Prosthesis with outer skirt and anchors

Information

  • Patent Grant
  • 9681951
  • Patent Number
    9,681,951
  • Date Filed
    Wednesday, March 5, 2014
    10 years ago
  • Date Issued
    Tuesday, June 20, 2017
    7 years ago
Abstract
A prosthesis can be configured to grasp intralumenal tissue when deployed within a body cavity and prevent axial flow of fluid around an exterior of the prosthesis. The prosthesis can include an expandable frame configured to radially expand and contract for deployment within the body cavity, and an outer skirt positioned annularly around an exterior of the expandable frame. In some embodiments, the outer skirt can extend outward from the frame and be secured to an outwardly extending anchor on the frame to create an axial barrier to fluid flow exterior to the frame when deployed within the body cavity.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Certain embodiments disclosed herein relate generally to prostheses for implantation within a lumen or body cavity. In particular, certain embodiments relate to expandable prostheses such as replacement heart valves, such as for the mitral valve, that are configured to atraumatically grasp intralumenal tissue.


2. Description of the Related Art


Human heart valves, which include the aortic, pulmonary, mitral and tricuspid valves, function essentially as one-way valves operating in synchronization with the pumping heart. The valves allow blood to flow downstream, but block blood from flowing upstream. Diseased heart valves exhibit impairments such as narrowing of the valve or regurgitation, which inhibit the valves' ability to control blood flow. Such impairments reduce the heart's blood-pumping efficiency and can be a debilitating and life threatening condition. For example, valve insufficiency can lead to conditions such as heart hypertrophy and dilation of the ventricle. Thus, extensive efforts have been made to develop methods and apparatuses to repair or replace impaired heart valves.


Prostheses exist to correct problems associated with impaired heart valves. For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves that can be delivered with less trauma to the patient than through open heart surgery. Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.


These replacement valves are often intended to at least partially block blood flow. However, a problem occurs when blood flows around the valve on the outside of the prosthesis. For example, in the context of replacement heart valves, paravalvular leakage has proven particularly challenging. An additional challenge relates to the ability of such prostheses to be secured relative to intralumenal tissue, e.g., tissue within any body lumen or cavity, in an atraumatic manner. Further challenges arise when trying to controllably deliver and secure such prostheses in a location such as at a native mitral valve.


SUMMARY OF THE INVENTION

Embodiments of the present disclosure are directed to a prosthesis, such as but not limited to a replacement heart valve. According to some embodiments, a prosthesis can be configured to be deployed within a body cavity and prevent axial flow of fluid around an exterior of the prosthesis. The prosthesis can include an expandable frame configured to radially expand and contract for deployment within the body cavity, and an outer skirt positioned annularly around an exterior of the expandable frame. In some embodiments, the outer skirt can extend outward from the frame and be secured to an outwardly extending anchor on the frame to create an axial barrier to fluid flow exterior to the frame when deployed within the body cavity. Further embodiments are directed to methods of delivering a prosthesis, e.g. a replacement heart valve, and methods of using a prosthesis to create a barrier to fluid flow exterior to the prosthesis (e.g., to prevent paravalvular leakage).


In some embodiments a prosthesis can be configured to grasp intralumenal tissue when deployed within a body cavity and prevent axial flow of fluid around an exterior of the prosthesis. The prosthesis can comprise an expandable frame, a plurality of proximal anchors, a plurality of distal anchors, and a skirt. The expandable frame can comprise a proximal end and a distal end and a longitudinal axis extending therethrough, the frame configured to radially expand and contract for deployment within the body cavity. The plurality of proximal anchors can each connect to the frame so that when the frame is in an expanded configuration an end of each proximal anchor is positioned radially outward from the frame and extends generally distally. The plurality of distal anchors can each connect to the frame so that when the frame is in an expanded configuration an end of each distal anchor is positioned radially outward from the frame and extends generally proximally, wherein the ends of the distal anchors are axially spaced from the ends of the proximal anchors when the frame is in an expanded configuration. The skirt can be annularly positioned around an exterior of the expandable frame and secured to at least some of the plurality of proximal anchors to create an axial barrier to fluid flow exterior to the frame when deployed within the body cavity. In some embodiments, the frame can be configured such that radial expansion of the frame causes the ends of the plurality of proximal anchors and the ends of the plurality of distal anchors to draw closer together.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the invention. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments.



FIG. 1A is a side view of an embodiment of a prosthesis configured as a replacement heart valve.



FIG. 1B is a side view of the frame from the prosthesis of FIG. 1A.



FIG. 2 is a perspective view of a skirt.



FIG. 3A is a schematic representation of a prosthesis positioned within the heart.



FIG. 3B is a detail schematic representation of the prosthesis positioned within the heart of FIG. 3A.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present specification and drawings provide aspects and features of the disclosure in the context of several embodiments of prostheses, replacement heart valves, delivery devices and methods that are configured for use in the vasculature of a patient, such as for replacement of natural heart valves in a patient. These embodiments may be discussed in connection with replacing specific valves such as the patient's aortic or mitral valve. However, it is to be understood that the features and concepts discussed herein can be applied to products other than heart valve implants. For example, the controlled positioning, deployment, and securing features described herein can be applied to medical implants, for example other types of expandable prostheses, for use elsewhere in the body, such as within a vein, or the like. In addition, particular features of a valve, delivery device, etc. should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate.


With initial reference to FIGS. 1A-B, an embodiment of a prosthesis 10 is shown. The illustrated prosthesis 10 includes a frame 20 that may be self-expanding or balloon expandable. The frame 20 (as best seen in FIG. 1B) can include a proximal end 32, a distal end 34 and proximal 22 and distal 24 anchors. The anchors can allow the frame to engage a native valve annulus or other tissue to be implanted at a target location. The prosthesis 10 can include one or more of a valve 60, an outer skirt 30, a valve skirt 70 and a support band 80. The valve 60 can be designed to replace a damaged or diseased native heart valve such as a mitral valve; though it will be understood that a replacement valve is not required as part of the prosthesis.


The prosthesis can be a replacement heart valve similar to that and including features similar to those disclosed in U.S. Provisional Appl. No. 61/782,707, filed Mar. 14, 2013, U.S. Pat. No. 8,403,983 and U.S. Publication Nos. 2010/0298931, 2011/0313515 and 2012/0078353 the entireties of each of which are hereby incorporated by reference and made a part of this specification. This is inclusive of the entire disclosure and is not in any way limited to the disclosure of the replacement heart valve.


The frame 20 can be made of many different materials, but is preferably made from metal. In some embodiments, the frame 20 can be made from a shape memory material, such as nitinol. A wire frame or a metal tube can be used to make the frame. The wire frame of a metal tube can be cut or etched to remove all but the desired metal skeleton. In some embodiments a metal tube is laser cut in a repeating pattern to form the frame. The flat pattern can be cut from a metal tube and then the tube can be bent and expanded to the shape shown in FIGS. 1A-B. The frame 20 can further be expanded and/or compressed and/or otherwise worked to have the desired shape or shapes, such as for introduction and implantation.


As shown, the frame when in an expanded configuration, such as in a fully expanded configuration, has a bulbous or slightly bulbous shape, with a middle portion being larger than the proximal 32 and distal 34 ends. In some embodiments, the inside diameter of the both ends can be the same, or it can be bigger on one end than the other, while still having a middle portion larger than both the proximal and distal ends. In some embodiments, the effective diameter of the distal frame end is smaller than the effective diameter of the middle portion. The bulbous shape of the frame can advantageously allow the frame to engage a native valve annulus or other body cavity, while spacing the inlet and outlet from the heart or vessel wall. This can help reduce undesired contact between the prosthesis and the heart or vessel, such as the ventricular wall of the heart. In other embodiments, the frame may not have a bulbous portion, and can have substantially the same outer dimension along its entire length, or it may have one end larger than the other end. The prosthesis 10 and frame 20 may be similar to the replacement heart valves and associated frames, and may incorporate and/or interchange features disclosed in U.S. Provisional Appl. No. 61/782,707, U.S. Pat. No. 8,403,983 and U.S. Publication Nos. 2010/0298931 and 2011/0313515, the entireties of each of which are hereby incorporated by reference and made a part of this specification. This is inclusive of the entire disclosure and is not in any way limited to the disclosure of the replacement heart valves and associated frames.


A number of struts collectively make up the frame 20. FIGS. 1A-B illustrate the frame in an expanded configuration with a number of longitudinal struts 12 and undulating struts 14, with cells defined by the open spaces between the struts. The longitudinal struts may be arranged so that they are parallel or generally or substantially parallel to a longitudinal axis of the frame. The longitudinal axis of the frame may be defined as the central axis that extends through the center of the frame between the proximal 32 and distal 34 ends. Any number of configurations of struts can be used, such as the rings of undulating struts shown forming chevrons and diamonds, but also ovals, curves, and various other shapes. The illustrated embodiment includes two rings, or rows of chevrons shown in portion 16 and two rows of diamond-shaped cells shown in portion 18. The two rows of diamonds are partially obscured by the outer skirt 30.


The frame 20 has a non-foreshortening portion 16 and a foreshortening portion 18. These portions can be defined by the frame 20 and the positioning of various types of struts along the frame 20. In the figures it can be seen that the longitudinal struts 12 span the length of the non-foreshortening portion 16, while undulating struts 14 form the foreshortening portion 18. When the frame is radially collapsed or compacted, the struts 14 become more parallel with respect to the longitudinal axis of the frame, causing an outer diameter of the frame to decrease and the longitudinal length of the frame to increase in the foreshortening portion 18. As the frame moves from a compacted position to an expanded position, the longitudinal length of the frame can decrease in the foreshortening portion 18. But, the frame length does not substantially change length in the non-foreshortening portion 16.


Foreshortening of the frame 20 can be used to engage and secure the prosthesis to intralumenal tissue in a body cavity, for example tissue at or adjacent a native valve, such as a native valve annulus and/or leaflets. Opposing anchors 22, 24 can be constructed on the frame 20 so that portions of the anchors, such as tips or ends 26, 28, move closer together as the frame foreshortens. As one example, this can allow the anchors 22, 24 to grasp tissue on opposite sides of the native mitral annulus to thereby secure the prosthesis at the mitral valve.


The anchors 22, 24 and anchor tips 26, 28 can be located anywhere along the frame 20 just so long as at least one of the anchors is either connected to the foreshortening portion 18 or the foreshortening portion is positioned between the anchors so that a portion of the anchors will be move closer together with expansion of the frame. As shown, the anchors 24 are connected to the foreshortening portion 18. The foreshortening portion can also be positioned anywhere along the frame, though it is shown towards the distal end 34. In some embodiments, both of the anchor tips 26, 28 are located in the foreshortening portion 18. In some embodiments, the foreshortening portion 18 may extend the entire length of the frame, such that there is no non-foreshortening portion 16.


Preferably, each of the anchors 22, 24 is positioned or extends generally radially outwardly from the frame 20 so that the anchor tips 26, 28 are generally spaced away or radially outward from the rest of the frame 20. For example, the anchor tips may be located radially outward from the middle portion of the frame, with the tips 26 and 28 being axially spaced from one another. In some embodiments, all or part of the structure connected to the anchor tip and extending radially from the frame, including one or more rings and/or struts, can be considered part of the anchor. The anchors can include a base located on the anchor on a side opposite the tip. The base can be for example where the anchor begins to extend from or away from the frame 20.


For example, proximal anchors 22 are shown having first 36 and second 38 struts forming a chevron and connected to longitudinal struts 12 at a base of the anchor. The first and second struts of the anchor 22 are bent at the base so that the anchor 22 extends radially outwardly from the frame as it extends generally distally towards the tip 26. The first and second struts can be connected to each other at a radially outward location to form an outwardly extending loop, and in some embodiments, the first and second struts can be joined at a third strut 40 that continues to extend outwardly and/or generally distally and is then bent such that the tip points distally and extends in a manner generally parallel with the longitudinal axis of the prosthesis. The anchor also includes an eyelet 46. As illustrated, the eyelet is located along the third strut 40, though the eyelet can be positioned in other locations along the anchor 22, such as at the distal end. The tips 26 of the proximal anchors may extend distally and be parallel or substantially parallel with the longitudinal axis of the frame, or the tips 26 may extend generally distally but still radially outwardly inclined or at an acute angle relative to the longitudinal axis of the frame.


As another example, the distal anchors 24 are shown having looped anchors. Each looped anchor has a first base 42 and a second base 44 connected to the frame, wherein the first and second bases are at opposite corners of the same cell. Alternatively, the first and second bases may be located at the distal most corners of adjacent cells. The distal anchors 24 extends generally distally from the frame at the first base 42 but then is bent back around and begins to extend outwardly from the frame in a generally proximal direction. The distal anchor 24 then repeats this configuration in reverse towards the second base 44 such that the two sides of the looped anchor are mirror images of one another. It will be understood that the looped anchor can have other configurations and that it may not be symmetrical.


As illustrated in FIGS. 1A-B, the tips 28 of the distal anchors are circumferentially aligned with the tips 26 of the proximal anchors, though in other embodiments, the tips 28 of the distal anchors may be circumferentially staggered between the tips 26 of the proximal anchors. In the embodiment of FIGS. 1A-B, adjacent distal anchors 26 are spaced apart by one cell, though in other embodiments, adjacent distal anchors may be provided on adjacent cells. Thus, for example, instead of having six distal anchors and twelve proximal anchors as shown in FIGS. 1A-B, there may be a 1:1 correspondence between proximal and distal anchors.


The distal anchors 24 can be positioned to be not as far radially outward as the proximal anchors, and the tips 28 may be positioned radially inward of the tips 26. As described further below, such a configuration may be advantageous in positioning and securing the prosthesis in a mitral valve or other body location. As shown, the distal anchors 24 may comprise loops as described above, having a curved or arcuate atraumatic tip to minimize damage to body tissue.


The illustrated looped distal anchor is made up of the following segments. The first segment 50 extends generally longitudinally with the frame, extending distally or generally distally (e.g., slightly radially inward) with the frame. The strut is then bent back around to point in generally the opposite direction at the second segment 52. The second segment 52 ends in the rounded tip 28 and then the anchor strut repeats to form the mirror image. After the second segment 52 bends back around to point in generally the opposite direction, in the embodiment illustrated the second segment may first extend radially outward at an acute angle relative to the longitudinal axis before bending into a portion that extends parallel or substantially parallel to the longitudinal axis. The paired second segments 52 may extend parallel or generally parallel with one another at least near the tip, though they may also move slightly towards or away from each other in some embodiments. The distal anchors 24 can positioned outward from the frame and yet inward from the position of the proximal anchors 22.


It will be understood that the anchors can have various other configurations. In some embodiments, each of the anchors can extend radially outwardly from the frame at an anchor base and terminate at an anchor tip. The anchors can be connected to the frame at one of many different locations including apices, junctions, other parts of struts, etc. The anchors can comprise first, second, third, or more spaced apart bending stages along the length of each anchor. The anchors can also extend either distally or proximally before and/or after one or more of the bending stages. A portion of the anchor may extend with the frame before or after any bending stages.


In the illustrated embodiment there are twelve proximal anchors 22 and six distal anchors 24. It will be understood that other numbers and groupings of anchors can be used. For example, in some embodiments with twelve distal anchors, two anchors can share the first segment 50 where the anchor base 42, 44 is connected to the frame. In some embodiments there may be twelve anchors on one side and twelve on the other. In addition, the distal and proximal anchors may be aligned so the tips point generally towards each other, or they may be spaced so that the tips point between two tips on the opposite side.


The anchor tips 26 and 28 as described above advantageously provide atraumatic surfaces that may be used to grasp intralumenal tissue without causing unnecessary or undesired trauma to tissue. For example, the proximal anchors tips 26 and distal anchor tips 28 may form flat, substantially flat, curved or other non-sharp surfaces to allow the tips to engage and/or grasp tissue, without necessarily piercing or puncturing through tissue. A looped end or looped anchor may assist the frame in not getting caught up on structures at or near the treatment location. For example, each loop can be configured so that when the frame is deployed in-situ and expands, the movement of each loop from a delivered position to a deployed position can avoids getting caught on the papillary muscles.


The prosthesis 10 may include a valve 60. The valve 60 can be a replacement heart valve which includes a plurality of valve leaflets. The plurality of valve leaflets can function in a manner similar to the natural mitral valve, or to other valves in the vascular system. The plurality of valve leaflets can open in a first position and then engage one another to close the valve in a second position. The plurality of valve leaflets can be made to function as a one way valve such that flow in one direction opens the valve and flow in a second direction opposite the first direction closes the valve. The replacement heart valve 60 can be constructed so as to open naturally with the beating of the heart. For example, the plurality of valve leaflets can open during diastole and close during systole.


In some embodiments, the leaflets can be coupled to a valve skirt 70. For example, FIG. 1A shows a seam 62 where the proximal ends of the leaflets can be connected to the valve skirt 70.


The valve skirt 70 can be used to at least partially control how fluid flows through and/or around the valve 60. The valve skirt 70 can surround at least a portion of the valve and be connected to the valve leaflets 62. In some embodiments, the valve skirt 70 can form an inner wall connected to and positioned within the frame 20. The valve skirt 70 can also be made to move with the foreshortening portion 18 of the frame 20.


The valve skirt 70 can extend the length of the frame 20 or it can extend along only part of the length of the frame 20. In some embodiments, the ends of the heart valve 60 can coincide with ends of the valve skirt 70. In addition, one or more of the ends of the frame 20 can coincide with the ends of the valve skirt 70. In the illustrated embodiment, the proximal end of the valve skirt 70 is positioned proximally from the proximal end of the heart valve 60. The valve skirt 70 can not only extend to the distal end of the frame 20 but can also extend to the outside of the frame and is shown attached to and extending the tip 28 of each distal anchor 24. As shown, the skirt 70 is sewn to each distal anchor.


Other shapes and configurations can also be used for the valve 60 and valve skirt 70. In some embodiments, the valve skirt 70 may extend along the length of the leaflets 62, but is not connected to them. In the illustrated embodiments, the valve skirt 70 is attached to the frame 20 and the leaflets 62 are attached to the valve skirt 70.


The valve skirt 70 can be constructed in multiple different ways. The valve skirt 70 can be made of knit polyester or another stretchable or flexible fabric. In some embodiments, the valve skirt 70 is made from a material that is more flexible than the valve leaflet material. The distal and/or proximal end of the skirt 70 can be straight, curved, or have any other desired configuration. For example, the valve skirt 70 is shown with straight ends. In other embodiments the skirt distal end can be patterned to generally correspond to the undulations at the distal end 34 of the frame 20. Similarly, the proximal ends may also correspond in shape. The valve skirt 70 can be formed of one piece or multiple pieces. For example, the valve skirt 70 attached to the valve 60 can be one piece and then each distal anchor can be covered by a separate piece of material of the valve skirt 70. It is to be understood that other configurations of the valve skirt 70 can also be employed. For example, the anchors may remain uncovered, or only a portion may be covered.


In another embodiment of the valve skirt 70 the end can extend past the frame and can be wrapped around it. Thus, the valve skirt 70 can extend from the inside of the frame 20 to the outside of the frame. The skirt can extend completely around the frame for ¼, ⅓, ½, or more of the length of the distal anchors. The skirt can also cover the distal anchors 24. The skirt can be a one piece skirt, but it will be understood that the skirt can be made of multiple pieces.


The valve skirt 70, and particularly portions that cover the distal anchors 24, can beneficially be used to help prevent leakage of blood flow around the heart valve. In addition, the skirt can encourage tissue in-growth between the skirt and the natural tissue. This may further help to prevent leakage of blood flow around the heart valve.


Looking to FIG. 2, an outer skirt or apron 30 is shown that may also form part of the prosthesis 10. FIG. 1A shows the outer skirt 30 attached to the frame 20. The outer skirt 30 can have a portion shaped to correspond generally with the shape of an outer portion of the frame 20. For example, a first portion 64 of the outer skirt 30 can have a cylindrical or generally cylindrical shape with an inner diameter that substantially corresponds in size to, or may be larger or slightly larger than, an outer diameter of the frame 20. In some embodiments, the first portion 64 surrounds the bulbous region of the frame and may be located surrounding the largest outer diameter of the frame 20. The outer skirt 30 can have a second portion 66 with an annular shape that extends away from the first portion 64 to an outer border with a diameter larger than the diameter of the first portion. As illustrated in FIG. 2, the second portion 66 is shown flaring outward from the first portion 64 and extending generally perpendicularly from the first portion 64. Thus, the illustrated second portion forms an annular ring comprising a proximal edge and a distal edge, wherein a diameter of the proximal edge is larger than a diameter of the distal edge.


The outer skirt 30 can attach to the frame, and more preferably attach to the anchors, in one of many different ways. The outer skirt 30 can be sewn to the frame and/or valve skirt. The outer skirt 30 can also be wrapped around a portion of the frame and then sewn to itself. In the embodiments illustrated in FIGS. 1A and 2, the second portion 66 can be attached to the proximal anchors. For example, a plurality of circumferentially spaced tabs 68 extending radially outward from the proximal edge of the second portion 66 can be used to attach the outer skirt 30 to the proximal anchors. Wings 72 on either side of the tab 68 can be wrapped around a proximal anchor and connected to each other and/or to the proximal anchor 22 to form a sleeve. The tabs 68 themselves may also form sleeves that are configured to surround at least a portion of the proximal anchors. In some embodiments, the proximal anchors 22 can include eyelets 46 that may be used to secure the skirt to the anchor. The one or both wings 72, or other parts of the tab 68, can be attached to the eyelet 46, for example by stitching the tab to the eyelet.


As shown, the eyelet 46 is spaced proximally from the end of the anchor. In other embodiments, the eyelet can be at the distal end of the anchor 22. In some embodiments, the proximal anchors can be looped anchors or have a looped end. A small tab can be passed through the looped anchor or looped end and connected to the skirt to form a loop on the skirt. Further, the outer skirt 30 may attach directly to the eyelets 46 without the need for tabs 68.


In the embodiment illustrated in FIG. 1A, the outer skirt 30 is only attached to the frame via the proximal anchors, and the first portion 64 remains unattached to any portion of the frame or any anchors. Thus, as illustrated in FIG. 1A, the first portion 64 when attached to the frame extends distally from the proximal anchors 22 and terminates in a free distal edge. In other embodiments, the first portion 64 may also be attached to portions of the frame and/or the distal anchors. Because of the bulbous shape of the frame, the free distal edge may be spaced radially outward from the frame when the frame is in an expanded configuration.


In some embodiments, the outer skirt can attach to the frame at a distal end of the skirt, or at some other location and then curve up and out towards the proximal anchors. Thus, the outer skirt may not have a distinct first portion and second portion. In still other embodiments, the outer skirt may extend along a substantial portion of the frame. The outer skirt may be attached to the distal ends of the proximal anchors and extend to the base of the anchor and then extend along the frame to a location parallel with the ends of the proximal anchors, or even more distal still, such as to the base of the distal anchors 24.


In some embodiments, the outer skirt 30 can be part of, or connected to, the valve skirt 70, such as being connected to the valve skirt 70 at or near the distal end 34 of the frame.


The outer skirt 30 can be constructed in multiple different ways and may be made of similar material to the valve skirt 70. The outer skirt 30 can be made of a layer of resilient material, such as knit polyester or another stretchable or flexible fabric. In some embodiments, the outer skirt 30 is made from a material that is more flexible than the valve leaflet material. The distal and/or proximal end of the outer skirt 30 can be straight, curved, or have any other desired configuration. The outer skirt 30 can be formed of one piece or multiple pieces. For example, the outer skirt 30 attached to the frame 20 can be one piece and then each proximal anchor 22 can be covered by a separate piece of material of the outer skirt 30. It is to be understood that other configurations of the outer skirt 30 can also be employed. For example, the anchors may remain uncovered, or only a portion may be covered.


The prosthesis 10 can also include a support band 80 as is shown in FIG. 1A. The support band 80 may be placed or positioned around or within the frame 20 at the proximal end 32. The support band 80 can be used to reinforce and/or constrain the frame 20. The support band 80 can help to control the expansion of the frame 20 from the compacted to the expanded state. The support band 80 can also be used to reduce the amount of motion that occurs at the proximal end 32 after the prosthesis 10 has been implanted at the mitral heart valve or other location.


In some embodiments, the support band 80 may comprise a polyester fabric band. The support band 80 may comprise a no-stretch or limited stretch material. Preferably the support band 80 is not made of an elastic material or a material known to have high elasticity. In some embodiments, the support band 80 is made from a material that is less flexible than the valve skirt material and/or the valve leaflet material. The distal and proximal ends of the support band 80 can be straight, curved, undulating with the undulations of frame, or any other desired configuration.


The support band 80 can be connected to the valve frame with a plurality of stitches, loops, knots, staples, or other types of connections. In some embodiments, the frame 20 can be sandwiched between two sides or layers of the support band 80. Preferably, the support band 80 is a single layer positioned within and attached to the frame 20 with a plurality of stitches around one or more of the longitudinal and/or undulating struts. In some embodiments, the support band 80 can be attached to the proximal end of the valve skirt 40.


The outer skirt 30 can beneficially prevent axial flow of fluid around an exterior of the prosthesis. For example, with the outer skirt 30 be positioned annularly around an exterior of the expandable frame and secured to at least some of the plurality of proximal anchors, the outer skirt creates an axial barrier to fluid flow exterior to the frame when deployed within a body cavity. In addition, the skirt can encourage tissue in-growth between the skirt and the natural tissue. This may further help to prevent leakage of blood flow around the heart valve.


In one embodiment, the outer skirt 30 can be used to help prevent leakage of blood flow around a heart valve, such as a mitral valve, when the prosthesis is placed in a native heart valve. For example, the outer skirt 30 can engage an atrial side of the mitral valve. The proximal anchors can also engage the mitral valve forcing the outer skirt 30 into close contact with the valve to block flow from passing through the mitral valve from outside of the frame.


In preferred embodiments, the prostheses 10 in the form of a replacement heart such as described above may be deployed into a heart valve annulus. The prosthesis 10 may be delivered into the mitral valve in a radially compacted or collapsed configuration and positioned when compacted so that the anchor tips 26, 28 of the opposing anchors 22, 24 are disposed on opposite sides of the native annulus 98 as shown in FIGS. 3A and 3B. As the replacement heart valve 10 is expanded, the opposing anchors are drawn closer together and may grasp tissue on opposite sides of the native annulus 98 and securely hold the replacement heart valve 10 in position. As such, the replacement heart valve 10 can be held securely in position without requiring a substantial radial force against the native annulus. Because the anchor tips are preferably atraumatic, the grasping or engaging of tissue by the prosthesis minimizes damage to the native tissue. The foreshortening portion 18 can be used to move the anchor tips 26, 28 closer together as the replacement heart valve 10 moves to the expanded position to thereby engage the native valve annulus. The prosthesis can be deployed into a heart valve or otherwise deployed in manners similar to those described with respect to a replacement heart valve in U.S. Publication Nos. 2010/0298931 and 2012/0078353 the entireties of each of which are hereby incorporated by reference and made a part of this specification.



FIGS. 3A and 3B show a schematic representation of the replacement heart valve 10 installed in a human heart 84. The heart is shown in cross-section, and represents typical anatomy, including a left atrium 78 and left ventricle 86. The left atrium 78 and left ventricle 86 communicate with one another through a mitral annulus 98. Also shown schematically is a native anterior mitral leaflet 90 having chordae tendineae 92 that connect a downstream end of the anterior mitral leaflet 90 and to the left ventricle 86.


In one preferred embodiment, a method is provided of delivering a replacement valve to a native mitral valve and atraumatically securing the replacement valve relative to the native mitral valve annulus 98. The replacement valve can be mounted on a delivery device and delivered to the native mitral valve annulus while the replacement valve is in a radially compacted state. The replacement valve may be positioned so that the ends or tips of the distal anchors are on a ventricular side of the native leaflets 90 beyond a location where chordae tendineae 92 connect to free ends of the native leaflets. At least a portion of the replacement valve can be released from the delivery device to thereby expand the distal anchors radially outwardly. At this time the distal anchors may extend between at least some of the chordae. The distal anchors (along with the frame) can be moved toward the ventricular side of the native valve annulus with the distal anchors extending between at least some of the chordae tendineae to provide tension on the chordae tendineae. With tension provided on the chordae tendineae, the replacement valve can be further released from the delivery device to thereby expand the proximal anchors radially outwardly. The proximal anchors upon further release of the replacement valve from the delivery device can move into engagement with tissue on an atrial side of the native valve annulus, such as with the atrial side of the native valve annulus.


The method just described may utilize any of the prostheses herein described, including any of the prostheses described in the patents and applications incorporated by reference herein. In one embodiment, a prosthesis where the ends of the distal anchors are not positioned as far out radially as the ends of the proximal anchors when the frame is expanded can beneficially be used in this method. Thus, the distal anchors may have a suitable length for extending between and providing tension on the chordae tendineae, but need not and may in some embodiments not engage tissue with the tips 28. Thus, in some embodiments the some or all of the distal anchors remain spaced from tissue on the ventricular side of the native valve annulus after delivery and expansion. The interaction between the distal anchors and the chordae tendineae may therefore be sufficient to secure the distal end of the prosthesis, while the engagement of the proximal anchors with tissue on the atrial side of the native valve annulus will help further secure and orient the prosthesis


As illustrated in FIGS. 3A and 3B, the distal anchors may comprise loops, such as any of the looped structures previously described or described in the patents and applications incorporated by reference herein. The proximal and/or distal anchors may also be covered with a resilient material such as described above for the outer skirt 30 and valve skirt 70 that promotes tissue growth with adjacent body tissue. Such material may also be useful to prevent paravalvular leakage. The atraumatic distal anchors may advantageously prevent snagging of the prosthesis on internal structures, such as the papillary muscles.


When the prosthesis is in an expanded configuration within the native mitral heart valve, the engagement of the proximal anchors 22 with tissue on the atrial side of the native mitral valve causes at least the second portion 66 of the outer skirt 30 to also engage the tissue on the atrial side of the native mitral valve. The first portion 64 of the outer skirt extends distally from the proximal anchors toward the ventricle. Because the diameter of the first portion 64 is close or the same in dimension as the frame, at least at the proximal edge of the first portion 64, the outer skirt form a barrier to blood flow around the outside or external to the frame. The outer skirt 30 can be forced against the outside of the frame 20 by the native leaflets. Where the native leaflets do not force the outer skirt 30 against the frame, or where the contact is not as strong, the outer skirt 30 is still present to block, or impede blood flow. It will be understood that having multiple contact points between the native valve and the outer skirt can allow the outer skirt to securely cover areas where there are fewer contacts between the two. As described above, the outer skirt may also promote tissue growth with tissue that it contacts.


Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.


Similarly, this method of disclosure, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A prosthesis configured to grasp intralumenal tissue when deployed within a body cavity and prevent axial flow of fluid around an exterior of the prosthesis, the prosthesis comprising: an expandable frame comprising a proximal end and a distal end and a longitudinal axis extending therethrough, the frame configured to radially expand and contract for deployment within the body cavity;a plurality of anchors each connected to the frame so that when the frame is in an expanded configuration an end of each anchor is positioned radially outward from the frame, the plurality of anchors comprising a plurality of distal anchors having ends which extend proximally when the frame is in an expanded configuration, the ends of the distal anchors being circumferentially spaced apart such that at least one of the plurality of distal anchors is configured to extend between chordae tendineae when the frame is in an expanded configuration; anda skirt annularly positioned around an exterior of the expandable frame to create an axial barrier to fluid flow exterior to the frame when deployed within the body cavity, the skirt comprising: a first portion having a proximal end and a distal end, the proximal end being positioned at a location spaced between the proximal and distal ends of the frame and being unattached to the frame or plurality of anchors, the distal end of the first portion being positioned closer to the distal end of the frame than the proximal end of the first portion; anda second portion shaped to extend radially outward from the frame at a location spaced between the proximal end and the distal end to prevent axial flow of fluid around an exterior of the prosthesis, the second portion shaped to extend radially from a proximal end of the first portion;wherein when the frame is in an expanded configuration, the frame has a larger cross-sectional dimension in a middle portion of the frame and a smaller cross-sectional dimension in a proximal portion and a distal portion of the frame, and wherein the ends of the anchors are positioned radially outward from the middle portion of the frame.
  • 2. The prosthesis of claim 1, wherein the skirt comprises a plurality of wings or sleeves that surround at least some of the anchors.
  • 3. The prosthesis of claim 1, wherein at least some of the plurality of anchors comprise looped ends, and the skirt is attached to the looped ends.
  • 4. The prosthesis of claim 1, wherein the plurality of anchors comprise a plurality of proximal anchors having ends which extend distally when the frame is in an expanded configuration, wherein the ends of the proximal anchors are axially spaced from the ends of the distal anchors when the frame is in an expanded configuration.
  • 5. The prosthesis of claim 4, wherein the skirt is secured to at least some of the proximal anchors.
  • 6. The prosthesis of claim 5, wherein the skirt extends distally from the ends of the proximal anchors to a free distal edge.
  • 7. The prosthesis of claim 4, wherein the second portion of the skirt is configured to extend radially outward from the frame between ends of the proximal and distal anchors.
  • 8. The prosthesis of claim 4, wherein the plurality of proximal anchors are integrally formed with the frame.
  • 9. The prosthesis of claim 1, further comprising a second skirt covering distal anchors to facilitate in-growth of adjacent tissue when the prosthesis is deployed within a body cavity.
  • 10. The prosthesis of claim 1, further comprising a valve body attached to the frame.
  • 11. The prosthesis of claim 1, wherein the proximal end and the distal end have substantially the same cross-sectional dimension.
  • 12. A replacement heart valve suitable for use for securement to a native mitral valve annulus, comprising the prosthesis of claim 1.
  • 13. The prosthesis of claim 12, wherein the middle portion of the frame is configured to engage tissue of a native mitral valve.
  • 14. The prosthesis of claim 1, wherein the second portion of the skirt is configured to extend radially outward from the middle portion of the frame.
  • 15. The prosthesis of claim 1, wherein the first portion of the skirt is configured to surround a middle portion of the frame, the middle portion of the frame being configured to engage intalumenal tissue.
  • 16. A prosthesis configured to grasp intralumenal tissue when deployed within a body cavity and prevent axial flow of fluid around in exterior of the prosthesis, the prosthesis comprising: an expandable frame comprising a proximal end and a distal end and a longitudinal axis extending therethrough, the frame configured to radially expand and contract for deployment within the body cavity;a distal anchoring portion connected to the frame so that when the frame is in an expanded configuration an end of the distal anchoring portion is positioned radially outward from the frame, the distal anchoring portion comprising a plurality of distal anchors comprising circumferentially spaced apart ends; anda skirt annularly positioned around an exterior of the expandable frame to create an axial barrier to fluid flow exterior to the frame when deployed within the body cavity, the axial barrier being positioned at least proximally of the end of the distal anchoring portion, the skirt comprising: a first portion having a proximal end and a distal end, the distal end of the first portion being positioned more distal than the end of the distal anchoring portion; anda second portion shaped to extend radially outward from the frame at a location spaced between the proximal end and the distal end to prevent axial flow of fluid around an exterior of the prosthesis;wherein when the frame is in an expanded configuration: a cross-sectional dimension of the proximal end of the frame;the distal end of the frame and the proximal end have different cross-sectional dimensions, andthe ends of the anchors are positioned radially outward from the middle portion of the frame.
  • 17. The prosthesis of claim 16, the prosthesis comprising a proximal anchoring portion connected to the frame so that when the frame is in an expanded configuration an end of the proximal anchoring portion is positioned radially outward from the frame.
  • 18. The prosthesis of claim 17, wherein the proximal anchoring portion comprises a plurality of proximal anchors and wherein the plurality of proximal anchors and the plurality of distal anchors are circumferentially staggered.
  • 19. The prosthesis of claim 16, wherein at least some of the plurality of distal anchors are sized to extend between at least some of the chordae tendineae.
  • 20. The prosthesis of claim 16, wherein the distal end of the first portion is positioned at a base of the distal anchoring portion.
  • 21. The prosthesis of claim 16, wherein the distal anchoring portion comprises at least six distal anchors.
  • 22. A prosthesis configured to grasp intralumenal tissue when deployed within a native mitral valve and prevent axial flow of fluid around in exterior of the prosthesis, the prosthesis comprising: an expandable frame comprising a proximal end and a distal end and a longitudinal axis extending therethrough, the frame configured to radially expand and contract for deployment within the native mitral valve;a proximal anchoring portion sized to contact an atrial side of a native mitral valve annulus when the prosthesis is deployed within the native mitral valve, the proximal anchoring portion being connected to the frame at a location distal of the proximal end of the frame, wherein the proximal anchoring portion extends radially outward from the frame when the frame is in an expanded configuration;a distal anchoring portion sized to be positioned on a ventricular side of the native mitral valve annulus when the prosthesis is deployed within the native mitral valve, the distal anchoring portion comprising a plurality of spaced apart distal anchors extending towards a proximal end of the expandable frame, wherein the distal anchors are positioned radially outward from the frame when the frame is in an expanded configuration; anda skirt disposed along an exterior of the prosthesis to create an axial barrier to fluid flow exterior to the prosthesis when deployed within the native mitral valve, the skirt comprising: a generally cylindrical portion extending along an exterior of the frame, wherein a proximal end of the generally cylindrical portion is positioned distally of the proximal end of the frame and a distal end of the generally cylindrical portion is positioned proximally of the distal anchors; anda ring portion sized to contact an atrial side of a native mitral valve annulus when the prosthesis is expanded and deployed within the native mitral valve, the ring portion extending radially outward from the frame at the proximal end of the generally cylindrical portion, wherein at least a portion of the ring portion extends along the proximal anchoring portion;wherein when the frame is in an expanded configuration a cross-sectional dimension in a middle portion of the frame is larger than a cross-sectional dimension of the proximal end of the frame.
  • 23. The prosthesis of claim 22, wherein the expandable frame comprises a foreshortening portion having a plurality of cells and wherein the skirt has an axial dimension less than two cell lengths.
  • 24. The prosthesis of claim 22, wherein the generally cylindrical portion of the skirt is configured to contact the expandable frame along a first surface and tissue of the native mitral valve along a second surface to create an axial barrier to fluid flow exterior to the prosthesis when deployed within the native mitral valve.
  • 25. The prosthesis of claim 22, wherein an inner diameter of the generally cylindrical portion of the skirt substantially corresponds in size to an outer diameter of the frame along which the generally cylindrical portion extends.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Appl. Nos. 61/782,707, filed Mar. 14, 2013 and 61/789,783, filed Mar. 15, 2013. The entire contents of the above applications are hereby incorporated by reference and made a part of this specification. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (1301)
Number Name Date Kind
1306391 Romanoff Jun 1919 A
3312237 Mon et al. Apr 1967 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3739402 Cooley et al. Jun 1973 A
4056854 Boretos et al. Nov 1977 A
4079468 Liotta et al. Mar 1978 A
4204283 Bellhouse et al. May 1980 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4339831 Johnson Jul 1982 A
4340977 Brownlee et al. Jul 1982 A
4470157 Love Sep 1984 A
4477930 Totten et al. Oct 1984 A
4490859 Black et al. Jan 1985 A
4553545 Maass et al. Nov 1985 A
4655771 Wallsten Apr 1987 A
4733665 Palmaz Mar 1988 A
4776337 Palmaz Oct 1988 A
4777951 Cribier et al. Oct 1988 A
4865600 Carpentier et al. Sep 1989 A
4908028 Colon et al. Mar 1990 A
4950227 Savin et al. Aug 1990 A
4994077 Dobben Feb 1991 A
5049154 Quadri Sep 1991 A
5067957 Jervis Nov 1991 A
5133725 Quadri Jul 1992 A
5197978 Hess Mar 1993 A
5282826 Quadri Feb 1994 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5344427 Cottenceau et al. Sep 1994 A
5370685 Stevens Dec 1994 A
5397355 Marin et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5439446 Barry Aug 1995 A
5449385 Religa et al. Sep 1995 A
5474563 Myler et al. Dec 1995 A
5509930 Love Apr 1996 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5575818 Pinchuk Nov 1996 A
5607444 Lam Mar 1997 A
5607469 Frey Mar 1997 A
5669919 Sanders et al. Sep 1997 A
5697382 Love et al. Dec 1997 A
D390957 Fontaine Feb 1998 S
5713952 Vanney et al. Feb 1998 A
5725519 Penner et al. Mar 1998 A
5769812 Stevens et al. Jun 1998 A
5807398 Shaknovich Sep 1998 A
5810873 Morales Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855601 Bessler et al. Jan 1999 A
5868777 Lam Feb 1999 A
5868782 Frantzen Feb 1999 A
5876437 Vanney et al. Mar 1999 A
5879381 Moriuchi et al. Mar 1999 A
5902334 Dwyer et al. May 1999 A
5935108 Katoh et al. Aug 1999 A
5954764 Parodi Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5992000 Humphrey et al. Nov 1999 A
6004328 Solar Dec 1999 A
6015431 Thornton et al. Jan 2000 A
6042606 Frantzen Mar 2000 A
6053940 Wijay Apr 2000 A
6086612 Jansen Jul 2000 A
6113612 Swanson et al. Sep 2000 A
6113631 Jansen Sep 2000 A
6132458 Staehle et al. Oct 2000 A
6152937 Peterson et al. Nov 2000 A
6159237 Alt Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6168616 Brown, III Jan 2001 B1
6251093 Valley et al. Jun 2001 B1
6280466 Kugler et al. Aug 2001 B1
6306141 Jervis Oct 2001 B1
6309416 Swanson et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6336938 Kavteladze et al. Jan 2002 B1
6352543 Cole Mar 2002 B1
6358277 Duran Mar 2002 B1
6409759 Peredo Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440163 Swanson et al. Aug 2002 B1
6440164 DeMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6475237 Drasler et al. Nov 2002 B2
6482228 Norred Nov 2002 B1
6511491 Grudem et al. Jan 2003 B2
6517573 Pollock et al. Feb 2003 B1
6527800 McGuckin, Jr. et al. Mar 2003 B1
6533812 Swanson et al. Mar 2003 B2
6551303 Van Tassei et al. Apr 2003 B1
6582462 Andersen et al. Jun 2003 B1
6602281 Klein Aug 2003 B1
6610088 Gabbay Aug 2003 B1
6641606 Ouriel et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
D484979 Fontaine Jan 2004 S
6676698 McGuckin et al. Jan 2004 B2
6682537 Ouriel et al. Jan 2004 B2
6695878 McGuckin et al. Feb 2004 B2
6712836 Berg et al. Mar 2004 B1
6723123 Kazatchkov et al. Apr 2004 B1
6730118 Spenser et al. May 2004 B2
6733523 Shaolian et al. May 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6767362 Schreck Jul 2004 B2
6780200 Jansen Aug 2004 B2
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6830584 Sequin Dec 2004 B1
6858034 Hijlkema et al. Feb 2005 B1
6875231 Anduiza et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908477 McGuckin, Jr. et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6926732 Derus et al. Aug 2005 B2
6929660 Ainsworth et al. Aug 2005 B1
6936058 Forde et al. Aug 2005 B2
6960219 Grudem et al. Nov 2005 B2
6979350 Moll et al. Dec 2005 B2
7014653 Ouriel et al. Mar 2006 B2
7018401 Hyodoh et al. Mar 2006 B1
7018406 Seguin et al. Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7044134 Khairkhahan et al. May 2006 B2
7044962 Elliott May 2006 B2
7044966 Svanidze et al. May 2006 B2
7087088 Berg et al. Aug 2006 B2
7147660 Chobotov et al. Dec 2006 B2
7147661 Chobotov et al. Dec 2006 B2
7147663 Berg et al. Dec 2006 B1
7153322 Alt Dec 2006 B2
7186265 Sharkawy et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7252682 Seguin Aug 2007 B2
D553747 Fliedner Oct 2007 S
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7328270 Reents et al. Feb 2008 B1
7329278 Seguin et al. Feb 2008 B2
7374571 Pease et al. May 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7422602 Grudem et al. Sep 2008 B2
7425219 Quadri Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7527646 Rahdert et al. May 2009 B2
7534261 Friedman May 2009 B2
7585321 Cribier Sep 2009 B2
7608114 Levine et al. Oct 2009 B2
7615072 Rust et al. Nov 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7628805 Spenser et al. Dec 2009 B2
7632298 Hijlkema et al. Dec 2009 B2
7682390 Seguin Mar 2010 B2
7708775 Rowe et al. May 2010 B2
7712606 Salahieh et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
D622387 Igaki Aug 2010 S
D622388 Igaki Aug 2010 S
7771463 Ton et al. Aug 2010 B2
7771472 Hendricksen et al. Aug 2010 B2
7780725 Haug et al. Aug 2010 B2
7785360 Freitag Aug 2010 B2
7803185 Gabbay Sep 2010 B2
7806917 Xiao Oct 2010 B2
7806919 Bloom et al. Oct 2010 B2
7815589 Meade et al. Oct 2010 B2
7815673 Bloom et al. Oct 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7837727 Goetz et al. Nov 2010 B2
7846203 Cribier Dec 2010 B2
7871435 Carpentier et al. Jan 2011 B2
7892281 Seguin et al. Feb 2011 B2
D635261 Rossi Mar 2011 S
D635262 Rossi Mar 2011 S
7896915 Guyenot et al. Mar 2011 B2
7914569 Nguyen et al. Mar 2011 B2
7919112 Pathak et al. Apr 2011 B2
7947075 Goetz et al. May 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7967853 Eidenschink et al. Jun 2011 B2
7972377 Lane Jul 2011 B2
7972378 Tabor et al. Jul 2011 B2
7981151 Rowe Jul 2011 B2
7993392 Righini et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
7993395 Vanermen et al. Aug 2011 B2
7998196 Mathison Aug 2011 B2
8009887 Ionasec et al. Aug 2011 B2
8016870 Chew et al. Sep 2011 B2
8016877 Seguin et al. Sep 2011 B2
8029564 Johnson et al. Oct 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052747 Melnikov et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8057538 Bergin et al. Nov 2011 B2
8057539 Ghione et al. Nov 2011 B2
8057540 Letac et al. Nov 2011 B2
8062350 Gale et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8066763 Alt Nov 2011 B2
8070799 Righini et al. Dec 2011 B2
8070800 Lock et al. Dec 2011 B2
8070801 Cohn Dec 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8075611 Millwee et al. Dec 2011 B2
8075615 Eberhardt et al. Dec 2011 B2
8078279 Dennis et al. Dec 2011 B2
8080054 Rowe Dec 2011 B2
8083793 Lane et al. Dec 2011 B2
8088158 Brodeur Jan 2012 B2
8088404 Udipi et al. Jan 2012 B2
8092520 Quadri Jan 2012 B2
8100964 Spence Jan 2012 B2
8105375 Navia et al. Jan 2012 B2
8105377 Liddicoat Jan 2012 B2
8109995 Paniagua et al. Feb 2012 B2
8109996 Stacchino et al. Feb 2012 B2
8114154 Righini et al. Feb 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8119704 Wang et al. Feb 2012 B2
8123801 Milo Feb 2012 B2
8128681 Shoemaker et al. Mar 2012 B2
8128688 Ding et al. Mar 2012 B2
8136218 Millwee et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8137687 Chen et al. Mar 2012 B2
8142492 Forster et al. Mar 2012 B2
8142494 Rahdert et al. Mar 2012 B2
8147504 Ino et al. Apr 2012 B2
8155754 Nygren et al. Apr 2012 B2
8157852 Bloom et al. Apr 2012 B2
8157853 Laske et al. Apr 2012 B2
8158187 Chen et al. Apr 2012 B2
8163014 Lane et al. Apr 2012 B2
8167926 Hartley et al. May 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8168275 Lee et al. May 2012 B2
8170645 Solar et al. May 2012 B2
8177799 Orban, III May 2012 B2
8177836 Lee et al. May 2012 B2
8180428 Kaiser et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8182530 Huber May 2012 B2
8182829 Kleiner et al. May 2012 B2
8187319 Zilla et al. May 2012 B2
8187851 Shah et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8202529 Hossainy et al. Jun 2012 B2
8211169 Lane et al. Jul 2012 B2
8216261 Solem Jul 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8219229 Cao et al. Jul 2012 B2
8220121 Hendriksen et al. Jul 2012 B2
8221482 Cottone et al. Jul 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8231930 Castro et al. Jul 2012 B2
D665079 Zago Aug 2012 S
D665080 Zago Aug 2012 S
8236045 Benichou et al. Aug 2012 B2
8236241 Carpentier et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8246675 Zegdi Aug 2012 B2
8246677 Ryan Aug 2012 B2
8246678 Salahieh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8262724 Seguin et al. Sep 2012 B2
8273118 Bergin Sep 2012 B2
8273120 Dolan Sep 2012 B2
8276533 Chambers et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8292948 Mauch et al. Oct 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308798 Pintor et al. Nov 2012 B2
8313520 Barbut et al. Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8317854 Ryan et al. Nov 2012 B1
8323335 Rowe et al. Dec 2012 B2
8323336 Hill et al. Dec 2012 B2
8323678 Wang et al. Dec 2012 B2
8337541 Quadri et al. Dec 2012 B2
8348995 Tuval et al. Jan 2013 B2
8349001 Mensah et al. Jan 2013 B2
8349003 Shu et al. Jan 2013 B2
8353921 Schaller et al. Jan 2013 B2
8353948 Besselink et al. Jan 2013 B2
8353953 Giannetti et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8357387 Dove et al. Jan 2013 B2
8361137 Perouse Jan 2013 B2
8361537 Shanley Jan 2013 B2
8366769 Huynh et al. Feb 2013 B2
8374692 Bobgan et al. Feb 2013 B2
8377115 Thompson Feb 2013 B2
8377116 Hsu et al. Feb 2013 B2
8377499 Kleiner et al. Feb 2013 B2
8382816 Pollock et al. Feb 2013 B2
RE44075 Williamson et al. Mar 2013 E
8398707 Bergin Mar 2013 B2
8398708 Meiri et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8408214 Spenser Apr 2013 B2
8409274 Li et al. Apr 2013 B2
8414635 Hyodoh et al. Apr 2013 B2
8414643 Tuval et al. Apr 2013 B2
8414644 Quadri et al. Apr 2013 B2
8414645 Dwork et al. Apr 2013 B2
8430902 Bergheim Apr 2013 B2
8430927 Bonhoeffer Apr 2013 B2
8444689 Zhang May 2013 B2
8449466 Duhay et al. May 2013 B2
8449599 Chau et al. May 2013 B2
8449625 Campbell et al. May 2013 B2
8454684 Bergin et al. Jun 2013 B2
8454685 Hariton et al. Jun 2013 B2
8460335 Carpenter Jun 2013 B2
8460365 Haverkost et al. Jun 2013 B2
8460366 Rowe Jun 2013 B2
8460370 Zakay et al. Jun 2013 B2
8460373 Fogarty et al. Jun 2013 B2
8465541 Dwork Jun 2013 B2
8470023 Eidenschink et al. Jun 2013 B2
8470024 Ghione et al. Jun 2013 B2
8475521 Suri et al. Jul 2013 B2
8475522 Jimenez et al. Jul 2013 B2
8475523 Duffy Jul 2013 B2
8479380 Malewicz et al. Jul 2013 B2
8480730 Maurer et al. Jul 2013 B2
8480731 Elizondo et al. Jul 2013 B2
8486137 Suri et al. Jul 2013 B2
8491650 Wiemeyer et al. Jul 2013 B2
8500688 Engel et al. Aug 2013 B2
8500755 Ino et al. Aug 2013 B2
8500798 Rowe et al. Aug 2013 B2
8500801 Eberhardt et al. Aug 2013 B2
8500802 Lane et al. Aug 2013 B2
8506620 Ryan Aug 2013 B2
8506625 Johnson Aug 2013 B2
8511244 Holecek et al. Aug 2013 B2
8512397 Rolando et al. Aug 2013 B2
8512398 Alkhatib Aug 2013 B2
8512399 Lafontaine Aug 2013 B2
8512400 Tran et al. Aug 2013 B2
8512401 Murray, III et al. Aug 2013 B2
8518106 Duffy et al. Aug 2013 B2
8518107 Tsukashima Aug 2013 B2
8518108 Huynh et al. Aug 2013 B2
8523940 Richardson et al. Sep 2013 B2
8529621 Alfieri et al. Sep 2013 B2
8532769 Kornet et al. Sep 2013 B2
8535368 Headley, Jr. et al. Sep 2013 B2
8539662 Stacchino et al. Sep 2013 B2
8545742 Gada et al. Oct 2013 B2
8551162 Fogarty et al. Oct 2013 B2
8556966 Jenson Oct 2013 B2
8562663 Mearns et al. Oct 2013 B2
8562672 Bonhoeffer et al. Oct 2013 B2
8562673 Yeung et al. Oct 2013 B2
8565872 Pederson Oct 2013 B2
8568472 Marchand et al. Oct 2013 B2
8568474 Yeung et al. Oct 2013 B2
8568475 Nguyen et al. Oct 2013 B2
8579963 Tabor Nov 2013 B2
8579964 Lane et al. Nov 2013 B2
8579965 Bonhoeffer et al. Nov 2013 B2
8584849 McCaffrey Nov 2013 B2
8585749 Shelso Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8591570 Revuelta et al. Nov 2013 B2
8591574 Lambrecht et al. Nov 2013 B2
8597348 Rowe et al. Dec 2013 B2
8603154 Strauss et al. Dec 2013 B2
8603160 Salahieh et al. Dec 2013 B2
8603161 Drews et al. Dec 2013 B2
8608648 Banik et al. Dec 2013 B2
8617236 Paul et al. Dec 2013 B2
8617379 Wong et al. Dec 2013 B2
8623074 Ryan Jan 2014 B2
8623075 Murray, III et al. Jan 2014 B2
8623079 Savage et al. Jan 2014 B2
8623080 Fogarty et al. Jan 2014 B2
8628566 Eberhardt et al. Jan 2014 B2
8632586 Spenser Jan 2014 B2
8632608 Carpentier et al. Jan 2014 B2
8634911 Stegemann et al. Jan 2014 B2
8640521 Righini et al. Feb 2014 B2
8641639 Manstrom et al. Feb 2014 B2
8641757 Pintor et al. Feb 2014 B2
8647381 Essinger et al. Feb 2014 B2
8652145 Maimon et al. Feb 2014 B2
8652201 Oberti et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri Feb 2014 B2
8652204 Quill et al. Feb 2014 B2
8653632 Pederson et al. Feb 2014 B2
8657872 Seguin Feb 2014 B2
8663305 Argentine Mar 2014 B2
8663318 Ho Mar 2014 B2
8663319 Ho Mar 2014 B2
8668730 Mcguckin, Jr. et al. Mar 2014 B2
8668733 Haug et al. Mar 2014 B2
8672992 Orr Mar 2014 B2
8672997 Drasler et al. Mar 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8672999 Cali et al. Mar 2014 B2
8673000 Tabor et al. Mar 2014 B2
8678033 Bengea et al. Mar 2014 B2
8679174 Ottma et al. Mar 2014 B2
8679404 Liburd et al. Mar 2014 B2
8685083 Perier et al. Apr 2014 B2
8685084 Rolando et al. Apr 2014 B2
8685086 Navia et al. Apr 2014 B2
8690787 Blomqvist et al. Apr 2014 B2
8690936 Nguyen et al. Apr 2014 B2
8696742 Pintor et al. Apr 2014 B2
8696743 Holecek et al. Apr 2014 B2
8707957 Callister et al. Apr 2014 B2
8715207 Righini et al. May 2014 B2
8715337 Chuter May 2014 B2
8715343 Navia et al. May 2014 B2
8718765 Baumann et al. May 2014 B2
8721707 Boucher et al. May 2014 B2
8721708 Sequin et al. May 2014 B2
8721713 Tower et al. May 2014 B2
8721714 Kelley May 2014 B2
8721715 Wang May 2014 B2
8728154 Alkhatib May 2014 B2
8728155 Montorfano et al. May 2014 B2
8731658 Hampton et al. May 2014 B2
8734484 Ahlberg et al. May 2014 B2
8740930 Goodwin Jun 2014 B2
8740974 Lambrecht et al. Jun 2014 B2
8740975 Yang et al. Jun 2014 B2
8740976 Tran et al. Jun 2014 B2
8747458 Tuval et al. Jun 2014 B2
8747459 Nguyen et al. Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8753384 Leanna Jun 2014 B2
8753393 Strasly et al. Jun 2014 B2
8758432 Solem Jun 2014 B2
8764814 Solem Jul 2014 B2
8764818 Gregg Jul 2014 B2
8764820 Dehdashtian et al. Jul 2014 B2
8771302 Woolfson et al. Jul 2014 B2
8771344 Tran et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8771346 Tuval et al. Jul 2014 B2
8777966 Dale et al. Jul 2014 B2
8777975 Kashkarov et al. Jul 2014 B2
8778018 Iobbi Jul 2014 B2
8778019 Knippel et al. Jul 2014 B2
8778020 Gregg et al. Jul 2014 B2
8784477 Bregulla et al. Jul 2014 B2
8784478 Tuval et al. Jul 2014 B2
8784480 Taylor et al. Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790387 Nguyen et al. Jul 2014 B2
8790395 Straubinger et al. Jul 2014 B2
8790396 Bergheim et al. Jul 2014 B2
8791171 Pacetti Jul 2014 B2
8795354 Benichou et al. Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8798771 Casset et al. Aug 2014 B2
8801776 House et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808370 Nitzan et al. Aug 2014 B2
8814931 Wang et al. Aug 2014 B2
8821569 Gurskis et al. Sep 2014 B2
8821570 DuMontelle et al. Sep 2014 B2
8822219 Strasly et al. Sep 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8828079 Thielen et al. Sep 2014 B2
8834349 Waisblatt et al. Sep 2014 B2
8834561 Figulla et al. Sep 2014 B2
8834563 Righini Sep 2014 B2
8834564 Tuval et al. Sep 2014 B2
8839957 Murad et al. Sep 2014 B2
8840661 Manasse Sep 2014 B2
8840664 Karapetian et al. Sep 2014 B2
8844365 Gregg et al. Sep 2014 B2
8845718 Tuval et al. Sep 2014 B2
8845720 Conklin Sep 2014 B2
8846390 Dove et al. Sep 2014 B2
8851286 Chang et al. Oct 2014 B2
8858620 Salahieh et al. Oct 2014 B2
8858621 Oba et al. Oct 2014 B2
8869982 Hodshon et al. Oct 2014 B2
8870936 Rowe Oct 2014 B2
8870947 Shaw Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8876712 Yee et al. Nov 2014 B2
8876883 Rust Nov 2014 B2
8876892 Tran et al. Nov 2014 B2
8876893 Dwork et al. Nov 2014 B2
8876894 Tuval et al. Nov 2014 B2
8876895 Tuval et al. Nov 2014 B2
8882831 Alkhatib Nov 2014 B2
8888709 Shuros et al. Nov 2014 B2
8888730 Rossi et al. Nov 2014 B2
8888794 Hausen Nov 2014 B2
8888838 Blanzy Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8894703 Salahieh et al. Nov 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8900862 Alavi et al. Dec 2014 B2
8906081 Cully et al. Dec 2014 B2
8906601 Dove et al. Dec 2014 B2
8911455 Quadri et al. Dec 2014 B2
8911490 Perkins et al. Dec 2014 B2
8911844 Ford Dec 2014 B2
8915960 Carpentier et al. Dec 2014 B2
8918192 Ollivier et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8926688 Burkart et al. Jan 2015 B2
8926690 Kovalsky Jan 2015 B2
8926692 Dwork Jan 2015 B2
8926693 Duffy et al. Jan 2015 B2
8926694 Costello Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932349 Jenson et al. Jan 2015 B2
8932350 Brunnett et al. Jan 2015 B2
8936650 Alavi et al. Jan 2015 B2
8940014 Gamarra et al. Jan 2015 B2
8940887 Chatterton et al. Jan 2015 B2
8945208 Jimenez et al. Feb 2015 B2
8945209 Bonyuet et al. Feb 2015 B2
8945210 Cartledge et al. Feb 2015 B2
8945212 Bruchman et al. Feb 2015 B2
8951243 Crisostomo et al. Feb 2015 B2
8951280 Cohn et al. Feb 2015 B2
8951299 Paul et al. Feb 2015 B2
8956404 Bortlein et al. Feb 2015 B2
8956405 Wang et al. Feb 2015 B2
8961583 Hojeibane et al. Feb 2015 B2
8961589 Kleiner et al. Feb 2015 B2
8961593 Bonhoeffer et al. Feb 2015 B2
8961594 Maisano et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8961599 Bruchman et al. Feb 2015 B2
8966868 Wang et al. Mar 2015 B2
8968336 Conklin et al. Mar 2015 B2
8968393 Rothstein Mar 2015 B2
8968394 Murad et al. Mar 2015 B2
8968395 Hauser et al. Mar 2015 B2
8973234 Johnson et al. Mar 2015 B2
8974475 Rothstein et al. Mar 2015 B2
8974524 Yeung et al. Mar 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8980176 Reggiani et al. Mar 2015 B2
8986320 Maimon et al. Mar 2015 B2
8986371 Quill et al. Mar 2015 B2
8986372 Murry, III et al. Mar 2015 B2
8986374 Cao et al. Mar 2015 B2
8986375 Garde et al. Mar 2015 B2
8986713 Cleek et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
8992761 Lin Mar 2015 B2
8998976 Gregg et al. Apr 2015 B2
8998978 Wang Apr 2015 B2
8998979 Seguin et al. Apr 2015 B2
8998980 Shipley et al. Apr 2015 B2
8998981 Tuval et al. Apr 2015 B2
8999369 Gale et al. Apr 2015 B2
9005270 Perkins et al. Apr 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9005277 Pintor et al. Apr 2015 B2
9005279 Gabbay Apr 2015 B2
9011521 Haug et al. Apr 2015 B2
9011523 Seguin Apr 2015 B2
9011524 Eberhardt Apr 2015 B2
9011528 Ryan Apr 2015 B2
9021674 Hillukka et al. May 2015 B2
9023100 Quadri et al. May 2015 B2
9028545 Taylor May 2015 B2
9029418 Dove et al. May 2015 B2
9033887 Ionasec et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9044221 Zentgraf et al. Jun 2015 B2
9055937 Rowe et al. Jun 2015 B2
9078749 Lutter et al. Jul 2015 B2
9078751 Naor Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9125738 Figulla et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9161834 Taylor et al. Oct 2015 B2
20010007956 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010047180 Grudem et al. Nov 2001 A1
20010047200 White et al. Nov 2001 A1
20020016623 Kula et al. Feb 2002 A1
20020022853 Swanson et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020045929 Diaz Apr 2002 A1
20020052644 Shaolian et al. May 2002 A1
20020055772 McGuckin et al. May 2002 A1
20020077695 Swanson et al. Jun 2002 A1
20020111619 Keast et al. Aug 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020183827 Derus et al. Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030040792 Gabbay Feb 2003 A1
20030083679 Grudem et al. May 2003 A1
20030105517 White et al. Jun 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030120263 Ouriel et al. Jun 2003 A1
20030120330 Ouriel et al. Jun 2003 A1
20030120333 Ouriel et al. Jun 2003 A1
20030125797 Chobotov et al. Jul 2003 A1
20030130729 Paniagua Jul 2003 A1
20030176914 Rabkin et al. Sep 2003 A1
20030187499 Swanson et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030220683 Minasian et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040087900 Thompson et al. May 2004 A1
20040093058 Cottone et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040102842 Jansen May 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040133273 Cox Jul 2004 A1
20040186561 McGuckin, Jr. et al. Sep 2004 A1
20040193261 Berreklou Sep 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215325 Penn et al. Oct 2004 A1
20040225353 McGuckin, Jr. et al. Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040243230 Navia et al. Dec 2004 A1
20040249433 Freitag Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050033398 Seguin Feb 2005 A1
20050038470 van der Burg et al. Feb 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090887 Pryor Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050107872 Mensah et al. May 2005 A1
20050125020 Meade et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050154444 Quadri Jul 2005 A1
20050159811 Lane Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050203616 Cribier Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216079 Macoviak Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240204 Grudem et al. Oct 2005 A1
20050251251 Cribier Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060020247 Kagan et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020334 Lashinski et al. Jan 2006 A1
20060052802 Sterman et al. Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060095115 Bladillah et al. May 2006 A1
20060106454 Osborne et al. May 2006 A1
20060116625 Renati et al. Jun 2006 A1
20060129235 Seguin et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060173537 Yang et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060212110 Osborne et al. Sep 2006 A1
20060224232 Chobotov Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20060293745 Carpentier et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070050021 Johnson Mar 2007 A1
20070067016 Jung Mar 2007 A1
20070100432 Case et al. May 2007 A1
20070118206 Colgan et al. May 2007 A1
20070118207 Amplatz et al. May 2007 A1
20070123798 Rahamimov May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070185559 Shelso Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070219620 Eells et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070250151 Pereira Oct 2007 A1
20070255391 Hojeibane et al. Nov 2007 A1
20070255394 Ryan Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270937 Leanna Nov 2007 A1
20070293940 Schaeffer et al. Dec 2007 A1
20080009934 Schneider et al. Jan 2008 A1
20080021546 Patz et al. Jan 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082164 Friedman Apr 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080097571 Denison et al. Apr 2008 A1
20080097581 Shanley Apr 2008 A1
20080114441 Rust et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080125859 Salahieh et al. May 2008 A1
20080133003 Seguin et al. Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080147183 Styrc Jun 2008 A1
20080154358 Tansley et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080208307 Ben-Muvhar et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080228254 Ryan Sep 2008 A1
20080243233 Ben-Muvhar et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080262596 Xiao Oct 2008 A1
20080262603 Giaquinta et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20080275549 Rowe Nov 2008 A1
20080275550 Kheradvar et al. Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080319526 Hill et al. Dec 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090012602 Quadri Jan 2009 A1
20090054976 Tuval et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076531 Richardson et al. Mar 2009 A1
20090076585 Hendriksen et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082844 Zacharias et al. Mar 2009 A1
20090082847 Zacharias et al. Mar 2009 A1
20090088832 Chew et al. Apr 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099643 Hyodoh et al. Apr 2009 A1
20090099653 Suri et al. Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090118744 Wells et al. May 2009 A1
20090118824 Samkov May 2009 A1
20090118826 Khaghani May 2009 A1
20090125096 Chu et al. May 2009 A1
20090125104 Hoffman May 2009 A1
20090132035 Roth et al. May 2009 A1
20090132037 Hoffman et al. May 2009 A1
20090138069 Hoffman May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090149946 Dixon Jun 2009 A1
20090157175 Benichou Jun 2009 A1
20090163934 Raschdorf et al. Jun 2009 A1
20090171438 Chuter et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177262 Oberti et al. Jul 2009 A1
20090182407 Leanna et al. Jul 2009 A1
20090182413 Burkart et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090216314 Quadri Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090227992 Nir et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090248132 Bloom et al. Oct 2009 A1
20090248133 Bloom et al. Oct 2009 A1
20090258958 Ford Oct 2009 A1
20090264989 Bonhoeffer et al. Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090270972 Lane Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281618 Hill et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090292350 Eberhardt et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20100004740 Seguin et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049306 House et al. Feb 2010 A1
20100082089 Quadri et al. Apr 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100114299 Ben Muvhar et al. May 2010 A1
20100114305 Kang et al. May 2010 A1
20100121461 Sobrino-Serrano et al. May 2010 A1
20100161027 Orr Jun 2010 A1
20100179633 Solem Jul 2010 A1
20100179647 Carpenter et al. Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100256723 Murray Oct 2010 A1
20100262157 Silver et al. Oct 2010 A1
20100274345 Rust Oct 2010 A1
20100280606 Naor Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100305685 Millwee et al. Dec 2010 A1
20100312333 Navia et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110022164 Quinn et al. Jan 2011 A1
20110022165 Oba et al. Jan 2011 A1
20110022166 Dahlgren et al. Jan 2011 A1
20110022169 Ryan et al. Jan 2011 A1
20110029067 Mcguckin, Jr. et al. Feb 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110166644 Keeble et al. Jul 2011 A1
20110178597 Navia et al. Jul 2011 A9
20110208297 Tuval et al. Aug 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110224780 Tabor et al. Sep 2011 A1
20110224785 Hacohen Sep 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110282438 Drews et al. Nov 2011 A1
20110282440 Cao et al. Nov 2011 A1
20110288577 Newhauser et al. Nov 2011 A1
20110288626 Straubinger et al. Nov 2011 A1
20110288636 Rolando et al. Nov 2011 A1
20110295216 Miller Dec 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110301702 Rust et al. Dec 2011 A1
20110301704 Alfieri et al. Dec 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20110319981 Hill et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120012487 Tian et al. Jan 2012 A1
20120016342 Brecker Jan 2012 A1
20120016411 Tuval Jan 2012 A1
20120022605 Jahns et al. Jan 2012 A1
20120022633 Olson et al. Jan 2012 A1
20120022639 Hacohen et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120022642 Haug et al. Jan 2012 A1
20120029627 Salahieh et al. Feb 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120041550 Salahieh et al. Feb 2012 A1
20120041551 Spenser et al. Feb 2012 A1
20120046738 Lau et al. Feb 2012 A1
20120053514 Robinson et al. Mar 2012 A1
20120053681 Alkhatib et al. Mar 2012 A1
20120053682 Kovalsky et al. Mar 2012 A1
20120059452 Boucher et al. Mar 2012 A1
20120059454 Millwee et al. Mar 2012 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120078237 Wang et al. Mar 2012 A1
20120078351 Klima et al. Mar 2012 A1
20120078353 Quadri et al. Mar 2012 A1
20120078356 Fish et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120083880 Rankin et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120097178 Helm et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120123284 Kheradvar May 2012 A1
20120123529 Levi et al. May 2012 A1
20120123557 Carpentier et al. May 2012 A1
20120136200 Miraki May 2012 A1
20120136434 Carpentier et al. May 2012 A1
20120158128 Gautam et al. Jun 2012 A1
20120158129 Duffy et al. Jun 2012 A1
20120179051 Pfeiffer et al. Jul 2012 A1
20120179239 Quadri et al. Jul 2012 A1
20120179243 Yang et al. Jul 2012 A1
20120185033 Ryan Jul 2012 A1
20120185038 Fish et al. Jul 2012 A1
20120191183 Rzany et al. Jul 2012 A1
20120197391 Alkhatib et al. Aug 2012 A1
20120209375 Madrid et al. Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120226340 Leschinsky Sep 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120253386 Rowe et al. Oct 2012 A1
20120259405 Weber et al. Oct 2012 A1
20120259409 Nguyen et al. Oct 2012 A1
20120271398 Essinger et al. Oct 2012 A1
20120271411 Duhay et al. Oct 2012 A1
20120277850 Bertini Nov 2012 A1
20120283820 Tseng et al. Nov 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20120294761 Reggiani et al. Nov 2012 A1
20120296160 Hill et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120300063 Majkrzak et al. Nov 2012 A1
20120303048 Manasse Nov 2012 A1
20120303116 Gorman, III et al. Nov 2012 A1
20120305441 Murray et al. Dec 2012 A1
20120310328 Olson et al. Dec 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120310332 Murray et al. Dec 2012 A1
20120316639 Kleinschrodt Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20120323316 Chau et al. Dec 2012 A1
20120323545 Aulbach et al. Dec 2012 A1
20120330409 Haug et al. Dec 2012 A1
20130006294 Kashkarov Jan 2013 A1
20130012767 Nguyen et al. Jan 2013 A1
20130018307 Lee et al. Jan 2013 A1
20130018458 Yohanan Jan 2013 A1
20130023984 Conklin Jan 2013 A1
20130030418 Taft et al. Jan 2013 A1
20130030519 Tran et al. Jan 2013 A1
20130030520 Lee et al. Jan 2013 A1
20130030521 Nitzan et al. Jan 2013 A1
20130030523 Padala et al. Jan 2013 A1
20130046378 Millwee et al. Feb 2013 A1
20130053949 Pintor et al. Feb 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130060328 Rothstein Mar 2013 A1
20130073032 Wang Mar 2013 A1
20130073037 Gregg et al. Mar 2013 A1
20130079872 Gallagher Mar 2013 A1
20130089655 Gregg Apr 2013 A1
20130090303 Mathieu et al. Apr 2013 A1
20130090727 Forster et al. Apr 2013 A1
20130090729 Gregg Apr 2013 A1
20130091688 Goetz et al. Apr 2013 A1
20130095264 Sowinski et al. Apr 2013 A1
20130096664 Goetz et al. Apr 2013 A1
20130096671 Iobbi Apr 2013 A1
20130096672 Reich et al. Apr 2013 A1
20130103131 Goetz et al. Apr 2013 A1
20130103138 Hossainy et al. Apr 2013 A1
20130110097 Schneider et al. May 2013 A1
20130110226 Gurskis May 2013 A1
20130110227 Quadri et al. May 2013 A1
20130110230 Solem May 2013 A1
20130116654 Dehdashtian et al. May 2013 A1
20130116676 Tian et al. May 2013 A1
20130116776 Gross et al. May 2013 A1
20130116777 Pintor et al. May 2013 A1
20130116779 Weber May 2013 A1
20130123757 Crisostomo et al. May 2013 A1
20130123796 Sutton et al. May 2013 A1
20130123898 Tung et al. May 2013 A1
20130123912 Tung et al. May 2013 A1
20130131788 Quadri et al. May 2013 A1
20130131793 Quadri et al. May 2013 A1
20130138203 Quadri et al. May 2013 A1
20130138207 Quadri et al. May 2013 A1
20130144328 Weber et al. Jun 2013 A1
20130144375 Giasolli et al. Jun 2013 A1
20130144378 Quadri et al. Jun 2013 A1
20130144380 Quadri et al. Jun 2013 A1
20130144381 Quadri et al. Jun 2013 A1
20130144382 DeStefano Jun 2013 A1
20130150954 Conklin Jun 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130150957 Weber Jun 2013 A1
20130158600 Conklin et al. Jun 2013 A1
20130158653 Gamarra et al. Jun 2013 A1
20130158654 Sutton et al. Jun 2013 A1
20130158655 Sutton et al. Jun 2013 A1
20130158656 Sutton et al. Jun 2013 A1
20130166022 Conklin Jun 2013 A1
20130166024 Drews et al. Jun 2013 A1
20130172983 Clerc et al. Jul 2013 A1
20130178930 Straubinger et al. Jul 2013 A1
20130183717 Marble et al. Jul 2013 A1
20130184446 Marble et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130184813 Quadri et al. Jul 2013 A1
20130184814 Huynh et al. Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130190862 Pintor et al. Jul 2013 A1
20130190865 Anderson Jul 2013 A1
20130204351 Cox et al. Aug 2013 A1
20130211504 Young Aug 2013 A1
20130211508 Lane et al. Aug 2013 A1
20130211511 Young Aug 2013 A1
20130211512 Migliazza et al. Aug 2013 A1
20130211513 Rourke et al. Aug 2013 A1
20130231736 Essinger et al. Sep 2013 A1
20130236889 Kishimoto et al. Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130238087 Taylor Sep 2013 A1
20130245615 Koltz Sep 2013 A1
20130245736 Alexander et al. Sep 2013 A1
20130245750 Cunanan et al. Sep 2013 A1
20130245751 Phung et al. Sep 2013 A1
20130253570 Bates Sep 2013 A1
20130253571 Bates Sep 2013 A1
20130253635 Straubinger et al. Sep 2013 A1
20130253637 Wang et al. Sep 2013 A1
20130253639 Alkhatib Sep 2013 A1
20130253641 Lattouf Sep 2013 A1
20130253642 Brecker Sep 2013 A1
20130253643 Rolando et al. Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Clague et al. Oct 2013 A1
20130261739 Kuehn Oct 2013 A1
20130261740 Eberhardt et al. Oct 2013 A1
20130261742 Gaschino et al. Oct 2013 A1
20130268064 Duffy Oct 2013 A1
20130268065 Costello et al. Oct 2013 A1
20130268068 Marchisio et al. Oct 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130272994 Fu et al. Oct 2013 A1
20130274606 Wei et al. Oct 2013 A1
20130274855 Stante et al. Oct 2013 A1
20130274873 Delaloye et al. Oct 2013 A1
20130274874 Hammer Oct 2013 A1
20130281400 Yoo et al. Oct 2013 A1
20130281420 Taraporewala et al. Oct 2013 A1
20130281979 Arnim et al. Oct 2013 A1
20130282028 Conklin et al. Oct 2013 A1
20130282113 Punga et al. Oct 2013 A1
20130282114 Schweich, Jr. et al. Oct 2013 A1
20130289695 Tian et al. Oct 2013 A1
20130304196 Kelly Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304199 Sutton et al. Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130310929 Dove et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130323302 Constable et al. Dec 2013 A1
20130324804 McKeown et al. Dec 2013 A1
20130324815 Jian et al. Dec 2013 A1
20130325098 Desai et al. Dec 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130325111 Campbell et al. Dec 2013 A1
20130325114 McLean et al. Dec 2013 A1
20130325116 Sundler et al. Dec 2013 A1
20130325117 Bruchman et al. Dec 2013 A1
20130325121 Whatley et al. Dec 2013 A1
20130331714 Manstrom et al. Dec 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20130331931 Gregg et al. Dec 2013 A1
20130338698 Flanagan Dec 2013 A1
20130338763 Rowe et al. Dec 2013 A1
20130338764 Thornton et al. Dec 2013 A1
20130338765 Braido et al. Dec 2013 A1
20130338766 Hastings et al. Dec 2013 A1
20130345786 Behan Dec 2013 A1
20130345801 Conklin et al. Dec 2013 A1
20130345803 Bergheim, III Dec 2013 A1
20140005764 Schroeder Jan 2014 A1
20140005770 Casley et al. Jan 2014 A1
20140005772 Edelman et al. Jan 2014 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140012373 Chau et al. Jan 2014 A1
20140014530 Lin Jan 2014 A1
20140018911 Zhou et al. Jan 2014 A1
20140018912 Delaloye et al. Jan 2014 A1
20140018915 Biadillah et al. Jan 2014 A1
20140025087 Richardson Jan 2014 A1
20140031857 Richardson Jan 2014 A1
20140031864 Jafari et al. Jan 2014 A1
20140031922 Duffy et al. Jan 2014 A1
20140031923 Rogers et al. Jan 2014 A1
20140031930 Keidar et al. Jan 2014 A1
20140039609 Campbell et al. Feb 2014 A1
20140039611 Lane et al. Feb 2014 A1
20140039612 Dolan Feb 2014 A1
20140039614 Delaloye et al. Feb 2014 A1
20140044689 Liu et al. Feb 2014 A1
20140044716 Paniagua-Solis et al. Feb 2014 A1
20140045909 Ruby Feb 2014 A1
20140046219 Sauter et al. Feb 2014 A1
20140046353 Adams Feb 2014 A1
20140046427 Michalak Feb 2014 A1
20140046433 Kovalsky Feb 2014 A1
20140046434 Rolando et al. Feb 2014 A1
20140052170 Heuser et al. Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052238 Wang et al. Feb 2014 A1
20140052241 Harks et al. Feb 2014 A1
20140052242 Revuelta et al. Feb 2014 A1
20140052243 Rolando et al. Feb 2014 A1
20140052244 Rolando et al. Feb 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140067049 Costello Mar 2014 A1
20140067050 Costello et al. Mar 2014 A1
20140067052 Chau et al. Mar 2014 A1
20140067054 Chau et al. Mar 2014 A1
20140081389 Chau et al. Mar 2014 A1
20140081391 Ruyra-Baliarda et al. Mar 2014 A1
20140081393 Hasenkam et al. Mar 2014 A1
20140086934 Shams Mar 2014 A1
20140088680 Costello et al. Mar 2014 A1
20140088685 Yevzlin et al. Mar 2014 A1
20140088692 Wright Mar 2014 A1
20140088694 Rowe et al. Mar 2014 A1
20140088695 Figulla et al. Mar 2014 A1
20140088696 Figulla et al. Mar 2014 A1
20140100420 Mortier et al. Apr 2014 A1
20140100597 Wang et al. Apr 2014 A1
20140100651 Kheradvar et al. Apr 2014 A1
20140100653 Savage et al. Apr 2014 A1
20140107761 Gale et al. Apr 2014 A1
20140110279 Kruetzfeldt et al. Apr 2014 A1
20140114340 Zhou et al. Apr 2014 A1
20140114345 Ciobanu et al. Apr 2014 A1
20140114391 Tabor Apr 2014 A1
20140114402 Ahlberg et al. Apr 2014 A1
20140114408 Dwork Apr 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121763 Duffy et al. May 2014 A1
20140121764 De Paulis et al. May 2014 A1
20140128726 Quill et al. May 2014 A1
20140128963 Quill et al. May 2014 A1
20140128964 Delaloye May 2014 A1
20140134322 Larsen et al. May 2014 A1
20140135908 Glozman et al. May 2014 A1
20140135909 Carr et al. May 2014 A1
20140142693 Krivoruchko et al. May 2014 A1
20140142694 Tabor et al. May 2014 A1
20140144000 Creaven et al. May 2014 A1
20140148889 Deshmukh et al. May 2014 A1
20140155990 Nyuli et al. Jun 2014 A1
20140162563 Mastrototaro Jun 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172083 Bruchman et al. Jun 2014 A1
20140172085 Quadri et al. Jun 2014 A1
20140172086 Quadri et al. Jun 2014 A1
20140180337 Miraki et al. Jun 2014 A1
20140186417 Trollsas et al. Jul 2014 A1
20140188217 Rolando et al. Jul 2014 A1
20140188219 Conklin et al. Jul 2014 A1
20140188221 Chung et al. Jul 2014 A1
20140194975 Quill et al. Jul 2014 A1
20140194978 Seguin et al. Jul 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194982 Kovalsky et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140200457 Shuros et al. Jul 2014 A1
20140200649 Essinger et al. Jul 2014 A1
20140200660 Savage et al. Jul 2014 A1
20140209238 Bonyuet et al. Jul 2014 A1
20140213889 Macht Jul 2014 A1
20140214069 Franklin Jul 2014 A1
20140214153 Ottma et al. Jul 2014 A1
20140214154 Nguyen et al. Jul 2014 A1
20140214155 Kelley Jul 2014 A1
20140214157 Börtlein et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140214160 Naor Jul 2014 A1
20140215791 Soundararajan et al. Aug 2014 A1
20140221823 Keogh et al. Aug 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140222139 Nguyen et al. Aug 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140222144 Eberhardt et al. Aug 2014 A1
20140228945 Valdez et al. Aug 2014 A1
20140230515 Tuval et al. Aug 2014 A1
20140236287 Clague et al. Aug 2014 A1
20140236288 Lambrecht et al. Aug 2014 A1
20140243692 Baumann et al. Aug 2014 A1
20140243879 Rothstein et al. Aug 2014 A1
20140243880 Schotzko et al. Aug 2014 A1
20140243953 Stante et al. Aug 2014 A1
20140256035 Strasly et al. Sep 2014 A1
20140257463 Sweeney et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257476 Montorfano et al. Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277402 Essinger et al. Sep 2014 A1
20140277403 Peter Sep 2014 A1
20140277408 Folan Sep 2014 A1
20140277409 Börtlein et al. Sep 2014 A1
20140277410 Börtlein et al. Sep 2014 A1
20140277411 Börtlein et al. Sep 2014 A1
20140277412 Börtlein et al. Sep 2014 A1
20140277418 Miller Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140277423 Alkhatib et al. Sep 2014 A1
20140277427 Ratz et al. Sep 2014 A1
20140288480 Zimmerman et al. Sep 2014 A1
20140296973 Bergheim et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303667 Cox et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140309728 Dehdashtian et al. Oct 2014 A1
20140309731 Quadri et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140330366 Dehdashtian et al. Nov 2014 A1
20140330368 Gloss et al. Nov 2014 A1
20140330371 Gloss et al. Nov 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140331475 Duffy et al. Nov 2014 A1
20140336720 Casset et al. Nov 2014 A1
20140336754 Gurskis et al. Nov 2014 A1
20140343669 Lane et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350523 Dehdashtian et al. Nov 2014 A1
20140350666 Righini Nov 2014 A1
20140350668 Delaloye et al. Nov 2014 A1
20140356519 Hossainy et al. Dec 2014 A1
20140358221 Ho et al. Dec 2014 A1
20140358223 Rafiee et al. Dec 2014 A1
20140364404 Cleek et al. Dec 2014 A1
20140364939 Deshmukh et al. Dec 2014 A1
20140364943 Conklin Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140370071 Chen et al. Dec 2014 A1
20140370599 Strasly et al. Dec 2014 A1
20140371833 Ghosh et al. Dec 2014 A1
20140371841 Casley et al. Dec 2014 A1
20140371842 Marquez et al. Dec 2014 A1
20140371845 Tuval et al. Dec 2014 A1
20140371847 Madrid et al. Dec 2014 A1
20140371848 Murray, III et al. Dec 2014 A1
20140373334 Gamarra et al. Dec 2014 A1
20140379067 Nguyen et al. Dec 2014 A1
20140379068 Thielen et al. Dec 2014 A1
20140379077 Tuval et al. Dec 2014 A1
20140379095 Waisblatt et al. Dec 2014 A1
20150005873 Chang et al. Jan 2015 A1
20150007630 Maimon et al. Jan 2015 A1
20150012085 Salahieh et al. Jan 2015 A1
20150018625 Miraki et al. Jan 2015 A1
20150018879 Moehle et al. Jan 2015 A1
20150018938 Von Segesser et al. Jan 2015 A1
20150018939 Colson et al. Jan 2015 A1
20150018944 O'Connell et al. Jan 2015 A1
20150025621 Costello et al. Jan 2015 A1
20150025622 Creaven et al. Jan 2015 A1
20150025623 Granada et al. Jan 2015 A1
20150025624 Dwork et al. Jan 2015 A1
20150026635 Gohr et al. Jan 2015 A1
20150032153 Quadri Jan 2015 A1
20150032174 Ghosh Jan 2015 A1
20150039081 Costello Feb 2015 A1
20150051698 Ruyra Baliarda et al. Feb 2015 A1
20150066137 Chen et al. Mar 2015 A1
20150066140 Quadri Mar 2015 A1
20150073537 Jimenez et al. Mar 2015 A1
20150081009 Quadri Mar 2015 A1
20150081011 Young et al. Mar 2015 A1
20150086603 Hossainy et al. Mar 2015 A1
20150088245 Costello Mar 2015 A1
20150088250 Zeng et al. Mar 2015 A1
20150088252 Jenson et al. Mar 2015 A1
20150094803 Navia Apr 2015 A1
20150100118 Benton Apr 2015 A1
20150105847 Ollivier et al. Apr 2015 A1
20150105856 Rowe et al. Apr 2015 A1
20150112430 Creaven et al. Apr 2015 A1
20150119692 McHenry et al. Apr 2015 A1
20150119974 Rothstein et al. Apr 2015 A1
20150119980 Beith et al. Apr 2015 A1
20150119982 Quill et al. Apr 2015 A1
20150122687 Zeng et al. May 2015 A1
20150127093 Hosmer May 2015 A1
20150148731 McNamara et al. May 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150196393 Vidlund Jul 2015 A1
20150209137 Quadri Jul 2015 A1
20150238315 Rabito et al. Aug 2015 A1
Foreign Referenced Citations (73)
Number Date Country
2304325 May 2008 CA
2 827 556 Jul 2012 CA
3128704 Feb 1983 DE
10 2006 052 564 Dec 2007 DE
0 657 147 Jun 1995 EP
1 472 996 Nov 2004 EP
1 255 510 Apr 2007 EP
1264471 Feb 1972 GB
1315 844 May 1973 GB
2245495 Jan 1992 GB
2 398 245 Aug 2004 GB
2002-540889 Dec 2002 JP
2008-541865 Nov 2008 JP
WO 9749355 Dec 1997 WO
WO 0053104 Sep 2000 WO
WO 0061034 Oct 2000 WO
WO 0135861 May 2001 WO
WO 0135870 May 2001 WO
WO 0172239 Oct 2001 WO
WO 02036048 May 2002 WO
WO 03032554 Nov 2003 WO
WO 03028522 Jan 2004 WO
WO 2004014257 Feb 2004 WO
WO 2004014474 Feb 2004 WO
WO 2004058097 Jul 2004 WO
WO 2005002466 Jan 2005 WO
WO 2005011534 Feb 2005 WO
WO 2005041810 May 2005 WO
WO 2005087140 Sep 2005 WO
WO 2006070372 Jul 2006 WO
WO 2006085304 Aug 2006 WO
WO 2006089236 Aug 2006 WO
WO 2006127765 Nov 2006 WO
WO 2007025028 Mar 2007 WO
WO 2007034488 Mar 2007 WO
WO 2007058847 May 2007 WO
WO 2007058857 May 2007 WO
WO 2007103229 Sep 2007 WO
WO 2007123658 Nov 2007 WO
WO 2007134290 Nov 2007 WO
WO 2008005535 Jan 2008 WO
WO 2008013915 Jan 2008 WO
WO 2008035337 Mar 2008 WO
WO 2008070797 Jun 2008 WO
WO 2008091515 Jul 2008 WO
WO 2008103722 Aug 2008 WO
WO 2008150529 Dec 2008 WO
WO 2009026563 Feb 2009 WO
WO 2009033469 Mar 2009 WO
WO 2009045331 Apr 2009 WO
WO 2009053497 Apr 2009 WO
WO 2009091509 Jul 2009 WO
WO 2009094500 Jul 2009 WO
WO 2009108355 Sep 2009 WO
WO 2009134701 Nov 2009 WO
WO 2009137359 Nov 2009 WO
WO 2009155561 Dec 2009 WO
WO 2010008549 Jan 2010 WO
WO 2010037141 Apr 2010 WO
WO 2010040009 Apr 2010 WO
WO 2010042950 Apr 2010 WO
WO 2010057262 May 2010 WO
WO 2010098857 Sep 2010 WO
WO 2011025945 Mar 2011 WO
WO 2011081997 Jul 2011 WO
WO 2011137531 Nov 2011 WO
WO 2012035279 Mar 2012 WO
WO 2012095455 Jul 2012 WO
WO 2012177942 Dec 2012 WO
WO 2013028387 Feb 2013 WO
WO 2013059747 Apr 2013 WO
WO 2014021905 Feb 2014 WO
WO 2014022124 Feb 2014 WO
Non-Patent Literature Citations (89)
Entry
US 8,062,357, 11/2011, Salahieh et al. (withdrawn)
US 8,221,315, 07/2012, Lambrecht et al. (withdrawn)
U.S. Appl. No. 14/186,989, filed Feb. 21, 2014, Quadri et al.
U.S. Appl. No. 14/197,590, filed Mar. 5, 2014, Ratz et al.
U.S. Appl. No. 14/197,690, filed Mar. 5, 2014, Ratz et al.
CardiAQ Valve Technologies, “Innovations in Heart Valve Therapy,” In3 San Francisco, Jun. 18, 2008, PowerPoint presentation in 19 slides.
European Extended Search Report, re EP Application No. 14159378.0, dated Jul. 24, 2014.
Neovasc Surgical Products, “Neovasc Surgical Products: An Operating Division of Neovasc Inc.,” dated Apr. 2009.
Kronemyer, Bob: “CardiAQ Valve Technologies: Percutaneous Mitral Valve Replacement,” Start Up—Windhover Review of Emerging Medical Ventures, vol. 14, No. 6, Jun. 2009, pp. 48-49.
Bavaria, Joseph E. M.D.: “CardiAQ Valve Technologies: Transcatheter Mitral Valve Implantation,” Sep. 21, 2009.
Ostrovsky, Gene: “Transcatheter Mitral Valve Implantation Technology from CardiAQ,” medGadget, Jan. 15, 2010, available at: http://www.medgadget.com/2010/01/transcatheter—mitral—valve—implantation—technology—from—cardiaq.html.
European Extended Search Report, re EP Application No. 14159090.1, dated Jul. 22, 2014.
U.S. Appl. No. 14/598,568, filed Jan. 16, 2015, Quadri et al.
U.S. Appl. No. 14/628,034, filed Feb. 20, 2015, Rabito et al.
U.S. Appl. No. 14/702,233, filed May 1, 2015, Arshad et al.
U.S. Appl. No. 14/716,507, filed May 19, 2015, Ratz et al.
U.S. Appl. No. 14/724,355, filed May 28, 2015, Rabito et al.
Grube et al,: “Percutaneous Implantation of the CoreValve Self-Expanding Valve Prosthesis in High-Risk Patients With Aortic Valve Disease,” Valvular Heart Disease, circ.ahajournals.org (2006; 114:1616-1624) Published on line before print Oct. 2, 2006.
Businesswire.com, “50 Early-to Late-Stage Medical Device Companies Seeking Investment and Partnering Opportunities to Present in 3 Weeks at ‘Investment in Innovation (In3) Medical Device Summit,’” May 27, 2008.
Ratz, J. Brent, “LSI EMT Spotlight,” May 15, 2009.
“CVT's Transcatheter Mitral Valve Implantation (TMVI) platform might be the ‘next big thing’ in the cardiac cath lab,” Jun. 2, 2009.
Ratz, J. Brent, “In3 Company Overview,” Jun. 24, 2009.
“Company Overview” Jun. 25, 2009 at TVT.
“CVT is developing a non-surgical approach to replacing mitral valves that may be the alternative to open-chest surgery,” believed to be published in Sep. 2009.
Enhancedonlinenews.com, “CardiAQ Valve Technologies (CVT) Discloses Successful Results of Acute In Vivo Study of Its Novel Transcatheter Mitral Valve Implantation (TMVI) System,” Sep. 28, 2009.
Wayback Machine, “http://www.cardiaq.com/” indicated as archived on Jan. 16, 2010.
Wayback Machine, “http://www.cardiaq.com/technology.html” indicated as archived on Jan. 17, 2010.
“Surveying the Landscape,” unknown publication date.
Banai, Shmuel, et al., Tiara: A Novel Catheter-Based Mitral Valve Bioprosthesis, Initial Experiments and Short-Term Pre-Clinical Results, Journal of the American College of Cardiology, vol. 60, No. 15, 2012. Applicant believes that this may have been available online as early as Sep. 12, 2012.
Banai et al.: “Transapical Mitral Implantation of the Tiara Bioprosthesis,” JACC: Cardiovascular Interventions, vol. 7, No. 2, Feb. 2014:154-62.
Bavaria, Joseph E. M.D. et al.: “Transcatheter Mitral Valve Implantation: the Future Gold Standard for MR?,” Applicant requests the Examiner to consider this reference to be prior art as of Dec. of 2010.
Berreklouw, Eric, MD, PhD, et al., “Sutureless Mitral Valve Replacement With Bioprostheses and Nitinol Attachment Rings: Feasibility in Acute Pig Experiments,” The Journal of Thoracic and Cardiovascular Surgery, vol. 142, No. 2, Aug. 2011 in 7 pages, Applicant believes this may have been available online as early as Feb. 4, 2011.
BioSpace, “CardiAQ Valve Technologies (CVT) Reports Cardiovascular Medicine Milestone: First-In-Humannonsurgical Percutaneous Implantation of a Bioprosthetic Mitral Heart Valve,” Jun. 14, 2012, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports/263900.
Boudjemline, Younes, MD, et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves,” JACC, vol. 46, No. 2, Jul. 19, 2005:360-5.
Brinkman, William T., MD, et al., Transcatheter Cardiac Valve Interventions, Surg Clin N Am 89 (2009) 951-966, Applicant believes this may have been available as early as Aug. of 2009.
Businesswire.com, “CardiAQ Valve Technologies (CVT) Discloses Successful Results of Acute In Vivo Study of Its Novel Transcatheter Mitral Valve Implantation (TMVI) System,” Sep. 28, 2009.
Businesswire.com, CardiAQ Valve Technologies, “CardiAQ Valve Technologies (“CVT”) to disclose data during ‘EuroPCR 2010’ about the world's first successful in vivo transcatheter delivery of a mitral heart valve implant,” Irvine, California, May 20, 2010.
CardiAQ Valve Technologies Company Fact Sheet 2009.
Chiam, Paul T.L., et al., “Percutaneous Transcatheter Aortic Valve Implantation: Assessing Results, Judging Outcomes, and Planning Trials,” JACC: Cardiovascular Interventions, The American College of Cardiology Foundation, vol. 1, No. 4, Aug. 2008:341-50.
Condado, Jose Antonio, et al., “Percutaneous Treatment of Heart Valves,” Rev Esp Cardio. 2006;59(12):1225-31, Applicant believes this may have been available as early as Dec. of 2006.
Diagnostic and Interventional Cardiology, “Neovasc Announces Publication of Tiara Transcatheter Mitral Valve Preclinical Data in JACC,” Sep. 18, 2012, p. 1, http://www.dicardiology.com/content/neovasc-announces-publication-tiara-transcatheter-mitral-valve-preclinical-data-jacc.
Diagnostic and Interventional Cardiology, “Neovasc Announces Successful Human Implant of Tiara Transcatheter Mitral Valve,” Feb. 18, 2014, p. 1, <http://www.dicardiology.com/article/neovasc-announces-successful-human-implant-tiara-transcatheter-mitral-valve>.
Diagnostic and Interventional Cardiology, “Neovasc Receives First U.S. Patent for its Tiara Transcatheter Mitral Valve Replacement Technology,” Nov. 15, 2013, p. 1, <http://www.dicardiology.com/content/neovasc-receives-first-us-patent-its-tiara-transcatheter-mitral-valve-replacement-technology>.
Engager System, Precise Valve Positioning, Transcatheter Aortic Valve Implantation System, Transcatheter Aortic Valve Replacement—TAVR I Medtronic Engager, http://www.medtronic-engager.com/home/transcatheter-aortic-valve-repl., 2014 Medtronic, Inc. in 2 pages. Applicant believes this may have been available online as early as Aug. 25, 2013.
Fanning, Jonathon P., et al., “Transcatheter Aortic Valve Implantation (TAVI): Valve Design and Evolution,” International Journal of Cardiology 168 (2013) 1822-1831, Applicant believes this may have been available as early as Aug. 20, 2013.
Feldman, Ted, MD. “Prospects for Percutaneous Valve Therapies,” Circulation 2007;116:2866-2877. Applicant believes that this may be available as early as Dec. 11, 2007.
Fitzgerald, Peter J. M.D., “Tomorrow's Technology: Percutaneous Mitral Valve Replacement, Chordal Shortening, and Beyond,” Transcatheter Valve Therapies (TVT) Conference. Seattle, WA. Applicant believes this may have been available as early as Jun. 7, 2010.
Gillespie, Matthew J., MD, et al., “Sutureless Mitral Valve Replacement: Initial Steps Toward a Percutaneous Procedure,” Ann Thorac Surg. Aug. 2013; 96(2).
Grewal, Jasmine, et al, “Mitral Annular Dynamics in Myxomatous Valve Disease: New Insights With Real-Time 3-Dimensional Echocardiography,” Circ. Mar. 30, 2010.
Grube, E. et al, “Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome.” J Am Coll Cardiol. Jul. 3, 2007;50(1):69-76. Epub Jun. 6, 2007.
Horvath et al.: “Transapical Aortic Valve Replacement under Real-time Magnetic Resonance Imaging Guidance: Experimental Results with Balloon—Expandable and Self-Expanding Stents,” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038190/. Jun. 2011.
Wayback Machine, Neovasc Ostial Products Overview, https://web.archive.org/web/20090930050359/https://www.neovasc.com/vascular-products/ostialproducts/default.php, indicated as archived on Sep. 30, 2008.
JenaValve Technology, “The JenaValve—The Prosthesis”, 2011 JenaValve Technology in 1 page.
Karimi, Houshang, MD, et al., “Percutaneous Valve Therapies,” SIS 2007 Yearbook, Chapter 11, pp. 1-11.
Lansac, et al., “Dynamic balance of the aortomitral junction,” J. Thoracic & Cardiovascular Surgery, 123(5):911-918 (2002).
Lauten, Alexander, et al., “Experimental Evaluation of the JenaClip Transcatheter Aortic Valve,” Catheterization and Cardiovascular Interventions 74:514-519, published online May 11, 2009, Applicant believes this may have been available online as early as Apr. 27, 2009.
Leon, Martin B., MD, et al., “Transcatheter Aortic Valve Replacement in Patients with Critical Aortic Stenosis: Rationale, Device Descriptions, Early Clinical Experiences, and Perspectives,” Semin. Thorac. Cardiovasc. Surg. 18:165-174, 2006 in 10 pages, Applicant believes this may have been available as early as the Summer of 2006.
Lozonschi, Lucian, MD, et al., “Transapical Mitral Valved Stent Implantation,” Ann Thorac Surg 2008;86:745-8 in 4 pages, Applicant believes this may have been available as early as Sep. of 2008.
Lutter, Georg, et al., “Off-Pump Transpaical Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 36 (2009) 124-128, Applicant believes this may have been available as early as Apr. 25, 2009.
Ma, Liang, et al., “Double-Crowned Valved Stents For Off-Pump Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 28 (2005) 194-199, Applicant believes this may have been available as early as Aug. of 2005.
Mack, Michael M.D., “Advantages and Limitations of Surgical Mitral Valve Replacement; Lessons for the Transcatheter Approach,” Applicant believes this may have been available.
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: A Short-term Experience in Swine Model,” Applicant believes this may have been presented on May of 2011 at TVT.
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: On-Going Experience in Swine Model,” Applicant believes this may have been presented on Nov. of 2011 at TCT.
Masson, Jean-Bernard, et al., “Percutaneous Treatment of Mitral Regurgitation,” Circulation: Cardiovascular Interventions, 2:140-146, Applicant believes this may have been available as early as Apr. 14, 2009.
Neovasc corporate presentation, Oct. 2009, available at http://www.neovasc.com/investors/documents/Neovasc-Corporate-Presentation-October-2009.pdf.
Ormiston, et al., “Size and Motion Of The Mitral Valve Annulus In Man. I. A Two-Dimensional Echocardiographic Method and Findings In Normal Subjects,” Circulation, 64(1):113-120 (1981).
Ostrovsky, Gene, “A Trial of Zenith Fenestrated AAA Endovascular Graft Goes On,” medGadget, Aug. 1, 2008, available at: :http://www.medgadget.com/2008/08/a—trial—of—zenith—fenestrated—aaa—endovascular—graft—goes—on.html.
Otto, C, “Evaluation and Management of Chronic Mitral Regurgitation,” New Engl. J. Med., 354:740-746 (2001). Published Sep. 6, 2001.
Piazza, Nicoló, MD, et al., “Anatomy of the Aortic Valvar Complex and Its Implications for Transcatheter Implantation of the Aortic Valve,” Contemporary Reviews in Interventional Cardiology, Circ. Cardiovasc. Intervent., 2008;1:74-81, Applicant believes this may have been available as early as Aug. of 2008.
Pluth, James R., M.D., et al., “Aortic and Mitral Valve Replacement with Cloth-Covered Braunwald-Cutter Prosthesis, A Three-Year Follow-up,” The Annals Of Thoracic Surgery, vol. 20, No. 3, Sep. 1975, pp. 239-248.
Quadri, Arshad M.D., “Transcatheter Mitral Valve Implantation (TMVI) (An Acute In Vivo Study),” Applicant believes this may have been presented on Sep. 22, 2010 at TCT.
Ratz, J. Brent et al., “Any experiences making an expandable stent frame?” Arch-Pub.com, Architecture Forums: Modeling, Multiple forum postings from Feb. 3, 2009 to Feb. 4, 2009, http://www.arch-pub.com.
Ratz, J. Brent et al., “Fabric, Skin, Cloth expansion . . . best approach'?,” AREA by Autodesk, 3ds Max: Modeling, Forum postings from Feb. 18, 2009 to Feb. 19, 2009, http://area.autodesk.com.
Ratz, J. Brent et al., “Isolating Interpolation,” Arch-Pub.com, Architecture Forums: Animation and Rigging, Forum postings from Feb. 9, 2009 to Feb. 10, 2009, http://www.arch-pub.com.
Ruiz, Carlos E., “Overview of Novel Transcatheter Valve Technologies,” Applicant believes this may have been presented on May 27, 2010 at EuroPCR.
Seidel, Wolfgang, et al., “A Mitral Valve Prosthesis and a Study of Thrombosis on Heart Valves in Dogs,” JSR—vol. II, No. 3—May 1962, submitted for publication Oct. 9, 1961.
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at EuroPCR May 2013.
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at TCT Oct. 2013.
Spillner, J. et al., “New Sutureless ‘Atrial-Mitral-Valve Prosthesis’ For Minimally Invasive Mitral Valve Therapy,” Textile Research Journal, 2010, in 7 pages, Applicant believes this may have been available as early as Aug. 9, 2010.
Taramasso et al.: “New devices for TAVI: technologies and initial clinical experiences” http://www.nature.com/nrcardio/journal/v11/n3/full/nrcardio.2013.221.html?message-global=remove#access. Jan. 21, 2014.
Treede et al.: “Transapical transcatheter aortic valve implantation using the JenaValve™ system: acute and 30-day results of the multicentre CE-mark study.” http://ejcts.oxfordjournals.org/content/41/6/e131.long. Apr. 16, 2012.
“Update,” Applicant believes this may have been presented on Jun. 6, 2010 at TVT.
Van Mieghem, et al., “Anatomy of the Mitral Valvular Complez and Its Implications for Transcatheter Interventions for Mitral Regurgitation,” J. Am. Coll. Cardiol., 56:617-626 (Aug. 17, 2010).
Vu, Duc-Thang, MD, et al., “Novel Sutureless Mitral Valve Implantation Method Involving a Bayonet Insertion and Release Mechanism: A Proof Of Concept Study In Pigs,” The Journal of Thoracic and Cardiovascular Surgery, vol. 143, No. 4, 985-988, Apr. 2012, Applicant believes this may have been available online as early as Feb. 11, 2012.
Walther, Thomas et al., “Transapical Approach for Sutureless Stent-Fixed Aortic Valve Implantation: Experimental Results,” European Journal of Cardio-thoracic Surgery 29 (2006) 703-708, Applicant believes this may have been available as early as May of 2006.
Webb, John G., et al., “Transcatheter Aortic Valve Implantation: The Evolution Of Prostheses, Delivery Systems And Approaches,” Archives of Cardiovascular Disease (2012) 105, 153-159, Applicant believes this may have been available as early as Mar. 16, 2012.
Yamada, et al., “The Left Ventricular Ostium: An Anatomic Concept Relevant to Idiopathic Ventricular Arrhythmias”, Circ. Arrhythmia Electrophysiol., 1:396-404 (Dec. 2008).
U.S. Appl. No. 61/169,367, filed Apr. 15, 2009, Quadri.
U.S. Appl. No. 29/484,001, filed Mar. 5, 2014, Pesce et al.
Related Publications (1)
Number Date Country
20140277422 A1 Sep 2014 US
Provisional Applications (2)
Number Date Country
61789783 Mar 2013 US
61782707 Mar 2013 US