The present invention relates in general to robotic devices and, more particularly, to a robotic prosthetic device with an active linking member and compliant linking member.
A prosthetic device helps restore mobility to people who lack able-bodied motion or gait. The prosthetic device is intended to replace the function or appearance of a missing limb and can return mobility to the wearer or user. The prosthetic device is available to replace or support various portions of the body. A lower limb prosthetic device includes, for example, the prosthetic foot, foot-ankle prosthesis, prosthetic knee joint, and prosthetic hip joint. People who require a lower limb prosthesis often expend more metabolic power to walk or move at the same speed as an able-bodied individual. One goal of the lower limb prosthetic device is to help the user achieve a normal gait while reducing energy expended by the user.
Prosthetic devices can be divided into two groups, passive devices and active devices. A passive lower limb prosthetic generally relies on a compliant member, such as a spring, to store and release energy. A spring is able to return no more than the amount of energy that is put into the spring. Thus, the energy that is released by a spring in a passive device is limited to the energy as is put in by the user. For example, a spring-based passive foot prosthetic provides about half of the peak power required for gait. The user of a passive device must expend additional energy through other muscles and joints to maintain a normal walking gait. Therefore, the passive prosthetic design is limited in capacity to help users reduce metabolic energy expenditure while achieving a normal walking gait and performing other activities.
An active device differs from the passive device in that the active device uses a motor to supply power to the device and to control the device. Some active device designs are inefficient, either requiring relatively large motors, which are heavy and undesirable for wearable devices, or providing low peak power output, which is insufficient for many activities. Control systems for the active device are limited in capability to control active devices. The active prosthetic is typically restricted to a single degree of freedom, which reduces the motion available to the device. Further, the active prosthetic may be limited to low power activities, because the power necessary for high power activities is unattainable in a small portable system. One goal of the active prosthetic device is to increase efficiency of the active components and to build a lighter weight device.
Prosthetic devices are typically designed for a specific activity, such as walking. The majority of active compliant devices utilize a traditional rigid structure. The traditional rigid structure typically includes links powered by actuators such as electric motors or hydraulics. One strategy employs an architecture having a joint which is powered by a compliant member, such as a spring, and an active member, such as a motor driven screw, arranged in series. An activity-specific design strategy and traditional rigid structures may be suited for one specific activity, but the designs are limited in application and are not efficient beyond the intended activity. For example, devices designed for walking perform poorly for running, navigating uneven terrain, walking up and down inclines or stairs, or simply balancing while standing. Carrying heavy loads or transitioning from walking to running remains a challenge for users. Some active devices are ineffective for activities requiring both high velocities under low load and low velocities under high load.
A need exists for a prosthetic device that is able to mimic the performance of human muscles over a wide range of activities. Accordingly, in one embodiment, the present invention is a method of making a prosthetic device comprising the steps of providing a foot member including a first joint and a second joint, providing a movable body including a first joint and a second joint, providing a base body coupled to the first joint of the foot member, disposing a compliant linking member between the second joint of the foot member and the first joint of the moveable body, and disposing an actuator between the base body and the second joint of the movable body.
In another embodiment, the present invention is a method of making a prosthetic device comprising the steps of providing a first passive linking member, providing a base body rotationally coupled to the first passive linking member, providing a movable body, disposing a compliant linking member rotationally coupled between the first passive linking member and the moveable body, and disposing an actuating linking member between the base body and the movable body.
In another embodiment, the present invention is a prosthetic device comprising a foot member including a first joint and a second joint. A movable body includes a first joint and a second joint. A base body is coupled to the first joint of the foot member. A compliant linking member is disposed between the second joint of the foot member and the first joint of the moveable body. An actuator is disposed between the base body and the second joint of the movable body.
In another embodiment, the present invention is a prosthetic device comprising a first passive linking member, and base body rotationally coupled to the first passive linking member. A compliant linking member is rotationally coupled between the first passive linking member and a moveable body. An actuating linking member is coupled between the base body and the movable body.
The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
A prosthetic device is a wearable robotic device controlled by a control system. The prosthetic devices described herein incorporate active and compliant mechanisms working together in order to behave more like human muscles and thereby improve the performance of the devices.
Moveable body 110 is coupled to base body 102 through actuating linking member 130. In one embodiment, actuating linking member 130 includes an electric motor and lead screw or ball, hydraulic, pneumatic, direct-drive, series-elastic, electroactive polymer-based, chemical-based, or other actuation scheme. One end of actuating linking member 130 is coupled to moveable body 110 at revolute joint 116 and a distal end of the actuating linking member is coupled to base body 102. An optional prismatic joint 132 is coupled between base body 102 and moveable body 110, in parallel with actuating linking member 130, to maintain the motion of the actuating linking member in alignment with an outer housing of ACM 100. In one embodiment, prismatic joint 132 is a slideable linear bearing to reduce loading on actuating linking member 130.
Moveable body 160 is coupled to base body 152 through actuating linking member 180 (130). In one embodiment, actuating linking member 180 includes an actuator 182 implemented as an electric motor and lead screw or ball, hydraulic, pneumatic, direct-drive, series-elastic, electroactive polymer-based, chemical-based, or other actuation scheme. Actuator 182 includes a motor member 182a, shaft 182b, and moveable member 182c Motor member 182a is coupled to base body 152 and contains a direct current (DC) motor with gear ratio optimized for efficient use of power during actuation. Shaft 182b connects motor member 182a to moveable member 182c. Moveable member 182c is coupled to moveable body 160 at revolute joint 166. In an extended position of actuating linking member 180, shaft 182b operates to separate moveable member 182c from motor member 182a. Shaft 182b can be drawn out of motor member 182a, or the shaft can be drawn out of moveable member 182c, to position the moveable member away from the motor member and lengthen actuating linking member 180. In a shortened position of actuating linking member 180, shaft 182b operates to draw moveable member 182c closer to motor member 182a . Shaft 182b can be drawn into motor member 182a, or the shaft can be drawn through moveable member 182c, to position the moveable member in proximity to the motor member and shorten the length of actuating linking member 180. An optional prismatic joint may be coupled between base body 152 and moveable body 160, in parallel with actuating linking member 180, to maintain the motion of the actuating linking member in alignment with an outer housing 186 of ACM 150. In one embodiment, the prismatic joint is a slideable linear bearing to reduce loading on actuating linking member 180. Portions of ACM 150 are contained within housing 186.
As spring 172 compresses or extends, compliant linking member 170 changes in length. The change in length of compliant linking member 170 produces a force which pushes or pulls on movable body 160 at revolute joint 162, causing movable body 160 to move with respect to base body 152. Similarly, actuator 182 pushes or pulls on movable body 160 at revolute joint 166 by lengthening or shortening the distance between motor member 182a and moveable member 182c along shaft 182b, causing movable body 160 to move with respect to base body 152. Passive linking member 156 is coupled through passive linking member 174 to movable body 160 such that, as movable body 160 moves, passive linking member 156 also moves. Passive linking member 174 maintains a fixed length, rotatable linkage (about revolute joints 164 and 176) between passive linking member 156 and moveable body 160. Passive linking member 156 rotates about revolute joint 158 as actuator 182 and spring 172 act on movable body 160. The rotation or motion of passive linking member 156 is thereby controlled by spring 172 and actuator 182 through movable body 160.
During a typical walking gait cycle, the moment required from a human reaches a maximum value of approximately 1.25 newton meters per kilogram (N-m/kg) of body weight, while the typical velocity reaches a maximum of approximately 450 degrees per second, and the maximum power reaches approximately 6.5 watts per kilogram (W/kg) of body weight. Thus, the output moment, for example, ranges from about 1-1.5 N-m/kg of body weight. The output velocity ranges from about 400-450 degrees per second. The output power ranges from about 6-7 W/kg of body weight. Through the use of ACM 150, approximately the same output moment, velocity, and power required during gait is supplied from an actuator which provides 2.3 W/kg of body mass.
Spring 172 is able to store and release energy. Spring 172 is lengthened by the forward motion of base body 152 and stores potential energy during extension. The stiffness of spring 172 is selected to provide the optimal resistance to the user without undue expenditure of metabolic energy during gait. During the roll-over phase, actuator 182 engages to shorten the distance between motor member 182a and moveable member 182c along shaft 182b. Moveable member 182c moves toward motor member 182a, which pulls up on moveable body 160 and aids in extending spring 172. The input position, velocity, or force of actuator 182 is measured using a sensor. Based on the input measurement, actuator 182 engages to shorten the distance between motor member 182a and moveable member 182c, which causes a change to the internal geometry of ACM 150. Actuator 182 shortens and pulls on movable body 160 at revolute joint 166. Passive linking member 174 rotates about revolute joint 176 and swings upward with movable body 160. The upward motion of movable body 160, as driven by actuator 182 pulls upon compliant linking member 170 at revolute joint 162 and acts to lengthen spring 172. Accordingly, spring 172 is extended by the movement of shank 154 over passive linking member 156, and further by shortening actuator 182. By actuator 182 aiding with extending the length of spring 172, additional energy is stored in the spring over the amount of energy input by the user motion. The potential energy stored in spring 172 is later used during the push-off phase of the gait cycle. With the action of actuator 182, the energy returned to the user by ACM 150 is greater than the energy put in by the user.
The push-off phase of gait requires the maximum amount of power compared to the other phases of gait. For example, an 80 kg human may require up to 350 W of peak power in the ankle during push-off. Spring 172 provides power as the spring relaxes from the extended position. The amount of power provided by spring 172 is directly related to the amount of extension of the spring. Actuator 182 supplies power to extend spring 172 during the roll-over phase of gait shown in
Spring 172 and actuator 182 can each be considered as a prismatic joint. The length of spring 172 is the distance between revolute joint 162 and revolute joint 173. The length of spring 172 is determined by compression or extension of the spring and is related to the force applied to the spring. The length of actuator 182 is controlled by motor member 182a acting on shaft 182b. The length of spring 172 and actuator 182 comprises the input positions for ACM 150. The output force of ACM 150 is a function of the input force and the input position of each linking member.
The input and output positions of ACM 150 are determined by measuring the length of spring 172 and actuator 182 either directly or indirectly. In one embodiment, actuator 182 is a screw-type DC motor and is encoded to count the number of rotations of the motor to calculate the distance between motor member 182a and moveable member 182c. The length of spring 172 is determined by measuring the distance between revolute joints 162 and 173. Alternatively, sensors are disposed on one or more joints or linking members of ACM 150 to measure the input positions of spring 172 and actuator 182. In an implementation of ACM 150, sensors may be disposed on a limb of the user and on the device. The input positions of ACM 150 are denoted by variables (1).
x=[x1, x2]T (1)
where: x1 is the length of actuator 182
Alternatively, ACM 150 includes one or more additional compliant members, linking members, damping members, or passive members coupled to base body 152 and movable body 160. The input positions of additional linking members are denoted by variables (2).
x=[x1, x2, x3 . . . ]T (2)
The output position of ACM 150 is measured using a sensor disposed on revolute joint 158 to measure the rotation or angle of passive linking member 156. Alternatively, the output position may be measured directly or indirectly by sensors disposed on one or more joints or linking members of ACM 150. The output position of passive linking member 156 in ACM 150 is denoted as y. Alternatively, ACM 150 includes one or more additional linking members as outputs. The output positions of an alternative ACM are denoted by variables (3).
y=[y1, y2, y3 . . . ]T (3)
Each output position, yn, of ACM 150 is a function of the input positions, xn as given in equation (4).
y=[y1(x1, x2, . . . )y2(x1, x2, . . . )y3(x1, x2, . . . ) . . . ]T (4)
The velocity at the output is written as a function of the velocity of the inputs by taking the time derivative of the input and output positions, resulting in a matrix known as the Jacobian denoted by J in equation (5) and equation (6).
{dot over (y)}=J{dot over (x)} (5)
For ACM 150, the number of inputs, represented by n, may be greater than the number of outputs, represented by m. In one embodiment, ACM 150 has one extra degree of freedom at the input. The extra degree of freedom allows the internal geometry of ACM 150 to be controlled and the transmission ratio of actuator 182 to be adjusted. In another embodiment, ACM 150 has additional degrees of freedom to make a biarticular device. For example, ACM 150 moves in the sagittal plane and in the coronal plane such that the device includes two directions of motion, or two degrees of freedom.
The power input into ACM 150 equals the power output and is shown generally by equation (7).
Powerin={dot over (x)}TFx={dot over (y)}TFy=Powerout (7)
Applying equation (7) specifically with respect to ACM 150, the input force, Fx, represents the force along actuator 182 at length or position x1 and the force along spring 172 at length or position x2. The output force, Fy, represents the moment around revolute joint 158, which is the joint about which passive linking member 156 rotates. The power output of ACM 150 is equal to the sum of the power input from spring 172 and actuator 182. The relationship between the input force of ACM 150 and the output force is defined by equation (8). Equation (8) is obtained by substituting equation (5) into equation (7).
Fx=JTFy (8)
The input positions of spring 172, actuator 182, and passive linking member 156 vary with the amount of force put into the device by the user. As the user applies force to ACM 150 during gait, spring 172 changes in length, which changes the ratio of input force to output force. Equation (5) is more dependent on the length of spring 172, i.e., the length of the spring, and is less dependent on the output angle of passive linking member 156. The geometry within ACM 150, such as the position of each of revolute joints with respect to the linking members and base body 152, is selected to optimize the transmission ratio of the device. The stiffness of ACM 150 is thereby is tuned by selecting the internal geometry of the ACM according to the user's needs and desired stiffness of the device.
ACM 150 mimics a human ankle over a range of activities. The anatomy and mechanical properties of the human ankle are such that the elasticity and the load displacement response of the ankle behave like a non-linear spring. ACM 150 has an adjustable or tunable stiffness to allow for high performance over a range of speeds. For example, as more force is applied to spring 172 and actuator 182, the geometry of ACM 150 changes so that less torque and more velocity is required from actuator 182. When output force is high, ACM 150 requires less torque and more velocity. When output torque is low, ACM 150 requires more torque and less velocity.
The efficiency of a DC motor is highly dependent on the motor torque. A lower peak torque requirement results in a lower peak power use by actuator 182. A smaller motor is used for actuator 182, because ACM 150 has a lower peak power requirement. The more efficient energy usage also allows actuator 182, i.e., the motor, to run cooler and allow for longer operation. Overall, the lower peak torque in ACM 150 results in a higher performance prosthesis. Efficiency of a DC motor is less dependent on the angular velocity of the motor, and is much more dependent on motor torque. Further, a DC motor operates at peak efficiency over a relatively narrow window of torque. The lower peak torque requirement from actuator 182 of ACM 150 results in more efficient operation of actuator 182 and results in a higher performance prosthesis. Actuator 182 operates within more favorable torque and velocity zones compared to a direct drive system. Therefore, the DC motor operates closer to peak efficiency. An average efficiency of actuator 182 is approximately 80% within ACM 150, because actuator 182 operates closer to the optimal operating velocity and torque. ACM 150 also provides greater impulse tolerance and increased force fidelity over direct drive systems. Increasing the efficiency of actuator 182 also improves the overall efficiency of ACM 150.
Moveable body 230 is coupled to passive linking member 226 through actuating linking member 250. In one embodiment, actuating linking member 250 includes an electric motor and lead screw or ball, hydraulic, pneumatic, direct-drive, series-elastic, electroactive polymer-based, chemical-based, or other actuation scheme. One end of actuating linking member 250 is coupled to moveable body 230 at revolute joint 236 and a distal end of the actuating linking member is coupled to passive linking member 226 at joint 252. A physical implementation of ACM 220 can be realized similar to
Moveable body 310 is coupled to base body 302 through actuating linking member 330. In one embodiment, actuating linking member 330 includes an electric motor and lead screw or ball, hydraulic, pneumatic, direct-drive, series-elastic, electroactive polymer-based, chemical-based, or other actuation scheme. One end of actuating linking member 330 is coupled to moveable body 310 at revolute joint 316 and a distal end of the actuating linking member is coupled to base body 302 at revolute joint 332.
Moveable body 360 is coupled to base body 352 through actuating linking member 380 (330). In one embodiment, actuating linking member 380 includes an actuator 382 implemented as an electric motor and lead screw or ball, hydraulic, pneumatic, direct-drive, series-elastic, electroactive polymer-based, chemical-based, or other actuation scheme. Actuator 382 includes a motor member 382a , shaft 382b, and moveable member 382c. Motor member 382a is coupled to base body 152 and contains a DC motor with gear ratio optimized for efficient use of power during actuation. Shaft 382b connects motor member 382a to moveable member 382c. Moveable member 382c is coupled to moveable body 360 at revolute joint 366. In an extended position of actuating linking member 380, shaft 382b operates to separate moveable member 382c from motor member 382a. Shaft 382b can be drawn out of motor member 382a, or the shaft can be drawn out of moveable member 382c, to position the moveable member away from the motor member and lengthen actuating linking member 380. In a shortened position of actuating linking member 380, shaft 382b operates to draw moveable member 382c closer to motor member 382a. Shaft 382b can be drawn into motor member 382a, or the shaft can be drawn through moveable member 382c, to position the moveable member in proximity to the motor member and shorten the length of actuating linking member 380. Portions of ACM 350 are contained in housing 386.
As beam 372 flexes about revolute joint 362, compliant linking member 370 produces a force which pushes or pulls on movable body 360 at revolute joint 362, causing movable body 360 to move with respect to base body 352. Similarly, actuator 382 pushes or pulls on movable body 360 at revolute joint 366 by lengthening or shortening the distance between motor member 382a and moveable member 382c along shaft 382b, causing movable body 360 to move with respect to base body 352. Moveable body 360 is coupled through passive linking member 374 to base body 352 such that, as movable body 360 moves, passive linking member 356 also moves. Passive linking member 356 rotates about revolute joint 358 as actuator 382 and beam 372 act on movable body 360. The rotation or motion of passive linking member 356 is thereby controlled by beam 372 and actuator 382 through movable body 360.
Flexible beam 372 is able to store and release energy. The flexing end of beam 372 is flexed downward by the forward motion of base body 352 and stores potential energy. The stiffness of beam 372 is selected to provide the optimal resistance to the user without undue expenditure of metabolic energy during gait. During the roll-over phase, actuator 382 engages to shorten the distance between motor member 382a and moveable member 382c along shaft 382b. Moveable member 382c moves toward motor member 382a, which aids in downward movement of the flexing end of beam 372. The input position, velocity, or force of actuator 382 is measured using a sensor. Based on the input measurement, actuator 382 engages to shorten the distance between motor member 382a and moveable member 382c along shaft 382b, which causes a change to the internal geometry of ACM 350. Actuator 382 shortens and pulls on movable body 360 at revolute joint 366. Passive linking member 374 rotates about revolute joint 376 and swings upward with movable body 360. The upward motion of movable body 360, as driven by actuator 382, pulls on compliant linking member 370 at revolute joint 362 and acts to move the flexing end of beam 372 downward. Accordingly, beam 372 is downward flexed by the movement of shank 354 over passive linking member 356, and further by shortening actuator 382. By actuator 382 aiding with the flexing of beam 372, additional energy is stored in the beam over the amount input by the user motion. The potential energy stored in beam 372 is later used during the push-off phase of the gait cycle. With the action of actuator 382, the energy returned to the user by ACM 350 is greater than the energy put in by the user.
The push-off phase of gait requires the maximum amount of power compared to the other phases of gait. For example, an 80 kg human may require up to 350 W of peak power in the ankle during push-off. Beam 372 provides power as the beam relaxes from the downward flexed position. The amount of power provided by beam 372 is directly related to the amount of flexing of the beam. Actuator 382 supplies power to move the flexing end of beam 372 downward during the roll-over phase of gait shown in
Moveable body 410 is coupled to passive linking member 406 through actuating linking member 430. In one embodiment, actuating linking member 430 includes an electric motor and lead screw or ball, hydraulic, pneumatic, direct-drive, series-elastic, electroactive polymer-based, chemical-based, or other actuation scheme. One end of actuating linking member 430 is coupled to moveable body 410 at revolute joint 416 and a distal end of the actuating linking member is coupled to passive linking member 406 at joint 432. A physical implementation of ACM 400 can be realized similar to
While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 14/081,857, now U.S. Pat. No. 9,532,877, filed Nov. 15, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/673,177, now U.S. Pat. No. 9,604,368, filed Nov. 9, 2012, which claims the benefit of U.S. Provisional Application No. 61/558,761, filed Nov. 11, 2011, which applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
909859 | Apgar | Jan 1909 | A |
2475373 | Catranis | Jul 1949 | A |
2568051 | Catranis | Sep 1951 | A |
3045247 | Bair | Jul 1962 | A |
3557387 | Ohlenbusch et al. | Jan 1971 | A |
3589134 | Hackmann | Jun 1971 | A |
3871032 | Karas | Mar 1975 | A |
3953900 | Thompson | May 1976 | A |
3995324 | Burch | Dec 1976 | A |
4030141 | Graupe | Jun 1977 | A |
4209860 | Graupe | Jul 1980 | A |
4387472 | Wilson | Jun 1983 | A |
4488320 | Wilson | Dec 1984 | A |
4579558 | Ramer | Apr 1986 | A |
4652266 | Truesdell | Mar 1987 | A |
4776852 | Rubic | Oct 1988 | A |
4805455 | DelGiorno et al. | Feb 1989 | A |
5020790 | Beard et al. | Jun 1991 | A |
5062673 | Mimura | Nov 1991 | A |
5101472 | Repperger | Mar 1992 | A |
5156630 | Rappoport et al. | Oct 1992 | A |
5201772 | Maxwell | Apr 1993 | A |
5246465 | Rincoe et al. | Sep 1993 | A |
5252102 | Singer et al. | Oct 1993 | A |
5252901 | Ozawa et al. | Oct 1993 | A |
5282460 | Boldt | Feb 1994 | A |
5376138 | Bouchard et al. | Dec 1994 | A |
5376141 | Phillips | Dec 1994 | A |
5383939 | James | Jan 1995 | A |
5413611 | Haslam, II et al. | May 1995 | A |
5425780 | Flatt et al. | Jun 1995 | A |
5430643 | Seraji | Jul 1995 | A |
5443528 | Allen | Aug 1995 | A |
5455497 | Hirose et al. | Oct 1995 | A |
5484389 | Stark et al. | Jan 1996 | A |
5571205 | James | Nov 1996 | A |
5650704 | Pratt et al. | Jul 1997 | A |
5662693 | Johnson et al. | Sep 1997 | A |
5695527 | Allen | Dec 1997 | A |
5888212 | Petrofsky et al. | Mar 1999 | A |
5888213 | Sears et al. | Mar 1999 | A |
5893891 | Zahedi | Apr 1999 | A |
5929332 | Brown | Jul 1999 | A |
5948021 | Radcliffe | Sep 1999 | A |
5954621 | Joutras et al. | Sep 1999 | A |
5957981 | Gramnaes | Sep 1999 | A |
5984972 | Huston et al. | Nov 1999 | A |
6029374 | Herr et al. | Feb 2000 | A |
6086616 | Okuda et al. | Jul 2000 | A |
6091977 | Tarjan et al. | Jul 2000 | A |
6117177 | Chen | Sep 2000 | A |
6122960 | Hutchings et al. | Sep 2000 | A |
6129766 | Johnson et al. | Oct 2000 | A |
6187052 | Molino | Feb 2001 | B1 |
6206932 | Johnson | Mar 2001 | B1 |
6378190 | Akeel | Apr 2002 | B2 |
6379393 | Mavroidis et al. | Apr 2002 | B1 |
6423098 | Biedermann | Jul 2002 | B1 |
6436149 | Rincoe | Aug 2002 | B1 |
6443993 | Koniuk | Sep 2002 | B1 |
6494039 | Pratt et al. | Dec 2002 | B2 |
6500210 | Sabolich et al. | Dec 2002 | B1 |
6513381 | Fyfe et al. | Feb 2003 | B2 |
6517585 | Zahedi et al. | Feb 2003 | B1 |
6517858 | Le Moel et al. | Feb 2003 | B1 |
6522266 | Soehren et al. | Feb 2003 | B1 |
6543987 | Ehrat | Apr 2003 | B2 |
6587728 | Fang et al. | Jul 2003 | B2 |
6610101 | Herr et al. | Aug 2003 | B2 |
6613097 | Cooper | Sep 2003 | B1 |
6645252 | Asai et al. | Nov 2003 | B2 |
6679920 | Biedermann et al. | Jan 2004 | B2 |
6695885 | Schulman et al. | Feb 2004 | B2 |
6704024 | Robotham et al. | Mar 2004 | B2 |
6704582 | Le-Faucheur et al. | Mar 2004 | B2 |
6719807 | Harris | Apr 2004 | B2 |
6755870 | Biedermann et al. | Jun 2004 | B1 |
6761743 | Johnson | Jul 2004 | B1 |
6764520 | Deffenbaugh et al. | Jul 2004 | B2 |
6764521 | Molino et al. | Jul 2004 | B2 |
6767370 | Mosler et al. | Jul 2004 | B1 |
6813582 | Levi et al. | Nov 2004 | B2 |
6824569 | Okediji | Nov 2004 | B2 |
6863695 | Doddroe et al. | Mar 2005 | B2 |
6875241 | Christensen | Apr 2005 | B2 |
6908488 | Paasivaara et al. | Jun 2005 | B2 |
6910331 | Asai et al. | Jun 2005 | B2 |
6955692 | Grundei | Oct 2005 | B2 |
6966882 | Horst | Nov 2005 | B2 |
6969408 | Lecomte et al. | Nov 2005 | B2 |
7029500 | Martin | Apr 2006 | B2 |
7066964 | Wild | Jun 2006 | B2 |
7112938 | Takenaka et al. | Sep 2006 | B2 |
7118601 | Yasui et al. | Oct 2006 | B2 |
7137998 | Bédard et al. | Nov 2006 | B2 |
7147667 | Bédard et al. | Dec 2006 | B2 |
7150762 | Caspers | Dec 2006 | B2 |
7164967 | Etienne-Cummings et al. | Jan 2007 | B2 |
7182738 | Bonutti et al. | Feb 2007 | B2 |
7209788 | Nicolelis et al. | Apr 2007 | B2 |
7279009 | Herr et al. | Oct 2007 | B2 |
7295892 | Herr et al. | Nov 2007 | B2 |
7300240 | Brogardh | Nov 2007 | B2 |
7308333 | Kern et al. | Dec 2007 | B2 |
7313463 | Herr et al. | Dec 2007 | B2 |
7314490 | Bédard et al. | Jan 2008 | B2 |
7381192 | Brodard et al. | Jun 2008 | B2 |
7396337 | McBean et al. | Jul 2008 | B2 |
7410471 | Campbell et al. | Aug 2008 | B1 |
7431737 | Ragnarsdottir et al. | Oct 2008 | B2 |
7455696 | Bisbee, III et al. | Nov 2008 | B2 |
7462201 | Christensen | Dec 2008 | B2 |
7485152 | Haynes et al. | Feb 2009 | B2 |
7520904 | Christensen | Apr 2009 | B2 |
7531006 | Clausen et al. | May 2009 | B2 |
7552664 | Bulatowicz | Jun 2009 | B2 |
7575602 | Amirouche et al. | Aug 2009 | B2 |
7578799 | Thorsteinsson et al. | Aug 2009 | B2 |
7637957 | Ragnarsdottir et al. | Dec 2009 | B2 |
7637959 | Clausen et al. | Dec 2009 | B2 |
7655050 | Palmer et al. | Feb 2010 | B2 |
7691154 | Asgeirsson et al. | Apr 2010 | B2 |
7736394 | Bédard et al. | Jun 2010 | B2 |
7799091 | Herr et al. | Sep 2010 | B2 |
7811333 | Jonsson et al. | Oct 2010 | B2 |
7811334 | Ragnarsdottir et al. | Oct 2010 | B2 |
7815689 | Bédard et al. | Oct 2010 | B2 |
7867284 | Bédard et al. | Jan 2011 | B2 |
7896927 | Clausen et al. | Mar 2011 | B2 |
7918808 | Simmons | Apr 2011 | B2 |
7942935 | Iversen et al. | May 2011 | B2 |
7955398 | Bédard et al. | Jun 2011 | B2 |
7985265 | Moser et al. | Jul 2011 | B2 |
7992849 | Sugar et al. | Aug 2011 | B2 |
8011229 | Lieberman et al. | Sep 2011 | B2 |
8048007 | Roy | Nov 2011 | B2 |
8048172 | Jonsson et al. | Nov 2011 | B2 |
8057550 | Clausen et al. | Nov 2011 | B2 |
8075633 | Herr et al. | Dec 2011 | B2 |
8083807 | Auberger et al. | Dec 2011 | B2 |
8109890 | Kamiar et al. | Feb 2012 | B2 |
8142370 | Weinberg et al. | Mar 2012 | B2 |
8202325 | Albrecht-Laatsch et al. | Jun 2012 | B2 |
8231687 | Bédard et al. | Jul 2012 | B2 |
8287477 | Herr et al. | Oct 2012 | B1 |
8322695 | Sugar et al. | Dec 2012 | B2 |
8323354 | Bédard et al. | Dec 2012 | B2 |
8376971 | Herr et al. | Feb 2013 | B1 |
8403997 | Sykes et al. | Mar 2013 | B2 |
8419804 | Herr et al. | Apr 2013 | B2 |
8435309 | Gilbert et al. | May 2013 | B2 |
8480760 | Hansen et al. | Jul 2013 | B2 |
8500823 | Herr et al. | Aug 2013 | B2 |
8500825 | Christensen et al. | Aug 2013 | B2 |
8512415 | Herr et al. | Aug 2013 | B2 |
8551184 | Herr | Oct 2013 | B1 |
8601897 | Lauzier et al. | Dec 2013 | B2 |
8617254 | Bisbee, III et al. | Dec 2013 | B2 |
8657886 | Clausen et al. | Feb 2014 | B2 |
8696764 | Hansen et al. | Apr 2014 | B2 |
8702811 | Ragnarsdottir et al. | Apr 2014 | B2 |
8716877 | Sugar et al. | May 2014 | B2 |
8734528 | Herr et al. | May 2014 | B2 |
8764850 | Hanset et al. | Jul 2014 | B2 |
8790282 | Jung et al. | Jul 2014 | B2 |
8801802 | Oddsson et al. | Aug 2014 | B2 |
8814949 | Gramnaes | Aug 2014 | B2 |
8852292 | Ragnarsdottir et al. | Oct 2014 | B2 |
8864846 | Herr et al. | Oct 2014 | B2 |
8870967 | Herr et al. | Oct 2014 | B2 |
8986397 | Bédard et al. | Mar 2015 | B2 |
9032635 | Herr et al. | May 2015 | B2 |
9044346 | Langlois et al. | Jun 2015 | B2 |
9060883 | Herr et al. | Jun 2015 | B2 |
9060884 | Langlois | Jun 2015 | B2 |
9066819 | Gramnaes | Jun 2015 | B2 |
9078774 | Jónsson et al. | Jul 2015 | B2 |
9114029 | Ásgeirsson et al. | Aug 2015 | B2 |
9221177 | Herr et al. | Dec 2015 | B2 |
9271851 | Claussen et al. | Mar 2016 | B2 |
9289316 | Ward et al. | Mar 2016 | B2 |
9345591 | Bisbee, III et al. | May 2016 | B2 |
9345592 | Herr et al. | May 2016 | B2 |
9351856 | Herr et al. | May 2016 | B2 |
9358137 | Bédard et al. | Jun 2016 | B2 |
9459698 | Lee | Oct 2016 | B2 |
9462966 | Clausen et al. | Oct 2016 | B2 |
9498401 | Herr et al. | Nov 2016 | B2 |
9526635 | Gilbert et al. | Dec 2016 | B2 |
9526636 | Bédard et al. | Dec 2016 | B2 |
9532877 | Holgate | Jan 2017 | B2 |
9554922 | Casler et al. | Jan 2017 | B2 |
9561118 | Clausen et al. | Feb 2017 | B2 |
9604368 | Holgate | Mar 2017 | B2 |
9622884 | Holgate et al. | Apr 2017 | B2 |
9649206 | Bédard | May 2017 | B2 |
9682005 | Herr et al. | Jun 2017 | B2 |
9687377 | Han et al. | Jun 2017 | B2 |
9707104 | Clausen | Jul 2017 | B2 |
9717606 | Gramnaes | Aug 2017 | B2 |
9737419 | Herr et al. | Aug 2017 | B2 |
9808357 | Langlois | Nov 2017 | B2 |
9839552 | Han et al. | Dec 2017 | B2 |
9895240 | Langlois et al. | Feb 2018 | B2 |
10137011 | Herr et al. | Nov 2018 | B2 |
10195057 | Clausen | Feb 2019 | B2 |
10251762 | Langlois | Apr 2019 | B2 |
10299943 | Clausen et al. | May 2019 | B2 |
10307271 | Holgate et al. | Jun 2019 | B2 |
20020007690 | Song et al. | Jan 2002 | A1 |
20020079857 | Ishii et al. | Jun 2002 | A1 |
20030005786 | Stuart et al. | Jan 2003 | A1 |
20040064195 | Herr | Apr 2004 | A1 |
20040078299 | Down-Logan et al. | Apr 2004 | A1 |
20040153484 | Unno | Aug 2004 | A1 |
20050049719 | Wilson | Mar 2005 | A1 |
20050049721 | Sulprizio | Mar 2005 | A1 |
20050070834 | Herr et al. | Mar 2005 | A1 |
20050107889 | Bédard et al. | May 2005 | A1 |
20050113973 | Endo et al. | May 2005 | A1 |
20050119763 | Christensen | Jun 2005 | A1 |
20050137717 | Gramnaes | Jun 2005 | A1 |
20050166685 | Boiten | Aug 2005 | A1 |
20050216097 | Rifkin | Sep 2005 | A1 |
20050283257 | Bisbee et al. | Dec 2005 | A1 |
20060025959 | Gomez et al. | Feb 2006 | A1 |
20060041321 | Christensen | Feb 2006 | A1 |
20060046907 | Rastegar et al. | Mar 2006 | A1 |
20060069336 | Krebs et al. | Mar 2006 | A1 |
20060069448 | Yasui | Mar 2006 | A1 |
20060184280 | Oddsson et al. | Aug 2006 | A1 |
20060189899 | Flaherty et al. | Aug 2006 | A1 |
20060249315 | Herr et al. | Nov 2006 | A1 |
20060259153 | Harn et al. | Nov 2006 | A1 |
20060260620 | Kazerooni et al. | Nov 2006 | A1 |
20070043449 | Herr et al. | Feb 2007 | A1 |
20070061016 | Kuo et al. | Mar 2007 | A1 |
20070123997 | Herr et al. | May 2007 | A1 |
20070129653 | Sugar et al. | Jun 2007 | A1 |
20070162152 | Herr et al. | Jul 2007 | A1 |
20080004718 | Mosler | Jan 2008 | A1 |
20080046096 | Bédard et al. | Feb 2008 | A1 |
20080058668 | Seyed Momen et al. | Mar 2008 | A1 |
20080141813 | Ehrat | Jun 2008 | A1 |
20080262635 | Moser et al. | Oct 2008 | A1 |
20080306612 | Mosler | Dec 2008 | A1 |
20090030530 | Martin | Jan 2009 | A1 |
20090088912 | Rajaraman | Apr 2009 | A1 |
20090192625 | Boiten | Jul 2009 | A1 |
20090204229 | Mosley et al. | Aug 2009 | A1 |
20090204230 | Kaltenborn et al. | Aug 2009 | A1 |
20090265018 | Goldfarb et al. | Oct 2009 | A1 |
20100023133 | Fairbanks et al. | Jan 2010 | A1 |
20100042228 | Doddroe et al. | Feb 2010 | A1 |
20100094431 | Albrecht-Laatsch | Apr 2010 | A1 |
20100113980 | Herr et al. | May 2010 | A1 |
20100114329 | Casler et al. | May 2010 | A1 |
20100131101 | Engeberg et al. | May 2010 | A1 |
20100161077 | Boone et al. | Jun 2010 | A1 |
20100174384 | Herr et al. | Jul 2010 | A1 |
20100185301 | Hansen et al. | Jul 2010 | A1 |
20100241242 | Herr et al. | Sep 2010 | A1 |
20100275718 | Stuart et al. | Nov 2010 | A1 |
20110015761 | Celebi et al. | Jan 2011 | A1 |
20110082566 | Herr et al. | Apr 2011 | A1 |
20110106274 | Ragnarsdottir et al. | May 2011 | A1 |
20110126660 | Lauzier et al. | Jun 2011 | A1 |
20110132131 | Worz | Jun 2011 | A1 |
20110137429 | Bédard et al. | Jun 2011 | A1 |
20110166674 | Montmartin | Jul 2011 | A1 |
20110196509 | Jansen et al. | Aug 2011 | A1 |
20110202144 | Palmer et al. | Aug 2011 | A1 |
20110208322 | Rifkin et al. | Aug 2011 | A1 |
20110295384 | Herr et al. | Dec 2011 | A1 |
20110295385 | Herr et al. | Dec 2011 | A1 |
20120078415 | Kubo et al. | Mar 2012 | A1 |
20120130508 | Harris et al. | May 2012 | A1 |
20120153875 | Glaister | Jun 2012 | A1 |
20120203359 | Schimmels | Aug 2012 | A1 |
20120209405 | Herr et al. | Aug 2012 | A1 |
20120226364 | Kampas et al. | Sep 2012 | A1 |
20120259430 | Han et al. | Oct 2012 | A1 |
20120283845 | Herr et al. | Nov 2012 | A1 |
20120330439 | Goldfarb | Dec 2012 | A1 |
20130006386 | Hansen et al. | Jan 2013 | A1 |
20130035769 | Bédard et al. | Feb 2013 | A1 |
20130046218 | Wiggin et al. | Feb 2013 | A1 |
20130142608 | Zhang et al. | Jun 2013 | A1 |
20130173022 | Arabian et al. | Jul 2013 | A1 |
20130218295 | Holgate et al. | Aug 2013 | A1 |
20130218298 | Mosler | Aug 2013 | A1 |
20130282141 | Herr et al. | Oct 2013 | A1 |
20130310979 | Herr et al. | Nov 2013 | A1 |
20140039642 | Nijiman et al. | Feb 2014 | A1 |
20140088730 | Hansen et al. | Mar 2014 | A1 |
20140114437 | Herr et al. | Apr 2014 | A1 |
20140121782 | Herr et al. | May 2014 | A1 |
20140191522 | Birglen | Jul 2014 | A1 |
20150032225 | Oddsson et al. | Jan 2015 | A1 |
20150073566 | Ragnarsdottir et al. | Mar 2015 | A1 |
20150127118 | Herr et al. | May 2015 | A1 |
20150164661 | Ragnarsdottir et al. | Jun 2015 | A1 |
20150209214 | Herr et al. | Jul 2015 | A1 |
20150265429 | Jónsson et al. | Sep 2015 | A1 |
20150328020 | Clausen et al. | Nov 2015 | A1 |
20160158031 | Ward et al. | Jun 2016 | A1 |
20160158032 | Ward et al. | Jun 2016 | A1 |
20160302956 | Gilbert et al. | Oct 2016 | A1 |
20170112640 | Clausen et al. | Apr 2017 | A1 |
20170241497 | Mooney et al. | Aug 2017 | A1 |
20170304083 | Clausen | Oct 2017 | A1 |
20180125678 | Langlois | May 2018 | A1 |
20180177618 | Langlois | Jun 2018 | A1 |
20190175369 | Langlois | Jun 2019 | A1 |
20190224026 | Clausen | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
543 277 | Dec 1973 | CH |
2043873 | Sep 1989 | CN |
1215614 | May 1999 | CN |
2400072 | Oct 2000 | CN |
2776340 | May 2006 | CN |
3923057 | Jan 1991 | DE |
42 29 330 | Mar 1994 | DE |
0 358 056 | Mar 1990 | EP |
0 380 060 | Aug 1990 | EP |
0 718 951 | Jun 1996 | EP |
1 107 420 | Jun 2001 | EP |
1 169 982 | Jan 2002 | EP |
1 410 780 | Apr 2004 | EP |
1 442 704 | Aug 2004 | EP |
1 547 567 | Jun 2005 | EP |
1 718 252 | Nov 2006 | EP |
1 792 597 | Jun 2007 | EP |
2 564 817 | Mar 2013 | EP |
2 702 963 | Mar 2014 | EP |
2 816 463 | May 2002 | FR |
2 201 260 | Aug 1988 | GB |
2 228 201 | Aug 1990 | GB |
2 260 495 | Apr 1993 | GB |
2 301 776 | Dec 1996 | GB |
2 302 949 | Feb 1997 | GB |
2 367 753 | Apr 2002 | GB |
59-032453 | Feb 1984 | JP |
59-071747 | Apr 1984 | JP |
59-088147 | May 1984 | JP |
59-189843 | Oct 1984 | JP |
60-177102 | Sep 1985 | JP |
05-123348 | May 1993 | JP |
05-161668 | Jun 1993 | JP |
07-024766 | Jan 1995 | JP |
11-215793 | Aug 1999 | JP |
2002-191654 | Jul 2002 | JP |
2005-536317 | Dec 2005 | JP |
2009-153660 | Jul 2009 | JP |
2002-0041137 | Jun 2002 | KR |
1447366 | Dec 1988 | SU |
1731210 | May 1992 | SU |
WO 94009727 | May 1994 | WO |
WO 96041599 | Dec 1996 | WO |
WO 97027822 | Aug 1997 | WO |
WO 00027318 | May 2000 | WO |
WO 03003953 | Jan 2003 | WO |
WO 03088373 | Oct 2003 | WO |
WO 2004017890 | Mar 2004 | WO |
WO 2006024876 | Mar 2006 | WO |
WO 2006076164 | Jul 2006 | WO |
WO 2007025116 | Mar 2007 | WO |
WO 2007095933 | Aug 2007 | WO |
WO 2008080231 | Jul 2008 | WO |
WO 2010027968 | Mar 2010 | WO |
2011005482 | Jan 2011 | WO |
2011096965 | Aug 2011 | WO |
WO 2012062279 | May 2012 | WO |
2012091555 | Jul 2012 | WO |
WO 2013006585 | Jan 2013 | WO |
2013086035 | Jun 2013 | WO |
WO 2015157723 | Oct 2015 | WO |
Entry |
---|
Au, Samuel K. et al., “Biomechanical Design of a Powered Ankle-Foot Prosthesis,” in Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, 2007, pp. 298-303. |
Au, Samuel K. et al., “Powered Ankle—Foot Prosthesis Improves Walking Metabolic Economy,” Robotics, IEEE Transactions on, vol. 25, pp. 51-66, 2009. |
Au, Samuel K. et al., “Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation,” in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, p. 3020. |
Au, Samuel K. et al. “Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits,” Neural Networks, 21, 2008, pp. 654.666. |
Au, Samuel K. et al., “Powered ankle-foot prosthesis,” Robotics & Automation Magazine, IEEE, vol. 15, pp. 52-59, 2008. |
Au, Samuel K., “Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy,” Massachusetts Institute of Technology, 2007, pp. 1-108. |
Belforte, G. et. al., “Pneumatic Active Gait Orthosis”. Mechatronics 11, 2001, pp. 301-323. |
Bellman, Ryan D. et al., “SPARKy 3: Design of an Active Robotic Ankle Prosthesis with two Actuated Degrees of Freedom Using Regenerative Kinetics”, 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 511-516, 2008. |
Bernardi, M. et al., (1995), “The Efficiency of Walking of Paraplegic Patients Using a Reciprocating Gait Orthosis,” Spinal Cord 33(7): 409-415. |
Boehler, Alexander W. et al., (2008), “Design, Implementation and Test Results of a Robust Control Algorithm for a Powered Ankle Foot Orthosis,” IEEE International Conference on Robotics and Automation (ICRA), IEEE. |
Colombo, Gery et. al., “Treadmill Training of Paraplegic Patients Using a Robotic Orthosis”, Journal of Rehabilitation Research and Development. vol. 37 No. 6., 2000, pp. 693-700. |
Farley, Claire et al., “Biomechanics of Walking and Running: Center of Mass Movements to Muscle Action,” Exerc Sport Sci Rev, vol. 26, pp. 253-285, 1998. |
Guiraud, D., “Application of an Artificial Neural Network to the Control of an Active External Orthosis of the Lower Limb”, Medical & Biological Engineering & Computing, Nov. 1994, vol. 32, pp. 610-614. |
Hansen, Andrew H. et al., “The Effects of Prosthetic Foot Roll-over Shape Arc Length on the Gait of Trans-tibial Prosthesis Users,” Prosthetics and Orthotics International, vol. 30, No. 3, 286-299, 2006. |
Hansen, Andrew H. et al., “The human ankle during walking: implications for design of biomimetic ankle prostheses and orthoses,” Journal of Biomechanics, 37(10): 1467-1474, 2004. |
Hansen, Andrew H. et al., “Prosthetic ankle-foot mechanism capable of automatic adaptation to the walking surface,” J Biomech Eng-T ASME, 131(3): 035002, 2009. |
Herr, Hugh et al., “Patient-Adaptive Prosthetic and Orthotic Leg Systems”, Proceedings of the International Federation for Medical & Biological Engineering, Reykjavik, Iceland, Jun. 18-22, 2002, pp. 18-21. |
Hitt, Joseph et al., “A Robotic Transtibial Prothesis with Regenerative Kinetics: The Design Analyses, Methods, and Testing”, U.S. Army Military Amputee Research Program, 2008. |
Hitt, Joseph et al., “An Active Foot-Ankle Prosthesis with Biomechanical Energy Regeneration”, Journal of Medical Devices,vol. 4, 2010. |
Hitt, Joseph et al., (2010), “Bionic Running for Unilateral Transtibial Military Amputees,” Proceedings of the 27th Army Science Conference, Orlando, FL. |
Hitt, Joseph et al., (2010), “Dismounted Soldier Biomechanical Power Regeneration Kit (SPaRK),” Proceedings of the 27th Army Science Conference, Orlando, FL. |
Hitt, Joseph et al., “Robotic Transtibial Prosthesis with Biomechanical Energy Regeneration”, Industrial Robot: An International Journal, vol. 36, Issue 5, pp. 441-447, 2009. |
Hitt, Joseph et al., “The SPARKy (Spring Ankle with Regenerative Kinetics) Project: Design and Analysis of a Robotic Transtibial Prosthesis with Regenerative Kinetics”, ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), CD-ROM, pp. 1-10, 2007. |
Holgate, Matthew A., “Control of a Robotic Transtibial Prosthesis”, A Dissertation, Arizona State University, Dec. 2009. |
Holgate, Matthew A. et al., “A Control Algorithm for a Prosthetic Ankle Using Phase Plane Invariants”, Poster presentation at Dynamic Walking, Vancouver, Canada, 2009. |
Holgate, Matthew A. et al., “A Novel Control Algorithm for Wearable Robotics Using Phase Plane Invariants”, International Conference on Robotics and Automation, 2009. |
Holgate, Matthew A. et al., “Control Algorithms for Ankle Robots: A Reflection on the State-of-the-Art and Presentation of Two Novel Algorithms”, 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 97-103, 2008. |
Holgate, Matthew A., “The SPARKy (Spring Ankle with Regenerative Kinetics) Project: Choosing a DC Motor Based Actuation Method” 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 163-168, 2008. |
Hollander, Kevin W. et al., (2005), “A Robotic “Jack Spring” for Ankle Gait Assistance,” DETC2005-84492, ASME International Design Engineering Technical Conference (IDETC2005), Long Beach, CA, American Society of Mechanical Engineers. |
Hollander, Kevin W. et al. “A Robust Control Concept for Robotic Ankle Gail Assistance,” IEEE International Conference on Rehabilitation Robotics (ICORR), 2007, pp. 119-123. |
Hollander, Kevin W. et al., (2006), “An Efficient Robotic Tendon for Gait Assistance,” Journal of biomechanical engineering 128: 788. |
Kawamoto, Hiroaki et al., (2003), “Power Assist Method for HAL-3 Estimating Operator's Intention Based on Motion Information,” IEEE International Workshop on Robot and Human Interactive Communication, Millbrae, CA. |
Kazerooni, H. et al., (2005), “On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX),” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, Apr. 2005. |
Kyriakopoulos K. et al., “Minimum jerk path generation.” International Conference on Robotics and Automation, 1:364-369, 1988. |
Norris, James A. et al., (2007), “Effect of Augmented Plantarflexion Power on Preferred Walking Speed and Economy in Young and Older Adults,” Gait & Posture 25(4): 620-627. |
Sawicki, Gregory S. et al., (2009), “It Pays to Have a Spring in your Step,” Exercise and Sport Sciences Reviews 37 (3). |
Sawicki, Gregory S. et al., (2009), “Mechanics and Energetics of Incline Walking with Robotic Ankle Exoskeletons,” Journal of Experimental Biology 212(1). |
Sawicki, Gregory S. et al., (2009), “Powered Ankle Exoskeletons Reveal the Metabolic Cost of Plantar Flexor Mechanical Work During Walking with Longer Steps at Constant Step Frequency,” Journal of Experimental Biology 212(1). |
Sugar, Thomas G., (2002), “A Novel Selective Compliant Actuator,” Mechatronics 12(9-10): 1157-1171. |
Sup, Frank. et al., “Design and control of an active electrical knee and ankle prosthesis,” in Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, 2008, pp. 523-528. |
Walsh, Conor James et al., (2006), Biomimetic Design of an Under-Actuated Leg Exoskeleton for Load-Carrying Augmentation, Cambridge, MA, Massachusetts Inst of Tech, M.S. |
Walsh, Conor James et al., “Development of a Lightweight, Under-Actuated Exoskeleton for Load-Carrying Augmentation,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006. |
Ward, Jeffrey et al., (2008), “Control Architectures for a Powered Ankle Foot Orthsosis,” International Journal of Assistive Robotics and Mechatronics 9(2): 2-13. |
Ward, Jeffrey et al., (2007), “Robotic Gait Trainer Reliability and Stroke Patient Case Study,” IEEE 10th International Conference on Rehabilitation Robotics (ICORR), Holland. |
Ward, Jeffrey et al., (2010), “Stroke Survivor Gait Adaptation and Performance After Training on a Powered Ankle Foot Orthosis,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, IEEE. |
Ward, Jeffrey et al., (2011), “Using the Translational Potential Energy of Springs for Prosthetic Systems,” IEEE Multi-conference on Systems and Control, Denver, CO, IEEE. |
Au et al., “An EMG-Position Controlled System for an Active Ankle-Foot Prosthesis: An Initial Experimental Study,” Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, Jun. 28-Jul. 1, 2005, pp. 375-379. |
Dietl et al., “Der Einsatz von Elektronik bei Prothesen zur Versorgung der unteren Extremität,” Med. Orth. Tech., 1997, vol. 117, pp. 31-35. |
Diginfo TV, “Powered Prosthetic Thigh and Leg”, uploaded Nov. 7, 2008 http://www.youtube.com/watch?v=lgitTzNEd54&feature=youtu.be%3E [Screenshots retrieved Oct. 23, 2014 in 9 pages]. |
“Extension Spring Design Theory, Spring Rate of Extension Springs,” http://web.archive.org/web/20131209120508/http://springipedia.com/extension-design-theory.asp as archived Dec. 9, 2013 in 1 page. |
Ficanha et al., “A Two-Axis Cable-Driven Ankle-Foot Mechanism”, Robotics and Biometrics, 2014, vol. 1, No. 17, pp. 13. |
Flowers et al., “An Electrohydraulic Knee-Torque Controller for a Prosthesis Simulator,” Journal of Biomechanical Engineering: Transactions of the ASME; vol. 99, Series K, No. 1; Feb. 1977, pp. 3-8. |
Hollander et al., “Adjustable Robotic Tendon using a ‘Jack Spring’™”, Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Jun. 28-Jul. 1, 2005, Chicago, IL, pp. 113-118. |
International Search Report and Written Opinion in International Application No. PCT/US2014/061913 dated Feb. 5, 2015 in 8 pages. |
Martinez-Villalpando et al., “Agonist-Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking”, Journal of Rehabilitation Research & Development, 2009, vol. 46, No. 3, pp. 361-373. |
Mitchell et al., “Design and Development of Ankle-Foot Prosthesis with Delayed Release of Plantarflecion”, Journal of Rehabilitation Research and Development, 2013, vol. 50, No. 3, pp. 409-422. |
Mooney et al., “Design and Characterization of a Biologically Inspired Quasi-Passive Prosthetic Ankle-Foot”, IEEE, 2014. |
Realmuto et al., “Nonlinear Passive Cam-Based Springs for Powered Angle Prostheses”, Journal of Medical Devices, Mar. 2015, vol. 9, pp. 011007-1-011007-10. |
Robinson et al., “Series Elastic Actuator Development for a Biomimetic Walking Robot,” MIT Leg Laboratory, 1999, pp. 1-8. |
Townsend et al., “Biomechanics and Modeling of Bipedal Climbing and Descending,” Journal of Biomechanics, vol. 9, No. 4, 1976, pp. 227-239. |
Vanderborght et al., “MACCEPA 2.0: Adjustable Compliant Actuator with Stiffening Characteristic for Energy Efficient Hopping”, 2009 IEEE International Conference on Robotics and Automation, Kobe International Conference Center, Kobe, Japan, May 12-17, 2009, pp. 544-549. |
Wang et al., “Walk the Walk”, IEEE Robotics & Automation Magazine, Aug. 26, 2015. |
Number | Date | Country | |
---|---|---|---|
20160242938 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
61558761 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14081857 | Nov 2013 | US |
Child | 15146826 | US | |
Parent | 13673177 | Nov 2012 | US |
Child | 14081857 | US |