This invention relates generally to prosthetic limbs. More specifically, the invention relates to prosthetic feet. Most specifically, the invention relates to a prosthetic foot wherein the heel height is adjustable.
Most prosthetic feet are configured so that the angle formed between the foot and a prosthetic leg joined thereto is fixed. As a consequence, the heel height cannot be varied, and this can present problems when a user switches from one style of shoe to another. The limitations of the fixed angle also prevent a user from dropping or relaxing his or her foot when sitting.
As a consequence, it will be appreciated that there is a need for a prosthetic foot wherein the angle between the foot and the pylon of a prosthetic leg may be user adjustable. Any such adjustment mechanism should be easy and quick to make, and reliable. Also, since prosthetic feet are subjected to high mechanical loadings, any such adjustment mechanism should be sturdy. The prior art has implemented a number of approaches to providing for heel height adjustment in prosthetic feet. These approaches include hydraulic, mechanical and electromechanical devices. In general, prior art adjustment mechanisms have been found to be relatively complicated which can make them expensive and difficult to use.
As will be explained in detail hereinbelow, the present invention provides a heel height adjustment system for prosthetic feet, which system is simple in its construction, reliable, sturdy, easy to use, and capable of providing a fine degree of control over the range of adjustments. In addition, the system of the present invention may be activated by a control which is remote from the foot so as to facilitate adjustments while the foot is in use. These and other advantages of the invention will be explained in detail hereinbelow.
Disclosed is a prosthetic foot having an adjustable height heel. The foot includes a frame portion and an ankle link which is pivotally supported by the frame portion at a first pivot axis. A detent rod is pivotally connected to the ankle link at a second pivot axis, and a detent member is pivotally affixed to the frame portion at a third pivot axis. The detent member is selectably operable to receive and releasably retain a length of the detent rod so that the length of the detent rod extending between the second and third pivot axes may be selectably adjusted. In this manner, when the length of the detent rod extending between the second and third pivot axes is changed, the angular relationship of the frame portion and the ankle link is changed.
In specific embodiments, the detent rod includes at least one groove formed thereupon, and the detent member includes at least one corresponding groove which may be selectably engaged with the at least one groove of the detent rod. In a specific embodiment, the detent member includes a housing having a slidable member disposed therein. The slidable member has a passage which is configured to allow a segment of an elongated portion of the detent rod to pass therethrough. The detent member further includes a biasing member which is operable to exert a biasing force on the slidable member so as to urge a portion of the wall of the passage into contact with a segment of the detent rod. Biasing may be accomplished by a spring, while in other instances it may be accomplished by an elastic member, a hydraulic or fluidic actuator or the like.
In one specific embodiment, the detent member includes an actuator button which displaces the slidable member against the biasing force so as to free the detent rod. In another embodiment, the detent member has a fluid chamber defined therein which is in fluid communication with the fluid inlet. The fluid chamber is in mechanical communication with a slidable member so that introduction of a fluid into the chamber exerts a force on the slidable member so as to overcome the biasing force. Fluid may be introduced into the chamber by a pump, such as a handheld pump, and in specific instances, the fluid is air. In other instances, activation may be by solenoids, linear actuators, or shape memory material based actuators, other electromechanical or mechanical actuators and the like.
Also disclosed is a detent assembly.
The present invention is directed to a prosthetic foot with an adjustable height heel. The adjustability is achieved through the use of a particular mechanical assembly employed in connection with a frame portion of a prosthetic foot. The assembly includes an ankle link which is pivotally supported by the frame portion of the foot at a first pivot axis. This ankle link is configured to attach the foot to a prosthetic leg. A detent rod is pivotally connected to the ankle link at a second pivot axis which is spaced from the first pivot axis. A detent member is pivotally affixed to the frame at a third pivot axis. The detent member engages a portion of the detent rod and is operable to selectably retain that rod. By controlling the detent mechanism, the length of the detent rod extending between the second and third pivot points may be changed, and as this length is changed, the ankle link is pivoted back and forth thereby changing the angular relationship of the ankle link and the remainder of the foot thereby changing the elevation of the heel.
This invention will be explained with reference to one particular embodiment, and it is to be understood that various other embodiments may be implemented in accord with the teaching presented herein. Referring now to
The foot 10 of
Referring now to
A detent member 32 is pivotally affixed to the frame 12 so as to define a third pivot axis 34. The detent member 32 releasably engages the detent rod 26 and is selectably operable to retain and release the rod so that the length of rod extending between the second 28 and third 34 pivot axes may be adjusted.
Referring now to
Referring now to
Referring now to
Also visible in this drawing is a fluid inlet port 42, which may be used in conjunction with a fluidic activator which will be described in more detail in
While in the illustrated embodiment, the detent rod is shown as having a continuous series of discrete radical grooves, it is to be understood that this arrangement may be otherwise implemented. For example, the detent rod may include helical grooving, or otherwise configured features such as projections, recesses, or the like configured so as to be mateable with the detent member as described above. Also, the detent rod and detent member may be configured so as to allow for a series of predetermined angular relationships between the ankle link and frame so as to provide for heel height “presets.” In yet other instances, the members may be configured so as to allow for a limited range of “free pivoting” of the ankle link. For example, a portion of the detent rod may be made smooth so as to not be capable of engaging the detent member. This will allow for free pivoting of the foot which would allow a user to insert the foot into a boot or other footwear. Once the free pivoting feature has been utilized, the user can activate the assembly so as to fixedly retain the detent rod over a then-adjustable range of motion.
In a relatively simple embodiment, as described with reference to
Yet other modes of activation may be readily implemented. For example, in some embodiments, a wire or cable may be utilized to provide a mechanical force for remotely activating the detent assembly. In yet other instances, activation may be electronic. For example, a solenoid or electromagnet may be utilized to provide for the release and retention of the detent rod. Other electronic activators such as linear actuators may be likewise employed. Also, while the fluid pump is described as being manually activated, it is to be understood that it could be powered by a battery or other such source.
In yet other instances, activation may be achieved through the use of shape memory alloy materials. As is known in the art, these alloys can be made to change their shape, and hence provide a mechanical force, in the course of doing so by the application of heat. Such heat can be applied through resistance heating. In one specific embodiment, a plurality of shape memory alloy wires, tubes or rods are disposed so as to extend along the length of the sliding member. One end of each body of shape memory material is anchored to the sliding member and a second end of each is coupled to the housing. The bodies of shape memory material are coupled to an electrical circuit so that a current may be selectably passed therethrough to heat the material. Alternatively, separate resistance heaters may be employed. Heating causes a change in the length of the bodies which in turn causes motion of the sliding member thereby actuating the detent. Still other modes of activation will be apparent to those of skill in the art.
Other embodiments of the device of the present invention may be readily implemented in accord with the teaching presented herein. For example, the detent assembly may be configured other than as is shown herein, and in that regard the detent rod and detent mechanism may include various mechanical features which could substitute for the grooves. Also, yet other detent mechanisms include locking wedges, screw retainers and the like may be incorporated. Also, the configuration and placement of the various mechanical features of the present invention may be varied as will be apparent to those of skill in the art. In view of the foregoing, it is to be understood that the drawings, discussion and description presented herein are illustrative of specific embodiments of the invention but are not meant to be limitations upon the practice thereof. It is the following claims, including all equivalents, which define the scope of the invention.
This application claims priority of U.S. Provisional Patent Application Ser. No. 60/811,974 filed Jun. 8, 2006, entitled “Prosthetic Foot with Adjustable Heel Height.”
Number | Name | Date | Kind |
---|---|---|---|
652001 | Keil | Jun 1900 | A |
2749557 | Riddle | Jun 1956 | A |
4306320 | Delp | Dec 1981 | A |
4413360 | Lamb et al. | Nov 1983 | A |
4446580 | Furuya et al. | May 1984 | A |
5376133 | Gramnas | Dec 1994 | A |
5509938 | Phillips | Apr 1996 | A |
5571210 | Lindh | Nov 1996 | A |
5913901 | Lacroix | Jun 1999 | A |
5957981 | Gramnas | Sep 1999 | A |
6436149 | Rincoe | Aug 2002 | B1 |
6443993 | Koniuk | Sep 2002 | B1 |
6855170 | Gramnäs | Feb 2005 | B2 |
7506562 | Franze et al. | Mar 2009 | B2 |
20040044417 | Gramnas | Mar 2004 | A1 |
20050085926 | Christensen | Apr 2005 | A1 |
20050109563 | Vitale et al. | May 2005 | A1 |
20050119763 | Christensen | Jun 2005 | A1 |
20060041321 | Christensen | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
WO-9217135 | Oct 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20070299544 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60811974 | Jun 2006 | US |