The present invention relates generally to treatment of cardiac heart disease. More particularly, the present invention relates to implantable valve prostheses for implantation into the cardiac system.
The heart includes four valves that serve to direct blood flow through the two sides of the heart. On the left (systemic) side of the heart are: (1) the mitral valve, located between the left atrium and the left ventricle, and (2) the aortic valve, located between the left ventricle and the aorta. These two valves direct oxygenated blood from the lungs through the left side of the heart and into the aorta for distribution to the body. On the right (pulmonary) side of the heart are: (1) the tricuspid valve, located between the right atrium and the right ventricle, and (2) the pulmonary valve, located between the right ventricle and the pulmonary artery. These two valves direct de-oxygenated blood from the body through the right side of the heart and into the pulmonary artery for distribution to the lungs, where the blood becomes re-oxygenated in order to begin the circuit anew.
All four of these heart valves are passive structures in that they do not themselves expend any energy and do not perform any active contractile function. They consist of moveable “leaflets” that open and close in response to differential pressures on either side of the valve. Any or all of these heart valves in a particular patient may exhibit abnormal anatomy and function as a result of congenital or acquired valve disease. Congenital valve abnormalities may be well-tolerated for many years only to develop into a life-threatening problem in an elderly patient, or may be so severe that emergency surgery is required within the first few hours of life. Acquired valve disease may result from causes such as rheumatic fever, degenerative disorders of the valve tissue, bacterial or fugal infections, and trauma.
The problems that can develop with valves can generally be classified into two categories: (1) stenosis, in which a valve does not open properly, and (2) insufficiency (also called regurgitation), in which a valve does not close properly. Stenosis and insufficiency may occur concomitantly in the same valve or in different valves. Both of these abnormalities increase the workload placed on the heart. The severity of this increased stress on the heart and the patient, and the heart's ability to adapt to it, determine the treatment options that will be pursued. In some cases, medication can be sufficient to treat the patient, which is the preferred alternative; however, in many cases defective valves have to be repaired or completely replaced in order for the patient to live a normal life.
The two general categories of valves that are available for implantation into the cardiac system are mechanical valves and bioprosthetic or tissue valves. Mechanical valves have been used for many years and encompass a wide variety of designs that accommodate the blood flow requirements of the particular location where they will be implanted. Although the materials and design features of these valves are continuously being improved, they do increase the risk of clotting in the blood stream, which can lead to a heart attack or stroke. Thus, mechanical valve recipients must take anti-coagulant drugs for life to lessen the potential for blood clot formation. Further, mechanical valves can sometimes suffer from structural problems that may force the patient to have additional surgeries for further valve replacement.
Bioprosthetic valves, which are sometimes also referred to as prosthetic valves, generally include both human tissue valves and animal tissue valves. Prosthetic heart valves are described, for example, in U.S. Patent Publication No. 2004/0138742 A1 (Myers et al.), the entire contents of which are incorporated herein by reference. The designs of these bioprosthetic valves are typically relatively similar to the design of the natural valves of the patient and advantageously do not require the use of long-term anti-coagulant drugs. Human tissue valves are typically not available in large quantities since they must be removed from deceased persons who have elected organ donation; however, because large numbers of animals are routinely processed at meat processing facilities, for example, animal tissue valves are more widely available for the patients who require valve replacement. The most common types of animal tissue valves used include porcine aortic valves, and bovine and porcine pericardial valves, some of which are incorporated with some type of a stent before implantation in a patient.
To simplify surgical procedures and reduce patient trauma, there has been a recent increased interest in minimally invasive and percutaneous replacement of cardiac valves. Percutaneous replacement of a heart valve does not involve actual physical removal of the diseased or injured heart valve. Rather, the defective or injured heart valve typically remains in position while the replacement valve is inserted into a catheter and delivered percutaneously via the vascular system to the location of the failed heart valve. There, the replacement valve is either expanded by the balloon or self-expands to compress the native valve leaflets against the ventricular outflow tract, anchoring and sealing the replacement valve. In the context of percutaneous, pulmonary valve replacement, U.S. Patent Application Publication Nos. 2003/0199971 A1 (Tower, et al.) and 2003/0199963 A1 (Tower, et al.), describe a valved segment of bovine jugular vein, mounted within an expandable stent, for use as a replacement pulmonary valve. As described in the articles “Percutaneous Insertion of the Pulmonary Valve”, Bonhoeffer, et al., Journal of the American College of Cardiology 2002; 39: 1664-1669 and “Transcatheter Replacement of a Bovine Valve in Pulmonary Position”, Bonhoeffer, et al., Circulation 2000; 102: 813-816, the replacement pulmonary valve may be implanted to replace native pulmonary valves or prosthetic pulmonary valves located in valved conduits. Other implantables and implant delivery devices also are disclosed in published U.S. Patent Application Publication No. 2003/0036791 A1 (Bonhoeffer et al.) and European Patent Application No. 1 057 460-A1. In addition, percutaneous heart valves for use as a replacement pulmonary valve are described in Assignee's co-pending U.S. Patent Application Publication No. 2006/0206202 A1 (Bonhoeffer et al.). Like the valves described by Tower et al., the heart valves of this co-pending application incorporate a valved segment of bovine jugular vein, which is mounted within an expandable stent.
There is, however, a continued need to be able to be able to provide a variety of different valve assemblies to accommodate the requirements of different patients, such as by providing stented valves that can be designed and customized for each individual patient.
The present invention is directed to a prosthetic cardiac valve and methods of making such a valve. In one embodiment, the valves of the present invention involve the use of a piece of pericardium material, such as porcine pericardium, which is folded over on itself into a two-layer configuration. The layers are secured to each other in a predetermined pattern to create a series of arches or arcuate portions and vertical segments. This pericardium piece is formed into a tube and secured along its length, which may occur either before or after the predetermined pattern is made. The tubular segment can then be secured to a stent to create a stented valve, with the arches and vertical segments providing the leaflets of a valve. In one embodiment, three arch segments are provided to make a three leaflet or tri-leaflet valve, while another embodiment includes a two leaflet or bi-leaflet valve. The locations between the created arches and the fold line of the pericardium can act as a barrier to undesired abrasion between the valve or frame and the leaflets and also to prevent or minimize valve leakage should any of the valve segments fail. When the valve is a stented valve, the stent structure of the configuration is compressible and expandable to facilitate percutaneous insertion into the heart of a patient.
In one aspect of the invention, a prosthetic stented heart valve is provided which comprises a compressible and expandable stent structure having first and second opposite ends, an expanded outer periphery, and a compressed outer periphery that is at least slightly smaller than the expanded outer periphery when subjected to an external radial force. The heart valve further comprises a valve segment comprising a dual-layer sheet formed into a generally tubular shape having at least one longitudinally extending seam, and a plurality of leaflets formed by attachment of an outer layer of the dual-layer sheet to an inner layer of the dual-layer sheet in a leaflet defining pattern. At least a portion of the valve segment is positioned within at least a portion of the stent structure, and the stent structure is attached to the outer layer of the valve segment at one or more of the first and second ends of the stent structure. The dual-layer sheet may be a single sheet of material folded to provide a fold line along a first edge of the sheet, wherein the material on one side of the fold line comprises the outer layer of the dual-layer sheet and the material on the opposite side of the fold line comprises the inner layer of the dual-layer sheet. The surface area on either side of the fold line may be the same or different. The dual-layer sheet may further include multiple pieces of material that are attached to each other along multiple longitudinally extending seams.
The prosthetic valve may further include at least one opening in the outer layer of the dual-layer sheet that is spaced from both the first and second ends of the stent structure. In particular, a first opening can be configured for fluid communication with a right coronary artery when the prosthetic valve is positioned in the ascending aorta of a heart and a second opening spaced circumferentially from the first opening can be configured for fluid communication with a left coronary artery.
The present invention will be further explained with reference to the appended Figures, wherein like structure is referred to by like numerals throughout the several views, and wherein:
Referring now to the Figures, wherein the components are labeled with like numerals throughout the several Figures, and initially to
In accordance with the invention, a relatively flat sheet of pericardium material 10 is provided, which may be obtained, for example, from a porcine heart. It is understood that other donor species may alternatively be used, or that the material used is not a pericardium material but instead is a different type of tissue or material, such as a polymer or bio-engineered film. The pericardium material 10 may be at least partially fixed or cross-linked with a buffered gluteraldehyde solution or other solution at some point during the assembly process, in order to make the material easier for an operator to handle and manipulate. In one specific example, a piece of porcine pericardium is obtained, which is rinsed for approximately 10 minutes in a buffered gluteraldehyde solution to partially cross-link the material. U.S. Pat. No. 4,976,733 (Girardot), titled “Prevention of Prosthesis Calcification”, describes a variety of additional exemplary methods of treating pericardium material that may be useful with the systems and methods of the present invention, along with methods for retarding or preventing the calcification of a prosthesis implanted in a mammal. However, such treatments to the material are optional and may be different depending on operator preference, the material chosen, and the like.
The piece of pericardium can then be cut to a predetermined shape and size, such as the rectangular piece of pericardium material 10 illustrated in
In accordance with one aspect of the invention, the pericardium material 10 includes a first surface 12 and an opposite second surface 14. The pericardium material 10 is folded on itself at fold line 16 to effectively double the thickness of at least a portion of the material 10. In this way, two portions of the first surface 12 will be in contact with each other adjacent to the fold line 16 and in any area where the material is doubled. In one exemplary embodiment of the invention, a portion of the material 10 having a length 20 has a double thickness and at least a portion of the pericardium material extends beyond the area having a double thickness, thereby leaving a portion of the material having a length 18 with a single material thickness. The portion having a double thickness may have a greater or smaller length 20 than the length 18 of the single thickness portion, or there may be essentially no portion having a single thickness (i.e., the material 10 is folded exactly in half).
As shown, the sheet of pericardium material 10 includes a free edge 22 that is spaced from the fold line 16 and corresponds with one end of the doubled portion. Thus, free edge 22 is immediately adjacent to the single thickness portion 18 and is preferably generally parallel to the fold line 16, although it is possible that the edge 22 and fold line 16 are not parallel to each other. The two portions of the pericardium material 10 in the doubled portion are then stitched, or otherwise attached to each other in an attachment pattern similar to that shown in
The shaped portion 26 of the attachment pattern includes two vertical components 30, which are spaced from each other by a distance that represents the desired width of a leaflet, and an arcuate portion 32 extending between the two vertical components 30. The vertical components 30 are generally linear and are preferably also generally parallel to each other. Alternatively, the vertical components 30 can be arranged to provide a funnel shape to the attachment pattern. The length of the vertical components 30 can be chosen to correspond to the desired depth of a pocket, such that a pattern including relatively long vertical components 30 will provide bigger or deeper pockets than a pattern having relatively short vertical components 30. In accordance with the invention, the length of the vertical components 30 can be particularly designed and selected to correspond with a desired depth of the pockets, which selection is not available when using a native valve, for example. In addition, the amount of material that extends above and below the valves can be particularly designed and selected to provide a valve that meets certain criteria desired by the surgeon, such as for ease of implantation or to provide a valve that has additional durability, for example.
In any case, all of the vertical components 30 within a particular pattern can have the same or nearly the same length in order to create leaflets that are identically or nearly identically shaped and sized. In that respect, all of the vertical components 30 can also be spaced at the same distance from each other, and also can be spaced at a distance from a corresponding edge (e.g., vertical or side edge 34 or 36) that will facilitate making the width of all of the shaped portions 24, 26, 28 the same for a particular piece of pericardium material 10, as will be described in further detail below. However, it is also contemplated that the vertical components 30 within a single pericardial valve configuration can have different lengths and/or can be spaced at different distances from each other in order to create a valve with leaflets that are not all identically sized and/or shaped.
The pericardial material may be cut into the desired shape using a number of methods and apparatus, such as cutting the material with a scalpel, scissors, die, or laser. Alternatively, the attachment pattern can be determined and controlled by using a template that is positioned over the material, which may be made out of a material such as the relatively thin and translucent material commercially available under the trade name “Mylar”. Two examples of such templates 60 and 70 are illustrated in
As shown, the pattern of template 60 includes arcuate portions 64 and vertical components 66, and the pattern of template 70 includes arcuate portions 74 and vertical components 76. The template 60 may further include tab portions 67 that extend beyond vertical stitch lines 68 on both sides of the pattern which can provide a piece of material for use in securing the material into a tube shape. That is, the tab portions provide an extending portion that can be grasped or held during the process of making the material into a tube. The template 70 includes similar tab portions 77 that extend beyond the vertical stitch lines 78 for the same purpose.
As set out above, the two thicknesses of the pericardium material 10 can be attached to each other along leaflet-defining patterns in a variety of ways, including stitching, suturing, or clamping. The suture material may be provided as a monofilament or multifilament structure made of natural or synthetic material (e.g., nylon or polypropylene), or may alternatively include an elongated metal or metal-composite thread or filament that is suitable for securing layers of pericardium material to each other. The stitching and suturing techniques will typically involve using an elongated thread-like material that may be attached to a needle to perform the securing function, which may either be done by hand or with an automated machine. Referring again to
The attachment pattern preferably extends from the edge 22 of the pericardium material 10 for a predetermined distance toward the fold line 16, but preferably does not extend all the way to the fold line 16. In this way, an area 37 of the pericardium material 10 that is between the arcuate component 32 of each of the shaped portions 24, 26, 28 and the fold line 16 includes two layers of material that are not secured to each other. For illustration purposes, the area 37 is a portion of the pericardium material 10 in
Referring additionally to
The above description of the steps involved in making a valve segment in accordance with the invention provides the advantage of being able to perform the attachment work for the shaped portions with a flat sheet of pericardium material; however, this sequence of construction is only one exemplary way of achieving such a construction. In another alternative method, a flat sheet of pericardium material can be made into a tube by attaching opposite ends of the material to each other in a tubular shape. A portion of the pericardium material can then be folded into the inside of the tube, thereby creating an inner tube and an outer tube that is closed at the folded end and open at the opposite end. The contours or patterns for the shaped portions that will act as leaflets are then formed by stitching or otherwise attaching the two layers of material to each other, with the inflow end of the structure at the closed end of the tube and the commissures at the open end of the tube.
As described above, the area 37 between the arcuate components of the shaped portions 24, 26, 28 and the fold line 16 is an area comprising two layers of pericardium material that are not attached to each other. Once the pericardium material 10 is formed into a tube and the leaflets are formed, as described above, the area 37 is essentially an enclosed pocket area, which can serve as a backup if there are any failures in the attachment lines of the shaped portions 24, 26, and/or 28. That is, if one or more stitches or an adhesive area become unattached along some part of the shaped portions, the valve can continue to operate within the heart of a patient because the area at the fold line 16 will stop the flow of blood that might otherwise leak from the valve segment 40.
The sheet of material 140 is formed into a tubular structure having an interior layer 150 positioned closer to the central area of a valve 154, and an outer layer 152 adjacent to the interior layer 150 and positioned further from the central area of the valve 154. The two seam lines 142 are generally aligned with each other and can be connected or otherwise attached to each other using a number of attachment methods, such as sewing. The valve 154 can then be attached to a compressible stent or other compressible structure for percutaneous delivery to the heart of a patient, for example. An open position of the valve 154 is shown in
While the stitching patterns described herein often refer to seam lines between leaflets that are generally parallel to and evenly spaced from each other, the pattern may be differently configured. For example, one or more of the seams may be angled or otherwise positioned relative to one or more adjacent seams to create relatively funnel-shaped patterns for the leaflets. These configurations may alternatively be used in embodiments of the invention that are otherwise described herein as having patterns with walls that are generally parallel to one another. It is further contemplated that a combination of parallel and non-parallel spacing of seams in a pattern can be used.
The material 170 is formed into a tubular structure having an interior layer 180 positioned closer to the central area of a valve 184, and an outer layer 182 adjacent to the interior layer 180 and positioned further from the central area of the valve 184. The two seam lines 172 are generally aligned with each other and can be connected or otherwise attached to each other using a number of attachment methods, such as sewing. The valve 184 can then be attached to a compressible stent or other compressible structure for percutaneous delivery to the heart of a patient, for example. An open position of the valve 184 is shown in
The first, second, and third pieces 200, 201, 202 are formed into a tubular structure by attachment at their vertical side seam lines, such as is illustrated in
The first and second material pieces 220, 222, are formed into a tubular structure by attachment at their vertical side seam lines, such as is illustrated in
Referring again to
In order to attach the tubular valve segment 40 to stent 42, the segment 40 may be partially or completely slid onto a mandrel 50, and the stent 42 can be slid over the top of the segment 40. It may be desirable to slide the tubular valve segment 40 onto the mandrel for only a portion of its length and slide the stent 42 over the segment at this point, then slide the combination of the segment 40 and the stent 42 until the remainder of the length of the segment 40 is on the mandrel. This may make it easier to keep the stent 42 positioned relative to the length of the segment 40, although it is possible to position these two components independently on the mandrel and relative to each other. It is also possible to position the valve segment relative to the stent without the use of any mandrel or other device.
Once the tubular valve segment 40 and stent 42 are positioned relative to each other so that the formed leaflets are enclosed entirely within the length of the stent 42, the stent 42 can be secured to the tubular segment 40 in a variety of ways. One procedure that can be used is to suture certain areas of the stent 42 to the tubular valve segment 40. Exemplary stitches are illustrated at one end of the stent in
Following the procedure of securing the stent 42 to the tubular valve segment 40, the stented valve can be removed from the mandrel 50. The edges of the tubular valve segment 40 extending beyond the stent 42 can optionally be trimmed to generally follow the contour of the edges of the stent 42; however, such a trimming operation may not be necessary or desirable in some applications. After removal of the valve segment 40 with attached stent 42 (referred to herein as a “stented valve 52”) from the mandrel, one or more shaping tools may be temporarily inserted into the end of the stented valve 52 that is opposite the folded end 16 and into the pockets formed by the shaped portions 24, 26, 28. This procedure essentially forms a stented valve having three leaflets, where the shaping tool forces the leaflets into their closed position or configuration.
After the tubular valve segment 40 is secured to a stent, it is contemplated that either one or both ends of the segment 40 may be rolled or folded back toward the stent, thereby increasing the thickness of the valve in these areas, as is illustrated in
In the embodiments described above relative to
Because the outer layer of pericardium material of the stented valve 52 (i.e., the layer that comprises the tubular valve segment 40) extends along essentially the entire length of the valve 52, as shown in
However,
Referring now to
Preferably, when any portion of the outer layer of material of one of the valves of the invention is removed, the material is removed uniformly relative to each leaflet, in order to keep the valve structurally balanced. In addition, the amount and location of material removed from the outer layer of the valve should be designed to maintain protection of the leaflets from contact with the stent material, when a stent is used. That is, the holes made by the removal of material should be small enough and/or be oriented properly to prevent the free edge of the valve from contacting the stent through the hole in the outer layer of material. However, the material removed from the outer layer of the valve should correspond with the desired blood flow, such as being large enough and able to be aligned in the aortic position relative to the coronary blood flow.
Referring again to
The stented valve 52 may then be used with a system for delivering the valve segment to the desired location within a patient. The delivery system may include, for example, an outer sheath overlying an inner balloon catheter, where the outer sheath includes an expanded distal portion, within which the stented valve is located. The stented valve can be compressed around a single or double balloon located on the inner catheter. A tapered tip is mounted to the distal end of the inner catheter and serves to ease the passage of the delivery system through the patient's vasculature. The system also may include some type of guidewire to guide the delivery system to its desired implant location. Another alternative delivery system that can be used, in particular, for stented valves having a self-expanding stent, includes a catheter that does not have balloons, but instead includes a sheath or other mechanism that maintains the self-expanding stent in its compressed condition until it is desired to allow it to expand. When such a self-expanding stent is properly positioned in the patient, the mechanism that keeps the stent compressed can be retracted or otherwise removed to allow for expansion of the stent against the vessel walls.
The delivery system and its use may correspond to that described in the above-cited Tower, et al. applications, where the stented valve can be expanded against a failed native or prosthetic valve. The delivery system can be advanced to the desired valve implant site using the guidewire, after which the sheath is moved proximally, exposing the valve and balloon mounted on inner catheter. The balloon is expanded, which thereby expands stented valve 52 until it reaches a desired outer diameter where it contacts the wall of a heart vessel. The balloon is then deflated and the delivery system is withdrawn proximally.
The present invention has now been described with reference to several embodiments thereof. The entire disclosure of any patent or patent application identified herein is hereby incorporated by reference. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the structures described herein, but only by the structures described by the language of the claims and the equivalents of those structures.
This application claims the benefit of U.S. Provisional Patent Application having Ser. No. 60/786,849, filed on Mar. 28, 2006, entitled “Prosthetic Cardiac Valve Formed from Pericardium Material and Methods of Making Same”, the entire disclosure of which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3334629 | Cohn | Aug 1967 | A |
3409013 | Berry | Nov 1968 | A |
3540431 | Mobin-Uddin | Nov 1970 | A |
3570014 | Hancock | Mar 1971 | A |
3587115 | Shiley | Jun 1971 | A |
3628535 | Ostrowsky et al. | Dec 1971 | A |
3642004 | Osthagen et al. | Feb 1972 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3736598 | Bellhouse | Jun 1973 | A |
3755823 | Hancock | Sep 1973 | A |
3795246 | Sturgeon | Mar 1974 | A |
3839741 | Haller | Oct 1974 | A |
3868956 | Alfidi et al. | Mar 1975 | A |
3874388 | King et al. | Apr 1975 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4218782 | Rygg | Aug 1980 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4233690 | Akins | Nov 1980 | A |
4259753 | Liotta et al. | Apr 1981 | A |
4265694 | Boretos | May 1981 | A |
4291420 | Reul | Sep 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4425908 | Simon | Jan 1984 | A |
4451936 | Carpentier et al. | Jun 1984 | A |
4470157 | Love | Sep 1984 | A |
4501030 | Lane | Feb 1985 | A |
4574803 | Storz | Mar 1986 | A |
4580568 | Gianturco | Apr 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4610688 | Silvestrini et al. | Sep 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4647283 | Carpentier et al. | Mar 1987 | A |
4648881 | Carpentier et al. | Mar 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4662885 | DiPisa, Jr. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4666442 | Arru et al. | May 1987 | A |
4681908 | Broderick et al. | Jul 1987 | A |
4687483 | Fisher et al. | Aug 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4725274 | Lane et al. | Feb 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787904 | Baykut et al. | Nov 1988 | A |
4790843 | Carpentier et al. | Dec 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4819751 | Shimada et al. | Apr 1989 | A |
4834755 | Silvestrini et al. | May 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4872874 | Taheri | Oct 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4909252 | Goldberger | Mar 1990 | A |
4917102 | Miller et al. | Apr 1990 | A |
4922905 | Strecker | May 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4976733 | Girardot | Dec 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5002559 | Tower | Mar 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5061273 | Yock | Oct 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5147391 | Lane | Sep 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5161547 | Tower | Nov 1992 | A |
5163953 | Vince | Nov 1992 | A |
5163955 | Love et al. | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5217483 | Tower | Jun 1993 | A |
5232445 | Bonzel | Aug 1993 | A |
5258023 | Reger | Nov 1993 | A |
5272909 | Nguyen et al. | Dec 1993 | A |
5295958 | Shturman | Mar 1994 | A |
5327774 | Nguyen et al. | Jul 1994 | A |
5332402 | Teitelbaum et al. | Jul 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5389106 | Tower | Feb 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5415633 | Lazarus et al. | May 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5469868 | Reger | Nov 1995 | A |
5480424 | Cox | Jan 1996 | A |
5489294 | McVenes et al. | Feb 1996 | A |
5489297 | Duran | Feb 1996 | A |
5496346 | Horzewski et al. | Mar 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5507767 | Maeda et al. | Apr 1996 | A |
5509930 | Love | Apr 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545211 | An et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5562729 | Purdy et al. | Oct 1996 | A |
5575818 | Pinchuk | Nov 1996 | A |
5580922 | Park et al. | Dec 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5662705 | Love et al. | Sep 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5667523 | Bynon et al. | Sep 1997 | A |
5674277 | Freitag | Oct 1997 | A |
5695498 | Tower | Dec 1997 | A |
5702368 | Stevens et al. | Dec 1997 | A |
5713953 | Vallana et al. | Feb 1998 | A |
5716417 | Girard et al. | Feb 1998 | A |
5746709 | Rom et al. | May 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5782809 | Umeno et al. | Jul 1998 | A |
5800456 | Maeda et al. | Sep 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5817126 | Imran | Oct 1998 | A |
5824041 | Lenker | Oct 1998 | A |
5824043 | Cottone, Jr. | Oct 1998 | A |
5824053 | Khosravi et al. | Oct 1998 | A |
5824056 | Rosenberg | Oct 1998 | A |
5824061 | Quijano et al. | Oct 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843158 | Lenker et al. | Dec 1998 | A |
5851232 | Lois | Dec 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5860966 | Tower | Jan 1999 | A |
5861028 | Angell | Jan 1999 | A |
5868783 | Tower | Feb 1999 | A |
5876448 | Thompson et al. | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5891191 | Stinson | Apr 1999 | A |
5906619 | Olson et al. | May 1999 | A |
5907893 | Zadno-Azizi et al. | Jun 1999 | A |
5910170 | Reimink et al. | Jun 1999 | A |
5913842 | Boyd et al. | Jun 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5928281 | Huynh et al. | Jul 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5954766 | Zadno-Azizi et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5961549 | Nguyen et al. | Oct 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5984957 | Laptewicz, Jr. et al. | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5997573 | Quijano et al. | Dec 1999 | A |
6022370 | Tower | Feb 2000 | A |
6027525 | Suh et al. | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6042589 | Marianne | Mar 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6042607 | Williamson, IV | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6059809 | Amor et al. | May 2000 | A |
6059827 | Fenton, Jr. | May 2000 | A |
6110201 | Quijano et al. | Aug 2000 | A |
6146366 | Schachar | Nov 2000 | A |
6159239 | Greenhalgh | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6162245 | Jayaraman | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6200336 | Pavcnik et al. | Mar 2001 | B1 |
6203550 | Olson | Mar 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6218662 | Tchakarov et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6241757 | An et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6248116 | Chevilon | Jun 2001 | B1 |
6254636 | Peredo | Jul 2001 | B1 |
6258114 | Konya et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6299637 | Shaolia et al. | Oct 2001 | B1 |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6309382 | Garrison et al. | Oct 2001 | B1 |
6309417 | Spence et al. | Oct 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
6334873 | Lane et al. | Jan 2002 | B1 |
6338735 | Stevens | Jan 2002 | B1 |
6348063 | Yassour et al. | Feb 2002 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6371970 | Khosravi et al. | Apr 2002 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6379383 | Palmaz et al. | Apr 2002 | B1 |
6380457 | Yurek et al. | Apr 2002 | B1 |
6398807 | Chouinard et al. | Jun 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468303 | Amplatz et al. | Oct 2002 | B1 |
6468305 | Otte | Oct 2002 | B1 |
6475239 | Campbell et al. | Nov 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6494909 | Greenhalgh | Dec 2002 | B2 |
6503272 | Duerig et al. | Jan 2003 | B2 |
6508833 | Pavcnik et al. | Jan 2003 | B2 |
6527800 | McGuckin, Jr. et al. | Mar 2003 | B1 |
6530949 | Konya et al. | Mar 2003 | B2 |
6530952 | Vesely | Mar 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6562058 | Seguin et al. | May 2003 | B2 |
6569196 | Vesely | May 2003 | B1 |
6585758 | Chouinard et al. | Jul 2003 | B1 |
6592546 | Barbut et al. | Jul 2003 | B1 |
6605112 | Moll et al. | Aug 2003 | B1 |
6613077 | Gilligan et al. | Sep 2003 | B2 |
6622604 | Chouinard et al. | Sep 2003 | B1 |
6632243 | Zadno-Azizi et al. | Oct 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6652571 | White et al. | Nov 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6656213 | Solem | Dec 2003 | B2 |
6663663 | Kim et al. | Dec 2003 | B2 |
6669724 | Park et al. | Dec 2003 | B2 |
6673089 | Yassour et al. | Jan 2004 | B1 |
6673109 | Cox | Jan 2004 | B2 |
6676698 | McGuckin, Jr. et al. | Jan 2004 | B2 |
6682558 | Tu et al. | Jan 2004 | B2 |
6682559 | Myers et al. | Jan 2004 | B2 |
6685739 | DiMatteo et al. | Feb 2004 | B2 |
6689144 | Gerberding | Feb 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6692512 | Jang | Feb 2004 | B2 |
6692513 | Streeter et al. | Feb 2004 | B2 |
6695878 | McGuckin, Jr. et al. | Feb 2004 | B2 |
6702851 | Chinn et al. | Mar 2004 | B1 |
6709457 | Otte et al. | Mar 2004 | B1 |
6716244 | Klaco | Apr 2004 | B2 |
6719789 | Cox | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6730377 | Wang | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6736846 | Cox | May 2004 | B2 |
6752828 | Thornton | Jun 2004 | B2 |
6758855 | Fulton, III et al. | Jul 2004 | B2 |
6769434 | Liddicoat et al. | Aug 2004 | B2 |
6786925 | Schoon | Sep 2004 | B1 |
6790229 | Berreklouw | Sep 2004 | B1 |
6792979 | Konya et al. | Sep 2004 | B2 |
6797000 | Simpson et al. | Sep 2004 | B2 |
6797002 | Spence | Sep 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6830575 | Stenzel et al. | Dec 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6830585 | Artof | Dec 2004 | B1 |
6846325 | Liddicoat | Jan 2005 | B2 |
6866650 | Stevens | Mar 2005 | B2 |
6872223 | Roberts | Mar 2005 | B2 |
6872226 | Cali et al. | Mar 2005 | B2 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6883522 | Spence et al. | Apr 2005 | B2 |
6887266 | Williams et al. | May 2005 | B2 |
6890330 | Streeter et al. | May 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6908481 | Cribier | Jun 2005 | B2 |
6913600 | Valley et al. | Jul 2005 | B2 |
6929653 | Streeter | Aug 2005 | B2 |
6936066 | Palmaz et al. | Aug 2005 | B2 |
6939365 | Fogarty et al. | Sep 2005 | B1 |
6951571 | Srivastava | Oct 2005 | B1 |
6986742 | Hart et al. | Jan 2006 | B2 |
6989027 | Allen et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6991649 | Sievers | Jan 2006 | B2 |
7018401 | Hyodoh et al. | Mar 2006 | B1 |
7041128 | McGuckin, Jr. et al. | May 2006 | B2 |
7044966 | Svanidze et al. | May 2006 | B2 |
7048014 | Hyodoh et al. | May 2006 | B2 |
7097659 | Woolfson et al. | Aug 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7105016 | Shui et al. | Sep 2006 | B2 |
7115141 | Menz et al. | Oct 2006 | B2 |
7141064 | Scott et al. | Nov 2006 | B2 |
7147663 | Berg et al. | Dec 2006 | B1 |
7153324 | Case et al. | Dec 2006 | B2 |
7160319 | Chouinard et al. | Jan 2007 | B2 |
7175656 | Khairkhahan | Feb 2007 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201761 | Woolfson et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7238200 | Lee et al. | Jul 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7300457 | Palmaz | Nov 2007 | B2 |
7300463 | Liddicoat | Nov 2007 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7329278 | Seguin | Feb 2008 | B2 |
7335218 | Wilson et al. | Feb 2008 | B2 |
7338520 | Bailey et al. | Mar 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7384411 | Condado | Jun 2008 | B1 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7470284 | Lambrecht et al. | Dec 2008 | B2 |
7481838 | Carpentier et al. | Jan 2009 | B2 |
7544206 | Cohn et al. | Jun 2009 | B2 |
7556646 | Yang et al. | Jul 2009 | B2 |
20010001314 | Davison et al. | May 2001 | A1 |
20010002445 | Vesely | May 2001 | A1 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010010017 | Letac et al. | Jul 2001 | A1 |
20010011189 | Drasler et al. | Aug 2001 | A1 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20010025196 | Chinn et al. | Sep 2001 | A1 |
20010032013 | Marton | Oct 2001 | A1 |
20010039450 | Pavcnik et al. | Nov 2001 | A1 |
20010041928 | Pavcnik et al. | Nov 2001 | A1 |
20010044647 | Pinchuk et al. | Nov 2001 | A1 |
20020010508 | Chobotov | Jan 2002 | A1 |
20020026238 | Lane et al. | Feb 2002 | A1 |
20020029014 | Jayaraman | Mar 2002 | A1 |
20020032480 | Spence et al. | Mar 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020035396 | Heath | Mar 2002 | A1 |
20020042650 | Vardi et al. | Apr 2002 | A1 |
20020052651 | Myers et al. | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020072789 | Hackett et al. | Jun 2002 | A1 |
20020077696 | Zadno-Azizi et al. | Jun 2002 | A1 |
20020095209 | Zadno-Azizi et al. | Jul 2002 | A1 |
20020099439 | Schwartz et al. | Jul 2002 | A1 |
20020103533 | Langberg et al. | Aug 2002 | A1 |
20020107565 | Greenhalgh | Aug 2002 | A1 |
20020111674 | Chouinard et al. | Aug 2002 | A1 |
20020116053 | Simpson et al. | Aug 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020133183 | Lentz et al. | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020161394 | Macoviak et al. | Oct 2002 | A1 |
20020193871 | Beyersdorf et al. | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030023302 | Moe et al. | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030028247 | Cali | Feb 2003 | A1 |
20030036791 | Philipp et al. | Feb 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030065386 | Weadock | Apr 2003 | A1 |
20030069492 | Abrams et al. | Apr 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030125795 | Pavcnik et al. | Jul 2003 | A1 |
20030130726 | Thorpe et al. | Jul 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030139804 | Hankh et al. | Jul 2003 | A1 |
20030139805 | Holmberg et al. | Jul 2003 | A1 |
20030149475 | Hyodoh et al. | Aug 2003 | A1 |
20030149476 | Damm et al. | Aug 2003 | A1 |
20030149478 | Figulla et al. | Aug 2003 | A1 |
20030153974 | Spenser et al. | Aug 2003 | A1 |
20030167089 | Lane | Sep 2003 | A1 |
20030181850 | Diamond et al. | Sep 2003 | A1 |
20030191519 | Lombardi et al. | Oct 2003 | A1 |
20030199913 | Dubrul et al. | Oct 2003 | A1 |
20030199963 | Tower et al. | Oct 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20030199972 | Zadno-Azizi et al. | Oct 2003 | A1 |
20030212410 | Stenzel et al. | Nov 2003 | A1 |
20030212452 | Zadno-Azizi et al. | Nov 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20030225445 | Derus et al. | Dec 2003 | A1 |
20040015232 | Shu et al. | Jan 2004 | A1 |
20040030381 | Shu | Feb 2004 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040049224 | Buehlmann et al. | Mar 2004 | A1 |
20040049262 | Obermiller et al. | Mar 2004 | A1 |
20040049266 | Anduiza et al. | Mar 2004 | A1 |
20040082904 | Houde et al. | Apr 2004 | A1 |
20040088045 | Cox | May 2004 | A1 |
20040093005 | Durcan | May 2004 | A1 |
20040093060 | Seguin et al. | May 2004 | A1 |
20040097788 | Mourles et al. | May 2004 | A1 |
20040098112 | DiMatteo et al. | May 2004 | A1 |
20040106976 | Bailey et al. | Jun 2004 | A1 |
20040106990 | Spence et al. | Jun 2004 | A1 |
20040111096 | Tu et al. | Jun 2004 | A1 |
20040116951 | Rosengart | Jun 2004 | A1 |
20040117004 | Osborne et al. | Jun 2004 | A1 |
20040122468 | Yodfat et al. | Jun 2004 | A1 |
20040122516 | Fogarty | Jun 2004 | A1 |
20040127979 | Wilson | Jul 2004 | A1 |
20040138742 | Myers et al. | Jul 2004 | A1 |
20040138743 | Myers et al. | Jul 2004 | A1 |
20040153146 | Lashinski et al. | Aug 2004 | A1 |
20040167573 | Williamson | Aug 2004 | A1 |
20040167620 | Ortiz | Aug 2004 | A1 |
20040186563 | Iobbi | Sep 2004 | A1 |
20040193261 | Berreklouw | Sep 2004 | A1 |
20040210240 | Saint | Oct 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040215333 | Duran | Oct 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040225353 | McGuckin, Jr. | Nov 2004 | A1 |
20040225354 | Allen | Nov 2004 | A1 |
20040254636 | Flagle et al. | Dec 2004 | A1 |
20040260394 | Douk et al. | Dec 2004 | A1 |
20040267357 | Allen et al. | Dec 2004 | A1 |
20050010246 | Streeter | Jan 2005 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050010287 | Macoviak | Jan 2005 | A1 |
20050015112 | Cohn et al. | Jan 2005 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050049692 | Numamoto | Mar 2005 | A1 |
20050049696 | Siess | Mar 2005 | A1 |
20050055088 | Liddicoat et al. | Mar 2005 | A1 |
20050060029 | Le | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075712 | Biancucci | Apr 2005 | A1 |
20050075717 | Nguyen | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075724 | Svanidze | Apr 2005 | A1 |
20050075725 | Rowe | Apr 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050075730 | Myers | Apr 2005 | A1 |
20050075731 | Artof | Apr 2005 | A1 |
20050085841 | Eversull et al. | Apr 2005 | A1 |
20050085842 | Eversull et al. | Apr 2005 | A1 |
20050085843 | Opolski et al. | Apr 2005 | A1 |
20050085890 | Rasmussen et al. | Apr 2005 | A1 |
20050085900 | Case et al. | Apr 2005 | A1 |
20050096568 | Kato | May 2005 | A1 |
20050096692 | Linder et al. | May 2005 | A1 |
20050096724 | Stenzel et al. | May 2005 | A1 |
20050096734 | Majercak et al. | May 2005 | A1 |
20050096735 | Hojeibane et al. | May 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050113910 | Paniagua | May 2005 | A1 |
20050119688 | Bergheim | Jun 2005 | A1 |
20050131438 | Cohn | Jun 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug | Jun 2005 | A1 |
20050137695 | Salahieh | Jun 2005 | A1 |
20050137701 | Salahieh | Jun 2005 | A1 |
20050143809 | Salahieh | Jun 2005 | A1 |
20050148997 | Valley et al. | Jul 2005 | A1 |
20050149181 | Eberhardt | Jul 2005 | A1 |
20050165477 | Anduiza et al. | Jul 2005 | A1 |
20050187616 | Realyvasquez | Aug 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050203605 | Dolan | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203615 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050203618 | Sharkawy | Sep 2005 | A1 |
20050222674 | Paine | Oct 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050234546 | Nugent | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050240262 | White | Oct 2005 | A1 |
20050240263 | Fogarty et al. | Oct 2005 | A1 |
20050261759 | Lambrecht et al. | Nov 2005 | A1 |
20050283962 | Boudjemline | Dec 2005 | A1 |
20060004439 | Spenser et al. | Jan 2006 | A1 |
20060004469 | Sokel | Jan 2006 | A1 |
20060009841 | McGuckin et al. | Jan 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058775 | Stevens et al. | Mar 2006 | A1 |
20060089711 | Dolan | Apr 2006 | A1 |
20060100685 | Seguin et al. | May 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060135964 | Vesely | Jun 2006 | A1 |
20060142848 | Gabbay | Jun 2006 | A1 |
20060167474 | Bloom et al. | Jul 2006 | A1 |
20060178740 | Stacchino et al. | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20060195185 | Lane et al. | Aug 2006 | A1 |
20060195186 | Drews et al. | Aug 2006 | A1 |
20060206192 | Tower et al. | Sep 2006 | A1 |
20060206202 | Bonhoeffer et al. | Sep 2006 | A1 |
20060235508 | Lane et al. | Oct 2006 | A1 |
20060247763 | Slater | Nov 2006 | A1 |
20060259134 | Schwammenthal et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060271166 | Thill et al. | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20060276888 | Lee et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20070005129 | Damm et al. | Jan 2007 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070010878 | Raffiee et al. | Jan 2007 | A1 |
20070016286 | Case et al. | Jan 2007 | A1 |
20070027518 | Herrmann et al. | Feb 2007 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070073392 | Heyninck-Janitz | Mar 2007 | A1 |
20070078509 | Lotfy et al. | Apr 2007 | A1 |
20070078510 | Ryan | Apr 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070100439 | Cangialosi | May 2007 | A1 |
20070100440 | Figulla et al. | May 2007 | A1 |
20070100449 | O'Neil et al. | May 2007 | A1 |
20070112415 | Bartlett | May 2007 | A1 |
20070162102 | Ryan et al. | Jul 2007 | A1 |
20070162113 | Sharkawy et al. | Jul 2007 | A1 |
20070185513 | Woolfson et al. | Aug 2007 | A1 |
20070203391 | Bloom et al. | Aug 2007 | A1 |
20070225681 | House | Sep 2007 | A1 |
20070232898 | Huynh et al. | Oct 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070233237 | Krivoruchko | Oct 2007 | A1 |
20070233238 | Huynh et al. | Oct 2007 | A1 |
20070238979 | Huynh et al. | Oct 2007 | A1 |
20070239254 | Marchand et al. | Oct 2007 | A1 |
20070239265 | Birdsall | Oct 2007 | A1 |
20070239266 | Birdsall | Oct 2007 | A1 |
20070239269 | Dolan et al. | Oct 2007 | A1 |
20070239273 | Allen | Oct 2007 | A1 |
20070244544 | Birdsall et al. | Oct 2007 | A1 |
20070244545 | Birdsall et al. | Oct 2007 | A1 |
20070244546 | Francis | Oct 2007 | A1 |
20070244553 | Rafiee et al. | Oct 2007 | A1 |
20070244554 | Rafiee et al. | Oct 2007 | A1 |
20070244555 | Rafiee et al. | Oct 2007 | A1 |
20070244556 | Rafiee et al. | Oct 2007 | A1 |
20070244557 | Rafiee et al. | Oct 2007 | A1 |
20070250160 | Rafiee | Oct 2007 | A1 |
20070255394 | Ryan | Nov 2007 | A1 |
20070255396 | Douk et al. | Nov 2007 | A1 |
20070288000 | Bonan | Dec 2007 | A1 |
20080004688 | Spenser et al. | Jan 2008 | A1 |
20080004696 | Vesely | Jan 2008 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080015671 | Bonhoeffer | Jan 2008 | A1 |
20080021552 | Gabbay | Jan 2008 | A1 |
20080048656 | Tan | Feb 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080065206 | Liddicoat | Mar 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071362 | Tuval et al. | Mar 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080071368 | Tuval et al. | Mar 2008 | A1 |
20080077234 | Styrc | Mar 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080082166 | Styrc et al. | Apr 2008 | A1 |
20080133003 | Seguin et al. | Jun 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080147105 | Wilson et al. | Jun 2008 | A1 |
20080147180 | Ghione et al. | Jun 2008 | A1 |
20080147181 | Ghione et al. | Jun 2008 | A1 |
20080147182 | Righini et al. | Jun 2008 | A1 |
20080154355 | Benichow et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080161910 | Revuelta et al. | Jul 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080183273 | Mesana et al. | Jul 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080215143 | Seguin et al. | Sep 2008 | A1 |
20080215144 | Ryan et al. | Sep 2008 | A1 |
20080228254 | Ryan | Sep 2008 | A1 |
20080228263 | Ryan | Sep 2008 | A1 |
20080234797 | Styrc | Sep 2008 | A1 |
20080243246 | Ryan et al. | Oct 2008 | A1 |
20080255651 | Dwork | Oct 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080255661 | Straubinger et al. | Oct 2008 | A1 |
20080262593 | Ryan et al. | Oct 2008 | A1 |
20080269878 | Iobbi | Oct 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090012600 | Styrc et al. | Jan 2009 | A1 |
20090048656 | Wen | Feb 2009 | A1 |
20090054976 | Tuval et al. | Feb 2009 | A1 |
20090069886 | Suri et al. | Mar 2009 | A1 |
20090069887 | Righini et al. | Mar 2009 | A1 |
20090069889 | Suri et al. | Mar 2009 | A1 |
20090082858 | Nugent et al. | Mar 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090164004 | Cohn | Jun 2009 | A1 |
20090171447 | Von Segesser et al. | Jul 2009 | A1 |
20090192585 | Bloom et al. | Jul 2009 | A1 |
20090192586 | Tabor et al. | Jul 2009 | A1 |
20090192591 | Ryan et al. | Jul 2009 | A1 |
20090198316 | Laske et al. | Aug 2009 | A1 |
20090216310 | Straubinger et al. | Aug 2009 | A1 |
20090216312 | Straubinger et al. | Aug 2009 | A1 |
20090216313 | Straubinger et al. | Aug 2009 | A1 |
20090222082 | Lock et al. | Sep 2009 | A1 |
20090234443 | Ottma et al. | Sep 2009 | A1 |
20090240264 | Tuval et al. | Sep 2009 | A1 |
20090240320 | Tuval | Sep 2009 | A1 |
20100094411 | Tuval et al. | Apr 2010 | A1 |
20100100167 | Bortlein et al. | Apr 2010 | A1 |
20100131054 | Tuval et al. | May 2010 | A1 |
20100137979 | Tuval et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
2007-100074433 | Jan 2007 | CN |
3640745 | Jun 1987 | DE |
195 32 846 | Mar 1997 | DE |
195 46 692 | Jun 1997 | DE |
195 46 692 | Jun 1997 | DE |
198 57 887 | Jul 2000 | DE |
199 07 646 | Aug 2000 | DE |
100 48 814 | Sep 2000 | DE |
100 49 812 | Apr 2002 | DE |
100 49 813 | Apr 2002 | DE |
100 49 815 | Apr 2002 | DE |
0103546 | Mar 1984 | EP |
0597967 | Dec 1994 | EP |
0850607 | Jul 1998 | EP |
1057459 | Jun 2000 | EP |
1 057 460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1255510 | Nov 2002 | EP |
0937439 | Sep 2003 | EP |
1340473 | Sep 2003 | EP |
0819013 | Jun 2004 | EP |
1469797 | Nov 2005 | EP |
2788217 | Dec 1999 | FR |
2815844 | May 2000 | FR |
2056023 | Mar 1981 | GB |
2433700 | Dec 2007 | GB |
1271508 | Nov 1986 | SU |
9117720 | Nov 1991 | WO |
9301768 | Feb 1993 | WO |
WO 9516411 | Jun 1995 | WO |
9529640 | Nov 1995 | WO |
9814137 | Apr 1998 | WO |
9829057 | Jul 1998 | WO |
9933414 | Jul 1999 | WO |
0041652 | Jul 2000 | WO |
0044313 | Aug 2000 | WO |
0047136 | Aug 2000 | WO |
0047139 | Aug 2000 | WO |
0135870 | May 2001 | WO |
0149213 | Jul 2001 | WO |
0154625 | Aug 2001 | WO |
0162189 | Aug 2001 | WO |
0164137 | Sep 2001 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0241789 | May 2002 | WO |
0243620 | Jun 2002 | WO |
0247575 | Jun 2002 | WO |
0249540 | Jun 2002 | WO |
03003943 | Jan 2003 | WO |
03003949 | Jan 2003 | WO |
03011195 | Feb 2003 | WO |
03030776 | Apr 2003 | WO |
2004019811 | Mar 2004 | WO |
2004019825 | Mar 2004 | WO |
2004023980 | Mar 2004 | WO |
2004041126 | May 2004 | WO |
2004058106 | Jul 2004 | WO |
2004089250 | Oct 2004 | WO |
2005004753 | Jan 2005 | WO |
2005027790 | Mar 2005 | WO |
2005046528 | May 2005 | WO |
WO 2006004679 | Jan 2006 | WO |
2006026371 | Mar 2006 | WO |
2008047354 | Apr 2008 | WO |
2008100599 | Aug 2008 | WO |
2008138584 | Nov 2008 | WO |
2008150529 | Dec 2008 | WO |
2009002548 | Dec 2008 | WO |
2009029199 | Mar 2009 | WO |
2009042196 | Apr 2009 | WO |
2009045338 | Apr 2009 | WO |
2009061389 | May 2009 | WO |
2009091509 | Jul 2009 | WO |
2009111241 | Sep 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20070233228 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60786849 | Mar 2006 | US |