a natural knee) with the at least twelve different stock sizes of the family of femoral components 314. FIG. 7 also illustrates that nine out of the eleven different stock sizes of tibial bearing components are compatible with no more than two of the twelve stock sizes of femoral components. According to further examples, ten of the at least twelve different stock sizes of the family of femoral components 314 can be compatible for operable use with eight of the at least nine different stock sizes of the family of tibial bearing components 313. Additionally, eight of the at least twelve different stock sizes of the family of femoral components 314 can be compatible for operable use with six of the at least nine different stock sizes of the family of tibial bearing components 313. According to further examples, no more than four of the at least twelve different stock sizes of the family of femoral components can be compatible for operable use with two of the at least twelve different stock sizes of the tibial bearing components.


This overlapping sizing and the provision of many different compatible sizes can have benefits including providing for increased stability of the medial condyle of the femoral component. For example, by having a family of tibial bearing components that can include at least eleven different stock sizes and a family of femoral components that can include at least twelve different stock sizes with twenty four different possible operable combinations, in a worst case scenario a medial conformity between the femoral component and the tibial bearing component in extension can have a conformity ratio of 1.1:1, and over half (54%) of the operable combinations between the sizes of the family of tibial bearing components and the sizes of the family of femoral components can have a conformity ratio of 1:1. “Conformity,” (also referred to as “congruence” or “congruence ratio” in the context of knee prostheses, refers to the similarity of curvature between the convex femoral condyles and the correspondingly concave tibial articular compartments in the sagittal plane. Thus, the conformity ratio can comprise a ratio of the similarity between a sagittal radius of the medial tibial bearing compartment and a sagittal radius of the medial femoral condyle.


Furthermore, having overlapping sizing and the provision of many different compatible sizes (alone and/or in addition to shaping the compartments to better conform with the condyles using aspects previously discussed) can provide for an increased contact area between the medial condyle of the femoral component and the medial compartment of the tibial bearing component. As a result, the femoral component can have greater stability with respect to the medial condyle. Examples of such contact areas 402 (medial compartment contact area) and 404 (lateral compartment contact area) are illustrated in FIG. 8, which shows an articular surface 414 of a tibial bearing component 412 contacted at different flexion angles by a femoral component. TABLE 3 shows combinations of differently sized femoral and tibial bearing components from families of tibial bearing components and femoral components can achieve an arrangement where a minimum 31% of an overall surface area of the medial compartment can be contacted with the femoral component in 0° flexion and a minimum 13% of the overall surface area of the medial compartment can be contacted with the femoral component in 45° flexion.












TABLE 3







MC
Femur
0° Flexion
45° Flexion











Size
Size
Medial
Lateral
Medial





1-2/AB
2 NAR
51%
31%
58%


6-7/CD
 7 STD
62%
36%
48%


8-9/CD
 9 STD
63%
40%
14%


8-11/EF
11 STD
61%
36%
33%


8-11/GH
 8 STD
31%
25%
13%


12/GH
12 STD
55%
32%
59%



Min
31%
25%
13%



Max
63%
40%
59%



Average
54%
33%
38%










According to the example shown in TABLE 3, combinations of differently sized femoral and tibial bearing components can be configured such that between about 31% and about 63% of an overall surface area of the medial compartment is contacted by the medial condyle of the femoral component with the femoral component in 0° flexion. Put another way, the medial compartment can be configured relative to the medial condyle to have between about 31% and about 63% of an overall surface area thereof contacted by the medial condyle of the femoral component with the femoral component in 0° flexion.


ADDITIONAL NOTES

The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) can be used in combination with each other. Other examples can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above detailed description, various features can be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter can lie in less than all features of a particular disclosed example. Thus, the following claims are hereby incorporated into the detailed description as examples or embodiments, with each claim standing on its own as a separate example, and it is contemplated that such examples can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. A tibial bearing component for articulation with a medial condyle and a lateral condyle of a femoral component in a knee replacement procedure, the tibial bearing component comprising: a distal surface; andan articular surface opposing the distal surface, the articular surface including a medial compartment and a lateral compartment configured for articulation with the medial condyle and the lateral condyle of the femoral component, respectively;the lateral compartment having a lateral articular track with a lateral anterior-posterior extent, the lateral articular track comprising a plurality of distal-most points along a proximal surface of the lateral compartment that are contacted by the lateral condyle during rollback of the femoral component;the medial compartment differing in configuration from the lateral compartment and having an anterior lip height as measured from a distal-most point of the articular surface to a proximal-most point of the medial compartment of between 9 mm and 13 mm, wherein the medial compartment is configured relative to the medial condyle to have between 31% and 63% of an overall surface area thereof contacted by the medial condyle of the femoral component with the femoral component in 0° flexion.
  • 2. The tibial bearing component of claim 1, wherein the lateral compartment has an anterior portion and a posterior portion, the anterior portion defines the lateral articular track as a nominally straight line when projected onto a transverse plane of the tibial bearing component, the posterior portion defines the lateral articular track with a curved line toward the medial compartment when projected onto the transverse plane of the tibial bearing component.
  • 3. The tibial bearing component of claim 2, wherein the lateral compartment has a first sagittal radius in the anterior portion and a second sagittal radius in the posterior portion.
  • 4. The tibial bearing component of claim 1, wherein the medial compartment has a medial articular track with a medial anterior-posterior extent that differs from the lateral anterior-posterior extent, the medial articular track comprising a plurality of distal-most points along a proximal surface of the medial compartment that are contacted by the medial femoral condyle during rollback of the femoral component, wherein the medial compartment defines the medial articular track as a nominally straight line when projected onto the transverse plane of the bearing component and the medial articular track has a single sagittal radius.
  • 5. The tibial bearing component of claim 4, wherein the medial compartment is configured to have a medial dwell point a distance between 61% and 66% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.
  • 6. The tibial bearing component of claim 1, wherein the lateral compartment is configured to have a lateral dwell point a distance between 65% and 69% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.
  • 7. The tibial bearing component of claim 1, wherein the medial compartment is configured to have between a 1:1 congruence ratio and a 1.1:1 congruence ratio with the medial condyle, the congruence ratio comprising a ratio of the similarity between a sagittal radius of the medial compartment and a sagittal radius of the medial condyle.
  • 8. A tibial bearing component for articulation with a medial condyle and a lateral condyle of a femoral component in a knee replacement procedure, the tibial bearing component comprising: a distal surface; andan articular surface opposing the distal surface, the articular surface including a medial compartment and a lateral compartment configured for articulation with the medial condyle and the lateral condyle of the femoral component, respectively;the lateral compartment configured to have a lateral dwell point a distance between 65% and 69% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component;wherein the medial femoral condyle undergoes 3 mm of anterior-posterior translation relative to 11 mm of anterior-posterior translation of the lateral femoral condyle from 0° to 120° degrees of flexion.
  • 9. The tibial bearing component of claim 8, wherein the medial compartment differs in configuration from the lateral compartment and has an anterior lip height of between 9 mm and 13 mm as measured from a distal-most point of the articular surface to a proximal-most point of the medial compartment.
  • 10. The tibial bearing component of claim 8, wherein the lateral compartment has a lateral articular track with a lateral anterior-posterior extent, the lateral articular track comprising a plurality of distal-most points along a proximal surface of the lateral compartment that are contacted by the lateral condyle during rollback of the femoral component, and wherein the lateral compartment has an anterior portion and a posterior portion, the anterior portion defines the lateral articular track as a nominally straight line when projected onto a transverse plane of the tibial bearing component, the posterior portion defines the lateral articular track with a curved line toward the medial compartment when projected onto the transverse plane of the tibial bearing component.
  • 11. The tibial bearing component of claim 10, wherein the lateral compartment has a first sagittal radius in the anterior portion and a second sagittal radius in the posterior portion.
  • 12. A tibial bearing component for articulation with a medial condyle and a lateral condyle of a femoral component in a knee replacement procedure, the tibial bearing component comprising: a distal surface; andan articular surface opposing the distal surface, the articular surface including a medial compartment and a lateral compartment configured for articulation with the medial condyle and the lateral condyle of the femoral component, respectively;wherein the medial compartment is configured relative to the medial condyle to have between 31% and 63% of an overall surface area thereof contacted by the medial condyle of the femoral component with the femoral component in 0° flexion.
  • 13. The tibial bearing component of claim 12, wherein the lateral compartment configured to have a lateral dwell point a distance between 65% and 69% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.
  • 14. The tibial bearing component of claim 13, wherein the medial compartment is configured to have a medial dwell point a distance between 61% and 66% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.
  • 15. The tibial bearing component of claim 12, wherein the medial compartment differs in configuration from the lateral compartment and has an anterior lip height of between 9 mm and 13 mm as measured from a distal-most point of the articular surface to a proximal-most point of the medial compartment.
  • 16. The tibial bearing component of claim 12, wherein the medial compartment is configured to have between a 1:1 congruence ratio and a 1.1:1 congruence ratio with the medial condyle, the congruence ratio comprising a ratio of the similarity between a sagittal radius of the medial compartment and a sagittal radius of the medial condyle.
  • 17. The tibial bearing component of claim 12, wherein the lateral compartment has a lateral articular track with a lateral anterior-posterior extent, the lateral articular track comprising a plurality of distal-most points along a proximal surface of the lateral compartment that are contacted by the lateral condyle during rollback of the femoral component, and wherein the lateral compartment has an anterior portion and a posterior portion, the anterior portion defines the lateral articular track as a nominally straight line when projected onto a transverse plane of the tibial bearing component, the posterior portion defines the lateral articular track with a curved line toward the medial compartment when projected onto the transverse plane of the tibial bearing component.
  • 18. The tibial bearing component of claim 17, wherein the lateral compartment has a first sagittal radius in the anterior portion and a second sagittal radius in the posterior portion.
CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/221,461, filed on Sep. 21, 2015, and also claims the benefit of U.S. Provisional Patent Application Ser. No. 62/309,046, filed on Mar. 16, 2016, the benefit of priority of each of which is claimed hereby, and each of which are incorporated by reference herein in its entirety.

US Referenced Citations (427)
Number Name Date Kind
3774244 Walker Nov 1973 A
4016606 Murray et al. Apr 1977 A
4257129 Volz Mar 1981 A
4340978 Buechel et al. Jul 1982 A
4501266 McDaniel Feb 1985 A
4568348 Johnson et al. Feb 1986 A
4711639 Grundei Dec 1987 A
4714474 Brooks, Jr. et al. Dec 1987 A
4759767 Lacey Jul 1988 A
4769040 Wevers Sep 1988 A
4770661 Oh Sep 1988 A
4795468 Hodorek et al. Jan 1989 A
4822365 Walker et al. Apr 1989 A
4936853 Fabian et al. Jun 1990 A
4944757 Martinez et al. Jul 1990 A
4950298 Gustilo et al. Aug 1990 A
4959071 Brown et al. Sep 1990 A
4963152 Hofmann et al. Oct 1990 A
5047057 Lawes Sep 1991 A
5047058 Roberts et al. Sep 1991 A
5059216 Winters Oct 1991 A
5061271 Van Zile Oct 1991 A
5071438 Jones et al. Dec 1991 A
5108442 Smith Apr 1992 A
5116375 Hofmann May 1992 A
5133758 Hollister Jul 1992 A
5137536 Koshino Aug 1992 A
5147405 Van Zile Sep 1992 A
5171283 Pappas et al. Dec 1992 A
5192328 Winters Mar 1993 A
5197488 Kovacevic Mar 1993 A
5219362 Tuke et al. Jun 1993 A
5236461 Forte Aug 1993 A
5246459 Elias Sep 1993 A
5271737 Baldwin et al. Dec 1993 A
5275603 Ferrante et al. Jan 1994 A
5282861 Kaplan Feb 1994 A
5282868 Bahler Feb 1994 A
5282870 Moser et al. Feb 1994 A
5290313 Heldreth Mar 1994 A
5310480 Vidueira May 1994 A
5326361 Hollister Jul 1994 A
5344460 Turanyi et al. Sep 1994 A
5344461 Phlipot Sep 1994 A
5360016 Kovacevic Nov 1994 A
5364402 Mumme et al. Nov 1994 A
5370699 Hood et al. Dec 1994 A
5387239 Bianco et al. Feb 1995 A
5387240 Pottenger et al. Feb 1995 A
5395401 Bahler Mar 1995 A
5405396 Heldreth et al. Apr 1995 A
5413604 Hodge May 1995 A
5413605 Ashby et al. May 1995 A
5425775 Kovacevic et al. Jun 1995 A
5458637 Hayes Oct 1995 A
5470354 Hershberger et al. Nov 1995 A
5489311 Cipolletti Feb 1996 A
5507820 Pappas Apr 1996 A
5549688 Ries et al. Aug 1996 A
5556433 Gabriel Sep 1996 A
5571194 Gabriel Nov 1996 A
5609639 Walker Mar 1997 A
5609641 Johnson et al. Mar 1997 A
5609643 Colleran et al. Mar 1997 A
5609645 Vinciuerra Mar 1997 A
5613970 Houston et al. Mar 1997 A
5656785 Trainor et al. Aug 1997 A
5658341 Delfosse Aug 1997 A
5658342 Draganich et al. Aug 1997 A
5658344 Hurlburt Aug 1997 A
5683470 Johnson et al. Nov 1997 A
5702463 Pothier et al. Dec 1997 A
5702464 Lackey et al. Dec 1997 A
5733292 Gustilo et al. Mar 1998 A
5755801 Walker et al. May 1998 A
5755802 Gerber May 1998 A
5776200 Johnson et al. Jul 1998 A
5782925 Collazo et al. Jul 1998 A
5824100 Kester et al. Oct 1998 A
5824102 Buscayret Oct 1998 A
5824103 Williams et al. Oct 1998 A
5871539 Pappas Feb 1999 A
5871541 Gerber Feb 1999 A
5871543 Hofmann Feb 1999 A
5871545 Goodfellow et al. Feb 1999 A
5879394 Ashby et al. Mar 1999 A
5906643 Walker May 1999 A
5911723 Ashby et al. Jun 1999 A
5928286 Ashby et al. Jul 1999 A
5964808 Blaha et al. Oct 1999 A
5968099 Badorf et al. Oct 1999 A
5976147 LaSalle et al. Nov 1999 A
6004351 Tomita et al. Dec 1999 A
6004352 Buni Dec 1999 A
6010534 O'Neil et al. Jan 2000 A
6013103 Kaufman et al. Jan 2000 A
6039764 Pottenger et al. Mar 2000 A
6068658 Insall et al. May 2000 A
6074425 Pappas Jun 2000 A
6080195 Colleran et al. Jun 2000 A
6090144 Letot et al. Jul 2000 A
6102954 Albrektsson et al. Aug 2000 A
6102955 Mendes et al. Aug 2000 A
6123729 Insall et al. Sep 2000 A
6126692 Robie et al. Oct 2000 A
6143034 Burrows Nov 2000 A
6197064 Haines et al. Mar 2001 B1
6203576 Afriat et al. Mar 2001 B1
6206927 Fell et al. Mar 2001 B1
6210443 Marceaux et al. Apr 2001 B1
RE37277 Baldwin et al. Jul 2001 E
6258127 Schmotzer Jul 2001 B1
6306172 O'Neil et al. Oct 2001 B1
6325828 Dennis et al. Dec 2001 B1
6379388 Ensign et al. Apr 2002 B1
6406497 Takei et al. Jun 2002 B2
6413279 Metzger et al. Jul 2002 B1
6428577 Evans Aug 2002 B1
6436145 Miller Aug 2002 B1
6491726 Pappas Dec 2002 B2
6506215 Letot et al. Jan 2003 B1
6506216 McCue et al. Jan 2003 B1
6558426 Masini May 2003 B1
6607559 Ralph et al. Aug 2003 B2
6623526 Lloyd Sep 2003 B1
6632225 Sanford et al. Oct 2003 B2
6660039 Evans et al. Dec 2003 B1
6702821 Bonutti Mar 2004 B2
6709461 O'Neil et al. Mar 2004 B2
6743258 Keller Jun 2004 B1
6755864 Brack et al. Jun 2004 B1
6770078 Bonutti Aug 2004 B2
6869448 Tuke Mar 2005 B2
6923832 Sharkey et al. Aug 2005 B1
6942670 Heldreth et al. Sep 2005 B2
6953479 Carson et al. Oct 2005 B2
6974481 Carson Dec 2005 B1
6986791 Metzger Jan 2006 B1
7025788 Metzger et al. Apr 2006 B2
7060074 Rosa et al. Jun 2006 B2
7081137 Servidio Jul 2006 B1
7083652 McCue et al. Aug 2006 B2
7153326 Metzger Dec 2006 B1
7160330 Axelson, Jr. et al. Jan 2007 B2
7189262 Hayes, Jr. et al. Mar 2007 B2
7261740 Tuttle Aug 2007 B2
7264635 Suguro Sep 2007 B2
7294149 Hozack et al. Nov 2007 B2
7309362 Yasuda et al. Dec 2007 B2
7309363 Dietz Dec 2007 B2
7326252 Otto et al. Feb 2008 B2
7351263 Afriat Apr 2008 B2
7364581 Michalowicz Apr 2008 B2
7412897 Crottet et al. Aug 2008 B2
7413577 Servidio Aug 2008 B1
7442196 Fisher et al. Oct 2008 B2
7445639 Metzger et al. Nov 2008 B2
7488330 Stad Feb 2009 B2
7497874 Metzger et al. Mar 2009 B1
7513912 Hayes, Jr. et al. Apr 2009 B2
7544211 Rochetin Jun 2009 B2
7547327 Collazo Jun 2009 B2
7575602 Amirouche et al. Aug 2009 B2
7578821 Fisher et al. Aug 2009 B2
7585328 Haas Sep 2009 B2
7587945 Crottet et al. Sep 2009 B2
7591854 Wasielewski Sep 2009 B2
7625407 Akizuki Dec 2009 B2
7628818 Hazebrouck et al. Dec 2009 B2
7632283 Heldreth Dec 2009 B2
7632314 Dietz Dec 2009 B2
7635390 Bonutti Dec 2009 B1
7678152 Suguro et al. Mar 2010 B2
7695519 Collazo Apr 2010 B2
7695520 Metzger et al. Apr 2010 B2
7776085 Bernero et al. Aug 2010 B2
7837691 Cordes et al. Nov 2010 B2
7850698 Straszheim-Morley et al. Dec 2010 B2
8012216 Metzger Sep 2011 B2
8065927 Crottet et al. Nov 2011 B2
8141437 Amirouche et al. Mar 2012 B2
8197549 Amirouche et al. Jun 2012 B2
8211041 Fisher et al. Jul 2012 B2
8245583 Stein Aug 2012 B2
8491589 Fisher et al. Jul 2013 B2
8506571 Chana et al. Aug 2013 B2
8568486 Wentorf et al. Oct 2013 B2
8574304 Wentorf et al. Nov 2013 B2
8591594 Parisi et al. Nov 2013 B2
8603101 Claypool et al. Dec 2013 B2
8613775 Wentorf et al. Dec 2013 B2
8628580 Sanford et al. Jan 2014 B2
8690954 Parisi Apr 2014 B2
8758444 Wentorf et al. Jun 2014 B2
8764838 Parisi et al. Jul 2014 B2
8764840 Sanford et al. Jul 2014 B2
8858643 Parisi et al. Oct 2014 B2
8932298 Colquhoun et al. Jan 2015 B2
8932365 Parisi et al. Jan 2015 B2
8979847 Belcher et al. Mar 2015 B2
9011459 Claypool et al. Apr 2015 B2
9072607 Parisi et al. Jul 2015 B2
9149206 Claypool et al. Oct 2015 B2
9186255 Parisi Nov 2015 B2
9192480 Wentorf et al. Nov 2015 B2
9204970 Parisi et al. Dec 2015 B2
9283082 Sanford et al. Mar 2016 B2
9295557 Wentorf et al. Mar 2016 B2
9295558 Parisi et al. Mar 2016 B2
9308096 Wentorf et al. Apr 2016 B2
9314343 Parisi et al. Apr 2016 B2
9381090 Wentorf et al. Jul 2016 B2
9427337 Claypool et al. Aug 2016 B2
9492290 Claypool et al. Nov 2016 B2
9539116 Claypool Jan 2017 B2
9592133 Toler et al. Mar 2017 B2
9597090 Claypool et al. Mar 2017 B2
9655728 Parisi et al. May 2017 B2
9655729 Parisi et al. May 2017 B2
9707089 Grey et al. Jul 2017 B2
9763794 Sanford et al. Sep 2017 B2
9763795 Parisi et al. Sep 2017 B2
9763796 Wentorf et al. Sep 2017 B2
9763807 Claypool et al. Sep 2017 B2
9788954 Parisi et al. Oct 2017 B2
9861490 Wentorf et al. Jan 2018 B2
9901331 Toler et al. Feb 2018 B2
9918844 Sanford et al. Mar 2018 B2
9925050 Parisi et al. Mar 2018 B2
20010047210 Wolf Nov 2001 A1
20020058997 O'connor et al. May 2002 A1
20020072802 O'Neil et al. Jun 2002 A1
20020120340 Metzger et al. Aug 2002 A1
20020161448 Hayes, Jr. et al. Oct 2002 A1
20030055509 Mccue et al. Mar 2003 A1
20040019382 Amirouche et al. Jan 2004 A1
20040034432 Hughes et al. Feb 2004 A1
20040059340 Serra et al. Mar 2004 A1
20040064191 Wasielewski Apr 2004 A1
20040122441 Muratsu Jun 2004 A1
20040153066 Coon et al. Aug 2004 A1
20040162620 Wyss Aug 2004 A1
20040167537 Errico et al. Aug 2004 A1
20040186582 Yasuda et al. Sep 2004 A1
20040204765 Fenning et al. Oct 2004 A1
20040225368 Plumet et al. Nov 2004 A1
20040236429 Ensign et al. Nov 2004 A1
20040243244 Otto et al. Dec 2004 A1
20040267371 Hayes, Jr. et al. Dec 2004 A1
20050055102 Tornier et al. Mar 2005 A1
20050096747 Tuttle et al. May 2005 A1
20050143831 Justin et al. Jun 2005 A1
20050143832 Carson Jun 2005 A1
20050177170 Fisher et al. Aug 2005 A1
20050197710 Naegerl Sep 2005 A1
20050209701 Suguro et al. Sep 2005 A1
20050209702 Todd et al. Sep 2005 A1
20050246030 Yao Nov 2005 A1
20050267485 Cordes et al. Dec 2005 A1
20050267584 Burdulis, Jr. et al. Dec 2005 A1
20050278035 Wyss et al. Dec 2005 A1
20060004460 Engh et al. Jan 2006 A1
20060020343 Ek Jan 2006 A1
20060030945 Wright Feb 2006 A1
20060052782 Morgan et al. Mar 2006 A1
20060069436 Sutton et al. Mar 2006 A1
20060089653 Auger et al. Apr 2006 A1
20060142869 Gross Jun 2006 A1
20060161259 Cheng et al. Jul 2006 A1
20060184176 Straszheim-Morley et al. Aug 2006 A1
20060189864 Paradis et al. Aug 2006 A1
20060190087 O'Connor et al. Aug 2006 A1
20060195195 Burstein et al. Aug 2006 A1
20060111726 Felt et al. Oct 2006 A1
20060224244 Thomas et al. Oct 2006 A1
20060265080 Mcminn Nov 2006 A1
20070010890 Collazo Jan 2007 A1
20070123992 Sanford May 2007 A1
20070129808 Justin et al. Jun 2007 A1
20070135926 Walker Jun 2007 A1
20070185581 Akizuki et al. Aug 2007 A1
20070198022 Lang et al. Aug 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070234819 Amirouche et al. Oct 2007 A1
20070239165 Amirouche Oct 2007 A1
20080021566 Peters et al. Jan 2008 A1
20080051908 Angibaud et al. Feb 2008 A1
20080091271 Bonitati et al. Apr 2008 A1
20080091272 Aram et al. Apr 2008 A1
20080091273 Hazebrouck Apr 2008 A1
20080103603 Hintermann May 2008 A1
20080114462 Guidera et al. May 2008 A1
20080119938 Oh May 2008 A1
20080119940 Otto et al. May 2008 A1
20080161918 Fankhauser et al. Jul 2008 A1
20080167722 Metzger et al. Jul 2008 A1
20080215156 Duggal et al. Sep 2008 A1
20080243258 Sancheti Oct 2008 A1
20080281426 Fitz et al. Nov 2008 A1
20080288080 Sancheti Nov 2008 A1
20080300689 Mc Kinnon et al. Dec 2008 A1
20080300690 Burstein et al. Dec 2008 A1
20090005708 Johanson et al. Jan 2009 A1
20090036992 Tsakonas Feb 2009 A1
20090043395 Hotokebuchi et al. Feb 2009 A1
20090082873 Hazebrouck et al. Mar 2009 A1
20090088862 Thomas et al. Apr 2009 A1
20090125114 May et al. May 2009 A1
20090149963 Sekel Jun 2009 A1
20090149964 May et al. Jun 2009 A1
20090204221 Walker Aug 2009 A1
20090204222 Burstein et al. Aug 2009 A1
20090210066 Jasty Aug 2009 A1
20090222103 Fitz et al. Sep 2009 A1
20090259314 Linder-ganz et al. Oct 2009 A1
20090264894 Wasielewski Oct 2009 A1
20090265011 Mandell Oct 2009 A1
20090265013 Mandell Oct 2009 A1
20090287310 Fisher et al. Nov 2009 A1
20090306786 Samuelson Dec 2009 A1
20090306787 Crabtree et al. Dec 2009 A1
20090319047 Walker Dec 2009 A1
20090319048 Shah et al. Dec 2009 A1
20090319049 Shah et al. Dec 2009 A1
20090326663 Dun Dec 2009 A1
20090326665 Wyss et al. Dec 2009 A1
20090326666 Wyss et al. Dec 2009 A1
20090326668 Dun Dec 2009 A1
20100010494 Quirno Jan 2010 A1
20100016976 Siebel Jan 2010 A1
20100016977 Masini Jan 2010 A1
20100016978 Williams et al. Jan 2010 A1
20100016979 Wyss et al. Jan 2010 A1
20100036499 Pinskerova Feb 2010 A1
20100036500 Heldreth et al. Feb 2010 A1
20100063594 Hazebrouck et al. Mar 2010 A1
20100063595 Dietz Mar 2010 A1
20100076563 Otto et al. Mar 2010 A1
20100082111 Thomas Apr 2010 A1
20100100011 Roche Apr 2010 A1
20100100189 Metzger Apr 2010 A1
20100100191 May et al. Apr 2010 A1
20100125339 Earl et al. May 2010 A1
20100152858 Lu et al. Jun 2010 A1
20100191341 Byrd Jul 2010 A1
20100198275 Chana et al. Aug 2010 A1
20100222890 Barnett et al. Sep 2010 A1
20100249660 Sherman et al. Sep 2010 A1
20100249789 Rock et al. Sep 2010 A1
20100262253 Cipolletti et al. Oct 2010 A1
20100286788 Komistek Nov 2010 A1
20100305708 Lang Dec 2010 A1
20100329530 Lang Dec 2010 A1
20110022179 Andriacchi et al. Jan 2011 A1
20110029091 Bojarski et al. Feb 2011 A1
20110040387 Ries et al. Feb 2011 A1
20110082558 Kim et al. Apr 2011 A1
20110082559 Hartdegen et al. Apr 2011 A1
20110087332 Bojarski et al. Apr 2011 A1
20110100011 Staffend May 2011 A1
20110125278 Bercovy et al. May 2011 A1
20110144760 Wong et al. Jun 2011 A1
20110251695 Lenz et al. Oct 2011 A1
20120022658 Wentorf Jan 2012 A1
20120022659 Wentorf Jan 2012 A1
20120022660 Wentorf Jan 2012 A1
20120035735 Sanford et al. Feb 2012 A1
20120035737 Sanford Feb 2012 A1
20120095563 Sanford et al. Apr 2012 A1
20120101585 Parisi et al. Apr 2012 A1
20120158152 Claypool et al. Jun 2012 A1
20120179069 Amirouche Jul 2012 A1
20120185054 Maloney et al. Jul 2012 A1
20120232429 Fischer et al. Sep 2012 A1
20120290088 Amirouche et al. Nov 2012 A1
20120310246 Belcher et al. Dec 2012 A1
20120323336 Parisi et al. Dec 2012 A1
20130013076 Fisher et al. Jan 2013 A1
20130024001 Wentorf et al. Jan 2013 A1
20130079671 Stein et al. Mar 2013 A1
20130096567 Fisher et al. Apr 2013 A1
20130102929 Haight et al. Apr 2013 A1
20130103038 Fischer et al. Apr 2013 A1
20130131816 Parisi et al. May 2013 A1
20130131817 Parisi et al. May 2013 A1
20130131818 Parisi et al. May 2013 A1
20130131819 Parisi et al. May 2013 A1
20130131820 Wentorf et al. May 2013 A1
20130173010 Irwin Jul 2013 A1
20130253378 Claypool et al. Sep 2013 A1
20130261504 Claypool et al. Oct 2013 A1
20130261757 Claypool et al. Oct 2013 A1
20130261758 Claypool et al. Oct 2013 A1
20140025175 Wentorf et al. Jan 2014 A1
20140025176 Wentorf et al. Jan 2014 A1
20140025177 Wentorf et al. Jan 2014 A1
20140052268 Sanford et al. Feb 2014 A1
20140052269 Claypool et al. Feb 2014 A1
20140156015 Parisi et al. Jun 2014 A1
20140163687 Parisi et al. Jun 2014 A1
20140249641 Wentorf et al. Sep 2014 A1
20140257505 Parisi et al. Sep 2014 A1
20140257506 Sanford et al. Sep 2014 A1
20140296859 Claypool et al. Oct 2014 A1
20150005890 Parisi et al. Jan 2015 A1
20150088140 Toler et al. Mar 2015 A1
20150190243 Claypool et al. Jul 2015 A1
20150282936 Parisi et al. Oct 2015 A1
20150320564 Parisi et al. Nov 2015 A1
20150359642 Claypool et al. Dec 2015 A1
20160038294 Parisi et al. Feb 2016 A1
20160045322 Parisi et al. Feb 2016 A1
20160135959 Sanford et al. May 2016 A1
20160158019 Grey et al. Jun 2016 A1
20160184107 Parisi et al. Jun 2016 A1
20160287397 Wentorf Oct 2016 A1
20160324647 Claypool et al. Nov 2016 A1
20170143324 Toler et al. May 2017 A1
20170156736 Claypool et al. Jun 2017 A1
20170266011 Wentorf et al. Sep 2017 A1
20180000601 Sanford et al. Jan 2018 A1
20180000602 Wentorf et al. Jan 2018 A1
20180000612 Claypool et al. Jan 2018 A1
20180021143 Parisi et al. Jan 2018 A1
20180021144 Parisi et al. Jan 2018 A1
20180085225 Wentorf et al. Mar 2018 A1
20180256346 Byrd et al. Sep 2018 A1
Foreign Referenced Citations (208)
Number Date Country
2011343440 Apr 2014 AU
2011286306 Oct 2014 AU
2190029 Nov 1995 CA
2856070 Jul 2016 CA
687584 Jan 1997 CH
1087506 Jun 1994 CN
1174498 Feb 1998 CN
1179709 Apr 1998 CN
1440262 Sep 2003 CN
1549695 Nov 2004 CN
2768715 Apr 2006 CN
1780594 May 2006 CN
1874738 Dec 2006 CN
101214175 Jul 2008 CN
101222886 Jul 2008 CN
101288597 Oct 2008 CN
101347359 Jan 2009 CN
201175391 Jan 2009 CN
101361684 Feb 2009 CN
101401750 Apr 2009 CN
101426453 May 2009 CN
101522136 Sep 2009 CN
101646392 Feb 2010 CN
101658446 Mar 2010 CN
101683289 Mar 2010 CN
101711701 May 2010 CN
101795643 Aug 2010 CN
101835441 Sep 2010 CN
102018584 Apr 2011 CN
102048594 May 2011 CN
102058448 May 2011 CN
103118634 May 2013 CN
103118635 May 2013 CN
103118636 May 2013 CN
103370025 Oct 2013 CN
103379880 Oct 2013 CN
104066402 Sep 2014 CN
104093380 Oct 2014 CN
104203160 Dec 2014 CN
104379094 Feb 2015 CN
104736105 Jun 2015 CN
105055052 Nov 2015 CN
105167889 Dec 2015 CN
103118634 Aug 2016 CN
103118636 Aug 2016 CN
104093380 Aug 2016 CN
103370025 Nov 2016 CN
106073949 Nov 2016 CN
106214292 Dec 2016 CN
108135701 Jun 2018 CN
0021421 Jan 1981 EP
0327495 Aug 1989 EP
340919 Nov 1989 EP
0340919 Nov 1989 EP
0372811 Jun 1990 EP
0306744 Apr 1992 EP
0495340 Jul 1992 EP
0636353 Feb 1995 EP
0672397 Sep 1995 EP
0552950 Sep 1996 EP
0536457 Jan 1997 EP
0642328 Dec 1998 EP
0592750 Jan 1999 EP
0903125 Mar 1999 EP
0956836 Nov 1999 EP
0956836 Nov 1999 EP
1025818 Aug 2000 EP
1097679 May 2001 EP
0709074 Dec 2002 EP
1327424 Jul 2003 EP
1378216 Jan 2004 EP
1477143 Nov 2004 EP
1568336 Aug 2005 EP
1719478 Nov 2006 EP
1722721 Nov 2006 EP
1354571 Jun 2007 EP
1396240 Apr 2008 EP
1604623 Jun 2008 EP
1996122 Dec 2008 EP
0927009 Jan 2009 EP
2011455 Jan 2009 EP
1696835 Feb 2009 EP
1132063 Sep 2009 EP
1591082 Sep 2009 EP
2140838 Jan 2010 EP
2143403 Jan 2010 EP
2237177 Oct 2010 EP
1555962 Feb 2011 EP
2319460 May 2011 EP
2324799 May 2011 EP
2335654 Jun 2011 EP
2347733 Jul 2011 EP
0689808 Sep 2012 EP
2595573 May 2013 EP
2782525 Oct 2014 EP
2830543 Feb 2015 EP
2830544 Feb 2015 EP
2830544 Sep 2016 EP
2918235 Jan 2017 EP
2595574 May 2017 EP
2736819 Jan 1997 FR
2747914 Oct 1997 FR
2778332 Nov 1999 FR
2788964 Aug 2000 FR
2824260 Nov 2002 FR
2852819 Oct 2004 FR
2926719 Jul 2009 FR
225347 Dec 1924 GB
2253147 Sep 1992 GB
2345446 Jul 2000 GB
7145DELNP2014 Apr 2015 IN
61247449 Nov 1986 JP
62270153 Nov 1987 JP
06203576 Jul 1994 JP
09289998 Nov 1997 JP
09511668 Nov 1997 JP
2000000255 Jan 2000 JP
2000245758 Sep 2000 JP
2003516183 May 2003 JP
2004166802 Jun 2004 JP
2004254811 Sep 2004 JP
3734270 Jan 2006 JP
2007054488 Mar 2007 JP
2007509709 Apr 2007 JP
2007222616 Sep 2007 JP
2009082713 Apr 2009 JP
2009245619 Oct 2009 JP
2010022827 Feb 2010 JP
2010188051 Sep 2010 JP
2010240406 Oct 2010 JP
2010259808 Nov 2010 JP
2011092738 May 2011 JP
2012500667 Jan 2012 JP
2012531265 Dec 2012 JP
2015512307 Apr 2013 JP
2013535276 Sep 2013 JP
2013536005 Sep 2013 JP
2013536006 Sep 2013 JP
2013536007 Sep 2013 JP
2014505517 Mar 2014 JP
2014508554 Apr 2014 JP
2014239900 Dec 2014 JP
2015502203 Jan 2015 JP
2015504333 Feb 2015 JP
2015504759 Feb 2015 JP
2015513966 May 2015 JP
2015231566 Dec 2015 JP
2016028729 Mar 2016 JP
5980341 Aug 2016 JP
2016195841 Nov 2016 JP
2017221732 Dec 2017 JP
WO-9305729 Apr 1993 WO
WO-9409725 May 1994 WO
WO-9514444 Jun 1995 WO
WO-9514446 Jun 1995 WO
WO-9530389 Nov 1995 WO
WO-9535074 Dec 1995 WO
WO-9934755 Jul 1999 WO
WO-0141680 Jun 2001 WO
WO-200141680 Jun 2001 WO
WO-03099106 Dec 2003 WO
WO-2004058108 Jul 2004 WO
WO-2005037147 Apr 2005 WO
WO-2005051240 Jun 2005 WO
WO-2005122967 Dec 2005 WO
WO-2006058057 Jun 2006 WO
WO-2006092167 Sep 2006 WO
WO-2007108804 Sep 2007 WO
WO-2007109641 Sep 2007 WO
2007119173 Oct 2007 WO
2009029631 Mar 2009 WO
WO-2009088235 Jul 2009 WO
WO-2009088236 Jul 2009 WO
WO-2009088238 Jul 2009 WO
WO-2009105495 Aug 2009 WO
WO-2010001010 Jan 2010 WO
WO-2010008803 Jan 2010 WO
WO-2010011590 Jan 2010 WO
WO-2010022272 Feb 2010 WO
WO-2010023062 Mar 2010 WO
WO-2010045537 Apr 2010 WO
WO-2010075365 Jul 2010 WO
WO-2011043955 Apr 2011 WO
WO-2011063123 May 2011 WO
2011071979 Jun 2011 WO
WO-2011072235 Jun 2011 WO
WO-2011110865 Sep 2011 WO
WO-2012004580 Jan 2012 WO
WO-2012018563 Feb 2012 WO
WO-2012018564 Feb 2012 WO
WO-2012018565 Feb 2012 WO
WO-2012018566 Feb 2012 WO
WO-2012018567 Feb 2012 WO
WO-2012020460 Feb 2012 WO
WO-2012082628 Jun 2012 WO
WO-2012083280 Jun 2012 WO
WO-2012112698 Aug 2012 WO
WO-2013013094 Jan 2013 WO
WO-2013074142 May 2013 WO
WO-2013074143 May 2013 WO
WO-2013074144 May 2013 WO
WO-2013074145 May 2013 WO
WO-2013077919 May 2013 WO
WO-2013115849 Aug 2013 WO
WO-2013148954 Oct 2013 WO
WO-2013148960 Oct 2013 WO
2017053196 Mar 2017 WO
2018165442 Sep 2018 WO
Non-Patent Literature Citations (674)
Entry
“European Application Serial No. 15160934.4, Communication Pursuant to Article 94(3) EPC dated Apr. 26, 2018”, 5 pgs.
“Canadian Application Serial No. 2,806,321, Response filed 12 6 17 to Office Action dated Jun. 15, 2017”, 12 pgs.
“European Application Serial No. 16189084.3, Response filed May 10, 2018 to Extended European Search Report dated Oct. 9, 2017”, 20 pgs.
“European Application Serial No. 15191781.2, Response filed May 17, 2018 to Communication Pursuant to Article 94(3) EPC dated Jan. 8, 2018”, 58 pgs.
“Chinese Application Serial No. 201610634595.5, Office Action dated Apr. 20, 2018”, W English Translation, 8 pgs.
European Application Serial No. 17163432.2, Extended European Search Report dated May 14, 2018, 6 pgs.
“Persona “Medial Congruent Articular Surface” System Overview”, Zimmer, Inc., (2015), 6 pgs.
“Persona “The Personalized Knee System””, Medial Congruent Sales Training, Zimmer, Inc., (Jul. 2015), 53 pgs.
“Persona “The Personalized Knee System” Medial Congruent Advanced Bearings”, Zimmer, Inc., (2015), 2 pgs.
“Persona “The Personalized Knee System” Medial Congruent Articular Surface Design Rationale”, Zimmer, Inc., (2015), 20 pgs.
“Persona “The Personalized Knee System” Persona Medial Congruent”, Mar. 24-28, 2015 at the American Academy of Orthopaedic Surgeons (AAOS) Annual Meeting., (Mar. 2015), 1 pg.
“Persona “The Personalized Knee System” Surgical Technique”, Zimmer, Inc., (2015), 72 pgs.
“Persona Medial Congruent Articular Surface”, Sales Training, Zimmer Biomet, (Jan. 2016), 71 pgs.
Freeman, M.A.R., et al., “The Movement of the Knee Studied by Magnetic Resonance Imaging”, Advanced Bearings—Clinical Orthopedics & Related Research 2003, (2003), 1 pg.
Siggelkow, EIK, et al., “Impact of Tibia Bearing Surface and Femoral Component Design on Flexion Kinematics During Lunge”, Mar. 28-31, 2015 at the Orthopaedic Research Society (ORS) Annual Meeting (Poster #1645), (Mar. 2015), 1 pg.
Siggelkow, EIK, et al., “Impact of Tibia Bearing Surface Design on Deep Knee Bend Kinematics”, Mar. 24-28, 2015 at the AAOS Conference (Poster #P142), (Mar. 2015), 1 pg.
“International Application Serial No. PCT/US2016/052163, International Search Report dated Jan. 20, 2017”, 7 pgs.
“International Application Serial No. PCT/US2016/052163, Written Opinion dated Jan. 20, 2017”, 8 pgs.
“International Application Serial No. PCT/US2016/052163, Invitation to Pay Add'l Fees and Partial Search Report dated Nov. 7, 2016”, 7 pgs.
“U.S. Appl. No. 13/087,610, Non Final Office Action dated Feb. 26, 2013”, 7 pgs.
“U.S. Appl. No. 13/087,610, Notice of Allowance dated Jun. 28, 2013”, 6 pgs.
“U.S. Appl. No. 13/087,610, Notice of Allowance dated Oct. 8, 2013”, 7 pgs.
“U.S. Appl. No. 13/087,610, Response filed May 24, 2013 to Non Final Office Action dated Feb. 26, 2013”, 15 pgs.
“U.S. Appl. No. 13/189,324, Examiner Interview Summary dated Jan. 13, 2014”, 4 pgs.
“U.S. Appl. No. 13/189,324, Final Office Action dated Jul. 16, 2013”, 19 pgs.
“U.S. Appl. No. 13/189,324, Non Final Office Action dated Dec. 11, 2012”, 19 pgs.
“U.S. Appl. No. 13/189,324, Notice of Allowance dated Feb. 20, 2014”, 8 pgs.
“U.S. Appl. No. 13/189,324, PTO Response to 312 Amendment dated May 29, 2014”, 2 pgs.
“U.S. Appl. No. 13/189,324, Response filed Jan. 15, 2014 to Final Office Action dated Jul. 16, 2013”, 23 pgs.
“U.S. Appl. No. 13/189,324, Response filed Jul. 10, 2013 to Non Final Office Action dated Dec. 11, 2012”, 24 pgs.
“U.S. Appl. No. 13/189,328, Non Final Office Action dated Mar. 19, 2013”, 10 pgs.
“U.S. Appl. No. 13/189,328, Notice of Allowance dated Oct. 8, 2013”, 12 pgs.
“U.S. Appl. No. 13/189,328, PTO Response to 312 Amendment dated Dec. 13, 2013”, 2 pgs.
“U.S. Appl. No. 13/189,328, Response filed Jan. 10, 2013 to Restriction Requirement dated Dec. 10, 2012”, 9 pgs.
“U.S. Appl. No. 13/189,328, Response filed Jul. 18, 2013 to Non Final Office Action dated Mar. 19, 2013”, 16 pgs.
“U.S. Appl. No. 13/189,328, Restriction Requirement dated Dec. 10, 2012”, 6 pgs.
“U.S. Appl. No. 13/189,336, Notice of Allowance dated Sep. 13, 2013”, 30 pgs.
“U.S. Appl. No. 13/189,336, PTO Response to 312 Amendment dated Nov. 25, 2013”, 2 pgs.
“U.S. Appl. No. 13/189,336, Response filed Apr. 15, 2013 to Restriction Requirement dated Jan. 30, 2013”, 21 pgs.
“U.S. Appl. No. 13/189,336, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 20 pgs.
“U.S. Appl. No. 13/189,336, Restriction Requirement dated Jan. 30, 2013”, 5 pgs.
“U.S. Appl. No. 13/189,336, Restriction Requirement dated Jun. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/189,338, Notice of Allowance dated Sep. 23, 2013”, 23 pgs.
“U.S. Appl. No. 13/189,338, Response filed Apr. 15, 2013 to Restriction Requirement dated Feb. 14, 2013”, 18 pgs.
“U.S. Appl. No. 13/189,338, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 16 pgs.
“U.S. Appl. No. 13/189,338, Restriction Requirement dated Feb. 14, 2013”, 5 pgs.
“U.S. Appl. No. 13/189,338, Restriction Requirement dated Jun. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/189,339, Notice of Allowance dated Sep. 20, 2013”, 16 pgs.
“U.S. Appl. No. 13/189,339, Response filed Apr. 15, 2013 to Restriction Requirement dated Mar. 6, 2013”, 11 pgs.
“U.S. Appl. No. 13/189,339, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 10 pgs.
“U.S. Appl. No. 13/189,339, Restriction Requirement dated Mar. 6, 2013”, 6 pgs.
“U.S. Appl. No. 13/189,339, Restriction Requirement dated Jun. 17, 2013”, 7 pgs.
“U.S. Appl. No. 13/229,103, Applicant Interview Summary dated Sep. 23, 2013”, 2 pgs.
“U.S. Appl. No. 13/229,103, Examiner Interview Summary dated Sep. 13, 2013”, 3 pgs.
“U.S. Appl. No. 13/229,103, Non Final Office Action dated Apr. 1, 2013”, 18 pgs.
“U.S. Appl. No. 13/229,103, Notice of Allowance dated Sep. 18, 2013”, 9 pgs.
“U.S. Appl. No. 13/229,103, Response filed Jul. 1, 2013 to Non Final Office Action dated Apr. 1, 2013”, 19 pgs.
“U.S. Appl. No. 13/229,103, Supplemental Notice of Allowability dated Oct. 18, 2013”, 2 pgs.
“U.S. Appl. No. 13/459,037, Final Office Action dated Sep. 23, 2013”, 9 pgs.
“U.S. Appl. No. 13/459,037, Non Final Office Action dated Apr. 23, 2013”, 10 pgs.
“U.S. Appl. No. 13/459,037, Notice of Allowance dated Jun. 13, 2014”, 9 pgs.
“U.S. Appl. No. 13/459,037, Preliminary Amendment filed Apr. 27, 2012”, 3 pgs.
“U.S. Appl. No. 13/459,037, Response filed Mar. 21, 2014 to Final Office Action dated Sep. 23, 2013”, 15 pgs.
“U.S. Appl. No. 13/459,037, Response filed Mar. 28, 2013 to Restriction Requirement dated Feb. 26, 2013”, 9 pgs.
“U.S. Appl. No. 13/459,037, Response filed Jul. 23, 2013 to Non Final Office Action dated Apr. 23, 2013”, 19 pgs.
“U.S. Appl. No. 13/459,037, Restriction Requirement dated Feb. 26, 2013”, 6 pgs.
“U.S. Appl. No. 13/459,041, Non Final Office Action dated Jan. 15, 2014”, 16 pgs.
“U.S. Appl. No. 13/459,041, Non Final Office Action dated Sep. 9, 2014”, 14 pgs.
“U.S. Appl. No. 13/459,041, Notice of Allowance dated Apr. 2, 2015”, 10 pgs.
“U.S. Appl. No. 13/459,041, Preliminary Amendment dated Apr. 27, 2012”, 7 pgs.
“U.S. Appl. No. 13/459,041, PTO Response to Rule 312 Communication dated Jun. 9, 2015”, 2 pgs.
“U.S. Appl. No. 13/459,041, Response filed May 15, 2014 to Non-Final Office Action dated Jan. 15, 2014”, 24 pgs.
“U.S. Appl. No. 13/459,041, Response filed Sep. 23, 2013 to Restriction Requirement dated Jul. 25, 2013”, 18 pgs.
“U.S. Appl. No. 13/459,041, Response filed Dec. 9, 2014 to Non-Final Office Action dated Sep. 9, 2014”, 23 pgs.
“U.S. Appl. No. 13/459,041, Restriction Requirement dated Jul. 25, 2013”, 9 pgs.
“U.S. Appl. No. 13/459,048, Non Final Office Action dated Jul. 11, 2013”, 6 pgs.
“U.S. Appl. No. 13/459,048, Notice of Allowance dated Nov. 26, 2013”, 10 pgs.
“U.S. Appl. No. 13/459,048, Preliminary Amendment filed Apr. 27, 2012”, 7 pgs.
“U.S. Appl. No. 13/459,048, Response filed Nov. 11, 2013 to Non-Final Office Action dated Jul. 11, 2013”, 16 pgs.
“U.S. Appl. No. 13/459,056, Examiner Interview Summary dated Dec. 26, 2013”, 3 pgs.
“U.S. Appl. No. 13/459,056, Non Final Office Action dated Jul. 25, 2013”, 11 pgs.
“U.S. Appl. No. 13/459,056, Notice of Allowance dated Feb. 20, 2014”, 5 pgs.
“U.S. Appl. No. 13/459,056, Preliminary Amendment filed Apr. 27, 2012”, 7 pgs.
“U.S. Appl. No. 13/459,056, PTO Response to Rule 312 Communication dated May 22, 2014”, 2 pgs.
“U.S. Appl. No. 13/459,056, Response filed Jan. 24, 2014 to Non-Final office Action dated Jul. 25, 2013”, 27 pgs.
“U.S. Appl. No. 13/459,056, Response filed Apr. 8, 2013 to Restriction Requirement dated Mar. 6, 2013”, 15 pgs.
“U.S. Appl. No. 13/459,056, Restriction Requirement dated Mar. 6, 2013”, 6 pgs.
“U.S. Appl. No. 13/593,339, Non Final Office Action dated Mar. 6, 2013”, 7 pgs.
“U.S. Appl. No. 13/593,339, Notice of Allowance dated Feb. 14, 2014”, 9 pgs.
“U.S. Appl. No. 13/593,339, Preliminary Amendment filed Aug. 23, 2012”, 6 pgs.
“U.S. Appl. No. 13/593,339, Response filed Jan. 31, 2014 to Non-Final Office Action dated Oct. 4, 2013”, 19 pgs.
“U.S. Appl. No. 13/593,339, Response filed Aug. 30, 2013 to Restriction Requirement dated Aug. 1, 2013”, 14 pgs.
“U.S. Appl. No. 13/593,339, Restriction Requirement dated Aug. 1, 2013”, 5 pgs.
“U.S. Appl. No. 13/593,339, Supplemental Notice of Allowability dated Mar. 31, 2014”, 2 pgs.
“U.S. Appl. No. 13/594,543, Corrected Notice of Allowance Mar. 16, 2016”, 2 pgs.
“U.S. Appl. No. 13/594,543, Examiner Interview Summary dated Jan. 22, 2016”, 3 pgs.
“U.S. Appl. No. 13/594,543, Final Office Action dated Jul. 17, 2014”, 12 pgs.
“U.S. Appl. No. 13/594,543, Final Office Action dated Nov. 20, 2015”, 28 pgs.
“U.S. Appl. No. 13/594,543, Non Final Office Action dated Jun. 19, 2015”, 30 pgs.
“U.S. Appl. No. 13/594,543, Non Final Office Action dated Dec. 26, 2013”, 15 pgs.
“U.S. Appl. No. 13/594,543, Non-Final Office Action dated Jan. 9, 2015”, 23 pgs.
“U.S. Appl. No. 13/594,543, Notice of Allowance dated Mar. 1, 2016”, 9 pgs.
“U.S. Appl. No. 13/594,543, Preliminary Amendment filed Aug. 24, 2012”, 4 pgs.
“U.S. Appl. No. 13/594,543, Response filed Feb. 8, 2016 to Final Office Action dated Nov. 20, 2015”, 17 pgs.
“U.S. Appl. No. 13/594,543, Response filed Apr. 7, 2015 to Non-Final Office Action dated Jan. 9, 2015”, 27 pgs.
“U.S. Appl. No. 13/594,543, Response filed May 7, 2014 to Non-Final office Action dated Dec. 26, 2013”, 17 pgs.
“U.S. Appl. No. 13/594,543, Response filed Sep. 21, 2015 to Non-Final Office Action dated Jun. 19, 2015”, 25 pgs.
“U.S. Appl. No. 13/594,543, Response filed Oct. 11, 2013 to Restriction Requirement dated Sep. 12, 2013”, 8 pgs.
“U.S. Appl. No. 13/594,543, Response filed Dec. 17, 2014 to Final Office Action dated Jul. 17, 2014”, 15 pgs.
“U.S. Appl. No. 13/594,543, Restriction Requirement dated Sep. 12, 2013”, 5 pgs.
“U.S. Appl. No. 13/819,116, Advisory Action dated Jan. 5, 2016”, 3 pgs.
“U.S. Appl. No. 13/819,116, Corrected Notice of Allowance dated Oct. 21, 2016”, 2 pgs.
“U.S. Appl. No. 13/819,116, Examiner Interview Summary dated Apr. 18, 2016”, 11 pgs.
“U.S. Appl. No. 13/819,116, Final Office Action dated Jul. 26, 2016”, 6 pgs.
“U.S. Appl. No. 13/819,116, Final Office Action dated Oct. 21, 2015”, 15 pgs.
“U.S. Appl. No. 13/819,116, Non Final Office Action dated Feb. 17, 2016”, 15 pgs.
“U.S. Appl. No. 13/819,116, Non Final Office Action dated Jun. 2, 2015”, 14 pgs.
“U.S. Appl. No. 13/819,116, Notice of Allowance dated Sep. 29, 2016”, 5 pgs.
“U.S. Appl. No. 13/819,116, Preliminary Amendment filed Feb. 26, 2013”, 8 pgs.
“U.S. Appl. No. 13/819,116, Response filed Mar. 27, 2015 to Restriction Requirement dated Feb. 12, 2015”, 11 pgs.
“U.S. Appl. No. 13/819,116, Response filed Apr. 29, 2016 to Non Final Office Action dated Feb. 17, 2016”, 17 pgs.
“U.S. Appl. No. 13/819,116, Response filed Jul. 16, 2015 to Non Final Office Action dated Jun. 2, 2015”, 22 pgs.
“U.S. Appl. No. 13/819,116, Response filed Sep. 14, 2016 Final Office Action dated Jul. 26, 2016”, 10 pgs.
“U.S. Appl. No. 13/819,116, Response filed Dec. 15, 2015 to Final Office Action dated Oct. 21, 2015”, 16 pgs.
“U.S. Appl. No. 13/819,116, Restriction Requirement dated Feb. 12, 2015”, 7 pgs.
“U.S. Appl. No. 13/836,586, Express Abandonment filed May 30, 2014”, 1 pg.
“U.S. Appl. No. 13/836,665, Examiner Interview Summary dated Jul. 17, 2014”, 4 pgs.
“U.S. Appl. No. 13/836,665, Final Office Action dated Jul. 25, 2014”, 25 pgs.
“U.S. Appl. No. 13/836,665, Non Final Office Action dated Jan. 30, 2014”, 21 pgs.
“U.S. Appl. No. 13/836,665, Notice of Allowance dated Jun. 9, 2015”, 10 pgs.
“U.S. Appl. No. 13/836,665, Response filed Jan. 23, 2015 to Final Office Action dated Jul. 25, 2014”, 25 pgs.
“U.S. Appl. No. 13/836,665, Response filed May 30, 2014 to Non-Final Office Action dated Jan. 30, 2014”, 21 pgs.
“U.S. Appl. No. 13/837,294, Final Office Action dated Apr. 25, 2016”, 7 pgs.
“U.S. Appl. No. 13/837,294, Final Office Action dated Jun. 2, 2016”, 7 pgs.
“U.S. Appl. No. 13/837,294, Non Final Office Action dated Dec. 10, 2015”, 8 pgs.
“U.S. Appl. No. 13/837,294, Notice of Allowance dated Aug. 25, 2016”, 5 pgs.
“U.S. Appl. No. 13/837,294, Response filed Mar. 4, 2016 to Non Final Office Action dated Dec. 10, 2015”, 16 pgs.
“U.S. Appl. No. 13/837,294, Response filed Aug. 3, 2016 to Final Office Action dated Jun. 2, 2016”, 7 pgs.
“U.S. Appl. No. 13/837,294, Response filed Oct. 12, 2015 to Restriction Requirement dated Aug. 24, 2015”, 9 pgs.
“U.S. Appl. No. 13/837,294, Restriction Requirement dated Aug. 24, 2015”, 6 pgs.
“U.S. Appl. No. 13/837,774, Examiner Interview Summary dated Jul. 22, 2014”, 4 pgs.
“U.S. Appl. No. 13/837,774, Final Office Action dated Mar. 17, 2016”, 14 pgs.
“U.S. Appl. No. 13/837,774, Final Office Action dated Jul. 28, 2014”, 17 pgs.
“U.S. Appl. No. 13/837,774, Non Final Office Action dated Feb. 10, 2014”, 33 pgs.
“U.S. Appl. No. 13/837,774, Non Final Office Action dated Sep. 18, 2015”, 16 pgs.
“U.S. Appl. No. 13/837,774, Response filed Jan. 28, 2015 to Final Office Action dated Jul. 28, 2014”, 16 pgs.
“U.S. Appl. No. 13/837,774, Response filed Jun. 10, 2014 to Non-Final Office Action dated Feb. 20, 2014”, 29 pgs.
“U.S. Appl. No. 13/837,774, Response filed Jul. 7, 2015 to Restriction Requirement dated May 20, 2015”, 10 pgs.
“U.S. Appl. No. 13/837,774, Response filed Dec. 16, 2015 to Non Final Office Action dated Sep. 18, 2015”, 17 pgs.
“U.S. Appl. No. 13/837,774, Restriction Requirement dated May 20, 2015”, 6 pgs.
“U.S. Appl. No. 14/034,076, Appeal Brief Filed Apr. 18, 2016”, 21 pgs.
“U.S. Appl. No. 14/034,076, Final Office Action dated Dec. 21, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,076, Non Final Office Action dated Jun. 24, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,076, Notice of Allowance dated Oct. 28, 2016”, 7 pgs.
“U.S. Appl. No. 14/034,076, Response filed Nov. 16, 2015 to Non Final Office Action dated Jun. 24, 2015”, 13 pgs.
“U.S. Appl. No. 14/034,937, Appeal Brief Filed Sep. 9, 2015”, 41 pgs.
“U.S. Appl. No. 14/034,937, Appeal Decision mailed May 30, 2017”, 34 pgs.
“U.S. Appl. No. 14/034,937, Final Office Action dated Jun. 5, 2015”, 22 pgs.
“U.S. Appl. No. 14/034,937, Non Final Office Action dated Jan. 2, 2015”, 21 pgs.
“U.S. Appl. No. 14/034,937, Notice of Allowance dated Aug. 30, 2017”, 14 pgs.
“U.S. Appl. No. 14/034,937, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,937, PTO Response to Rule 312 Communication dated Oct. 10, 2017”, 2 pgs.
“U.S. Appl. No. 14/034,937, Response filed Mar. 30, 2015 to Non-Final Office Action”, 24 pgs.
“U.S. Appl. No. 14/034,937, Response filed Oct. 27, 2014 to Restriction Requirement dated Sep. 11, 2014”, 12 pgs.
“U.S. Appl. No. 14/034,937, Restriction Requirement dated Sep. 11, 2014”, 6 pgs.
“U.S. Appl. No. 14/034,937, Supplemental Preliminary Amendment filed Oct. 24, 2013”, 11 pgs.
“U.S. Appl. No. 14/034,944, Non Final Office Action dated Mar. 3, 2015”, 16 pgs.
“U.S. Appl. No. 14/034,944, Notice of Allowance dated Aug. 28, 2015”, 7 pgs.
“U.S. Appl. No. 14/034,944, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,944, Response filed Jun. 23, 2015 to Non Final Office Action dated Mar. 3, 2015”, 15 pgs.
“U.S. Appl. No. 14/034,944, Response filed Dec. 15, 2014 to Restriction Requirement dated Oct. 14, 2014”, 12 pgs.
“U.S. Appl. No. 14/034,944, Restriction Requirement dated Oct. 14, 2014”, 6 pgs.
“U.S. Appl. No. 14/034,944, Supplemental Preliminary Amendment filed Oct. 24, 2013”, 11 pgs.
“U.S. Appl. No. 14/034,954, Advisory Action dated Aug. 25, 2015”, 3 pgs.
“U.S. Appl. No. 14/034,954, Final Office Action dated Jun. 1, 2015”, 26 pgs.
“U.S. Appl. No. 14/034,954, Non Final Office Action dated Dec. 19, 2014”, 25 pgs.
“U.S. Appl. No. 14/034,954, Notice of Allowance dated Nov. 20, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,954, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,954, Response filed Mar. 17, 2015 to Non Final Office Action dated Dec. 19, 2014”, 21 pgs.
“U.S. Appl. No. 14/034,954, Response filed Aug. 3, 2015 to Final Office Action dated Jun. 1, 2015”, 19 pgs.
“U.S. Appl. No. 14/034,954, Response filed Aug. 31, 2015 to Advisory Action dated Aug. 25, 2015”, 21 pgs.
“U.S. Appl. No. 14/034,954, Response filed Oct. 27, 2014 to Restriction Requirement dated Aug. 25, 2014”, 11 pgs.
“U.S. Appl. No. 14/034,954, Restriction Requirement dated Aug. 25, 2014”, 7 pgs.
“U.S. Appl. No. 14/034,954, Supplemental Preliminary Amendment filed Oct. 25, 2013”, 8 pgs.
“U.S. Appl. No. 14/034,963, Final Office Action dated Apr. 13, 2015”, 22 pgs.
“U.S. Appl. No. 14/034,963, Final Office Action dated Oct. 13, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,963, Non Final Office Action dated Jul. 1, 2015”, 15 pgs.
“U.S. Appl. No. 14/034,963, Non Final Office Action dated Nov. 21, 2014”, 19 pgs.
“U.S. Appl. No. 14/034,963, Notice of Allowance dated Dec. 18, 2015”, 5 pgs.
“U.S. Appl. No. 14/034,963, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,963, Response filed Mar. 20, 2015 to Non-Final Office Action dated Nov. 21, 2014”, 20 pgs.
“U.S. Appl. No. 14/034,963, Response filed Jun. 19, 2015 to Final Office Action dated Apr. 13, 2015”, 17 pgs.
“U.S. Appl. No. 14/034,963, Response filed Sep. 30, 2015 to Non Final Office Action dated Jul. 1, 2015”, 14 pgs.
“U.S. Appl. No. 14/034,963, Response filed Nov. 20, 2015 to Final Office Action dated Oct. 13, 2015”, 12 pgs.
“U.S. Appl. No. 14/063,032, Non Final Office Action dated Jun. 20, 2014”, 6 pgs.
“U.S. Appl. No. 14/063,032, Notice of Allowance dated Dec. 19, 2014”, 6 pgs.
“U.S. Appl. No. 14/063,032, Preliminary Amendment filed Oct. 25, 2013”, 3 pgs.
“U.S. Appl. No. 14/063,032, Response filed Oct. 20, 2014 to Non-Final Office Action dated Jun. 20, 2014”, 9 pgs.
“U.S. Appl. No. 14/063,593, Advisory Action dated Aug. 19, 2016”, 3 pgs.
“U.S. Appl. No. 14/063,593, Final Office Action dated Jun. 9, 2016”, 10 pgs.
“U.S. Appl. No. 14/063,593, Non Final Office Action dated Jan. 25, 2016”, 9 pgs.
“U.S. Appl. No. 14/063,593, Non Final Office Action dated Nov. 30, 2016”, 12 pgs.
“U.S. Appl. No. 14/063,593, Notice of Allowance dated May 2, 2017”, 5 pgs.
“U.S. Appl. No. 14/063,593, Notice of Allowance dated May 25, 2017”, 5 pgs.
“U.S. Appl. No. 14/063,593, Preliminary Amendment filed Oct. 25, 2013”, 3 pgs.
“U.S. Appl. No. 14/063,593, Response filed Jan. 4, 2016 to Restriction Requirement dated Nov. 6, 2015”, 6 pgs.
“U.S. Appl. No. 14/063,593, Response filed Feb. 24, 2017 to Non Final Office Action dated Nov. 30, 2016”, 17 pgs.
“U.S. Appl. No. 14/063,593, Response filed Apr. 20, 2016 to Non Final Office Action dated Jan. 25, 2016”, 17 pgs.
“U.S. Appl. No. 14/063,593, Response filed Aug. 11, 2016 to Final Office Action dated Jun. 9, 2016”, 10 pgs.
“U.S. Appl. No. 14/063,593, Restriction Requirement dated Nov. 6, 2015”, 6 pgs.
“U.S. Appl. No. 14/181,033, Non Final Office Action dated May 1, 2015”, 5 pgs.
“U.S. Appl. No. 14/181,033, Notice of Allowance dated Jul. 17, 2015”, 10 pgs.
“U.S. Appl. No. 14/181,033, Response filed Jun. 22, 2015 to Non-Final Office Action dated May 1, 2015”, 11 pgs.
“U.S. Appl. No. 14/278,805, Notice of Allowance dated Dec. 1, 2015”, 8 pgs.
“U.S. Appl. No. 14/278,805, Supplemental Notice of Allowability dated Jan. 21, 2016”, 2 pgs.
“U.S. Appl. No. 14/284,028, Non Final Office Action dated Jul. 7, 2015”, 17 pgs.
“U.S. Appl. No. 14/284,028, Notice of Allowance dated Nov. 6, 2015”, 5 pgs.
“U.S. Appl. No. 14/284,028, Response filed Oct. 6, 2015 to Non Final Office Action dated Jul. 7, 2015”, 15 pgs.
“U.S. Appl. No. 14/284,028, Supplemental Notice of Allowability dated Feb. 26, 2016”, 5 pgs.
“U.S. Appl. No. 14/284,028, Supplemental Preliminary Amendment filed Jul. 8, 2014”, 13 pgs.
“U.S. Appl. No. 14/284,144, Final Office Action dated Aug. 7, 2015”, 13 pgs.
“U.S. Appl. No. 14/284,144, Non Final Office Action dated Mar. 25, 2015”, 26 pgs.
“U.S. Appl. No. 14/284,144, Notice of Allowance dated Oct. 29, 2015”, 8 pgs.
“U.S. Appl. No. 14/284,144, Preliminary Amendment filed May 21, 2014”, 3 pgs.
“U.S. Appl. No. 14/284,144, Response filed Oct. 9, 2015 to Final Office Action dated Aug. 7, 2015”, 13 pgs.
“U.S. Appl. No. 14/284,144, Response filed Jun. 23, 2015 to Non Final Office Action dated Mar. 25, 2015”, 22 pgs.
“U.S. Appl. No. 14/284,144, Supplemental Preliminary Amendment filed Jul. 3, 2014”, 10 pgs.
“U.S. Appl. No. 14/304,009, Notice of Allowance dated Nov. 16, 2016”, 7 pgs.
“U.S. Appl. No. 14/304,009, Preliminary Amendment Filed Jul. 31, 2014”, 7 pgs.
“U.S. Appl. No. 14/490,153, Final Office Action dated Apr. 15, 2015”, 18 pgs.
“U.S. Appl. No. 14/490,153, Non Final Office Action dated Nov. 12, 2014”, 9 pgs.
“U.S. Appl. No. 14/490,153, Notice of Allowance dated Aug. 14, 2015”, 10 pgs.
“U.S. Appl. No. 14/490,153, Preliminary Amendment filed Sep. 18, 2014”, 3 pgs.
“U.S. Appl. No. 14/490,153, Response filed Feb. 18, 2015 to Non-Final Office Action dated Nov. 12, 2014”, 14 pgs.
“U.S. Appl. No. 14/490,153, Response filed Jul. 7, 2015 to Final Office Action dated Apr. 15, 2015”, 14 pgs.
“U.S. Appl. No. 14/660,217, Corrected Notice of Allowance dated May 26, 2016”, 3 pgs.
“U.S. Appl. No. 14/660,217, Non Final Office Action dated Dec. 17, 2015”, 8 pgs.
“U.S. Appl. No. 14/660,217, Notice of Allowance dated Apr. 26, 2016”, 5 pgs.
“U.S. Appl. No. 14/660,217, Preliminary Amendment filed Mar. 18, 2015”, 9 pgs.
“U.S. Appl. No. 14/660,217, Response filed Mar. 23, 2016 to Non Final Office Action dated Dec. 17, 2015”, 14 pgs.
“U.S. Appl. No. 14/740,690, Non Final Office Action dated Dec. 7, 2016”, 19 pgs.
“U.S. Appl. No. 14/740,690, Notice of Allowability dated Aug. 29, 2017”, 2 pgs.
“U.S. Appl. No. 14/740,690, Notice of Allowance dated Jun. 13, 2017”, 9 pgs.
“U.S. Appl. No. 14/740,690, Response filed Mar. 3, 2017 to Non Final Office Action dated Dec. 7, 2016”, 14 pgs.
“U.S. Appl. No. 14/791,952, Corrected Notice of Allowance dated Jul. 21, 2017”, 2 pgs.
“U.S. Appl. No. 14/791,952, Final Office Action dated Mar. 31, 2017”, 8 pgs.
“U.S. Appl. No. 14/791,952, Final Office Action dated Sep. 1, 2016”, 17 pgs.
“U.S. Appl. No. 14/791,952, Non Final Office Action dated Apr. 21, 2016”, 12 pgs.
“U.S. Appl. No. 14/791,952, Non Final Office Action dated Dec. 29, 2016”, 12 pgs.
“U.S. Appl. No. 14/791,952, Notice of Allowance dated May 30, 2017”, 7 pgs.
“U.S. Appl. No. 14/791,952, Preliminary Amendment filed Jul. 7, 2015”, 7 pgs.
“U.S. Appl. No. 14/791,952, Response filed Mar. 20, 2017 to Non Final Office Action dated Dec. 29, 2016”, 12 pgs.
“U.S. Appl. No. 14/791,952, Response filed May 17, 2017—to Final Office Action dated Mar. 31, 2017”, 10 pgs.
“U.S. Appl. No. 14/791,952, Response filed Jul. 15, 2016 to Non Final Office Action dated Apr. 21, 2016”, 18 pgs.
“U.S. Appl. No. 14/791,952, Response filed Nov. 21, 2016 to Final Office Action dated Sep. 1, 2016”, 15 pgs.
“U.S. Appl. No. 14/833,385, Examiner Interview Summary dated Dec. 27, 2017”, 3 pgs.
“U.S. Appl. No. 14/833,385, Final Office Action dated Nov. 13, 2017”, 9 pgs.
“U.S. Appl. No. 14/833,385, Non Final Office Action dated Jun. 19, 2017”, 10 pgs.
“U.S. Appl. No. 14/833,385, Preliminary Amendment filed Aug. 25, 2015”, 6 pgs.
“U.S. Appl. No. 14/833,385, Response filed May 12, 2017 to Restriction Requirement dated Mar. 17, 2017”, 8 pgs.
“U.S. Appl. No. 14/833,385, Response filed Sep. 18, 2017 to Non Final Office Action dated Jun. 19, 2017”, 14 pgs.
“U.S. Appl. No. 14/833,385, Restriction Requirement dated Mar. 17, 2017”, 6 pgs.
“U.S. Appl. No. 14/918,721, Final Office Action dated Oct. 20, 2016”, 5 pgs.
“U.S. Appl. No. 14/918,721, Non Final Office Action dated Jun. 16, 2016”, 6 pgs.
“U.S. Appl. No. 14/918,721, Notice of Allowance dated Feb. 1, 2017”, 9 pgs.
“U.S. Appl. No. 14/918,721, Preliminary Amendment filed Oct. 23, 2015”, 8 pgs.
“U.S. Appl. No. 14/918,721, PTO Response to Rule 312 Communication dated Mar. 17, 2017”, 2 pgs.
“U.S. Appl. No. 14/918,721, Response filed Sep. 12, 2016 to Non Final Office Action dated Jun. 16, 2016”, 12 pgs.
“U.S. Appl. No. 14/918,721, Response filed Dec. 13, 2016 to Final Office Action dated Oct. 20, 2016”, 9 pgs.
“U.S. Appl. No. 14/926,281, Non Final Office Action dated Jun. 21, 2017”, 17 pgs.
“U.S. Appl. No. 14/926,281, Notice of Allowance dated Nov. 16, 2017”, 9 pgs.
“U.S. Appl. No. 14/926,281, Preliminary Amendment filed Oct. 30, 2015”, 8 pgs.
“U.S. Appl. No. 14/926,281, Response filed Sep. 19, 2017 to Non Final Office Action dated Jun. 21, 2017”, 11 pgs.
“U.S. Appl. No. 15,003,091, Preliminary Amendment filed Jan. 22, 2016”, 12 pgs.
“U.S. Appl. No. 15/003,091, Non Final Office Action dated Jun. 20, 2017”, 14 pgs.
“U.S. Appl. No. 15/003,091, Notice of Allowance dated Nov. 6, 2017”, 8 pgs.
“U.S. Appl. No. 15/003,091, PTO Response to Rule 312 Communication dated Jan. 23, 2018”, 2 pgs.
“U.S. Appl. No. 15/003,091, Response filed Sep. 20, 2017 to Non Final Office Action dated Jun. 20, 2017”, 17 pgs.
“U.S. Appl. No. 15/045,799, Non Final Office Action dated Nov. 1, 2016”, 8 pgs.
“U.S. Appl. No. 15/045,799, Notice of Allowance dated Mar. 10, 2017”, 10 pgs.
“U.S. Appl. No. 15/045,799, Preliminary Amendment filed Feb. 18, 2016”, 9 pgs.
“U.S. Appl. No. 15/045,799, PTO Response to Rule 312 Communication dated Apr. 18, 2017”, 2 pgs.
“U.S. Appl. No. 15/045,799, Response filed Feb. 1, 2017 to Non Final Office Action dated Nov. 1, 2016”, 15 pgs.
“U.S. Appl. No. 15/062,252, Preliminary Amendment filed Mar. 9, 2016”, 8 pgs.
“U.S. Appl. No. 15/062,262, Non Final Office Action dated Jul. 22, 2016”, 12 pgs.
“U.S. Appl. No. 15/062,262, Notice of Allowance dated Jan. 31, 2017”, 5 pgs.
“U.S. Appl. No. 15/062,262, PTO Response to Rule 312 Communication dated Mar. 7, 2017”, 2 pgs.
“U.S. Appl. No. 15/062,262, Response filed Oct. 24, 2016 to Non Final Office Action dated Jul. 22, 2016”, 13 pgs.
“U.S. Appl. No. 15/177,734, Non Final Office Action dated Feb. 10, 2017”, 21 pgs.
“U.S. Appl. No. 15/177,734, Notice of Allowance dated May 17, 2017”, 7 pgs.
“U.S. Appl. No. 15/177,734, Preliminary Amendment filed Jun. 22, 2016”, 8 pgs.
“U.S. Appl. No. 15/177,734, Response filed Apr. 19, 2017 to Non Final Office Action dated Feb. 10, 2017”, 22 pgs.
“U.S. Appl. No. 15/211,812, Non Final Office Action dated Jan. 27, 2017”, 5 pgs.
“U.S. Appl. No. 15/211,812, Notice of Allowance dated May 31, 2017”, 5 pgs.
“U.S. Appl. No. 15/211,812, Preliminary Amendment filed Sep. 8, 2016”, 8 pgs.
“U.S. Appl. No. 15/211,812, Response filed Apr. 19, 2017 to Non Final Office Action dated Jan. 27, 2017”, 9 pgs.
“U.S. Appl. No. 15/424,328, Non Final Office Action dated Jun. 23, 2017”, 5 pgs.
“U.S. Appl. No. 15/424,328, Notice of Allowance dated Oct. 16, 2017”, 6 pgs.
“U.S. Appl. No. 15/424,328, Preliminary Amendment filed Feb. 28, 2017”, 10 pgs.
“U.S. Appl. No. 15/424,328, Response filed Sep. 20, 2017 to Non Final Office Action dated Jun. 23, 2017”, 9 pgs.
“U.S. Appl. No. 15/435,620, Final Office Action dated Dec. 15, 2017”, 9 pgs.
“U.S. Appl. No. 15/435,620, Non Final Office Action dated Jul. 26, 2017”, 10 pgs.
“U.S. Appl. No. 15/435,620, Notice of Allowance dated Mar. 13, 2018”, 5 pgs.
“U.S. Appl. No. 15/435,620, Preliminary Amendment filed Mar. 20, 2017”, 7 pgs.
“U.S. Appl. No. 15/435,620, Response filed Feb. 12, 2018 to Final Office Action dated Dec. 15, 2017”, 9 pgs.
“U.S. Appl. No. 15/435,620, Response filed Oct. 25, 2017 to Non Final Office Action dated Jul. 26, 2017”, 13 pgs.
“U.S. Appl. No. 15/616,561, Preliminary Amendment filed Jun. 8, 2017”, 7 pgs.
“U.S. Appl. No. 15/703,678, Preliminary Amendment filed Sep. 28, 2017”, 9 pgs.
“U.S. Appl. No. 15/703,692, Preliminary Amendment filed Sep. 28, 2017”, 9 pgs.
“U.S. Appl. No. 15/703,698, Non Final Office Action dated Apr. 6, 2018”, 7 pgs.
“U.S. Appl. No. 15/703,698, Preliminary Amendment filed Sep. 28, 2017”, 8 pgs.
“U.S. Appl. No. 15/703,713, Non Final Office Action dated Mar. 27, 2018”, 29 pgs.
“U.S. Appl. No. 15/703.713, Preliminary Amendment filed Sep. 28, 2017”, 7 pgs.
“U.S. Appl. No. 15/720,866, Response filed Nov. 13, 2017 to Non Final Office Action dated Sep. 14, 2017”, 10 pgs.
“U.S. Appl. No. 15/720,866, Preliminary Amendment filed Nov. 13, 2017”, 9 pgs.
“U.S. Appl. No. 15/827,654, Preliminary Amendment filed Dec. 22, 2017”, 11 pgs.
“Australian Application Serial No. 2011286306, First Examiner Report dated Jun. 19, 2013”, 4 pgs.
“Australian Application Serial No. 2011286306, Response filed Jun. 3, 2014 to First Examiner Report dated Jun. 19, 2013”, 16 pgs.
“Australian Application Serial No. 2011286307, First Examiner Report dated Oct. 17, 2013”, 2 pgs.
“Australian Application Serial No. 2011286307, Response filed May 21, 2014 to First Examiner Report dated Oct. 17, 2013”, 16 pgs.
“Australian Application Serial No. 2011286308, First Examiner Report dated Jun. 21, 2013”, 4 pgs.
“Australian Application Serial No. 2011286308, Response filed Jun. 6, 2014 First Examiner Report dated Jun. 21, 2013”, 19 pgs.
“Australian Application Serial No. 2011286309, First Examiner Report dated Jun. 21, 2013”, 3 pgs.
“Australian Application Serial No. 2011286309, Response filed Jun. 10, 2014 to First Examiner Report dated Jun. 21, 2013”, 4 pgs.
“Australian Application Serial No. 2011343440, First Examiner Report dated Feb. 17, 2014”, 3 pgs.
“Australian Application Serial No. 2011343440, Response filed Mar. 21, 2014 to Office Action dated Feb. 17, 2014”, 1 pg.
“Australian Application Serial No. 2012341026, First Examiner Report dated Jul. 14, 2014”, 2 pgs.
“Australian Application Serial No. 2012341026, Response filed Nov. 21, 2014 to First Examiner Report dated Jul. 14, 2014”, 1 pg.
“Australian Application Serial No. 2012341026, Statement of Proposed Amendment filed Jun. 18, 2014”, 25 pgs.
“Australian Application Serial No. 2012368262, First Examiner Report dated Nov. 2, 2016”, 4 pgs.
“Australian Application Serial No. 2012368262, Response filed Jan. 17, 2017 to Office Action dated Nov. 2, 2016”, 21 pgs.
“Australian Application Serial No. 2012368262, Response filed May 15, 2017 to Subsequent Examiners Report dated Mar. 16, 2017”, 2 pgs.
“Australian Application Serial No. 2012368262, Subsequent Examiners Report dated Mar. 16, 2017”, 3 pgs.
“Australian Application Serial No. 2013238046, First Examiner Report dated Nov. 26, 2015”, 2 pgs.
“Australian Application Serial No. 2013238046, Response filed Feb. 2, 2016 to First Examiner Report dated Nov. 26, 2015”, 1 pg.
“Australian Application Serial No. 2013238054, First Examiner Report dated Oct. 17, 2016”, 4 pgs.
“Australian Application Serial No. 2013238054, Response filed Jan. 18, 2017 to First Examiner Report dated Oct. 17, 2016”, 9 pgs.
“Australian Application Serial No. 2014250709, First Examiner Report dated Dec. 21, 2015”, 3 pgs.
“Australian Application Serial No. 2014250709, Response filed May 4, 2016 to First Examiner Report dated Dec. 21, 2015”, 12 pgs.
“Australian Application Serial No. 2014250709, Subsequent Examiners Report dated May 31, 2016”, 6 pgs.
“Australian Application Serial No. 2014250710, First Examiner Report dated Dec. 11, 2015”, 7 pgs.
“Australian Application Serial No. 2014250710, Response filed Mar. 22, 2016 to First Examiner Report dated Dec. 11, 2015”, 18 pgs.
“Australian Application Serial No. 2014250710, Response filed May 4, 2016 to Subsequent Examiners Report dated Mar. 23, 2016”, 15 pgs.
“Australian Application Serial No. 2014250710, Subsequent Examiners Report dated Mar. 23, 2016”, 3 pgs.
“Australian Application Serial No. 2014250711, First Examiner Report dated Feb. 12, 2016”, 7 pgs.
“Australian Application Serial No. 2014250711, Response filed Apr. 27, 2016 to First Examiner Report dated Feb. 12, 2016”, 32 pgs.
“Australian Application Serial No. 2015201511, First Examination Report dated Apr. 18, 2016”, 2 pgs.
“Australian Application Serial No. 2015201511, Response filed Jun. 30, 2016 to First Examiner Report dated Apr. 18, 2016”, 12 pgs.
“Australian Application Serial No. 2015238820, First Examination Report dated May 30, 2017”, 3 pgs.
“Australian Application Serial No. 2015238820, Response filed Jul. 12, 2017 to First Examination Report dated May 30, 2017”, 12 pgs.
“Australian Application Serial No. 2016225911, First Examiners Report dated Jun. 2, 2017”, 3 pgs.
“Australian Application Serial No. 2016225911, Response filed Aug. 22, 2017 to First Examiners Report dated Jun. 2, 2017”, 18pgs.
“Australian Application Serial No. 2017251736, First Examiners Report dated Oct. 31, 2017”, 2 pgs.
“Bi-Cruciate Stabilized Knee System”, Design Rationale, Smith & Nephew Journal, (2006), 20 pgs.
“Canadian Application Serial No. 2,806,325, Office Action dated Mar. 14, 2016”, 4 pgs.
“Canadian Application Serial No. 2,806,325, Response filed Sep. 14, 2016 to Office Action dated Mar. 14, 2016”, 17 pgs.
“Canadian Application Serial No. 2,806,326, Office Action dated Feb. 8, 2018”, 4 pgs.
“Canadian Application Serial No. 2,806,326, Office Action dated Jun. 19, 2017”, 3 pgs.
“Canadian Application Serial No. 2,821,927, Office Action dated Jan. 25, 2018”, 6 pgs.
“Canadian Application Serial No. 2,821,927, Voluntary Amendment dated Jun. 14, 2013”, 7 pgs.
“Canadian Application Serial No. 2,824,527, Office Action dated Mar. 17, 2014”, 2 pgs.
“Canadian Application Serial No. 2,824,527, Response filed Sep. 17, 2014 to Office Action dated Mar. 17, 2014”, 14 pgs.
“Canadian Application Serial No. 2,856,070, Preliminary Amendment filed May 25, 2015”, 27 pgs.
“Canadian Application Serial No. 2,856,571 Response filed Jan. 22, 2015 to Office Action dated Jul. 22, 2014”, 24 pgs.
“Canadian Application Serial No. 2,856,571, Office Action dated Jul. 22, 2014”, 2 pgs.
“Canadian Application Serial No. 2,956,119, Office Action dated Jan. 22, 2018”, 3 pgs.
“Canadian Application Serial No. 2,806,321, Office Action dated Jun. 15, 2017”, 3 pgs.
“Chinese Application Serial No. 201180045673.3, Office Action dated Feb. 14, 2016”, (W/ English Translation), 17 pgs.
“Chinese Application Serial No. 201180045673.3, Office Action dated Mar. 29, 2015”, (W/ English Translation), 6 pgs.
“Chinese Application Serial No. 201180045673.3, Office Action dated Aug. 12, 2015”, (W/ English Translation), 7 pgs.
“Chinese Application Serial No. 201180045673.3, Response filed Jun. 19, 2015 to Office Action dated Mar. 29, 2015”, (W/ English translation of claims), 11 pgs.
“Chinese Application Serial No. 201180045673.3, Response filed Oct. 27, 2015 to Office Action dated Aug. 12, 2015”, (W/ English translation of claims), 9 pgs.
“Chinese Application Serial No. 201180045681.8, Office Action dated Jan. 22, 2015”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201180045681.8, Response filed May 14, 2015 to Office Action dated Jan. 22, 2015”, W/ English Claims, 17 pgs.
“Chinese Application Serial No. 201180045683.7, Office Action dated Mar. 9, 2015”, (W/ English Translation), 6 pgs.
“Chinese Application Serial No. 201180045683.7, Response filed Jul. 14, 2015 to Office Action dated Mar. 9, 2015”, (W/ English translation of claims), 30 pgs.
“Chinese Application Serial No. 201180045689.4, Office Action dated Jan. 5, 2015”, (W/ English Translation), 4 pgs.
“Chinese Application Serial No. 201180045689.4, Office Action dated Feb. 2, 2016”, w/English Translation, 11 pgs.
“Chinese Application Serial No. 201180045689.4, Office Action dated Aug. 5, 2015”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201180045689.4, Response filed May 1, 2015 to Office Action dated Jan. 5, 2015”, W/ English Claims, 13 pgs.
“Chinese Application Serial No. 201180067430.X, Office Action dated Aug. 28, 2014”, (W/ English Translation), 8 pgs.
“Chinese Application Serial No. 201180067430.X, Response filed Jan. 4, 2015 to Office Action dated Sep. 26, 2014”, (W/ English Translation), 14 pgs.
“Chinese Application Serial No. 201180067757.7, Office Action dated Mar. 2, 2015”, (W/ English Translation), 18 pgs.
“Chinese Application Serial No. 201180067757.7, Office Action dated Jun. 1, 2016”, (W/ English Translation), 10 pgs.
“Chinese Application Serial No. 201180067757.7, Office Action dated Nov. 16, 2015”, (W/ English Translation), 17 pgs.
“Chinese Application Serial No. 201180067757.7, Response filed Jan. 27, 2016 to Office Action dated Nov. 16, 2015”, (W/ English Translation of Claims), 12 pgs.
“Chinese Application Serial No. 201180067757.7, Response filed Jul. 10, 2015 to Office Action dated Mar. 2, 2015”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201180067757.7, Response filed Aug. 11, 2016 to Office Action dated Jun. 1, 2016”, (W/ English Translation of Claims), 9 pgs.
“Chinese Application Serial No. 201180067757.7, Voluntary Amendment dated Feb. 14, 2014”, (W/ English Translation of Claims), 8 pgs.
“Chinese Application Serial No. 201280067473.2, Office Action dated Feb. 1, 2016”, (W/ English Translation), 4 pgs.
“Chinese Application Serial No. 201280067473.2, Office Action dated May 20, 2015”, (W/ English Translation), 15 pgs.
“Chinese Application Serial No. 201280067473.2, Office Action dated Nov. 20, 2015”, W/ English Translation of Claims, 7 pgs.
“Chinese Application Serial No. 201280067473.2, Response filed Apr. 7, 2016 to Office Action dated Feb. 1, 2016”, (W/ English translation of claims), 11 pgs.
“Chinese Application Serial No. 201280067473.2, Response filed Sep. 7, 2015 to Office Action dated May 20, 2015”, (W/ English translation of claims), 12 pgs.
“Chinese Application Serial No. 201280067473.2, Response filed Dec. 4, 2015 to Office Action dated Nov. 20, 2015”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201280067481.7, Office Action dated Sep. 30, 2015”, (W/ English Translation), 7 pgs.
“Chinese Application Serial No. 201280071940.9, Office Action dated Jul. 22, 2015”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201280071940.9, Preliminary Amendment filed Mar. 23, 2015”, W/ English Claims, 11 pgs.
“Chinese Application Serial No. 201380028572.4, Office Action dated Aug. 13, 2015”, (W/ English Translation), 16 pgs.
“Chinese Application Serial No. 201380028683.5, Office Action dated Jun. 27, 2016”, (W/ English Translation), 8 pgs.
“Chinese Application Serial No. 201380028683.5, Office Action dated Nov. 4, 2015”, (W/ English Translation), 16 pgs.
“Chinese Application Serial No. 201380028683.5, Office Action dated Dec. 30, 2016”, (W/ English Translation), 4 pgs.
“Chinese Application Serial No. 201380028683.5, Response filed Feb. 8, 2017 to Office Action dated Dec. 30, 2016”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201380028683.5, Response filed Mar. 18, 2016 to Office Action dated Nov. 4, 2015”, (W/ English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201380028683.5, Response filed Sep. 6, 2016 to Office Action dated Jun. 27, 2016”, (W/ English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201510394094.X, Office Action dated May 24, 2017”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201510394094.X, Office Action dated Aug. 30, 2016”, (W/ English Translation), 14 pgs.
“Chinese Application Serial No. 201510394094.X, Office Action dated Nov. 3, 2017”, (W/ English Translation), 10 pgs.
“Chinese Application Serial No. 201510394094.X, Response filed Jan. 16, 2017 to Office Action dated Aug. 30, 2016”, (W/ English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201510394094.X, Response filed Jan. 18, 2018 to Office Action dated Nov. 3, 2017”, (W/ English Claims), 10 pgs.
“Chinese Application Serial No. 201510394094.X, Response filed Jul. 10, 2017 to Office Action dated May 24, 2017”, (W/ English Translation), 10 pgs.
“Chinese Application Serial No. 201510640436.1, Office Action dated Sep. 28, 2016”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201510640436.1, Response filed Feb. 16, 2017 to Office Action dated Sep. 28, 2016”, (W/ English Translation), 18 pgs.
“Chinese Application Serial No. 201610634595.5, Office Action dated Jun. 21, 2017”, w/English Translation, 9 pgs.
“Chinese Application Serial No. 201610634595.5, Response filed Nov. 3, 2017 to Office Action dated Jun. 21, 2017”, w/English Claims, 8 pgs.
“Chinese Application Serial No. 201610685172.6, Office Action dated Apr. 10, 2017”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201610685172.6, Office Action dated Sep. 28, 2017”, (W/ English Translation), 9 pgs.
“Chinese Application Serial No. 201610685172.6, Response filed Dec. 13, 2017 to Office Action dated Sep. 28, 2017”, (W/ English Claims), 13 pgs.
“Complete Knee Solution Surgical Technique for the CR-Flex Fixed Bearing Knee”, Zimmer Nexgen, (2003), 22 pgs.
“European Application Serial No. 11738918.9, Examination Notification Art. 94(3) dated Oct. 23, 2014”, 5 pgs.
“European Application Serial No. 11738918.9, Preliminary Amendment dated Sep. 24, 2013”, 11 pgs.
“European Application Serial No. 11738918.9, Response filed Mar. 2, 2015 to Examination Notification Art. 94(3) dated Oct. 23, 2014”, 14 pgs.
“European Application Serial No. 11738919.7, Examination Notification Art. 94(3) dated Jul. 7, 2014”, 4 pgs.
“European Application Serial No. 11738919.7, Preliminary Amendment filed Nov. 4, 2013”, 25 pgs.
“European Application Serial No. 11738919.7, Response filed Nov. 13, 2014 to Examination Notification Art. 94(3) dated Jul. 7, 2014”, 14 pgs.
“European Application Serial No. 11738920.5, Communication Pursuant to Article 94(3) EPC dated Mar. 15, 2016”, 4 pgs.
“European Application Serial No. 11738920.5, Preliminary Amendment Sep. 24, 2013”, 9 pgs.
“European Application Serial No. 11738920.5, Response filed Jul. 25, 2016 to Communication Pursuant to Article 94(3) EPC dated Mar. 15, 2016”, 6 pgs.
“European Application Serial No. 11738920.5, Response filed Sep. 24, 2013 to Communication pursuant to Rules 161(2) and 162 EPC dated Mar. 15, 2013”, 22 pgs.
“European Application Serial No. 11758060.5, Communication Pursuant to Article 94(3) EPC dated Jul. 12, 2016”, 3 pgs.
“European Application Serial No. 11758060.5, Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2015”, 4 pgs.
“European Application Serial No. 11758060.5, Preliminary Amendment filed Nov. 4, 2013”, 15 pgs.
“European Application Serial No. 11758060.5, Response filed Apr. 21, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2015”, 16 pgs.
“European Application Serial No. 11758060.5, Response filed Nov. 15, 2016 to Communication Pursuant to Article 94(3) EPC dated Jul. 12, 2016”, 23 pgs.
“European Application Serial No. 11802835.6, Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2017”, 4 pgs.
“European Application Serial No. 11808493.8, Communication Pursuant to Article 94(3) EPC dated Dec. 7, 2015”, 4 pgs.
“European Application Serial No. 11808493.8, Examination Notification Art. 94(3) dated Feb. 20, 20115”, 6 pgs.
“European Application Serial No. 11808493.8, Response filed Feb. 26, 2014 to Communication pursuant to Rules 161(1) and 162 EPC dated Aug. 16, 2013”, 14 pgs.
“European Application Serial No. 11808493.8, Response filed Apr. 18, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 7, 2015”, 15 pgs.
“European Application Serial No. 11808493.8, Response filed Jul. 2, 2015 to Examination Notification Art. 94(3) dated Feb. 20, 2015”, 13 pgs.
“European Application Serial No. 11815029.1, Communication Pursuant to Article 94(3) EPC dated Sep. 29, 2016”, 4 pgs.
“European Application Serial No. 11815029.1, Extended European Search Report dated Dec. 10, 2013”, 8 pgs.
“European Application Serial No. 11815029.1, Response filed Apr. 10, 2017 to Communication Pursuant to Article 94(3) EPC dated Sep. 29, 2016”, 22 pgs.
“European Application Serial No. 11815029.1, Response filed Jul. 21, 2014 Extended European Search Report dated Dec. 10, 2013”, 15 pgs.
“European Application Serial No. 12718882.9, Communication Pursuant to Article 94(3) EPC dated Dec. 1, 2015”, 11 pgs.
“European Application Serial No. 12718882.9, Response filed Feb. 10, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 31, 2014”, 11 pgs.
“European Application Serial No. 12718882.9, Response filed Apr. 11, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 1, 2015”, 12 pgs.
“European Application Serial No. 12718883.7, Communication Pursuant to Article 94(3) EPC dated Dec. 2, 2015”, 4 pgs.
“European Application Serial No. 12718883.7, Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 31, 2014”, 2 pgs.
“European Application Serial No. 12718883.7, Intention to Grant dated May 20, 2016”, 5 pgs.
“European Application Serial No. 12718883.7, Response filed Feb. 10, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 31, 2014”, 16 pgs.
“European Application Serial No. 12718883.7, Response filed Apr. 12, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 2, 2015”, 30 pgs.
“European Application Serial No. 12719236.7 Response filed Feb. 9, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 30, 2014”, 10 pgs.
“European Application Serial No. 12719236.7, Decision to Grant dated Feb. 18, 2016”, 3 pgs.
“European Application Serial No. 12719236.7, Office Action dated Aug. 27, 2015”, 7 pgs.
“European Application Serial No. 12720352.9 Response filed Feb. 9, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 30, 2014”, 10 pgs.
“European Application Serial No. 12756058.9, Office Action dated Jan. 17, 2017”, 5 Pgs.
“European Application Serial No. 12756058.9, Preliminary Amendment filed Apr. 20, 2015”, 12 pgs.
“European Application Serial No. 12756058.9, Response filed May 26, 2017 to Office Action dated Jan. 17, 2017”, 16 pgs.
“European Application Serial No. 12756869.9 Response filed Feb. 10, 2015 to Communication Pursuant to Rule 161(1) and 162 EPC dated Jul. 31, 2014”, 14 pgs.
“European Application Serial No. 12756869.9, Examination Notification Art. 94(3) dated Jul. 2, 2015”, 4 pgs.
“European Application Serial No. 12756869.9, Response filed Nov. 12, 2015 to Examination Notification Art. 94(3) dated Jul. 2, 2015”, 28 pgs.
“European Application Serial No. 13716636.9, Communication Pursuant to Article 94(3) EPC dated Nov. 16, 2015”, 4 pgs.
“European Application Serial No. 13716636.9, Communication Pursuant to Article 94(3) EPC dated Nov. 17, 2016”, 4 pgs.
“European Application Serial No. 13716636.9, Communication Pursuant to Article 94(3) EPC dated Jun. 6, 2016”, 5 pgs.
“European Application Serial No. 13716636.9, Communication pursuant to Rules 161(1) and 162 EPC dated Dec. 12, 2014”, 2 pgs.
“European Application Serial No. 13716636.9, Response filed Mar. 24, 2016 to Communication Pursuant to Article 94(3) EPC dated Nov. 16, 2015”, 18 pgs.
“European Application Serial No. 13716636.9, Response filed Mar. 27, 2017 to Communication Pursuant to Article 94(3) EPC dated Nov. 17, 2016”, 15 pgs.
“European Application Serial No. 13716636.9, Response filed Jun. 22, 2015 to Communication pursuant to Rules 161(1) and 162 EPC dated Dec. 12, 2014”, 10 pgs.
“European Application Serial No. 13716636.9, Response filed Oct. 17, 2016 to Communication Pursuant to Article 94(3) EPC dated Jun. 6, 2016”, 5 pgs.
“European Application Serial No. 14190180.1, Extended European Search Report dated Sep. 24, 2015”, 8 pgs.
“European Application Serial No. 15160934.4, Extended European Search Report dated Jun. 1, 2016”, 8 pgs.
“European Application Serial No. 15160934.4, Response filed Dec. 21, 2016 to Extended European Search Report dated Jun. 1, 2016”, 5 pgs.
“European Application Serial No. 15174394.5, Extended European Search Report dated Mar. 21, 2016”, 8 pgs.
“European Application Serial No. 15174394.5, Response filed Nov. 8, 2016 to Extended European Search Report dated Mar. 21, 2016”, 12 pgs.
“European Application Serial No. 15191781.2, Communication Pursuant to Article 94(3) EPC dated Jan. 8, 2018”, 4 pgs.
“European Application Serial No. 15191781.2, Extended European Search Report dated Mar. 1, 2017”, 8 pgs.
“European Application Serial No. 15191781.2, Response filed Sep. 28, 2017 to Extended European Search Report dated Mar. 1, 2017”, 14pgs.
“European Application Serial No. 16156228.5, Extended European Search Report dated May 11, 2017”, 5 pgs.
“European Application Serial No. 16183635.8, Extended European Search Report dated Jun. 30, 2017”, 9 pgs.
“European Application Serial No. 16189084.3, Extended European Search Report dated Oct. 9, 2017”, 9 pgs.
“Gender Solutions Natural Knee Flex System: Because Men and Women are Different”, Zimmer, Inc., (2007, 2009), 6 pg.
“Gender Solutions Natural Knee Flex System: Surgical Technique”, Zimmer, Inc., (2007, 2008, 2009), 36 pgs.
“Gender Solutions Natural-Knee Flex System”, Zimmer, Inc., (2007, 2009), 6 pgs.
“International Application Serial No. PCT/US2011/045077, International Preliminary Report on Patentability dated Jul. 5, 2012”, 23 pgs.
“International Application Serial No. PCT/US2011/045077, International Search Report and Written Opinion dated Jan. 9, 2012”, 15 pgs.
“International Application Serial No. PCT/US2011/045078, International Preliminary Report on Patentability dated Feb. 7, 2013”, 11 pgs.
“International Application Serial No. PCT/US2011/045078, International Search Report and Written Opinion dated Jan. 9, 2012”, 14 pgs.
“International Application Serial No. PCT/US2011/045080, International Preliminary Report on Patentability dated Feb. 7, 2013”, 13 pgs.
“International Application Serial No. PCT/US2011/045080, International Search Report dated Jan. 9, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/045080, Written Opinion dated Jan. 9, 2012”, 11 pgs.
“International Application Serial No. PCT/US2011/045082, International Preliminary Report on Patentability dated Feb. 7, 2013”, 11 pgs.
“International Application Serial No. PCT/US2011/045082, International Search Report dated Jan. 9, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/045082, Written Opinion dated Jan. 9, 2012”, 10 pgs.
“International Application Serial No. PCT/US2011/045083, International Preliminary Report on Patentability dated Feb. 7, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/045083, International Search Report dated Dec. 7, 2011”, 2 pgs.
“International Application Serial No. PCT/US2011/045083, Written Opinion dated Dec. 7, 2011”, 6 pgs.
“International Application Serial No. PCT/US2011/051021, International Preliminary Report on Patentability dated Mar. 21, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/051021, International Search Report dated Nov. 23, 2011”, 12 pgs.
“International Application Serial No. PCT/US2011/051021, Written Opinion dated Nov. 23, 2011”,7 pgs.
“International Application Serial No. PCT/US2011/064435, International Preliminary Report on Patentability dated Jun. 27, 2013”, 9 pgs.
“International Application Serial No. PCT/US2011/064435, Search Report dated Jun. 21, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/064435, Written Opinion dated Jun. 21, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/065683, International Preliminary Report on Patentability dated Jun. 27, 2013”, 11 pgs.
“International Application Serial No. PCT/US2011/065683, International Search Report dated Apr. 24, 2012”, 12 pgs.
“International Application Serial No. PCT/US2011/065683, Written Opinion dated Apr. 24, 2012”, 10 pgs.
“International Application Serial No. PCT/US2012/035679, International Preliminary Report on Patentability dated May 30, 2014”, 8 pgs.
“International Application Serial No. PCT/US2012/035679, International Search Report dated Jun. 8, 2012”, 4 pgs.
“International Application Serial No. PCT/US2012/035679, Written Opinion dated Jun. 8, 2012”, 7 pgs.
“International Application Serial No. PCT/US2012/035680, International Preliminary Report on Patentability dated May 30, 2014”, 13 pgs.
“International Application Serial No. PCT/US2012/035680, Search Report dated Oct. 9, 2012”, 7 pgs.
“International Application Serial No. PCT/US2012/035680, Written Opinion dated Oct. 9, 2012”, 11 pgs.
“International Application Serial No. PCT/US2012/035683, International Preliminary Report on Patentability dated May 30, 2014”, 9 pgs.
“International Application Serial No. PCT/US2012/035683, International Search Report and Written Opinion dated Jun. 5, 2012”, 12 pgs.
“International Application Serial No. PCT/US2012/035684, International Preliminary Report on Patentability dated May 30, 2014”, 14 pgs.
“International Application Serial No. PCT/US2012/035684, International Search Report dated Aug. 8, 2012”, 9 pgs.
“International Application Serial No. PCT/US2012/035684, Written Opinion dated Jun. 8, 2012”, 12 pgs.
“International Application Serial No. PCT/US2012/052132, International Preliminary Report on Patentability dated Jun. 5, 2014”, 12 pgs.
“International Application Serial No. PCT/US2012/052132, International Search Report dated Jan. 10, 2013”, 5 pgs.
“International Application Serial No. PCT/US2012/052132, Invitation to Pay Additional Fees and Partial Search Report dated Nov. 15, 2012”, 7 pgs.
“International Application Serial No. PCT/US2012/052132, Written Opinion dated Jan. 10, 2013”, 10 pgs.
“International Application Serial No. PCT/US2012/052340, International Preliminary Report on Patentability dated Aug. 14, 2014”, 8 pgs.
“International Application Serial No. PCT/US2012/052340, Search Report dated Oct. 12, 2012”, 4 pgs.
“International Application Serial No. PCT/US2012/052340, Written Opinion dated Oct. 12, 2012”, 6 pgs.
“International Application Serial No. PCT/US2013/034286, International Preliminary Report on Patentability dated Oct. 9, 2014”, 8 pgs.
“International Application Serial No. PCT/US2013/034286, International Search Report dated Jun. 25, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/034286, Written Opinion dated Jun. 25, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/034293, International Preliminary Report on Patentability dated Oct. 9, 2014”, 9 pgs.
“International Application Serial No. PCT/US2013/034293, International Search Report dated Jun. 25, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/034293, Written Opinion dated Jun. 25, 2013”, 7 pgs.
“Intramedullary Instrumentation Surgical Technique for the NexGen Cruciate Retaining & Legacy Posterior Stabilized Knee”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5973-102, Rev. 1, (1995,1997,1998), 36 pgs.
“Japanese Application Serial No. 2015-162707, Office Action dated Jun. 28, 2016”, (W/ English Translation), 8 pgs.
“Japanese Application Serial No. 2013-521854, Notice of Reason for Rejection dated Sep. 16, 2014”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2013-521854, Response filed Dec. 16, 2014 to Notice of Reason for Rejection dated Sep. 16, 2014”, W/ English Claims, 11 pgs.
“Japanese Application Serial No. 2013-521855, Amendment filed Jul. 22, 2014”, (W/ English Translation), 20 pgs.
“Japanese Application Serial No. 2013-521855, Office Action dated Mar. 24, 2015”, W/ English Translation, 8 pgs.
“Japanese Application Serial No. 2013-521856, Notice of Allowance dated Jan. 5, 2016”, w/English Translation, 6 pgs.
“Japanese Application Serial No. 2013-521856, Office Action dated Sep. 1, 2015”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2013-521856, Response filed Dec. 1, 2015 to Office Action dated Sep. 1, 2015”, w/English Translation, 9 pgs.
“Japanese Application Serial No. 2013-521857, Notice of Allowance dated Feb. 9, 2016”, w/English Translation, 6 pgs.
“Japanese Application Serial No. 2013-521857, Notice of Reasons for Rejection dated Aug. 18, 2015”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2013-521857, Preliminary Amendment filed May 18, 2014”, (W/ English translation of claims), 9 pgs.
“Japanese Application Serial No. 2013-521857, Response filed Jan. 25, 2016 to Notice of Reasons for Rejection dated Aug. 18, 2015”, (W/ English Translation), 17 pgs.
“Japanese Application Serial No. 2013-544655, Office Action dated Mar. 8, 2016”, (W/ English Translation), 8 pgs.
“Japanese Application Serial No. 2013-544655, Office Action dated Sep. 29, 2015”, (W/ English Translation), 7 pgs.
“Japanese Application Serial No. 2013-544655, Response filed Jan. 4, 2016 to Office Action dated Sep. 29, 2016”, (English Translation of Claims), 14 pgs.
“Japanese Application Serial No. 2013-544655, Response filed Jul. 14, 2016 to Office Action dated Mar. 8, 2016”, (w/ English Translation of Claims), 13 pgs.
“Japanese Application Serial No. 2013-544858, Request for Examination filed Feb. 4, 2014”, (With English Translation), 14 pgs.
“Japanese Application Serial No. 2014-121515, Notice of Reasons for Rejection dated Jan. 5, 2016”, (W/ English Translation), 9 pgs.
“Japanese Application Serial No. 2014-121515, Office Action dated Jun. 2, 2015”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2014-121515, Response filed May 11, 2016 to Notice of Reasons for Rejection dated Jan. 5, 2016”, (W/ English Translation Of Claims), 11 pgs.
“Japanese Application Serial No. 2014-121515, Response filed Aug. 20, 2015 to Office Action dated Jun. 2, 2015”, (W/ English Translation Of Claims), 6 pgs.
“Japanese Application Serial No. 2014-542297, Office Action dated May 31, 2016”, (W/ English Translation Of Claims), 6 pgs.
“Japanese Application Serial No. 2014-542297, Office Action dated Jun. 30, 2015”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2014-542297, Office Action dated Nov. 24, 2015”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2014-542297, Response filed Feb. 23, 2016 to Office Action dated Nov. 24, 2015”, (W/ English Translation Of Claims), 15 pgs.
“Japanese Application Serial No. 2014-542297, Response filed Jun. 8, 2016 to Office Action dated May 31, 2016”, (W/ English Translation Of Claims), 14 pgs.
“Japanese Application Serial No. 2014-542297, Response filed Sep. 28, 2015 to Office Action dated Jun. 30, 2015”, (W/ English Translation Of Claims), 16 pgs.
“Japanese Application Serial No. 2014-542301, Office Action dated May 12, 2015”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2014-542301, Response filed Aug. 10, 2015 to Office Action dated May 12, 2015”, (W/ English translation of claims), 21 pgs.
“Japanese Application Serial No. 2014-554709, Office Action dated Jul. 5, 2016”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2014-554709, Preliminary Amendment filed Jul. 29, 2015”, (W/ English translation of claims), 8 pgs.
“Japanese Application Serial No. 2014-554709, Response filed Dec. 19, 2016 to Office Action dated Jul. 5, 2016”, (W/ English Translation of Claims), 11 pgs.
“Japanese Application Serial No. 2015-162707, Office Action dated Nov. 29, 2016”, (W/ English Translation), 3 pgs.
“Japanese Application Serial No. 2015-162707, Response filed Jan. 26, 2017 to Office Action dated Nov. 27, 2016”, (W/ English Translation), 16 pgs.
“Japanese Application Serial No. 2015-199496, Office Action dated Sep. 6, 2016”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2015-199496, Response filed Dec. 5, 2016 to Office Action dated Sep. 6, 2016”, (W/ English Translation of Claims), 9 pgs.
“Japanese Application Serial No. 2015-503563, Office Action dated Dec. 20, 2016”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2015-503563, Response Filed Mar. 13, 2017 to Office Action dated Dec. 20, 2016”, (W/ English Translation), 9 pgs.
“Japanese Application Serial No. 2016-145390, Office Action dated Apr. 25, 2017”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2016-145390, Response filed Jul. 3, 2017 to Office Action dated Apr. 25, 2017”, (W/ English Translation of Claims), 16 pgs.
“Legacy Implant Options”, Nexgen Complete Knee Solution, (2002), 8 pgs.
“LPS-Flex Fixed Bearing Knee: Surgical Technique”, Zimmer, Inc., (2004, 2007, 2008), 16 pgs.
“Mexican Application Serial No. MX/a/2013/000988, Office Action dated Mar. 18, 2015”, w/English Claims, 17 pgs.
“Mexican Application Serial No. MX/a/2013/000988, Response filed Jun. 1, 2015 to Office Action dated Mar. 18, 2015”, (W/ English Translation), 12 pgs.
“Mexican Application Serial No. MX/A/2013/000988. Office Action dated Jun. 5, 2015”, w/ summary in English, 6 pgs.
“Mexican Application Serial No. MX/A/2013/000990, Final Office Action dated Feb. 4, 2016”, w/ summary in English, 4 pgs.
“Mexican Application Serial No. MX/A/2013/000990, Office Action dated Feb. 19, 2015”, (W/ English Translation), 4 pgs.
“Mexican Application Serial No. MX/A/2013/000990, Response filed Apr. 29, 2015 to Office Action dated Feb. 19, 2015”, W/ English Claims, 18 pgs.
“MIS Minimally Invasive Solution, The M/G Unicompartmental Knee Minimally Invasive Surgical Technique”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5791-02, (Aug. 14, 2008), 27 pgs.
“Multi-Reference 4-in-1 Femoral Instrumentation Surgical Technique for NexGen Cruciate Retaining & NexGen Legacy Posterior Stabilized Knees”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5973-402 Rev. 1, (1998, 2000), 18 pgs.
“Natural-Knee II Primary System Surgical Technique”, Zimmer, Inc., (2005), 48 pgs.
“Nexgen Complete Knee Solution”, Extramedullary/Intramedullary Tibial Resector: Surgical Technique, Zimmer, Inc. 97-5997-002-00 Rev. 2, (2000, 2008, 2009), 28 pgs.
“Nexgen Complete Knee Solution”, Extramedullary/Intramedullary Tibial Resector: Surgical Technique, Zimmer, Inc. 97-5997-02 Rev 1, (2000), 26 pgs.
“Nexgen Complete Knee Solution for the Legacy Knee LPS-Flex Fixed Bearing Knee”, Zimmer Surgical Technique, 97-5964-102-00, (2004, 2007), 12 pgs.
“NexGen Complete Knee Solution, Intramedullary Instrumentation Surgical Technique for the NexGen Cruciate Retaining & Legacy Posterior Stabilized Knee”, Zimmer, Inc., (1995, 1997, 1998), 1-33.
“NexGen Implant Options Surgeon-Specific”, Zimmer Inc., (2000), 16 pgs.
“NexGen LPS Fixed Knee: Surgical Technique”, Zimmer Inc., (2002, 2008), 44 pgs.
“NexGen LPS-Flex Mobile and LPS-Mobile Bearing Knees”, Zimmer, Inc., (2007, 2008), 4 pgs.
“NexGen Trabecular Metal Modular Plates”, Zimmer Inc., (2007), 19 pgs.
“PFC Sigma Knee System with Rotating Platform Technical/ Monograph”, Depuy PFC Sigma RP, 0611-29-050 (Rev. 3), (1999), 70 pgs.
“Primary/Revision Surgical Technique for NexGen Rotating Hinge Knee (RHK)”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5880-02, (2002), 116 pgs.
“Revision Instrumentation Surgical Technique for Legacy Knee Constrained Condylar Knee”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5994-202, (2001), 61 pgs.
“Russian Application Serial No. 2013106942, Office Action dated Apr. 16, 2015”, W/ English Translation, 5 pgs.
“Russian Application Serial No. 2013106942, Response filed Jul. 15, 2015 Office Action dated Apr. 16, 2015”, (W/ English translation of claims), 146 pgs.
“Russian Application Serial No. 2013106943, Office Action dated Jul. 1, 2015”, (W/ English Translation), 6 pgs.
“Russian Application Serial No. 2013106943, Office Action dated Dec. 28, 2015”, w/ partial English Translation, 6 pgs.
“Russian Application Serial No. 2013106943, Response filed Apr. 28, 2016 to Office Action dated Dec. 28, 2015”, (W/ English translation of claims), 19 pgs.
“Russian Application Serial No. 2013106943, Response filed Oct. 30, 2015 to Office Action dated Jul. 1, 2015”, (W/ English translation of claims), 21 pgs.
“South African Application Serial No. 2013/01327, Amendment filed Apr. 24, 2014”, W/ English Translation, 4 pgs.
“South African Application Serial No. 2013/01328, Amendment filed Apr. 24, 2014”, W/ English Translation, 4 pgs.
“Surgical Technique for Cruciate Retaining Knees and Revision Instrumentation Surgical Technique for Cruciate Retaining Augmentable Knees”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5970-202, (2002), 130 pgs.
“Surgical Technique for the CR-Flex Fixed Bearing Knee”, NexGen Complete Knee Solution, Zimmer, Inc., (2003), 22 pgs.
“Surgical Technique for the Legacy Knee LPS-Flex Fixed Bearing Knee”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5964-02, Rev. 1, (2000, 2002), 15 pgs.
“Surgical Technique for the Legacy Posterior Stabilized Knees”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5996-02, (2002), 43 pgs.
“Surgical Technique—Nexgen Complete Knee Solution for the Legacy Knee LPS-Flex Fixed Bearing Knee”, Zimmer, Inc., (2004, 2007), 12 pgs.
“The Zimmer Institute Surgical Technique MIS Quad-Sparing Surgical Technique for Total Knee Arthroplasty”, NExGen Complete Knee Solution, (2004), 55 pgs.
“Tibial Baseplate: Pocket Guide (United States Version)”, Zimmer, Inc.,, (2009), 17 pgs.
“Trabecular Metal Monoblock Tibial Components”, Zimmer, Inc., (2007), 4 pgs.
“Trabecular Metal Monoblock Tibial Components Surgical Technique Addendum”, Nexgen Zimmer, Inc., (2005, 2007), 12 pgs.
“Trabecular Metal Tibial Tray: Surgical Technique”, NexGen Zimmer, Inc., (2007, 2009), 16 pgs.
“Zimmer MIS Intramedullary Instrumentation Surgical Technique for NexGen Cruciate Retaining & NexGen Legacy Posterior Stabilized Knees”, printed 2005, 2009, Zimmer, Inc., (2009), 45 pgs.
“Zimmer Nexgen Cruciate Retaining (CR) and Legacy Knee Posterior Stabilized (LPS) Trabecular Metal Monoblock Tibias”, Zimmer, Inc Surgical Technique Addendum, 97-7253-34, Rev. 3, (2004), 11 pgs.
“Zimmer NexGen CR-Flex and LPS-Flex Knees Surgical Technique with posterior Referencing Instrumentation.”, Zimmer Inc., (2010, 2011), 48 pgs.
“Zimmer NexGen LCCK Surgical Technique for use with LCCK 4-in-1 Instrumentation”, Zimmer, Inc.; copyright 2009, 2010, 2011, (May 2011), 52 pgs.
“Zimmer NexGen MIS Modular Tibial Plate and Keel Cemented Surgical Technique”, Zimmer Inc., (2006, 2011), 26 pgs.
“Zimmer NexGen MIS Tibial Component”, Brochure-97-5950-001-00 7.5mm, (2005, 2006), 8 pgs.
“Zimmer NexGen MIS Tibial Component Cemented Surgical Technique”, Zimmer, Inc, #97-5950-002-00 Rev.1 1.5ML, (2005), 14 pgs.
“Zimmer NexGen MIS Tibial Component Cemented Surgical Technique”, Zimmer Inc., (2005, 2006, 2008, 2009, 2010), 16 pgs.
“Zimmer NexGen Trabecular Metal Augments—Abbreviated Surgical Technique”, Zimmer, Inc., (2004, 2006), 6 pgs.
“Zimmer NexGen Trabecular Metal Augments Surgical Technique for LCCK & Rotating Hing Knee Trabecular Metal Augments”, Zimmer, Inc. 97-5448-02, Rev. 1, (2004), 6 pgs.
“Zimmer NexGen Trabecular Metal Primary Patella Surgical Technique”, Zimmer. Inc., 97-7255-112-00, (2005), 10 pgs.
“Zimmer NexGen Trabecular Metal Tibial Tray”, Surgical Technique, Zimmer, Inc., (2007, 2009), 16 pgs.
“Zimmer Patient Specific Instruments”, Surgical Techniques for NexGen Complete Knee Solution Zimmer, Inc., (2010), 16 pgs.
Annayappa, Ramesh, “Tibial Prosthesis”, U.S. Appl. No. 13/189,328, filed Jul. 22, 2011, 82 pgs.
Annayappa, Ramesh, et al., “Tibial Prosthesis”, U.S. Appl. No. 13/189,324, filed Jul. 22, 2011, 50 pgs.
Ding, M., et al., “Age-related variations in the microstructure of human tibial cancellous bone”, Journal of Orthopaedic Research, 20(3), (2002), 615-621.
Ding, M., et al., “Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis”, Journal of Bone & Joint Surgery (British), 85-B(6), (Aug. 2003), 906-912.
Doyle, et al., “Comparative Analysis of Human Trabecular Bone and Polyurethane Foam”, Purdue University., 1 pg.
Dunbar, M. J., et al., “Fixation of a Trabecular Metal Knee Arthroplasty Component: A Prospective Randomized Study”, The Journal of Bone & Joint Surgery (American), vol. 91—A(7), (Jul. 2009), 1578-1586.
Edwards, Andrew, et al., “The Attachments of the Fiber Bundles of the Posterior Cruciate ligament: An Anatomic Study”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 23, No. 3, (Mar. 2008), 284-290.
Hofmann, Aaron A, et al., “Posterior Stabilization in Total Knee Arthroplasty with Use of an Ultracongruent Polyethylene”, The Journal of Arthroplasty vol. 15, No. 5, (2000), 576-583.
Hvid, Ivan, et al., “Trabecular bone Strength Patterns at the Proximal Tibial Epiphysis”, Journal of Orthopaedic Research, vol. 3, No. 4, (1985), 464-472.
Klostermann, et al., “Distribution of bone mineral density with age and gender in the proximal tibia”, Clinical Biomechanics 19, 376-376.
Lorenz, Stephan, et al., “Radiological evaluation of the anterolateral and posteromedial bundle insertion sites of the posterior cruciate ligament”, Knee Surg Sports Traumatol Arthosc, vol. 17, (2009), 683-690.
Moorman, Claude, et al., “Tibial Insertion of the Posterior Cruciate Ligament: A Sagittal Plane Analysis Using Gross, Histologic, and Radiographic Methods”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 24, No. 3, (Mar. 2008), 269-275.
Parisi, Raymond C, “Motion Facilitating Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/229,103, filed Sep. 9, 2011, 46 pgs.
Partovi, Hamid, “Flow-Through Latch and Edge-Triggered Flip-Flop Hybrid Elements”, Proceedings of the IEEE International Solid-State Circuits Conference, Digest of Technical Papers and Slide Supplement, NexGen Inc., Milpitas, CA, (1996), 40 pgs.
Stilling, et al., “Superior fixation of pegged trabecular metal over screw-fixed pegged porous titanium fiber mesh”, Acta Orthopaedica., (2011), 177-186.
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,338, filed Jul. 22, 2011, 58 pgs.
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,339, filed Jul. 22, 2011, 52 pgs.
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,336, filed Jul. 22, 2011, 60 pgs.
“Canadian Application Serial No. 2,806,321, Response filed Jan. 22, 2018 to Office Action dated Jan. 15, 2018”, 7 pgs.
“U.S. Appl. No. 15/827,654, Restriction Requirement dated Apr. 6, 2018”, 6 pgs.
“Application Serial No. PCT US2016 052163, International Preliminary Report on Patentability dated Apr. 5, 2018”, 9 pgs.
“U.S. Appl. No. 15/616,561, Non Final Office Action dated Aug. 9, 2018”, 8 pgs.
“U.S. Appl. No. 15/703,698, Response filed Jul. 6, 2018 to Non Final Office Action dated Apr. 6, 2018”, 10 pgs.
“U.S. Appl. No. 15/703,713, Response Filed Jun. 15, 2018 to Non-Final Office Action dated Mar. 27, 2018”, 16 pgs.
“U.S. Appl. No. 15/827,654, Response filed Jun. 6, 2018 to Restriction Requirement dated Apr. 6, 2018”, 11 pgs.
“Canadian Application Serial No. 2,806,326, Response filed Jul. 20, 2018 to Office Action dated Feb. 8, 2018”, 12 pgs.
“Canadian Application Serial No. 2,863,375, Office Action dated Apr. 20, 2018”, 3 pgs.
“Chinese Application Serial No. 201610634595.5, Response filed Jun. 4, 2018 to Office Action dated Apr. 20, 2018”, (W/ English Translation of Claims), 8 pgs.
“European Application Serial No. 17157909.7, Extended European Search Report dated Jul. 17, 2018”, 7 pgs.
“European Application Serial No. 17163440.5, Partial European Search Report dated Jul. 23, 2018”, 15 pgs.
“European Application Serial No. 17168095.2, Extended European Search Report dated Jun. 8, 2018”, 8 pgs.
“European Application Serial No. 17168308.9, Extended European Search Report dated Jun. 13, 2018”, 8 pgs.
“International Application Serial No. PCT/US2018/021571, International Search Report dated Jun. 7, 2018”, 6 pgs.
“International Application Serial No. PCT/US2018/021571, Written Opinion dated Jun. 7, 2018”, 6 pgs.
“Japanese Application Serial No. 2017-161246, Office Action dated May 15, 2018”, (W/ English Translation), 6 pgs.
“European Application Serial No. 15160934.4, Response filed Aug. 30, 2018 to Communication Pursuant to Article 94(3) EPC dated Apr. 26, 2018”, 63 pgs.
“U.S. Appl. No. 15/703,713, Notice of Allowance dated Sep. 25, 2018”, 11 pgs.
“U.S. Appl. No. 15/703,678, Restriction Requirement dated Nov. 5, 2018”, 6 pgs.
“U.S. Appl. No. 15/616,561, Response filed Nov. 8, 2018 to Non Final Office Action dated Aug. 9, 2018”, 11 pgs.
“U.S. Appl. No. 15/827,654, Response filed to Non Final Office Action dated Sep. 7, 2018”, 24 pgs.
“U.S. Appl. No. 15/616,561, Notice of Allowance dated Dec. 10, 2018”, 7 pgs.
“U.S. Appl. No. 15/703,698, Corrected Notice of Allowability dated Dec. 18, 2018”, 2 pgs.
“Australian Application Serial No. 2017235987, First Examination Report dated Nov. 1, 2018”, 4 pgs.
“Canadian Application Serial No. 2,989,184, Office Action dated Oct. 1, 2018”, 4 pgs.
“Canadian Application Serial No. 2,863,375, Response filed Oct. 22, 2018 Office Action dated Apr. 20, 2018”, 12 pgs.
“Canadian Application Serial No. 2,956,119, Examiner's Rule 30(2) Requisition dated Sep. 27, 2018”, 4 pgs.
“Canadian Application Serial No. 2,806,326, Examiner's Rule 30(2) Requisition dated Sep. 20, 2018”, 4 pgs.
“U.S. Appl. No. 15/703,698, Notice of Allowance dated Sep. 12, 2018”, 5 pgs.
“U.S. Appl. No. 15/827,654, Non Final Office Action dated Sep. 7, 2018”, 21 pgs.
“European Application Serial No. 16770657.1, Response filed Nov. 26, 2018 to Office Action dated May 14, 2018”, 17 pgs.
Related Publications (1)
Number Date Country
20170079801 A1 Mar 2017 US
Provisional Applications (2)
Number Date Country
62309046 Mar 2016 US
62221461 Sep 2015 US