Prosthetic disc for intervertebral insertion

Information

  • Patent Grant
  • 8845729
  • Patent Number
    8,845,729
  • Date Filed
    Wednesday, November 25, 2009
    15 years ago
  • Date Issued
    Tuesday, September 30, 2014
    10 years ago
Abstract
A prosthetic disc for insertion between adjacent vertebrae includes a core having upper and lower curved surfaces, upper and lower plates, and peripheral restraining structure on at least one of the upper plate, the lower plate and the core. Each plate has an outer surface which engages a vertebra and an inner curved surface which slides over the curved surface of the core. The peripheral restraining structure serves to hold the core against a curved surface of at least one of the plates during sliding movement of the plates over the core.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a Continuation of U.S. Ser. No. 10/855,253 filed May 26, 2004, which application claims the benefit of U.S. Provisional Appln. Nos. 60/473,802 and 60/473,803 both filed May 27, 2003; all of which are incorporated herein by reference in their entirety.


BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to medical devices and methods. More specifically, the invention relates to a prosthetic disc for intervertebral insertion, such as in the lumbar and cervical spine.


In the event of damage to a lumbar or cervical intervertebral disc, one possible surgical treatment is to replace the damaged disc with a disc prosthesis. Several types of intervertebral disc prostheses are currently available. For example, one type of intervertebral disc prosthesis is provided by Waldemar Link GmbH & Co under the trademark LINK SB CHARITÉ™. This prosthesis includes upper and lower prosthesis plates or shells which locate against and engage the adjacent vertebral bodies, and a low friction core between the plates. The core has upper and lower convexly curved surfaces and the plates have corresponding, concavely curved recesses which cooperate with the curved surfaces of the core. This allows the plates to slide over the core to allow required spinal movements to take place. The curved recesses in the plates are surrounded by annular ridges which locate, at the limit of sliding movement of the plates over the core, in opposing upwardly and downwardly facing, peripheral channels surrounding the curved surfaces of the core.


This type of disc configuration is described in EP 1142544A1 and EP 1250898A1, assigned to Waldemar Link GmbH & Co. A drawback of such configurations is that the provision of the peripheral ribs and channels limits the areas available for bearing and sliding contact between the plates and core, and accordingly the loads which can be transmitted by the prosthesis. As a result of the relatively small bearing areas, it is believed that at least the core will be subject to rapid wear and have a relatively short lifespan. Also, because the core is in effect merely “clamped” between the plates, this configuration does not allow for secure retention of the core. In one alternative arrangement, the curved surfaces of the core carry opposing, elongate keys that locate in elongate grooves in the plates and another alternative arrangement in which the plates have opposing elongate keys that locate in elongate grooves in the opposite curved surfaces of the core. These key and groove arrangements allow the plates to slide over the core within the limits of the length of the grooves, in one direction only. Although allowance is made for some lateral play of the keys in the grooves, very little sliding movement of the plates over the core can take place in the orthogonal vertical plane, and this is considered to be a serious drawback of this design.


Other currently available intervertebral disc prostheses have similar and/or other drawbacks. Typically, drawbacks include insufficient resistance to wear and tear, restricted range of motion and/or insufficient ability of the prosthesis to adhere to vertebral bone.


Therefore, a need exists for improved intervertebral disc prostheses. Ideally, such improved prostheses would resist wear and tear, provide a desired range of motion and adhere well to vertebral bone. At least some of these objectives will be met by the present invention.


2. Description of the Background Art


Published US patent applications 2002/0035400A1 and 2002/0128715A1 describe disc implants which comprise opposing plates with a core between them over which the plates can slide. The core receives one or more central posts, which are carried by the plates and which locate in opposite ends of a central opening in the core. Such arrangements limit the load bearing area available between the plates and core.


Other patents related to intervertebral disc prostheses include U.S. Pat. Nos. 4,759,766; 4,863,477; 4,997,432; 5,035,716; 5,071,437; 5,370,697; 5,401,269; 5,507,816; 5,534,030; 5,556,431; 5,674,296; 5,676,702; 5,702,450; 5,824,094; 5,865,846; 5,989,291; 6,001,130; 6,022,376; 6,039,763; 6,139,579; 6,156,067; 6,162,252; 6,315,797; 6,348,071; 6,368,350; 6,416,551; 6,592,624; 6,607,558 and 6,706,068. Other patent applications related to intervertebral disc prostheses include U.S. Patent Application Publication Nos.: 2003/0009224; 2003/0074076; 2003/0191536; 2003/0208271; 2003/0135277; 2003/0199982; 2001/0016773 and 2003/0100951. Other related patents include WO 01/01893A1, EP 1344507, EP 1344506, EP 1250898, EP 1306064, EP 1344508, EP 1344493, EP 1417940, EP 1142544, and EP 0333990.


BRIEF SUMMARY OF THE INVENTION

In one aspect of the present invention, a prosthetic disc for insertion between adjacent vertebrae includes upper and lower plates having outer surfaces, which engage and are locatable against the respective vertebrae, and inner curved surfaces. A core is disposed between the curved surfaces to allow the plates to slide over the core. Preferably, the plates can slide freely in all directions, not being limited to movement in a single direction as with the prior art. The present invention further provides peripheral restraining structure on one or both of the plates or the core to hold the core against the curved surface of at least one of the plates during sliding movement of the plates over the core. The peripheral restraining structure defines a limit or boundary for movement of the core relative to at least one of the upper and lower plates. Within such a peripheral boundary, however, movement of the core relative to the plate will preferably be unconstrained. That is, movement of the core relative to the plate may occur in any direction without significant inhibition or friction. The core will preferably not be attached to either the upper or lower plate, and the plates will thus be able to freely articulate relative to each other over the core, which provides a low friction bearing surface.


An advantage of the structure thus described is that the surface contact area between the core and each of the upper and lower plates may be maximized. By providing only a peripheral restraint, as opposed for example to grooves and keys on the surface of the core and plates, the width or diameter of the core relative to the size of the plate may be maximized. Moreover, the surfaces of the core and the plates which contact each other may be made smooth and free from other structure(s) that might adversely affect performance. In the preferred embodiments, both the curved surfaces of the plates and the corresponding surfaces of the core will be spherical sections. The use of spherical surfaces promotes free, unconstrained relative motion of the plates and the core in all directions.


In some embodiments, the peripheral restraining structure limits relative inclination of the plates during sliding movement of the plates over the core, usually by defining a stop structure. In other embodiments, the peripheral restraining structure lifts one side of the core relative to an opposite side of the core during sliding movement of the plates over the core. The peripheral restraining structure itself may take any of a number of different forms. In one embodiment, for example, the restraining structure comprises a ring structure on at least one of the upper and lower plates and an annular structure on at least a portion of the periphery of the core. The ring structure will be adapted to engage and restrain the annular structure on the core. For example, the ring structure may comprise a flange which defines an overhang over at least a portion of the periphery of one of the plates. The overhang of the flange will receive the annular structure on the core to provide an interference fit which retains the core against the curved surface of the plate but allows the core to slide freely and in an unconstrained manner within the limit or boundary defined by the flange. The annular structure on the core may be a rim which extends continuously or discontinuously (preferably continuously) around a lateral circumference of the core. By providing a rim which has a width, usually a diameter, which is slightly greater than the corresponding width of an inner edge of the flange at one point, the core will be held in place and will not be dislodged from the cavity defined by the ring structure in normal use.


Usually, the flange or other ring structure as well as the rim or other annular structure will be formed continuously about the periphery of the plate and core, respectively. Alternatively, however, either or both of the annular structure and the ring structure could be formed discontinuously. That is, so long as at least some portion of the ring structure and the annular structure remain engaged during all expected geometries and uses of the prosthetic disc, the objective of holding the core against the curved surface of the plate will be met.


The upper and lower plates may be made of any suitable material or combination of materials, such as but not limited to cobalt chrome molybdenum and titanium. In some embodiments, titanium plates are used, and these plates may optionally include inner surfaces of titanium nitride and outer surfaces that are aluminum oxide blasted to create micro-concavities. In another embodiment, cobalt chrome plates are used, with the outer surfaces being blasted with aluminum oxide and then coated with a titanium plasma spray. In some embodiments, the plates comprise an MRI-compatible material, such as titanium, coupled with a hardened material, such as cobalt chrome molybdenum. Such materials may be coupled using any suitable means, such as laminating, slip fitting, interferences fitting, adhesion, welding, molding or the like. Some plates include a coating or material on the inner surfaces for reducing friction and/or wear and tear, such as a titanium nitride surface.


Optionally, in some embodiments the outer surfaces of the upper and lower plates have at least one surface feature for promoting attachment of the outer surfaces to the vertebrae. For example, such surface features may include a plurality of serrations disposed along the outer surfaces. Some embodiments include additional or alternative features on the outer surfaces for enhancing attachment of the prosthesis to vertebral bone, such as a material or coating, like a titanium plasma spray. Multiple micro-concavities may be formed on the outer surfaces, for example by aluminum oxide spraying, to further enhance attachment. Additionally or alternatively, the surface features may include at least one fin disposed on each of the outer surfaces. In some embodiments, the fin includes at least one hole for further promoting attachment to the vertebrae. Fins may extend vertically from their corresponding outer surfaces at right angles, or alternatively the fins may extend from their corresponding outer surface at angles other than 90°. Fins may also have any suitable orientation relative to the anterior-posterior axis of the prosthesis. For example, a fin may extend in a straight line from anterior to posterior, without being angled. Alternatively, the fin may be rotated or angled away from the anterior-posterior axis at any suitable angle between 0° and 180°. In one embodiment, each fin is disposed in a lateral orientation on the outer surfaces.


The core may generally have any suitable configuration and be made of any suitable material or combination of materials, such as polymers, ceramics or the like. In some embodiments, the core comprises a low-friction material and has two convex surfaces for slidably engaging the inner, curved surfaces of the upper and lower plates.


In another aspect of the present invention, a prosthetic disc for insertion between adjacent vertebrae includes upper and lower plates and a free-floating core disposed between the plates. Again, the upper and lower plates have outer surfaces locatable against the respective vertebrae and inner, curved surfaces. Additionally, at least one of the upper and lower plates includes a flange extending from one of the inner surfaces. The core includes at least one peripheral groove for engaging with the flange(s) to hold the core captive between the plates during sliding movement of the plates over the core. Any of the features described above may also be incorporated in various embodiments.


In another aspect of the present invention, a prosthetic disc for insertion between adjacent vertebrae includes upper and lower plates having outer surfaces locatable against the respective vertebrae and inner, curved surfaces, at least one of the upper and lower plates including a flange extending from one of the inner surfaces. A free-floating core is disposed between the curved surfaces to allow the plates to slide over the core, and the core includes at least one peripheral protrusion for engaging with the flange(s) to hold the core captive between the plates during sliding movement of the plates over the core. Again, various embodiments may include any of the features described above.


In yet another aspect of the invention, a prosthetic disc for insertion between adjacent vertebrae includes upper and lower plates having outer surfaces locatable against the respective vertebrae and inner curved surfaces, a core between the plates, and opposing retaining formations. The core includes upper and lower curved surfaces complementary in shape to the inner, curved surfaces of the plates to allow the plates to slide over the core, the upper and lower surfaces of the core being located respectively above and below an equatorial plane extending laterally through the core. The opposing retaining formations are located peripherally on the equatorial plane of the core and at an edge of the curved surface of at least one of the plates and serve to hold the core captive between the plates during sliding movement of the plates over the core.


In yet another aspect of the invention, a method for restraining spacing between adjacent vertebrae involves implanting an upper plate against a lower surface of an upper vertebral body, implanting a lower plate against an upper surface of a lower vertebral body, and disposing a core between the upper and lower plates The core floats between spherical cavities in each of the upper and lower plates, the plates restraining peripheral movement of the core using at least one peripheral restraining member. In some embodiments, implanting each of the plates comprises sliding a fin on each plate into a corresponding groove formed in its respective vertebral body. The fin may slide into the groove in any suitable direction, such as posterior-anterior, anterior-posterior, lateral, or any angled direction between an anterior-posterior orientation and a lateral orientation. Optionally, implanting may further involve contacting textured outer surfaces of the upper and lower plates with the upper and lower surfaces of the vertebral bodies.


In another aspect of the invention, a method for assembling a prosthetic disc for insertion between adjacent vertebrae involves movably coupling a core with a first endplate to form an interference fit between the core and the first endplate and contacting the core with a second endplate. In some embodiments, coupling the core with the first endplate comprises snap fitting the core into the endplate. Alternatively, coupling the core with the first endplate may comprise forming the endplate around the core. In some embodiments, coupling the core with the first endplate involves engaging a peripheral protrusion of the core with a peripheral restraining structure of the first endplate.


These and other aspects and embodiments will be described in further detail below, with reference to the drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a cross-sectional anterior view of a prosthetic disc with the prosthesis plates and core in vertical alignment, according to one embodiment of the present invention;



FIG. 2 shows a side view of the prosthetic disc in FIG. 1 after sliding movement of the plates over the core;



FIG. 3 shows a side view of the prosthetic disc in FIG. 1 after translational movement of the plates relative to the core;



FIG. 4 shows a side view of the prosthetic disc in FIG. 1 with the prosthesis plates and core in vertical alignment;



FIG. 5 shows a plan view of a core of a prosthetic disc, according to one embodiment of the present invention; and



FIG. 6 shows a plan view of an upper plate of a prosthetic disc, according to one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1 to 4 illustrate a prosthetic disc 10 for intervertebral insertion between two adjacent spinal vertebrae (not shown). The disc 10 comprises three components, namely an upper plate or shell 12, a lower plate or shell 14 and a core 16 located between the plates.


The upper plate 12 includes an outer surface 18 and an inner surface 24 and may be constructed from any suitable material or combination of materials, such as but not limited to cobalt chrome molybdenum, titanium (such as grade 5 titanium) and/or the like. In one embodiment, typically used in the lumbar spine, the upper plate 12 is constructed of cobalt chrome molybdenum, and the outer surface 18 is treated with aluminum oxide blasting followed by a titanium plasma spray. In another embodiment, typically used in the cervical spine, the upper plate 12 is constructed of titanium, the inner surface 24 is coated with titanium nitride, and the outer surface 18 is treated with aluminum oxide blasting. An alternative cervical spine embodiment includes no coating on the inner surface 24. In some embodiments, it may be useful to couple two materials together to form the inner surface 24 and the outer surface 18. For example, the upper plate 12 may be made of an MRI-compatible material, such as titanium, but may include a harder material, such as cobalt chrome molybdenum, for the inner surface 24. Any suitable technique may be used to couple materials together, such as snap fitting, slip fitting, lamination, interference fitting, use of adhesives, welding and/or the like. Any other suitable combination of materials and coatings may be employed in various embodiments of the invention.


In some embodiments, the outer surface 18 is planar. Oftentimes, the outer surface 18 will include one or more surface features and/or materials to enhance attachment of the prosthesis 10 to vertebral bone. For example, the outer surface 18 may be machined to have a serrations 20 or other surface features for promoting adhesion of the upper plate 12 to a vertebra. In the embodiment shown (FIG. 6), the serrations 20 extend in mutually orthogonal directions, but other geometries would also be useful. Additionally, the outer surface 18 may be provided with a rough microfinish formed by blasting with aluminum oxide microparticles or the like. In some embodiments, the outer surface may also be titanium plasma sprayed to further enhance attachment of the outer surface 18 to vertebral bone.


The outer surface 18 may also carry an upstanding, vertical fin 22 extending in an anterior-posterior direction. The fin 22 is pierced by transverse holes 23. In alternative embodiments, the fin 22 may be rotated away from the anterior-posterior axis, such as in a lateral-lateral orientation, a posterolateral-anterolateral orientation, or the like. In some embodiments, the fin 22 may extend from the surface 18 at an angle other than 90°. Furthermore, multiple fins 22 may be attached to the surface 18 and/or the fin 22 may have any other suitable configuration, in various embodiments. In other embodiments, the fin 22 In some embodiments, such as discs 10 for cervical insertion, the fins 22, 42 may be omitted altogether.


The inner, spherically curved concave surface 24 is formed at a central, axial position with a circular recess 26 as illustrated. At the outer edge of the curved surface 24, the upper plate 12 carries peripheral restraining structure comprising an integral ring structure 26 including an inwardly directed rib or flange 28. The flange 28 forms part of a U-shaped member 30 joined to the major part of the plate by an annular web 32. The flange 28 has an inwardly tapering shape and defines upper and lower surfaces 34 and 36 respectively which are inclined slightly relative to the horizontal when the upper plate 12 is at the orientation seen in FIG. 1. An overhang 38 of the U-shaped member 30 has a vertical dimension that tapers inwardly as illustrated.


The lower plate 14 is similar to the upper plate 12 except for the absence of the peripheral restraining structure 26. Thus, the lower plate 14 has an outer surface 40 which is planar, serrated and microfinished like the outer surface 18 of the upper plate 12. The lower plate 14 optionally carries a fin 42 similar to the fin 22 of the upper plate. The inner surface 44 of the lower plate 14 is concavely, spherically curved with a radius of curvature matching that of the inner surface 24 of the upper plate 12. Once again, this surface may be provided with a titanium nitride or other finish.


At the outer edge of the inner curved surface 44, the lower plate 14 is provided with an inclined ledge formation 46. Alternatively, the lower plate 14 may include peripheral restraining structure analogous to the peripheral restraining structure 26 on the upper plate 12.


The core 16 of the disc 10 is made of a low-friction material, such as polyethylene (Chirulen™). In alternative embodiments, the core 16 may comprise any other suitable material, such as other polymers, ceramics or the like. The core 16 has identical upper and lower spherically curved convex surfaces 48, 50. The radius of curvature of these surfaces matches the radius of curvature of the inner surfaces 24, 44 of the upper and lower plates 12, 14. The curved surfaces are accordingly complementary. For wear resistance, the surface zones of the core may be hardened by an appropriate cross-linking procedure.


The core 16 is symmetrical about a central, equatorial plane 52 which bisects it laterally. (Although in other embodiments, the core 16 may be asymmetrical.) Lying on this equatorial plane is an annular recess or groove 54 which extends about the periphery of the core. The groove 54 is defined between upper and lower ribs or lips 56. When the plates 12, 14 and core 16 are assembled and in the orientation seen in FIG. 1, the flange 28 lies on the equatorial plane and directly aligned with the groove 54. The outer diameter 58 of the lips 56 is preferably very slightly larger than the diameter 60 defined by the inner edge of the flange 28. Assembly of the core and upper plate may involve pressing the core through the circular aperture defined by the flange 28, with the inherent resilience of the core allowing the minor deformation of the upper rib 56, or that the core be introduced at an inclination. In other less preferred embodiments of the invention (not shown), the diameter 58 may be equal to or even slightly less than the diameter 60.


In some embodiments, the inner surface of the groove 54 may be provided, for wear resistance, with a lining of pure titanium or titanium impregnated with cobalt chrome, titanium nitride, other titanium alloy or the like.


The central axis of the disc 10 (the axis passing through the centers of curvature of the curved surfaces) is indicated with the reference numeral 62. As shown in FIG. 1, the disc 10 may be symmetrical about a central anterior-posterior plane containing the axis 62. Referring to FIG. 4, in some embodiments the axis 62 is posteriorly disposed, i.e. is located closer to the posterior limit of the disc than the anterior limit thereof.


In use, the disc 10 is surgically implanted between adjacent spinal vertebrae in place of a damaged disc. The adjacent vertebrae are forcibly separated from one another to provide the necessary space for insertion. The disc is inserted, normally in a posterior direction, into place between the vertebrae with the fins 22, 42 of the plates 12, 14 entering slots cut in the opposing vertebral surfaces to receive them. After insertion, the vertebrae, facets, adjacent ligaments and soft tissues are allowed to move together to hold the disc in place. The serrated and microfinished surfaces 18, 40 of the plates 12, 14 locate against the opposing vertebrae. The serrations 20 and fins 22, 42 provide initial stability and fixation for the disc 10. With passage of time, enhanced by the titanium surface coating, firm connection between the plates and the vertebrae will be achieved as bone tissue grows over the serrated surface. Bone tissue growth will also take place about the fins 22, 40 and through the transverse holes 23 therein, further enhancing the connection which is achieved.


Referring to FIG. 5, the core 16 may be formed with narrow, angularly spaced, blind passages 61 which accommodate titanium pins 64. In many embodiments, the core 16 itself is transparent to X-radiation and so is invisible in a post-operative X-ray examination. The pins 64 serve as radiographic markers and enable the position of the core 16 to be ascertained during such examination.


In the assembled disc 10, the complementary and cooperating spherical surfaces of the plates and core allow the plates to slide or articulate over the core through a fairly large range of angles and in all directions or degrees of freedom, including rotation about the central axis 62. FIGS. 1 and 4 show the disc 10 with the plates 12 and 14 and core 16 aligned vertically with one another on the axis 62. FIG. 2 illustrates a situation where maximum anterior flexion of the disc 10 has taken place. At this position, the upper rib 56 has entered the hollow 38 of the U-shaped member 30, the lower surface of the rib 56 has moved into contact with the upper surface 34 of the flange 28, the flange having moved into the groove 54, and the lower surface 36 of the flange has moved into contact with the upper surface of the ledge formation 46, as will be seen in the encircled areas 69. Abutment between the various surfaces prevents further anterior flexure. The design also allows for the inner extremity of the flange 28 to abut against the base of the groove 54, thereby limiting further relative movement between the core and plate. A similar configuration is achieved in the event of maximum posterior flexure of the plates 12, 14 over the core, such as during spinal extension and/or in the event of maximum lateral flexure.



FIG. 3 illustrates how the disc 10 can also allow for translational movement of the plates relative to the core. In the illustrated situation there has been lateral translation of the plates relative to the core. The limit of lateral translation is reached when the inner extremity of the flange 28 abuts the base of the groove 54 as indicated by the numeral 70.


The flange 28 and the groove 54 defined between the ribs 56, prevent separation of the core from the plates. In other words, the cooperation of the retaining formations ensures that the core is held captive between the plates at all times during flexure of the disc 10.


In an alternative embodiment, the continuous annular flange 28 may be replaced by a retaining formation comprising a number of flange segments which are spaced apart circumferentially. Such an embodiment could include a single, continuous groove 54 as in the illustrated embodiment. Alternatively, a corresponding number of groove-like recesses spaced apart around the periphery of the core could be used, with each flange segment opposing one of the recesses. In another embodiment, the continuous flange or the plurality of flange segments could be replaced by inwardly directed pegs or pins carried by the upper plate 12. This embodiment could include a single, continuous groove 54 or a series of circumferentially spaced recesses with each pin or peg opposing a recess.


In yet another embodiment, the retaining formation(s) could be carried by the lower plate 14 instead of the upper plate, i.e. the plates are reversed. In some embodiments, the upper (or lower) plate is formed with an inwardly facing groove, or circumferentially spaced groove segments, at the edge of its inner, curved surface, and the outer periphery of the core is formed with an outwardly facing flange or with circumferentially spaced flange segments.


Although the foregoing is a complete and accurate description of the invention, any of a number of modifications, additions or the like may be made to the various embodiments without departing from the scope of the invention. Therefore, nothing described above should be interpreted as limiting the scope of the invention at it is described in the claims.

Claims
  • 1. A prosthetic disc for insertion between adjacent vertebrae, the prosthetic disc comprising: upper and lower plates having outer surfaces locatable against the respective vertebrae, and inner surfaces, wherein at least one of the inner surfaces of the upper and lower plates is a curved inner surface;a rigid mobile one-piece core having an outermost peripheral edge along an outermost circumference of the core, said core being removably disposed between the inner surfaces of the upper and lower plates and being arranged to slide and translate with respect to both the upper and lower plates when the prosthetic disc is implanted; anda rigid peripheral restraining structure formed on at least one of the plates, which structure provides a boundary which engages the outermost peripheral edge of the core and which prevents the outermost peripheral edge of the core from extending radially beyond the peripheral restraining structure as the core slides and translates with respect to both the upper and lower plates when the prosthetic disc is implanted;wherein the peripheral restraining structure comprises a U-shaped member defining an inwardly projecting flange extending from at least one of the upper and lower plates at a periphery of the plates;wherein the mobile core includes a groove at a periphery thereof, the inwardly projecting flange abutting a surface defining the groove as the core slides and translates with respect to both the upper and lower plates when the prosthetic disc is implanted to provide the boundary.
  • 2. A prosthetic disc as in claim 1, wherein the flange is ring shaped and the core is dimensioned to fit inside of the ring formed by the flange.
  • 3. A prosthetic disc as in claim 1, wherein the inner surfaces of both the upper and lower plates are concave.
  • 4. A prosthetic disc as in claim 1, further including at least one fin extending from each of the outer surfaces of the plates.
  • 5. A prosthetic disc as in claim 1, wherein the mobile core includes at least one lip at a periphery thereof configured to be engaged by the peripheral restraining structure.
  • 6. A prosthetic disc as in claim 1, wherein the mobile core has at least one convexly curved surface having a radius of curvature which matches a curvature of the curved inner surface.
  • 7. A prosthetic disc as in claim 1, wherein the mobile core has a width greater than a height.
  • 8. A prosthetic disc as in claim 1, wherein the peripheral restraining structure surrounds the core.
  • 9. A method for implanting a prosthetic disc between adjacent vertebrae, the method comprising: implanting an upper plate against a lower surface of an upper vertebral body;implanting a lower plate against an upper surface of a lower vertebral body;disposing a one-piece rigid mobile core between the upper and lower plates, said core having an outermost peripheral edge along an outermost circumference of the core;allowing the core to slide and translate with respect to the upper and lower plates when the prosthetic disc is implanted; andproviding a boundary which engages the outermost peripheral edge of the core and which prevents the core from extending in a radial direction beyond edges of the plates by providing a rigid peripheral restraining structure on at least one of the plates,wherein the peripheral restraining structure comprises a U-shaped member defining an inwardly projecting flange extending from at least one of the upper or lower plates at a periphery of the plates, andwherein the inwardly projecting flange abuts a surface defining a groove at a periphery of the mobile core as the core slides and translates with respect to the upper and lower plates when the prosthetic disc is implanted to provide the boundary.
  • 10. A method as in claim 9, wherein the inner surfaces of both the upper and lower plates are concave.
  • 11. A method as in claim 9, wherein at least one of the upper and lower plates has at a curved inner surface, and the mobile core has at least one convexly curved surface having a radius of curvature which matches a curvature of the curved inner surface.
  • 12. A method as in claim 9, wherein the mobile core has a width greater than a height.
  • 13. A method as in claim 9, wherein the peripheral restraining structure surrounds the mobile core.
US Referenced Citations (387)
Number Name Date Kind
3486505 Morrison Dec 1969 A
3867728 Stubstad et al. Feb 1975 A
4309777 Patil Jan 1982 A
4531917 Linkow et al. Jul 1985 A
4566466 Ripple et al. Jan 1986 A
4619660 Christiansen et al. Oct 1986 A
4673407 Martin Jun 1987 A
4759766 Buttner-Janz et al. Jul 1988 A
4759769 Hedman et al. Jul 1988 A
4834757 Brantigan May 1989 A
4863477 Monson Sep 1989 A
4904261 Dove et al. Feb 1990 A
4917704 Frey et al. Apr 1990 A
4932969 Frey et al. Jun 1990 A
4946378 Hirayama et al. Aug 1990 A
4997432 Keller Mar 1991 A
5035716 Downey Jul 1991 A
5057108 Shetty et al. Oct 1991 A
5071437 Steffee Dec 1991 A
5122130 Keller Jun 1992 A
5195526 Michelson Mar 1993 A
5258031 Salib et al. Nov 1993 A
5282861 Kaplan Feb 1994 A
5314477 Marnay May 1994 A
5320644 Baumgartner Jun 1994 A
5370697 Baumgartner Dec 1994 A
5394457 Leibinger et al. Feb 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5415704 Davidson May 1995 A
5458642 Beer et al. Oct 1995 A
5462575 Del Corso Oct 1995 A
5484437 Michelson Jan 1996 A
5489307 Kuslich et al. Feb 1996 A
5505732 Michelson Apr 1996 A
5507816 Bullivant Apr 1996 A
5534030 Navarro et al. Jul 1996 A
5556431 Buttner-Janz Sep 1996 A
5562738 Boyd et al. Oct 1996 A
5674296 Bryan et al. Oct 1997 A
5676701 Yuan et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5683465 Shinn et al. Nov 1997 A
5702450 Bisserie Dec 1997 A
5709683 Bagby Jan 1998 A
5728159 Stroever et al. Mar 1998 A
5741253 Michelson Apr 1998 A
5776198 Rabbe et al. Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5797909 Michelson Aug 1998 A
5824094 Serhan et al. Oct 1998 A
5836948 Zucherman et al. Nov 1998 A
5865846 Bryan et al. Feb 1999 A
5865848 Baker Feb 1999 A
5888226 Rogozinski Mar 1999 A
5895428 Berry Apr 1999 A
5899901 Middleton May 1999 A
5899911 Carter May 1999 A
5928284 Mehdizadeh Jul 1999 A
5989251 Nichols Nov 1999 A
5989291 Ralph et al. Nov 1999 A
6001130 Bryan et al. Dec 1999 A
6019792 Cauthen Feb 2000 A
6022376 Assell et al. Feb 2000 A
6039761 Li et al. Mar 2000 A
6039763 Shelokov Mar 2000 A
6080155 Michelson Jun 2000 A
6083228 Michelson Jul 2000 A
6086613 Camino et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6132465 Ray et al. Oct 2000 A
6136031 Middleton Oct 2000 A
6139551 Michelson et al. Oct 2000 A
6139579 Steffee et al. Oct 2000 A
6143033 Paul et al. Nov 2000 A
6146421 Gordon et al. Nov 2000 A
6156067 Bryan et al. Dec 2000 A
6159214 Michelson Dec 2000 A
6162252 Kuras et al. Dec 2000 A
6174311 Branch et al. Jan 2001 B1
6176881 Schar et al. Jan 2001 B1
6193757 Foley et al. Feb 2001 B1
6224595 Michelson May 2001 B1
6224607 Michelson May 2001 B1
6231609 Mehdizadeh May 2001 B1
6235030 Zuckerman et al. May 2001 B1
6261296 Aebi et al. Jul 2001 B1
6264695 Stoy Jul 2001 B1
6290726 Pope et al. Sep 2001 B1
6296664 Middleton Oct 2001 B1
6315797 Middleton Nov 2001 B1
6322567 Mittelstadt et al. Nov 2001 B1
6336941 Subba Rao et al. Jan 2002 B1
6348071 Steffee et al. Feb 2002 B1
6368350 Erickson et al. Apr 2002 B1
6368351 Glenn et al. Apr 2002 B1
6375681 Truscott Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6395032 Gauchet May 2002 B1
6402785 Zdeblick et al. Jun 2002 B1
6409766 Brett Jun 2002 B1
6413278 Marchosky Jul 2002 B1
6416551 Keller Jul 2002 B1
6436098 Michelson Aug 2002 B1
6440139 Michelson Aug 2002 B2
6447544 Michelson Sep 2002 B1
6478800 Fraser et al. Nov 2002 B1
6517544 Michelson Feb 2003 B1
6517580 Ramadan et al. Feb 2003 B1
6520967 Cauthen Feb 2003 B1
6520996 Manasas et al. Feb 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6533817 Norton et al. Mar 2003 B1
6537279 Michelson Mar 2003 B1
6554863 Paul et al. Apr 2003 B2
6562047 Ralph et al. May 2003 B2
6562074 Gerbec et al. May 2003 B2
6565574 Michelson May 2003 B2
6582466 Gauchet Jun 2003 B1
6582468 Gauchet Jun 2003 B1
6592624 Fraser et al. Jul 2003 B1
6599294 Fuss et al. Jul 2003 B2
6607558 Karus Aug 2003 B2
6607559 Ralph et al. Aug 2003 B2
6610092 Ralph et al. Aug 2003 B2
6623525 Ralph et al. Sep 2003 B2
6645248 Casutt Nov 2003 B2
6648895 Burkus et al. Nov 2003 B2
6652533 O'Neil Nov 2003 B2
6660038 Boyer, II et al. Dec 2003 B2
6666866 Mertz et al. Dec 2003 B2
6669731 Ralph et al. Dec 2003 B2
6669732 Serhan et al. Dec 2003 B2
6673113 Ralph et al. Jan 2004 B2
6682562 Viart et al. Jan 2004 B2
6689132 Biscup Feb 2004 B2
6706068 Ferree Mar 2004 B2
6709439 Rogers et al. Mar 2004 B2
6712819 Zucherman et al. Mar 2004 B2
6712825 Aebi et al. Mar 2004 B2
6723097 Fraser et al. Apr 2004 B2
6726720 Ross et al. Apr 2004 B2
6726721 Stoy et al. Apr 2004 B2
6733532 Gauchet et al. May 2004 B1
6740118 Eisermann et al. May 2004 B2
6740119 Ralph et al. May 2004 B2
6755841 Fraser et al. Jun 2004 B2
6764512 Keller Jul 2004 B2
6764515 Ralph et al. Jul 2004 B2
6770095 Grinberg et al. Aug 2004 B2
6790233 Brodke et al. Sep 2004 B2
6793678 Hawkins Sep 2004 B2
6814737 Cauthan Nov 2004 B2
6821298 Jackson Nov 2004 B1
6827740 Michelson Dec 2004 B1
6830570 Frey et al. Dec 2004 B1
6846328 Cauthen Jan 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6875213 Michelson Apr 2005 B2
6896680 Michelson May 2005 B2
6899735 Coates et al. May 2005 B2
6936071 Marnay et al. Aug 2005 B1
6936132 Topolnitsky Aug 2005 B2
6964686 Gordon Nov 2005 B2
6966929 Mitchell Nov 2005 B2
6989011 Paul et al. Jan 2006 B2
6994727 Khandkar et al. Feb 2006 B2
7011684 Eckman Mar 2006 B2
7022138 Mashburn Apr 2006 B2
7025787 Bryan et al. Apr 2006 B2
7044983 Cheng May 2006 B1
7056344 Huppert et al. Jun 2006 B2
7060073 Frey et al. Jun 2006 B2
7066958 Ferree Jun 2006 B2
7081120 Li et al. Jul 2006 B2
7083651 Diaz et al. Aug 2006 B2
7087055 Lim et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7115132 Errico et al. Oct 2006 B2
7118580 Beyersdorff et al. Oct 2006 B1
7147665 Bryan et al. Dec 2006 B1
7153325 Kim et al. Dec 2006 B2
7179294 Eisermann et al. Feb 2007 B2
7182784 Evans et al. Feb 2007 B2
7198644 Schultz et al. Apr 2007 B2
7207991 Michelson Apr 2007 B2
7214244 Zubok et al. May 2007 B2
7217291 Zucherman et al. May 2007 B2
7235082 Bartish et al. Jun 2007 B2
7235103 Rivin Jun 2007 B2
7250060 Trieu Jul 2007 B2
7255714 Malek Aug 2007 B2
7261739 Ralph et al. Aug 2007 B2
7267688 Ferree Sep 2007 B2
7270679 Istephanous et al. Sep 2007 B2
7270682 Frigg et al. Sep 2007 B2
7303583 Schar et al. Dec 2007 B1
7318839 Malberg et al. Jan 2008 B2
7326250 Beaurain et al. Feb 2008 B2
7331995 Eisermann et al. Feb 2008 B2
7429270 Baumgartner et al. Sep 2008 B2
7442211 de Villiers et al. Oct 2008 B2
7452380 Zubok et al. Nov 2008 B2
7491241 Errico et al. Feb 2009 B2
7494508 Zeegers Feb 2009 B2
7531001 de Villiers et al. May 2009 B2
7585326 de Villiers et al. Sep 2009 B2
7637913 de Villiers et al. Dec 2009 B2
7682396 Beaurain et al. Mar 2010 B2
7862614 Keller et al. Jan 2011 B2
8062371 de Villiers et al. Nov 2011 B2
20010016773 Serhan et al. Aug 2001 A1
20010029377 Aebi et al. Oct 2001 A1
20010056302 Boyer et al. Dec 2001 A1
20020022845 Zdeblick et al. Feb 2002 A1
20020035400 Bryan et al. Mar 2002 A1
20020045904 Fuss et al. Apr 2002 A1
20020068936 Burkus et al. Jun 2002 A1
20020091392 Michelson Jul 2002 A1
20020116009 Fraser et al. Aug 2002 A1
20020123753 Michelson Sep 2002 A1
20020128715 Bryan et al. Sep 2002 A1
20020165550 Frey et al. Nov 2002 A1
20020177897 Michelson Nov 2002 A1
20020198532 Michelson Dec 2002 A1
20030009224 Kuras Jan 2003 A1
20030023245 Ralph et al. Jan 2003 A1
20030028249 Baccelli et al. Feb 2003 A1
20030040746 Mitchell et al. Feb 2003 A1
20030045884 Robie et al. Mar 2003 A1
20030045939 Casutt Mar 2003 A1
20030074076 Ferree Apr 2003 A1
20030083747 Winterbottom et al. May 2003 A1
20030100951 Serhan et al. May 2003 A1
20030125739 Bagga Jul 2003 A1
20030130662 Michelson Jul 2003 A1
20030135277 Bryan et al. Jul 2003 A1
20030139812 Garcia et al. Jul 2003 A1
20030187448 Michelson Oct 2003 A1
20030191536 Ferree Oct 2003 A1
20030195517 Michelson Oct 2003 A1
20030195631 Ferree Oct 2003 A1
20030199982 Bryan Oct 2003 A1
20030204261 Eisermann et al. Oct 2003 A1
20030208271 Kuras Nov 2003 A1
20030229358 Errico et al. Dec 2003 A1
20030233145 Landry et al. Dec 2003 A1
20040002761 Rogers et al. Jan 2004 A1
20040024407 Ralph Feb 2004 A1
20040024410 Olson et al. Feb 2004 A1
20040030391 Ferree Feb 2004 A1
20040034426 Errico et al. Feb 2004 A1
20040054411 Kelly et al. Mar 2004 A1
20040059318 Zhang et al. Mar 2004 A1
20040073307 Keller Apr 2004 A1
20040073311 Feree Apr 2004 A1
20040073312 Eisermann et al. Apr 2004 A1
20040093087 Ferree et al. May 2004 A1
20040097928 Zdeblick et al. May 2004 A1
20040098131 Bryan et al. May 2004 A1
20040117021 Biedermann et al. Jun 2004 A1
20040138749 Zucherman et al. Jul 2004 A1
20040143270 Zucherman et al. Jul 2004 A1
20040143332 Krueger et al. Jul 2004 A1
20040143334 Ferree Jul 2004 A1
20040167626 Geremakis et al. Aug 2004 A1
20040176843 Zubok et al. Sep 2004 A1
20040186569 Berry Sep 2004 A1
20040215342 Suddaby Oct 2004 A1
20040225295 Zubok et al. Nov 2004 A1
20040225365 Eisermann et al. Nov 2004 A1
20040236426 Ralph et al. Nov 2004 A1
20040254644 Taylor Dec 2004 A1
20050015094 Keller Jan 2005 A1
20050015095 Keller Jan 2005 A1
20050015152 Sweeney Jan 2005 A1
20050021145 de Villiers et al. Jan 2005 A1
20050021146 de Villiers et al. Jan 2005 A1
20050027360 Webb et al. Feb 2005 A1
20050038515 Kunzler Feb 2005 A1
20050043800 Paul et al. Feb 2005 A1
20050085917 Marnay et al. Apr 2005 A1
20050107881 Alleyne et al. May 2005 A1
20050113842 Bertagnoli et al. May 2005 A1
20050113928 Cragg May 2005 A1
20050143824 Richelsoph et al. Jun 2005 A1
20050149189 Mokhtar et al. Jul 2005 A1
20050154463 Trieu Jul 2005 A1
20050165408 Puno et al. Jul 2005 A1
20050192586 Zuckerman et al. Sep 2005 A1
20050192670 Zubok et al. Sep 2005 A1
20050197706 Hovorka et al. Sep 2005 A1
20050216081 Taylor Sep 2005 A1
20050216084 Fleischmann et al. Sep 2005 A1
20050234553 Gordon Oct 2005 A1
20050251260 Gerber et al. Nov 2005 A1
20050251261 Peterman Nov 2005 A1
20050251262 de Villiers et al. Nov 2005 A1
20050261772 Filippi et al. Nov 2005 A1
20050267580 Suddaby Dec 2005 A1
20050267581 Marnay et al. Dec 2005 A1
20060004377 Keller Jan 2006 A1
20060004453 Bartish et al. Jan 2006 A1
20060015183 Gilbert et al. Jan 2006 A1
20060020342 Ferree et al. Jan 2006 A1
20060025862 de Villiers et al. Feb 2006 A1
20060029186 de Villiers et al. Feb 2006 A1
20060030857 de Villiers et al. Feb 2006 A1
20060030862 de Villiers et al. Feb 2006 A1
20060036325 Paul et al. Feb 2006 A1
20060041313 Allard et al. Feb 2006 A1
20060041314 Millard Feb 2006 A1
20060052870 Feree Mar 2006 A1
20060069439 Zucherman et al. Mar 2006 A1
20060142858 Colleran Jun 2006 A1
20060142862 Diaz et al. Jun 2006 A1
20060155378 Eckman Jul 2006 A1
20060167549 Mathys et al. Jul 2006 A1
20060178744 de Villiers et al. Aug 2006 A1
20060178746 Bartish, Jr. et al. Aug 2006 A1
20060195097 Evans et al. Aug 2006 A1
20060200239 Rothman et al. Sep 2006 A1
20060224241 Butler et al. Oct 2006 A1
20060235426 Lim et al. Oct 2006 A1
20060235525 Gil et al. Oct 2006 A1
20060235527 Buettner-Janz et al. Oct 2006 A1
20060241641 Albans et al. Oct 2006 A1
20060241766 Felton et al. Oct 2006 A1
20060259144 Trieu Nov 2006 A1
20060259146 Navarro et al. Nov 2006 A1
20060265068 Schwab Nov 2006 A1
20060293752 Moumene et al. Dec 2006 A1
20060293754 de Villiers et al. Dec 2006 A1
20070010826 Rhoda et al. Jan 2007 A1
20070021837 Ashman et al. Jan 2007 A1
20070032875 Blacklock et al. Feb 2007 A1
20070061011 de Villiers et al. Mar 2007 A1
20070067035 Falahee Mar 2007 A1
20070067036 Hudgins et al. Mar 2007 A1
20070073398 Fabian et al. Mar 2007 A1
20070093898 Schwab et al. Apr 2007 A1
20070100453 Parsons et al. May 2007 A1
20070100454 Burgess et al. May 2007 A1
20070100456 Dooris et al. May 2007 A1
20070123903 Raymond et al. May 2007 A1
20070123904 Stad et al. May 2007 A1
20070135923 Peterman et al. Jun 2007 A1
20070162133 Doubler et al. Jul 2007 A1
20070168033 Kim et al. Jul 2007 A1
20070168036 Ainsworth et al. Jul 2007 A1
20070179615 Heinz et al. Aug 2007 A1
20070213821 Kwak et al. Sep 2007 A1
20070233077 Khalili Oct 2007 A1
20070233247 Schwab Oct 2007 A1
20070233248 Schwab et al. Oct 2007 A1
20070233251 Abdou Oct 2007 A1
20070270970 Trieu Nov 2007 A1
20070282449 de Villiers et al. Dec 2007 A1
20070299521 Glenn et al. Dec 2007 A1
20080015698 Marino et al. Jan 2008 A1
20080015701 Garcia et al. Jan 2008 A1
20080021557 Trieu Jan 2008 A1
20080051900 de Villiers et al. Feb 2008 A1
20080051901 de Villiers et al. Feb 2008 A1
20080125864 de Villiers et al. May 2008 A1
20080133011 de Villiers et al. Jun 2008 A1
20080154301 de Villiers et al. Jun 2008 A1
20080154382 de Villiers et al. Jun 2008 A1
20080215155 de Villiers et al. Sep 2008 A1
20080221696 de Villiers et al. Sep 2008 A1
20080228274 de Villiers et al. Sep 2008 A1
20080228277 de Villiers et al. Sep 2008 A1
20080294259 de Villiers et al. Nov 2008 A1
20090043391 de Villiers et al. Feb 2009 A1
20090048674 Zubok et al. Feb 2009 A1
20090048677 McLeod et al. Feb 2009 A1
20090076614 Arramon Mar 2009 A1
20090105833 Hovda et al. Apr 2009 A1
20090105834 Hovda et al. Apr 2009 A1
20090105835 Hovda et al. Apr 2009 A1
20090222101 de Villiers et al. Sep 2009 A1
20090276051 Arramon et al. Nov 2009 A1
20100004746 Arramon Jan 2010 A1
20100016972 Jansen et al. Jan 2010 A1
20100016973 de Villiers et al. Jan 2010 A1
20100049040 de Villiers et al. Feb 2010 A1
20100069976 de Villiers et al. Mar 2010 A1
20100191338 de Villiers et al. Jul 2010 A1
Foreign Referenced Citations (52)
Number Date Country
3023353 Apr 1981 DE
10035182 Feb 2002 DE
0 333 990 Sep 1989 EP
0333990 May 1990 EP
0 560 140 Sep 1993 EP
0 560 141 Sep 1993 EP
0 591 712 Apr 1994 EP
0 820 740 Jan 1998 EP
1 142 544 Oct 2001 EP
1 153 582 Nov 2001 EP
1153582 Nov 2001 EP
1 250 898 Oct 2002 EP
1 306 064 May 2003 EP
1 344 493 Sep 2003 EP
1 344 506 Sep 2003 EP
1 344 507 Sep 2003 EP
1 344 508 Sep 2003 EP
1 405 615 Apr 2004 EP
1 417 940 May 2004 EP
1 570 813 Sep 2005 EP
2 803 741 Jul 2001 FR
61-122859 Jun 1986 JP
63-164948 Jul 1988 JP
01-136655 May 1989 JP
06-007391 Jan 1994 JP
2002-521090 Jul 2002 JP
2003-508119 Mar 2003 JP
WO 9920209 Apr 1999 WO
WO 9930651 Jun 1999 WO
WO 0004851 Feb 2000 WO
WO 0035384 Jun 2000 WO
WO 0042954 Jul 2000 WO
WO 0042954 Nov 2000 WO
WO 0101893 Jan 2001 WO
WO 0115637 Mar 2001 WO
WO 0168003 Sep 2001 WO
WO 0211650 Feb 2002 WO
WO 04000170 Dec 2003 WO
WO 04000171 Dec 2003 WO
WO 2004026187 Apr 2004 WO
WO 2004054477 Jul 2004 WO
WO 2005004756 Jan 2005 WO
WO 2005004756 Jan 2005 WO
WO 2005053580 Jun 2005 WO
WO 2005072662 Aug 2005 WO
WO 2005112834 Dec 2005 WO
WO 2005112834 May 2006 WO
WO 2006119092 Nov 2006 WO
WO 2006119092 Nov 2006 WO
WO 2007121320 Oct 2007 WO
WO 2007121320 Jun 2008 WO
039312 Nov 2003 ZA
Non-Patent Literature Citations (19)
Entry
International search report dated Jul. 21, 2005 for PCT/US2005/026160.
International search report dated Jul. 27, 2007 for PCT/US2006/002263.
Japanese office action dated Jun. 22, 2009 for JP 2006-533469.
Buttner-Janz, “The Development of the Artificial Disc,” Introduction, pp. 1-18, Library of Congress Catalogue No. 92-75582, ISBN 0-9635430-0-8 (1989).
Hellier et al., “Wear Studies for Development of an Intervertebral Disc Prosthesis,” Spine, vol. 17 No. 6 Supplement pp. 86-96 (1992).
Lee et al., “Impact Response of the Intervertebral Disc in a Finite-Element Model,” Spine vol. 25, No. 19, pp. 2431-2439 (2000).
Lehuec et al., “Shock Absorption in Lumber Disc Prosthesis,” Journal of Spinal Disorders & Techniques, vol. 16, No. 4, pp. 346-351(2003).
Office action dated Apr. 4, 2007 for U.S. Appl. No. 10/855,253.
Office action dated Apr. 4, 2012 for U.S. Appl. No. 12/464,670.
Office action dated May 7, 2012 for U.S. Appl. No. 12/030,772.
Office action dated Jun. 12, 2008 for U.S. Appl. No. 10/855,253.
Office action dated Jul. 16, 2009 for U.S. Appl. No. 10/855,253.
Office action dated Sep. 1, 2011 for U.S. Appl. No. 12/464,670.
Office action dated Sep. 26, 2011 for U.S. Appl. No. 12/030,772.
Office action dated Oct. 28, 2009 for U.S. Appl. No. 10/855,253.
Office action dated Nov. 19, 2012 for U.S. Appl. No. 12/030,772.
Office action dated Nov. 24, 2008 for U.S. Appl. No. 10/855,253.
Office action dated Dec. 14, 2012 for U.S. Appl. No. 12/464,670.
U.S. Appl. No. 14/150,437, filed Jan. 8, 2014, de Villiers et al.
Related Publications (1)
Number Date Country
20100076558 A1 Mar 2010 US
Provisional Applications (2)
Number Date Country
60473803 May 2003 US
60473802 May 2003 US
Continuations (1)
Number Date Country
Parent 10855253 May 2004 US
Child 12626027 US