Field
The present disclosure relates generally to prosthetic feet and foot covers for prosthetic feet. In some embodiments, the present disclosure relates more specifically to prosthetic feet and foot covers having characteristics that provide improved rollover and/or performance.
Description of the Related Art
Various types of prosthetic foot and cosmesis devices are available as substitutes for human feet. Many prosthetic devices available today incorporate various features to try to better approximate the functioning of natural feet. For example, some prosthetic foot designs seek to provide improved foot rollover during use.
In some embodiments, a prosthetic foot includes an elongate foot element extending from a heel end to a toe end and having an arch portion therebetween. In some embodiments, a ratio of a width of at least a portion of a forefoot portion of the foot element relative to a length of the foot element is approximately 30%. The foot element can further include a generally U-shaped cut-out portion at the toe end. The cut-out portion is positioned toward a medial side of a longitudinal axis of the foot element and divides the toe end into a medial toe and a lateral toe portion. The medial toe is longer and extends further distally than the lateral toe portion. The foot element can also include a lengthwise split. A first portion of the split runs substantially straight in an anterior/posterior direction, and a second portion is curved. In some embodiments, the second portion curves in a medial direction and extends to a base of the cut-out portion. In some embodiments, the second portion of the split curves in a medial direction and extends to a medial edge of the foot element in the forefoot portion. Alternatively, the second portion can curve in a lateral direction and extend to a lateral edge of the foot element in the forefoot portion.
In some embodiments, the split begins in a circular opening. A ratio of the diameter of the opening to the width of the split can be between 2:1 and 6:1. The foot element can also include an upper foot element coupled to the foot element via fasteners inserted through one or more attachment holes in the foot element. The second portion of the split can begin distal to the attachment holes. In some embodiments, the second portion of the split begins at a transition between the arch region and forefoot portion. A length of the split can be about 70% to about 90% of a total length of the foot element.
In some embodiments, a cosmesis cover for a prosthetic foot includes a body having an outer surface and surrounding an inner cavity. The outer surface has the shape and contours of a natural human foot, and the inner cavity is configured to removably receive a prosthetic foot therein. The cosmesis has a heel region, arch region, forefoot region, and toe region. The forefoot region is wider than the heel region and the arch region. The body includes a region of increased flexibility at a transition between the forefoot region and the toe region.
In some embodiments, the region of increased flexibility is thinner than a remainder of the body. A width of the forefoot region relative to a length of the cosmesis cover can be about 30%. In some embodiments, the cosmesis cover further includes a padded area extending from the heel region and across a lateral region of the arch region and the forefoot region.
In some embodiments, a prosthetic foot includes an elongate foot element and a cosmesis cover. The foot element extends from a heel end to a toe end, and a width of a forefoot portion of the foot element is greater than a width of an arch region and a heel region. The foot element can also include a generally U-shaped cut-out portion at the toe end positioned toward a medial side of a longitudinal axis of the foot element. The cut-out portion divides the toe end into a medial toe and a lateral toe portion, and the medial toe is longer and extends further distally than the lateral toe portion. The cosmesis cover includes a body having an outer surface and surrounding an inner cavity. The outer surface has the shape and contours of a natural human foot, and the inner cavity is configured to removably receive the foot element therein. The cosmesis has a heel region, arch region, forefoot region, and toe region. The forefoot region is wider than the heel region and the arch region. The cosmesis has an inner sole portion and a sidewall extending upward from the inner sole portion. A size and shape of the inner sole portion and portion of the sidewall adjacent the inner sole portion substantially corresponds to a size and shape of the foot element.
In some embodiments, the toe region of the cosmesis further includes a mating structure configured to engage the cut-out portion of the foot element. In some embodiments, the sidewall extends upward to approximately the level of an ankle of a natural human foot. Alternatively, the sidewall can extend upward to a level above or below the level of an ankle of a natural human foot. In some embodiments, a width of the forefoot portion relative to a length of the foot element is about 30%. A width of the forefoot region relative to a length of the cosmesis cover can also be about 30%.
In some embodiments, a prosthetic foot includes an elongate foot element and a forefoot piece. The elongate foot element extends from a heel end to a toe end and has an arch portion, a forefoot region, and a toe portion. The forefoot piece is coupled to a bottom surface of at least a portion of the forefoot region and the toe portion, and a bottom surface of the forefoot piece is downwardly facing convex and comprises a curvature different than a curvature of a bottom surface of a portion of the foot element proximal to the forefoot piece.
In some embodiments a ratio of a width of at least a portion of the forefoot region relative to a length of the foot element is approximately 30%. In some embodiments, the foot element includes a generally U-shaped cut-out portion at the toe end that is positioned toward a medial side of a longitudinal axis of the foot element such that the cut-out portion divides the toe end into a medial toe and a lateral toe portion, and the forefoot piece includes a generally U-shaped cut-out portion configured to correspond in size and shape to the cut-out portion of the foot element. In some embodiments, the foot element further includes a lengthwise split, wherein a first portion of the split runs substantially straight in an anterior/posterior direction and a second portion of the split curves in a medial direction and continues to a base of the cut-out portion.
In some embodiments, a prosthetic foot includes an elongate foot element and a cosmesis cover. The elongate foot element extends from a heel end to a toe end and includes a generally U-shaped cut-out portion at the toe end that is positioned toward a medial side of a longitudinal axis of the foot element such that the cut-out portion divides the toe end into a medial toe and a lateral toe portion. The medial toe is angled toward the U-shaped cut-out portion. The cosmesis cover includes a body having an outer surface and an inner surface and surrounding an inner cavity, the outer surface has the shape and contours of a natural human foot, and the inner cavity is configured to removably receive the foot element therein. The cosmesis cover includes a toe region having a slot that divides the toe region into a medial toe and a lateral toe portion and is configured to be disposed in the U-shaped cut-out portion when the foot element is disposed within the cosmesis cover. When the foot element is disposed in the cosmesis cover, the angled medial toe of the foot element forces the medial toe of the cosmesis cover toward the lateral toe portion to at least partially close the slot. In some embodiments, a portion of the medial toe of the cosmesis cover adjacent the slot has a thickness greater than a thickness of surrounding areas of the body of the cosmesis cover.
In some embodiments, a cosmesis cover for a prosthetic foot includes a body having an outer surface and surrounding an inner cavity, the body has a top opening extending into the inner cavity, the top opening is concave and a rim of the body surrounding the top opening includes cavities configured to receive pins of an attachment plate, the outer surface has the shape and contours of a natural human foot, and the inner cavity is configured to removably receive a prosthetic foot therein. In some embodiments, the cosmesis cover further includes a generally straight attachment plate including downwardly extending pins configured to be received in the cavities in the rim of the cosmesis cover body.
In some embodiments, a cosmesis cover for a prosthetic foot includes a body having an outer surface and surrounding an inner cavity, the outer surface has the shape and contours of a natural human foot, the inner cavity is configured to removably receive the prosthetic foot therein, the cosmesis body has a sole portion and a sidewall extending upward from the sole portion, and an inner surface of the sole portion includes a plurality of dimples configured to reduce distortion of the cosmesis cover during cooling during manufacture.
All of these embodiments are intended to be within the scope of the disclosure herein. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description having reference to the attached figures, the disclosure not being limited to any particular disclosed embodiment(s).
These and other features, aspects, and advantages of the present disclosure are described with reference to the drawings of certain embodiments, which are intended to schematically illustrate certain embodiments and not to limit the disclosure.
Although certain embodiments and examples are described below, those of skill in the art will appreciate that the disclosure extends beyond the specifically disclosed embodiments and/or uses and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the disclosure herein disclosed should not be limited by any particular embodiments described below.
In some embodiments, the foot element 100 is constructed of a resilient material capable of flexing in multiple directions. The foot element 100 can include multiple layers or laminae. Examples of possible materials for the foot element 100 include carbon, any polymer material, and any composite of polymer and fiber. The polymer can be thermoset or thermoplastic. In a composite, the fiber reinforcement can be any type of fiber, such as carbon, glass, or aramid. The fibers can be long and unidirectional, or they can be chopped and randomly oriented.
The foot element 100 extends from a heel end 12 to a toe end 14. The foot element 100 includes an arch region 16 between the heel end 12 and the toe end 14, for example, at approximately the location of an arch of a natural human foot. The foot element 100 further includes a forefoot region 18 distal to the arch region 16 or between the arch region 16 and the toe end 14.
In some embodiments, a toe portion 20 of the foot element 100a, 100b, 100c includes a generally U-shaped cut-out portion, slot or gap 24 extending inwardly from the toe end 14. In some embodiments, the cut-out 24 is positioned toward a medial side of a longitudinal axis of the foot element 100a, 100b, 100c, but is spaced from a medial edge 31 of the foot element 100a, 100b, 100c (e.g., the cut-out portion or gap 24 is defined between the longitudinal axis and medial edge 31 of the foot element 100a, 100b, 100c). The cut-out 24 gives the foot element 100a, 100b, 100c a “sandal toe” appearance and/or function and defines a structural “big toe” 26. The cut out portion 24 can receive a strap of a sandal. Because the forefoot region 18 is wider than a remainder of the foot element and wider than previously available prosthetic feet, the cut-out 24 and big toe 26 can be offset from the longitudinal axis of the foot element to a greater extent. In the illustrated embodiment, the big toe 26 is longer (e.g., extends further distally) than the remaining “toes” or the remainder of the toe portion 20.
In a healthy human foot, the center of mass travels approximately through the big toe and second toe as the foot rolls over from heel strike to toe off. The big toe 26 of the foot element 100a, 100b, 100c is designed to be weight-bearing and absorb load during rollover of the foot during use. In some embodiments, the big toe 26 is thicker than the remainder of the foot element 100a, 100b, 100c and/or than previously available prosthetic feet to provide additional strength. In some embodiments, the big toe 26 is formed of a particular material layup that provides the big toe 26 with strength. As described above, the big toe 26 is also longer than the remainder of the toe portion 20 and is offset from the longitudinal axis of the foot element to a greater extent than previously available prosthetic feet. These features advantageously provide the foot element 100a, 100b, 100c with a full length toe lever and allow the foot element 100a, 100b, 100c to more closely approximate or mimic a natural human foot during rollover. The outwardly bulging or curving lateral edge 33 of the forefoot region 18 of the foot element 100a, 100b, 100c can help guide the travel of the foot's center of mass toward the medial side during rollover so that the center of mass travels through the big toe 26. The cut-out portion 24 can provide the toe portion 20 of the foot element 100a, 100b, 100c with a lesser stiffness on the medial side, which also helps guide the center of mass toward the medial side during rollover. Any or all of these features can advantageously improve the rollover characteristics of the foot and provide the foot with a rollover more similar to that of a healthy, natural human foot.
In some embodiments, the foot element 100a, 100b, 100c includes a split 30a, 30b, 30c that at least partially extends substantially along the longitudinal axis of the foot. The split 30a, 30b, 30c provides a narrow gap between a medial portion 32a, 32b, 32c and a lateral portion 34a, 34b, 34c of the foot element 100a, 100b, 100c. In the illustrated embodiments, the split 30a, 30b, 30c does not extend to the heel end 12 of the foot element 100a, 100b, 100c. In some embodiments, the split 30a, 30b, 30c begins in a rounded fillet, hole, or opening 36 that helps prevent the formation of stress concentrations in that region. Although in the illustrated embodiments, the opening 36 is circular, the opening 36 can be any shape. In some such embodiments, the opening 36 is sized such that a ratio of the diameter of the opening 36 to the width of the split 30a, 30b, 30c is between 2:1 to 6:1.
In the foot element 100a shown in
In the embodiment of
In some embodiments, the portion of the foot element 100a, 100b, 100c that does not include the split 30a, 30b, 30c is between about 10% and about 30% of the total length of the foot element 100a, 100b, 100c (i.e., the length of the split 30a, 30b, 30c is between about 70% and about 90% of the length of the foot element 100a, 100b, 100c). In other words, the combined length of the portions of the foot element 100a, 100b, 100c from the opening 36 to the heel end 12 and from the end of the split 30a, 30b, 30c to the toe end 14 is no more than 30% and no less than 10% of the total length of the foot element 100a, 100b, 100c.
In the illustrated embodiment, a bottom surface of the forefoot piece 410 is curved or downward-facing convex. In some embodiments, the bottom surface of the forefoot piece 410 has a curvature that is discontinuous relative to and/or different from the curvature of the lower surface of the foot element 400 proximal to the forefoot piece 410. The bottom surface of the forefoot piece 410 may therefore be downwardly vertically offset from a remainder of the foot element 400 proximal to the forefoot piece 410. The forefoot piece 410 can advantageously allow for the foot element 400 to be supported during stance at portions of the heel and toe portion 420 rather than at the heel and fasteners that couple an upper foot member to the foot element 400. This allows for enhanced suspension and increased vertical displacement of the foot element 400 during stance because the fasteners are not in contact with the ground.
In some alternative embodiments, the forefoot piece 410 can be integrally formed with the foot element 400. In other words, the bottom surface of the forefoot region 418 and/or toe portion 420 of the foot element 400 itself can form or define a curvature that is different than and/or discontinuous relative to the curvature of the lower surface of the foot element 400 proximal to the forefoot region 418 and/or toe portion 420. In some embodiments, an upper surface of the forefoot region 418 and/or toe portion 420 can also define a curvature that is different than and/or discontinuous relative to the curvature of the upper surface of the foot element 400 proximal to the forefoot region 418 and/or toe portion 420. Additional details regarding drop-toe or vertically offset toe portions can be found in U.S. Publication No. 2013/0144403, the entirety of which is hereby incorporated herein by reference.
Foot elements according to the present disclosure, for example, foot elements 100a, 100b, 100c, can be incorporated into a variety of prosthetic feet, for example as shown in
As shown, upper foot element 200b has a generally vertical proximal portion and extends downwards and forwards to a generally horizontal distal portion. The upper foot element 200b is coupled to the foot element 100 via bolts, screws, or the like 40 proximate a distal or anterior end of the upper foot element 200b. The upper foot element 200b therefore extends forward approximately to a transition area between the arch region 16 and the forefoot region 18. Upper foot element 200a is designed so that prosthetic foot 10a has a lower profile than prosthetic foot 10b. Upper foot element 200f is similar to upper foot element 200a. However, in the illustrated embodiment, upper foot element 200f has a tapered shape such that a distal end of the upper foot element 200f is thicker than a proximal end of the upper foot element 200f. The prosthetic foot 10f of
As shown in
In some embodiments, the foot cover 300 includes areas having relatively greater flexibility in a forefoot 318 and/or toe region 320, for example as shown in
In some embodiments, an arch region 316 of the foot cover 300 is designed to more closely resemble that of a natural human foot. In some embodiments, the foot cover 300 includes padded areas or areas of increased build at or around a heel region 322, an outer portion of the arch region 316, and/or the forefoot or ball of the foot region 318, for example as shown in
In some embodiments, the foot cover 300 is designed to be used with a prosthetic foot including a foot element such as foot elements 100a, 100b, 100c as described herein. For example, the foot cover 300 can include a mating structure or slot 324 that engages the cutout 24 of the foot element 100a, 100b, 100c as shown in
In some embodiments, for example as shown in
As shown in
In some embodiments, the forefoot region 318 of the foot cover 300 is wider than a remainder of the foot cover 300, for example, wider than the arch region 316 and/or heel region 322, and wider than previously available prosthetic feet and/or foot covers. In some cases, conventional or previously available prosthetic feet and foot covers have poor compliance with shoes designed for natural human feet. The forefoot regions of such feet and/or foot covers are often narrower than natural human feet, so there is often a space between the foot cover and shoe. The space or gap allows for movement between the foot or foot cover and shoe, which can result in wear on the foot and/or foot cover. The wider forefoot region 18 of the foot element 100a, 100b, 100c and the corresponding wider forefoot region 318 of the foot cover 300 can advantageously help reduce such wear. The wider forefoot region can also improve the aesthetic appearance of the foot and/or foot cover as it can resemble the size and/or shape of a natural human foot more closely.
In some embodiments, for example as shown in
Although this disclosure has been described in the context of certain embodiments and examples, it will be understood by those skilled in the art that the disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while several variations of the embodiments of the disclosure have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the disclosure. For example, features described above in connection with one embodiment can be used with a different embodiment described herein and the combination still fall within the scope of the disclosure. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the embodiments of the disclosure. Thus, it is intended that the scope of the disclosure herein should not be limited by the particular embodiments described above. Accordingly, unless otherwise stated, or unless clearly incompatible, each embodiment of this invention may comprise, additional to its essential features described herein, one or more features as described herein from each other embodiment of the invention disclosed herein.
Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a sub combination.
Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, 0.1 degree, or otherwise.
The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.
Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57. This application claims the priority benefit of U.S. Provisional Application No. 62/019,233, filed Jun. 30, 2014, and 62/153,387, filed Apr. 27, 2015, the entireties of which are hereby incorporated by reference herein and should be considered part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
25238 | Bly | Aug 1859 | A |
53931 | Weston | Apr 1866 | A |
56983 | Nicholas | Aug 1866 | A |
57666 | Bly | Sep 1866 | A |
368580 | Frees | Aug 1887 | A |
487697 | Ehle | Dec 1892 | A |
534198 | Chapman | Feb 1895 | A |
619731 | Doerflinger et al. | Feb 1899 | A |
808296 | Merrick | Dec 1905 | A |
809876 | Wilkins | Jan 1906 | A |
817340 | Rosenkranz | Apr 1906 | A |
2183076 | Kaiser | Dec 1939 | A |
2197093 | Campbell | Apr 1940 | A |
2315795 | Johnson et al. | Apr 1943 | A |
2357893 | Harrington | Sep 1944 | A |
2440075 | Campbell | Apr 1948 | A |
2594945 | Lucas et al. | Apr 1952 | A |
2692392 | Bennington et al. | Oct 1954 | A |
2731645 | Woodall | Jan 1956 | A |
3551914 | Woodall | Jan 1971 | A |
3784988 | Trumpler | Jan 1974 | A |
3874004 | May | Apr 1975 | A |
3894437 | Hagy et al. | Jul 1975 | A |
4007497 | Haupt | Feb 1977 | A |
4267728 | Manley et al. | May 1981 | A |
4360931 | Hampton | Nov 1982 | A |
4387472 | Wilson | Jun 1983 | A |
4416293 | Anderson et al. | Nov 1983 | A |
4547913 | Phillips | Oct 1985 | A |
4631676 | Pugh | Dec 1986 | A |
4718913 | Voisin | Jan 1988 | A |
4813436 | Au | Mar 1989 | A |
4814661 | Ratzlaff et al. | Mar 1989 | A |
4822363 | Phillips | Apr 1989 | A |
4858621 | Franks | Aug 1989 | A |
4892553 | Prahl | Jan 1990 | A |
4892554 | Robinson | Jan 1990 | A |
4959073 | Merlette | Sep 1990 | A |
5019109 | Voisin | May 1991 | A |
5037444 | Phillips | Aug 1991 | A |
5062859 | Naeder | Nov 1991 | A |
5112356 | Harris et al. | May 1992 | A |
5116384 | Wilson et al. | May 1992 | A |
5128880 | White | Jul 1992 | A |
5139525 | Kristinsson | Aug 1992 | A |
5156631 | Merlette | Oct 1992 | A |
5156632 | Wellershaus | Oct 1992 | A |
5181932 | Phillips | Jan 1993 | A |
5181933 | Phillips | Jan 1993 | A |
5219365 | Sabolich | Jun 1993 | A |
5237520 | White | Aug 1993 | A |
5253656 | Rincoe et al. | Oct 1993 | A |
5258038 | Robinson et al. | Nov 1993 | A |
5258039 | Goh et al. | Nov 1993 | A |
5290319 | Phillips | Mar 1994 | A |
5361133 | Brown et al. | Nov 1994 | A |
5376133 | Gramnas | Dec 1994 | A |
5376141 | Phillips | Dec 1994 | A |
5387246 | Phillips | Feb 1995 | A |
5388591 | De Luca et al. | Feb 1995 | A |
5408873 | Schmidt et al. | Apr 1995 | A |
5425781 | Allard et al. | Jun 1995 | A |
5443522 | Sabolich | Aug 1995 | A |
5443527 | Wilson | Aug 1995 | A |
5443529 | Phillips | Aug 1995 | A |
5417405 | Marsh | Nov 1995 | A |
5471405 | Marsh | Nov 1995 | A |
5474087 | Nashner | Dec 1995 | A |
5509938 | Phillips | Apr 1996 | A |
5514185 | Phillips | May 1996 | A |
5514186 | Phillips | May 1996 | A |
5545230 | Phillips | Aug 1996 | A |
5545234 | Collier, Jr. | Aug 1996 | A |
5549711 | Bryant | Aug 1996 | A |
5623944 | Nashner | Apr 1997 | A |
5653767 | Allen et al. | Aug 1997 | A |
5695526 | Wilson | Dec 1997 | A |
5695527 | Allen | Dec 1997 | A |
5701686 | Berr et al. | Dec 1997 | A |
5728177 | Phillips | Mar 1998 | A |
5753931 | Borchers et al. | May 1998 | A |
5766264 | Lundt | Jun 1998 | A |
5790256 | Brown et al. | Aug 1998 | A |
5800569 | Phillips | Sep 1998 | A |
5800570 | Collier | Sep 1998 | A |
5824112 | Phillips | Oct 1998 | A |
5885229 | Yamato et al. | Mar 1999 | A |
5897594 | Martin et al. | Apr 1999 | A |
5899944 | Phillips | May 1999 | A |
5941913 | Woolnough et al. | Aug 1999 | A |
5944760 | Christensen | Aug 1999 | A |
5957870 | Yamato et al. | Sep 1999 | A |
5957981 | Gramnas | Sep 1999 | A |
5976191 | Phillips | Nov 1999 | A |
5993488 | Phillips | Nov 1999 | A |
6063046 | Allum | May 2000 | A |
6071313 | Phillips | Jun 2000 | A |
6077301 | Pusch | Jun 2000 | A |
6099572 | Mosler et al. | Aug 2000 | A |
6120547 | Christensen | Sep 2000 | A |
6129766 | Johnson et al. | Oct 2000 | A |
6165227 | Phillips | Dec 2000 | A |
6187052 | Molino et al. | Feb 2001 | B1 |
6197067 | Shorter et al. | Mar 2001 | B1 |
6197068 | Christensen | Mar 2001 | B1 |
6205230 | Sundman et al. | Mar 2001 | B1 |
6206934 | Phillips | Mar 2001 | B1 |
6216545 | Taylor | Apr 2001 | B1 |
6231527 | Sol | May 2001 | B1 |
6241776 | Christensen | Jun 2001 | B1 |
6261324 | Merlette | Jul 2001 | B1 |
6280479 | Phillips | Aug 2001 | B1 |
6289107 | Borchers et al. | Sep 2001 | B1 |
6290730 | Pitkin et al. | Sep 2001 | B1 |
6331893 | Brown et al. | Dec 2001 | B1 |
6350286 | Atkinson et al. | Feb 2002 | B1 |
6387134 | Parker et al. | May 2002 | B1 |
6398818 | Merlette et al. | Jun 2002 | B1 |
6402790 | Celebi | Jun 2002 | B1 |
6406500 | Phillips | Jun 2002 | B1 |
6443993 | Koniuk | Sep 2002 | B1 |
6443995 | Townsend et al. | Sep 2002 | B1 |
6514293 | Seong et al. | Feb 2003 | B1 |
6527811 | Phillips | Mar 2003 | B1 |
6546356 | Genest | Apr 2003 | B1 |
6596029 | Gramnas | Jul 2003 | B1 |
6602295 | Doddroe et al. | Aug 2003 | B1 |
6663672 | Laghi | Dec 2003 | B1 |
6663673 | Christensen | Dec 2003 | B2 |
6676708 | Laghi | Jan 2004 | B1 |
6699295 | Lee et al. | Mar 2004 | B2 |
6702859 | Laghi | Mar 2004 | B1 |
6702860 | Laghi | Mar 2004 | B1 |
6706075 | Laghi | Mar 2004 | B1 |
6712860 | Rubie et al. | Mar 2004 | B2 |
6718656 | Houser et al. | Apr 2004 | B2 |
6719807 | Harris | Apr 2004 | B2 |
6743260 | Townsend et al. | Jun 2004 | B2 |
6764521 | Molino et al. | Jul 2004 | B2 |
6764522 | Cehn | Jul 2004 | B1 |
6767370 | Mosler et al. | Jul 2004 | B1 |
6793683 | Laghi | Sep 2004 | B1 |
6797009 | Laghi | Sep 2004 | B1 |
6805717 | Christensen | Oct 2004 | B2 |
6807869 | Farringdon et al. | Oct 2004 | B2 |
6827744 | Laghi | Dec 2004 | B1 |
6855170 | Gramnas | Feb 2005 | B2 |
6869451 | Laghi | Feb 2005 | B1 |
6875240 | Laghi | Apr 2005 | B1 |
6875241 | Christensen | Apr 2005 | B2 |
6875242 | Christensen | Apr 2005 | B2 |
6899737 | Phillips | May 2005 | B1 |
6929665 | Christensen | Aug 2005 | B2 |
6936074 | Townsend et al. | Aug 2005 | B2 |
6942704 | Sulprizio | Sep 2005 | B2 |
6966933 | Christensen | Nov 2005 | B2 |
6969408 | Lecomte et al. | Nov 2005 | B2 |
7052519 | Gramnas | May 2006 | B1 |
7063727 | Van Phillips et al. | Jun 2006 | B2 |
7108723 | Townsend et al. | Sep 2006 | B2 |
7112227 | Doddroe et al. | Sep 2006 | B2 |
7169190 | Phillips et al. | Jan 2007 | B2 |
7172630 | Christensen | Feb 2007 | B2 |
7211115 | Townsend et al. | May 2007 | B2 |
7219449 | Hoffberg et al. | May 2007 | B1 |
7279011 | Phillips | Oct 2007 | B2 |
7318504 | Viltale et al. | Jan 2008 | B2 |
7337680 | Kantro | Mar 2008 | B2 |
7341603 | Christensen | Mar 2008 | B2 |
7347877 | Clausen et al. | Mar 2008 | B2 |
7354456 | Phillips | Apr 2008 | B2 |
7371262 | Lecomte et al. | May 2008 | B2 |
7374578 | Townsend et al. | May 2008 | B2 |
7410503 | Townsend et al. | Aug 2008 | B2 |
7419509 | Christensen | Sep 2008 | B2 |
7429272 | Townsend et al. | Sep 2008 | B2 |
D579115 | Rubie et al. | Oct 2008 | S |
7431737 | Ragnarsdottir et al. | Oct 2008 | B2 |
7462201 | Christensen | Dec 2008 | B2 |
7507259 | Townsend et al. | Mar 2009 | B2 |
7520904 | Christensen | Apr 2009 | B2 |
7531006 | Clausen et al. | May 2009 | B2 |
7572299 | Christensen | Aug 2009 | B2 |
7578852 | Townsend et al. | Aug 2009 | B2 |
7581454 | Clausen et al. | Sep 2009 | B2 |
7611543 | Townsend et al. | Nov 2009 | B2 |
7617068 | Tadin et al. | Nov 2009 | B2 |
7618464 | Christensen | Nov 2009 | B2 |
7637659 | Liu et al. | Dec 2009 | B2 |
7637957 | Ragnarsdóttir et al. | Dec 2009 | B2 |
7648533 | Phillips et al. | Jan 2010 | B2 |
7686848 | Christensen | Mar 2010 | B2 |
7708784 | Townsend et al. | May 2010 | B2 |
7727285 | Christensen et al. | Jun 2010 | B2 |
7771488 | Asgeirsson et al. | Aug 2010 | B2 |
7815689 | Bedard et al. | Oct 2010 | B2 |
7824446 | Christensen et al. | Nov 2010 | B2 |
7833287 | Doddroe et al. | Nov 2010 | B2 |
7846213 | Lecomte et al. | Dec 2010 | B2 |
7862621 | Kloos et al. | Jan 2011 | B2 |
7862622 | Dunlap et al. | Jan 2011 | B2 |
7867285 | Clausen et al. | Jan 2011 | B2 |
D632392 | Jacobs et al. | Feb 2011 | S |
7879110 | Phillips | Feb 2011 | B2 |
7891258 | Clausen et al. | Feb 2011 | B2 |
D633618 | Johnson et al. | Mar 2011 | S |
7926363 | Miller et al. | Apr 2011 | B2 |
7951100 | Pusch | May 2011 | B2 |
7955399 | Townsend et al. | Jun 2011 | B2 |
7998221 | Lecomte et al. | Aug 2011 | B2 |
8007544 | Jonsson et al. | Aug 2011 | B2 |
8025699 | Lecomte et al. | Sep 2011 | B2 |
8034121 | Christensen | Oct 2011 | B2 |
8070829 | Townsend et al. | Dec 2011 | B2 |
8075501 | Miller et al. | Dec 2011 | B2 |
D653759 | Smith et al. | Feb 2012 | S |
D655009 | L'heureux | Feb 2012 | S |
8117922 | Xia et al. | Feb 2012 | B2 |
8128709 | Thorhallsdottir et al. | Mar 2012 | B2 |
8261611 | Kim et al. | Sep 2012 | B2 |
8290739 | Tadin et al. | Oct 2012 | B2 |
8409014 | Gagner et al. | Apr 2013 | B2 |
8486156 | Jonsson | Jul 2013 | B2 |
D689505 | Convay et al. | Sep 2013 | S |
8544347 | Berme | Oct 2013 | B1 |
8771372 | Rubie et al. | Jul 2014 | B1 |
9017421 | Lecomte et al. | Apr 2015 | B2 |
D731062 | Meyer et al. | Jun 2015 | S |
9132022 | Lecomte et al. | Sep 2015 | B2 |
20020040249 | Phillips | Apr 2002 | A1 |
20020077706 | Phillips | Jun 2002 | A1 |
20020082713 | Townsend et al. | Jun 2002 | A1 |
20020087216 | Atkinson et al. | Jul 2002 | A1 |
20020116072 | Rubie et al. | Aug 2002 | A1 |
20020128727 | Merlette et al. | Sep 2002 | A1 |
20020138923 | Shaffeeullah | Oct 2002 | A1 |
20020143408 | Townsend et al. | Oct 2002 | A1 |
20020183860 | Wilkinson et al. | Dec 2002 | A1 |
20030045944 | Mosler et al. | May 2003 | A1 |
20030093158 | Phillips et al. | May 2003 | A1 |
20030120353 | Christensen | Jun 2003 | A1 |
20030144745 | Phillips | Jul 2003 | A1 |
20030191540 | Townsend et al. | Oct 2003 | A1 |
20040064195 | Herr | Apr 2004 | A1 |
20040068327 | Christensen | Apr 2004 | A1 |
20040112138 | Knirck et al. | Jun 2004 | A1 |
20040122529 | Townsend et al. | Jun 2004 | A1 |
20040181289 | Bedard et al. | Sep 2004 | A1 |
20040225376 | Townsend et al. | Nov 2004 | A1 |
20050033451 | Aigner et al. | Feb 2005 | A1 |
20050038524 | Jonsson et al. | Feb 2005 | A1 |
20050038525 | Doddroe et al. | Feb 2005 | A1 |
20050060045 | Smith et al. | Mar 2005 | A1 |
20050071018 | Phillips | Mar 2005 | A1 |
20050097970 | Nurse | May 2005 | A1 |
20050107889 | Bedard et al. | May 2005 | A1 |
20050137717 | Gramnäs et al. | Jun 2005 | A1 |
20050171618 | Christensen | Aug 2005 | A1 |
20050203640 | Christensen | Sep 2005 | A1 |
20050216097 | Rifkin | Sep 2005 | A1 |
20050267603 | Lecomte et al. | Dec 2005 | A1 |
20060030950 | Townsend et al. | Feb 2006 | A1 |
20060069450 | McCarvill et al. | Mar 2006 | A1 |
20060167563 | Johnson et al. | Jul 2006 | A1 |
20060173555 | Harn et al. | Aug 2006 | A1 |
20060212131 | Curtis | Sep 2006 | A1 |
20060247794 | Doddroe et al. | Nov 2006 | A1 |
20070027557 | Jonsson et al. | Feb 2007 | A1 |
20070039205 | Peveto et al. | Feb 2007 | A1 |
20070106395 | Clausen et al. | Mar 2007 | A9 |
20070100465 | Egan | May 2007 | A1 |
20070213840 | Townsend et al. | Sep 2007 | A1 |
20070219643 | Townsend | Sep 2007 | A1 |
20070250178 | Wilson | Oct 2007 | A1 |
20080046096 | Bedard et al. | Feb 2008 | A1 |
20080188950 | Fleury et al. | Aug 2008 | A1 |
20080188951 | Christensen et al. | Aug 2008 | A1 |
20080228288 | Nelson et al. | Sep 2008 | A1 |
20080281436 | Townsend et al. | Nov 2008 | A1 |
20080312752 | Miller | Dec 2008 | A1 |
20090012630 | Mosler et al. | Jan 2009 | A1 |
20090076626 | Ochoa | Mar 2009 | A1 |
20090105845 | Curtis | Apr 2009 | A1 |
20090157197 | Bonacini | Jun 2009 | A1 |
20090204229 | Mosley et al. | Aug 2009 | A1 |
20090204231 | Bonacini | Aug 2009 | A1 |
20090222105 | Clausen | Sep 2009 | A1 |
20090234463 | Wilson | Sep 2009 | A1 |
20090293641 | Clausen et al. | Dec 2009 | A1 |
20100004757 | Clausen et al. | Jan 2010 | A1 |
20100023135 | Rubie et al. | Jan 2010 | A1 |
20100042228 | Doddroe et al. | Feb 2010 | A1 |
20100312360 | Caspers | Dec 2010 | A1 |
20100324699 | Herr et al. | Dec 2010 | A1 |
20110093089 | Martin | Apr 2011 | A1 |
20110146396 | Kim et al. | Jun 2011 | A1 |
20110213471 | Jonsson | Sep 2011 | A1 |
20110230976 | Zarling et al. | Sep 2011 | A1 |
20110251520 | Shieh et al. | Oct 2011 | A1 |
20110288448 | Sanders et al. | Nov 2011 | A1 |
20120023776 | Skaja et al. | Feb 2012 | A1 |
20120035509 | Wilson et al. | Feb 2012 | A1 |
20120151794 | Hansen et al. | Jun 2012 | A1 |
20120166091 | Kim et al. | Jun 2012 | A1 |
20120266648 | Berme et al. | Oct 2012 | A1 |
20120271434 | Friesen et al. | Oct 2012 | A1 |
20130018282 | Mainini et al. | Jan 2013 | A1 |
20130060349 | Thorsteinsson et al. | Mar 2013 | A1 |
20160067059 | Lecomte et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
WO 2000-27317 | May 2000 | WO |
WO 2004-032809 | Apr 2004 | WO |
WO 2016004090 | Jan 2016 | WO |
Entry |
---|
U.S. Appl. No. 14/853,491, Lecomte et al. |
Apr. 25, 2011 International Search Report and Written Opinion for International Application No. PCT/US11/26124 filed Feb. 24, 2011. |
College Park Truper product, http://www.college-park.com/prosthetics/truper, believed to have been available more than one year before Jun. 30, 2014. |
College Park Velocity™ brochure, http://www.college-park.com/images/pdf/cpi-product-velocity.pdf, believed to have been released in 2011. |
Brochure for College Park Venture Prosthetic Foot; http://www.college/park.com/assets/pdf/VentureInfoSheets.pdf, © 2003, and www.college/park.com/CPStore/ProductInfoVenture.asp; available before Aug. 15, 2003. |
Feb. 7, 2013 International Search Report and Written Opinion for International Application No. PCT/US2012/066888 filed on Nov. 28, 2012. |
Freedom Innovations Runway product, http://www.freedom-innovations.com/runway-2/, believed to have been available more than one year before Jun. 30, 2014. |
International Search Report dated Apr. 28, 2006 for PCT/US2005/017884 filed May 20, 2006. |
Ohio Willow Wood Trailblazer™ product, http://www.willowwoodco.com/products-and-services/feet/high-activity/trailblazer, believed to have been released in 2006. |
Ossur Axia product, Ossur Prosthetics Catalog, pp. 153-156, 2005. |
Ossur Elation product; http://www.ossur.com/template1.asp?pageid=263 and product catelog pp. 193/196; available before Aug. 15, 2003. |
Otto Bock Aqua-foot product; http://professionals.ottobockus.com/cps/rde/xchg/ob_us_en/hs.xsl/41337.html believed to have been available more than one year before Jun. 30, 2014. |
Otto Bock Triton foot, http://professionals.ottobockus.com/cps/rde/xchg/ob_us_en/hs.xsl/38130.html?id=38132#t38132, believed to have been available more than one year before Jun. 30, 2014. |
Otto Bock Triton products, http://www.ottobock.com/cps/rde/xchg/ob_com_en/hs.xsl/38134.html, believed to have been released Jun. 2011. |
Otto Bock, Axtion product; http://www.ottobockus.com/products/lower_limb_prosthetics/axtion.asp; believed to have been released May, 2004. |
Trulife Seattle Kinetic product, http://trulife.com/all-products/prosthetics/feet/seattle-kinetic, believed to have been available more than one year before Jun. 30, 2014. |
Dec. 8, 2015 International Search Report and Written Opinion for International Application No. PCT/US2015/38641 Filed on Jun. 30, 2015. |
Ossur, Prosthetics Product Catalog, Vari-Flex®, 2005, in 9 pages. |
Ossur, Prosthetics Product Catalog, K2 Sensation®, 2005, in 3 pages. |
Office Action in corresponding Chinese Patent Application No. 201580042739.1, dated Dec. 1, 2017, in 18 pages. |
Extended Search Report in corresponding European Application No. 15814978, dated Feb. 5, 2018, in 7 pages. |
Number | Date | Country | |
---|---|---|---|
20150374514 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
62153387 | Apr 2015 | US | |
62019233 | Jun 2014 | US |