The present invention relates to a high performance prosthetic foot providing improved dynamic response capabilities as these capabilities relate to applied force mechanics.
A jointless artificial foot for a leg prosthesis is disclosed by Martin et al. in U.S. Pat. No. 5,897,594. Unlike earlier solutions wherein the artificial foot has a rigid construction provided with a joint in order to imitate the function of the ankle, the jointless artificial foot of Martin et al. employs a resilient foot insert which is arranged inside a foot molding. The insert is of approximately C-shaped design in longitudinal section, with the opening to the rear, and takes up the prosthesis load with its upper C-limb and via its lower C-limb transmits that load to a leaf spring connected thereto. The leaf spring as seen from the underside is of convex design and extends approximately parallel to the sole region, forward beyond the foot insert into the foot-tip region. The Martin et al. invention is based on the object of improving the jointless artificial foot with regard to damping the impact of the heel, the elasticity, the heel-to-toe walking and the lateral stability, in order thus to permit the wearer to walk in a natural manner, the intention being to allow the wearer both to walk normally and also to carry out physical exercise and to play sports. However, the dynamic response characteristics of this known artificial foot are limited. There is a need for a higher performance prosthetic foot having improved applied mechanics design features which can improve amputee performances involving activities such as walking, running, jumping, sprinting, starting, stopping and cutting, for example.
Other prosthetic feet have been proposed by Van L. Phillips which allegedly provide an amputee with an agility and mobility to engage in a wide variety of activities which were precluded in the past because of the structural limitations and corresponding performances of prior art prostheses. Running, jumping and other activities are allegedly sustained by these known feet which, reportedly, may be utilized in the same manner as the normal foot of the wearer. See U.S. Pat. Nos. 6,071,313; 5,993,488; 5,899,944; 5,800,569; 5,800,568; 5,728,177; 5,728,176; 5,824,112; 5,593,457 5,514,185; 5,181,932; and 4,822,363, for example.
In order to allow the amputee to attain a higher level of performance, there is a need for a high function prosthetic foot having improved applied mechanics, which foot can out perform the human foot and also out perform the prior art prosthetic feet. It is of interest to the amputee athlete to have a high performance prosthetic foot having improved applied mechanics, high low dynamic response, and alignment adjustability that can be fine tuned to improve the horizontal and vertical components of activities which can be task specific in nature.
The prosthetic foot of the present invention addresses these needs. According to an example embodiment disclosed herein, the prosthetic foot of the invention comprises a longitudinally extending foot keel having a forefoot portion at one end, a hindfoot portion at an opposite end and a relatively long midfoot portion extending between and upwardly arched from the forefoot and hindfoot portions. A calf shank including a downward convexly curved lower end is also provided. An adjustable fastening arrangement attaches the curved lower end of the calf shank to the upwardly arched midfoot portion of the foot keel to form an ankle joint area of the prosthetic foot.
The adjustable fastening arrangement permits adjustment of the alignment of the calf shank and the foot keel with respect to one another in the longitudinal direction of the foot keel for tuning the performance of the prosthetic foot. By adjusting the alignment of the opposed upwardly arched midfoot portion of the foot keel and the downward convexly curved lower end of the calf shank with respect to one another in the longitudinal direction of the foot keel, the dynamic response characteristics and motion outcomes of the foot are changed to be task specific in relation to the needed/desired horizontal and vertical linear velocities. A multi-use prosthetic foot is disclosed having high and low dynamic response capabilities, as well as biplanar motion characteristics, which improve the functional outcomes of amputees participating in walking, sporting and/or recreational activities. A prosthetic foot especially for sprinting is also disclosed.
The calf shank in several embodiments has its lower end reversely curved in the form of a spiral with the calf shank extending upward anteriorly from the spiral to an upstanding upper end thereof. This creates a calf shank with an integrated ankle at the lower end thereof, when the calf shank is secured to the foot keel, with a variable radii response outcome similar to a parabola-shaped calf shank of the invention. The calf shank with spiral lower end is secured to the foot keel by way of a coupling element. In several disclosed embodiments the coupling element includes a stop to limit dorsiflexion of the calf shank in gait. According to a feature of several embodiments the coupling element is monolithically formed with the forefoot portion of the foot keel. According to one embodiment the coupling element extends posteriorly as a cantilever over the midfoot portion and part of the hindfoot portion of the foot keel where it is reversely curved upwardly to form an anterior facing concavity in which the lower end of the calf shank is housed. The reversely curved lower end of the calf shank is supported at its end from the coupling element. The resulting prosthesis has improved efficiency. A posterior calf device employing one or a plurality of springs is provided on the prosthesis according to an additional feature of the invention. The posterior calf device can be formed separately from the calf shank and connected thereto or the device and calf shank can be monolithically formed. The device and shank store energy during force loading and return the stored energy during force unloading for increasing the kinetic power generated for propulsive force by the prosthesis in gait.
These and other objects, features and advantages of the present invention become more apparent from a consideration of the following detailed description of disclosed example embodiments of the invention and the accompanying drawings.
Referring now to the drawings, a prosthetic foot 1 in the example embodiment of
An upstanding calf shank 6 of the foot 1 is attached at a portion of a downward convexly curved lower end 7 thereof to a proximate, posterior surface of the keel midfoot portion 5 by way of a releasable fastener 8 and coupling element 11. The fastener 8 is a single bolt with nut and washers in the example embodiment, but could be a releasable clamp or other fastener for securely positioning and retaining the calf shank on the foot keel when the fastener is tightened.
A longitudinally extending opening 9 is formed in a proximate, posterior surface of the keel midfoot portion 5, see
The effects of adjusting the alignment of the calf shank 6 and foot keel 2 are seen from a consideration of
The alignment capability of the calf shank and foot keel in the prosthetic foot of the invention allows the radii to be shifted so that horizontal or vertical linear velocities with the foot in athletic activities are affected. For example, to improve the horizontal linear velocity capability of the prosthetic foot 1, an alignment change can be made to affect the relationship of the calf shank's radius and the foot keel radius. That is, to improve the horizontal linear velocity characteristic, the bottom radius R2, of the foot keel, is made more distal than its start position,
The amputee can, through practice, find a setting for each activity that meets his/her needs as these needs relate to horizontal and vertical linear velocities. A jumper and a basketball player, for example, need more vertical lift than a sprint runner. The coupling element 11 is a plastic or metal alloy alignment coupling (see
The curved lower end 7 of the calf shank 6 is in the shape of a parabola with the smallest radius of curvature of the parabola located at the lower end and extending upwardly, and initially anteriorly in the parabola shape. A posteriorly facing concavity is formed by the curvature of the calf shank as depicted in
The parabolic shaped calf shank responds to initial contact ground forces in human gait by compressing or coiling in on itself. This makes the radii of the parabola curve smaller, and as a consequence, the resistance to compression is decreased. In contrast, as the parabolic shaped calf shank responds to heel off ground reaction forces (GRFs) in human gait by expanding, this makes the radii of the parabola curve larger and as a consequence resistance is much greater than the aforementioned compressive resistance. These resistances are associated with the human's anterior and posterior calf muscle function in human gait. At initial contact to foot flat of human gait, the smaller anterior calf muscle group responds to GRFs by eccentrically contracting to lower the foot to the ground and a dorsiflexion moment is created. From foot flat to toe off the larger posterior calf muscle group responds to GRFs also by eccentrically contracting and a greater plantar flexion moment is created. This moment size relates to the calf anterior and posterior muscle group difference in size. As a consequence, the prosthetic calf shank's resistance to the dorsiflexion and plantar flexion moments in human gait are mimicked and normal gait is achieved. The parabolic curves variable resistance capability mimics the human calf musculature function in human gait and running and jumping activities, and as a consequence prosthetic efficiency is achieved.
The parabolic shaped calf shank angular velocity is affected by the aforementioned compression and expansion modes of operation. As the parabolic shaped calf shank expands to late mid-stance forces, the size of the radii which make up the contour of the shank become larger. This increase in radii size has a direct relationship to an increase in angular velocity. The mathematical formula for ankle joint sagittal plane kinetic power, KP, of the prosthesis is KP=moment×angular velocity. Therefore, any increase in the mechanical form's angular velocity will increase the kinetic power. For example, the calf shanks of
The human utilizes the conservation of energy system to locomote on land. Potential energy, the energy of position, is created in the mid-stance phase of gait. In this single support mid-stance phase of gait, the body's center of mass is raised to its highest vertical excursion. From this high point the center of mass moves forward and down; therefore potential energy is transformed into kinetic energy. This kinetic energy loads mechanical forms, i.e. human soft tissues and resilient prosthetic components, with elastic energy. These mechanical forms are required to efficiently utilize the stored energy to create the kinetic power to do the work of land-based locomotion.
The human foot, ankle and shank with soft tissue support is a machine which has two primarily biomechanical functions in level ground walking. One is to change a vertically oriented ground reaction force into forward momentum and, second, to create the rise and restrict the fall of the body's center of mass. A prosthetic foot, ankle and shank with posterior calf device, also referred to as an artificial muscle device of the present invention must also accomplish these two biomechanical functions. The coiled spring calf shanks 55 of
The human and prosthetic foot, ankle and shank mid-stance to heel-off biomechanical function and operation will now be considered. There are two primary biomechanical functions of the aforementioned machine in this phase of gait. One is to create ankle joint sagittal plane kinetic power to propel the trailing and soon-to-be-swinging limb forward for the next step, and secondarily to lessen the fall of the body's center of mass. Prior art prosthetic feet that utilize a rigid pylon shank cannot store enough elastic energy to create any significant magnitude of kinetic power. The scientific literature suggests that even though these feet have varied mechanical designs, they all function about the same, creating only 25% of normal human ankle joint sagittal plane kinetic power. The Phillips design prostheses and the many other prior art foot, ankle and shank replacements have improved ankle joint sagittal plane kinetic power values in the range of 35 to 40% of normal. This represents a 70% increase in kinetic power function; however, it is significantly compromised. In contrast, the prosthesis of the present invention, with the calf shank 55,
A human being walks at approximately three miles per hour. A four minute miler runs at 12 miles per hour and a ten second, 100 meter sprinter sprints at 21 miles per hour. This is a 1 to 4 to 7 ratio. The horizontal component of each task is greater as the velocity of the activity increases. As a consequence, the size of the prosthetic calf shank radii can be predetermined. A walker needs a smaller radii parabolic curved calf shank than a miler and a sprinter. A sprint runner needs a parabolic curved calf shank that is seven times as large. This relationship shows how to determine the parabolic radii for walkers, runners and sprinters. It is of significance because sprint runners have increased range of motion requirements and their calf shanks must be stronger to accept the increased loads associated with this activity. A wider or larger parabolic calf shank will have a relatively flatter curve, which equates to greater structural strength with increased range of motion.
The proximal length of the resilient shank should be made as long as possible. Any increase in length will increase the elastic energy storage mass and create greater kinetic power. The calf shank's proximal end can attach to the tibial tubercle height of a prosthetic socket worn by a trans-tibial amputee. It could also attach to the proximal anterior aspect of a prosthetic knee housing.
A pylon adapter 13 is connected to the upper end of the calf shank 6 by fasteners 14. The adapter 13 in turn is secured to the lower end of pylon 15 by fasteners 16. Pylon 15 is secured to the lower limb of the amputee by a supporting structure (not shown) attached to the leg stump.
The forefoot, midfoot and hindfoot portions of the foot keel 2 are formed of a single piece of resilient material in the example embodiment. For example, a solid piece of material, elastic in nature (resilient), having shape-retaining characteristics (semi-rigid) when deflected by the ground reaction forces can be employed. More particularly, the foot keel and also the calf shank can be formed of a semi-rigid, resilient metal alloy or a laminated composite material having reinforcing fiber laminated with polymer matrix material. In particular, a high strength graphite, Kevlar, or fiberglass laminated with epoxy thermosetting resins, or extruded plastic utilized under the tradename of Delran, or degassed polyurethane copolymers, may be used to form the foot keel and also the calf shank. The functional qualities associated with these materials afford high strength with low weight and minimal creep. The thermosetting epoxy resins are laminated under vacuum utilizing prosthetic industry standards. The polyurethane copolymers can be poured into negative molds and the extruded plastic can be machined. Each material of use has its advantages and disadvantages. It has been found that the laminated composite material for the foot keel and the calf shank can also advantageously be a thermo-formed (prepreg) laminated composite material manufactured per industry standards, with reinforcing fiber and a thermoplastic polymer matrix material for superior mechanical expansion qualities. A suitable commercially available composite material of this kind is CYLON® made by Cytec Fiberite Inc. of Havre de Grace, Md.
The resilient material's physical properties as they relate to stiffness, flexibility and strength are all determined by the thickness of the material. A thinner material will deflect easier than a thicker material of the same density. The material utilized, as well as the physical properties, are associated with the stiffness to flexibility characteristics in the prosthetic foot keel and calf shank. The thickness of the foot keel and calf shank are uniform or symmetrical in the example embodiment of
To aid in providing the prosthetic foot 1 with a high low dynamic response capability, the midfoot portion 5 is formed by a longitudinal arch such that the medial aspect of the longitudinal arch has a relatively higher dynamic response capability than the lateral aspect of the longitudinal arch. For this purpose, in the example embodiment, the medial aspect of the longitudinal arch concavity is larger in radius than the lateral aspect thereof.
The interrelationship between the medial to lateral radii size of the longitudinal arch concavity of the midfoot portion 5 is further defined as the anterior posterior plantar surface weight bearing surface areas of the foot keel 2. The line T1-T2 on the anterior section of 5 in
The posterior end 17 of the hindfoot portion 4 is shaped in an upwardly curved arch that reacts to ground reaction forces during heel strike by compressing for shock absorption. The heel formed by the hindfoot portion 4 is formed with a posterior lateral corner 18 which is more posterior and lateral than the medial corner 19 to encourage hindfoot eversion during initial contact phase of gait. The anterior end 20 of the forefoot portion 3 is shaped in an upwardly curved arch to simulate the human toes being dorsiflexed in the heel rise toe off position of the late stance phase of gait. Rubber or foam pads 53 and 54 are provided on the lower forefoot and hindfoot as cushions.
Improved biplanar motion capability of the prosthetic foot is created by medial and lateral expansion joint holes 21 and 22 extending through the forefoot portion 3 between dorsal and plantar surfaces thereof. Expansion joints 23 and 24 extend forward from respect ones of the holes to the anterior edge of the forefoot portion to form medial, middle and lateral expansion struts 25-27 which create improved biplanar motion capability of the forefoot portion of the foot keel. The expansion joint holes 21 and 22 are located along a line, B-B in
The angle α of line B-B to longitudinal axis A-A in
The anterior of the hindfoot portion 4 of the foot keel 2 further includes an expansion joint hole 28 extending through the hindfoot portion 4 between dorsal and plantar surfaces thereof. An expansion joint 29 extends posteriorly from the hole 28 to the posterior edge of the hindfoot portion to form expansion struts 30 and 31. These create improved biplanar motion capability of the hindfoot portion of the foot.
A dorsal aspect of the midfoot portion 5 and the forefoot portion 3 of the foot keel 2 form the upwardly facing concavity, 32 in
The importance of biplanar motion capability can be appreciated when an amputee walks on uneven terrain or when the athlete cuts medially or laterally on the foot. The direction of the ground force vector changes from being sagittally oriented to having a frontal plane component. The ground will push medially in opposite direction to the foot pushing laterally. As a consequence to this, the calf shank leans medially and weight is applied to the medial structure of the foot keel. In response to these pressures, the medial expansion joint struts 25 and 31 of the foot keel 2 dorsiflex (deflect upward) and invert, and the lateral expansion joint struts 27 and 30 plantar flex (deflect downwards) and evert. This motion tries to put the plantar surface of the foot flat on the ground (plantar grade).
Another foot keel 33 of the invention, especially for sprinting, may be used in the prosthetic foot of the invention, see
The functional characteristics of the several foot keels for the prosthetic foot 1 are associated with the shape and design features as they relate to concavities, convexities, radii size, expansion, compression, and material physical properties—all of these properties relating, to reacting to, ground forces in walking, running and jumping activities.
The foot keel 42 in
Other calf shanks for the prosthetic foot 1 are illustrated in
All track related running activities take place in a counter-clockwise direction. Another, optional feature of the invention takes into account the forces acting on the foot advanced along such a curved path. Centripetal acceleration acts toward the center of rotation where an object moves along a curved path. Newton's third law is applied for energy action. There is an equal and opposite reaction. Thus, for every “center seeking” force, there is a “center fleeing” force. The centripetal force acts toward the center of rotation and the centrifugal force, the reaction force, acts away from the center of rotation. If an athlete is running around the curve on the track, the centripetal force pulls the runner toward the center of the curve while the centrifugal force pulls away from the center of the curve. To counteract the centrifugal force which tries to lean the runner outward, the runner leans inward. If the direction of rotation of the runner on the track is always counter-clockwise, then the left side is the inside of the track. As a consequence, according to a feature of the present invention, the left side of the right and left prosthetic foot calf shanks can be made thinner than the right side and the amputee runner's curve performance could be improved.
The foot keels 2, 33, 38, 42 and 43 in the several embodiments, are each 29 cm long with the proportions of the shoe 1 shown to scale in
The operation of the prosthetic foot 1 in walking and running stance phase gait cycles will now be considered. Newton's three laws of motion, that relate to law of inertia, acceleration and action-reaction, are the basis for movement kinematics in the foot 2. From Newton's third law, the law of action-reaction, it is known that the ground pushes on the foot in a direction equal and opposite to the direction the foot pushes on the ground. These are known as ground reaction forces. Many scientific studies have been done on human gait, running and jumping activities. Force plate studies show us that Newton's third law occurs in gait. From these studies, we know the direction the ground pushes on the foot.
The stance phase of walking/running activities can be further broken down into deceleration and acceleration phases. When the prosthetic foot touches the ground, the foot pushes anteriorly on the ground and the ground pushes back in an equal and opposite direction—that is to say the ground pushes posteriorly on the prosthetic foot. This force makes the prosthetic foot move. The stance phase analysis of walking and running activities begins with the contact point being the posterior lateral corner 18,
The ground forces cause calf shanks 44, 45, 46, 47, 50 and 51 to compress with the proximal end moving posterior. With calf shanks 48, 49 the distal ½ of the calf shank would compress depending on the distal concavities orientation. If the distal concavity compressed in response to the GRF's the proximal concavity would expand and the entire calf shank unit would move posteriorally. The ground forces cause the calf shank to compress with the proximal end moving posteriorly. The calf shank lower tight radius compresses simulating human ankle joint plantar flexion and the forefoot is lowered by compression to the ground. At the same time the posterior aspect of keel, as represented by hindfoot 4, depicted by 17 compresses upward through compression. Both of these compressive forces act as shock absorbers. This shock absorption is further enhanced by the offset posterior lateral heel 18 which causes the foot to evert, which also acts as a shock absorber, once the calf shank has stopped moving into plantar flexion and with the ground pushing posteriorly on the foot.
The compressed members of the foot keel and calf shank then start to unload—that is they seek their original shape and the stored energy is released—which causes the calf shank proximal end to move anteriorly in an accelerated manner. As the calf shank approaches its vertical starting position, the ground forces change from pushing posteriorly to pushing vertically upward against the foot. Since the prosthetic foot has posterior and anterior plantar surface weight bearing areas and these areas are connected by a non-weight bearing long arch shaped midportion, the vertically directed forces from the prosthesis cause the long arch shaped midportion to load by expansion. The posterior and anterior weight-bearing surfaces diverge. These vertically directed forces are being stored in the long arch midportion of the foot—as the ground forces move from being vertical in nature to anteriorly directed. The calf shank expands—simulating ankle dorsiflexion. This causes the prosthetic foot to pivot off of the anterior plantar weight-bearing surface. As weight unloading occurs, the long arch of the midfoot portion 5 changes from being expanded and it seeks its original shape which creates a simulated plantar flexor muscle group burst. This releases the stored vertical compressed force energy into improved expansion capabilities.
The long arch of the foot keel and the calf shank resist expansion of their respective structures. As a consequence, the calf shank anterior progression is arrested and the foot starts to pivot off the anterior plantar surface weight-bearing area. The expansion of the midfoot portion of the foot keel has as high and low response capability in the case of the foot keels in the example embodiments of
The prosthetic foot longer medial arch has greater dynamic response characteristic than the lateral. The lateral shorter toe lever is utilized when walking or running at slower speeds. The body's center of gravity moves through space in a sinusoidal curve. It moves medial, lateral, proximal and distal. When walking or running at slower speeds, the body's center of gravity moves more medial and lateral than when walking or running fast. In addition, momentum and inertia is less and the ability to overcome a higher dynamic response capability is less. The prosthetic foot of the invention is adapted to accommodate these principles in applied mechanics.
In addition, in the human gait cycle at midstance the body's center of gravity is as far lateral as it will go. From midstance through toe off the body's center of gravity (BCG) moves from lateral to medial. As a consequence, the body's center of gravity progresses over the lateral side of the foot keel 2. First (low gear) and as the BCG progresses forward, it moves medially on foot keel 2 (high gear). As a consequence, the prosthetic foot keel 2 has an automatic transmission effect. That is to say, it starts in low gear and moves into high gear every step the amputee takes.
As the ground forces push anteriorly on the prosthetic foot which is pushing posteriorly on the ground, as the heel begins to rise the anterior portion of the long arch of the midfoot portion is contoured to apply these posteriorly directed forces perpendicular to its plantar surface. This is the most effective and efficient way to apply these forces. The same can be said about the posterior hindfoot portion of the prosthetic foot. It is also shaped so that the posteriorly directed ground forces at initial contact are opposed with the foot keel's plantar surface being perpendicular to their applied force direction.
In the later stages of heel rise, toe off walking and running activities, the ray region of the forefoot portion is dorsiflexed 15°-35°. This upwardly extending arc allows the anteriorly directed ground forces to compress this region of the foot. This compression is less resisted than expansion and a smooth transition occurs to the swing phase of gait and running with the prosthetic foot. In later stages of stance phase of gait, the expanded calf shank and the expanded midfoot long arch release their stored energy adding to the propulsion of the amputee's soon to be swinging lower extremity
One of the main propulsion mechanisms in human gait is called the active propulsion phase. As the heel lifts, the body weight is now forward of the support limb and the center of gravity is falling. As the body weight drops over the forefoot rocker
The posterior aspect of the hindfoot and the forefoot region of the foot keel incorporate expansion joint holes and expansion joint struts in several of the embodiments as noted previously. The orientation of the expansion joint holes act as a mitered hinge and biplanar motion capabilities are improved for improving the total contact characteristics of the plantar surface of the foot when walking on uneven terrain.
The Symes foot keels in
Improved task specific athletic performance can be achieved with alignment changes using the prosthetic foot of the invention, as these alignment changes affect the vertical and horizontal components of each task. The human foot is a multi-functional unit—it walks, runs and jumps. The human tibia fibula calf shank structure on the other hand is not a multi-functional unit. It is a simple lever which applies its forces in walking, running and jumping activities parallel to its long proximal-distal orientation. It is a non-compressible structure and it has no potential to store energy. On the other hand, the prosthetic foot of the invention has dynamic response capabilities, as these dynamic response capabilities are associated with the horizontal and vertical linear velocity components of athletic walking, running and jumping activities and out-performing the human tibia and fibula. As a consequence, the possibility exists to improve amputee athletic performance. For this purpose, according to the present invention, the fastener 8 is loosened and the alignment of the calf shank and the foot keel with respect to one another is adjusted in the longitudinal direction of the foot keel. Such a change is shown in connection with
An alignment change that improves the performance characteristic of a runner who makes initial contact with the ground with the foot flat as in a midfoot strike runner, for example, is one wherein the foot keel is slid anterior relative to the calf shank and the foot plantar flexed on the calf shank. This new relationship improves the horizontal component of running. That is, with the calf shank plantar flexed to the foot, and the foot making contact with the ground in a foot flat position as opposed to initially heel contact, the ground immediately pushes posteriorly on the foot that is pushing anteriorly on the ground. This causes the calf shank to move rapidly forward (by expanding) and downwardly. Dynamic response forces are created by expansion which resists the calf shank's direction of initial movement. As a consequence, the foot pivots over the metatarsal plantar surface weight-bearing area. This causes the midfoot region of the keel to expand which is resisted more than compression. The net effect of the calf shank expansion and the midfoot expansion is that further anterior progression of the calf shank is resisted which allows the knee extenders and hip extenders in the user's body to move the body's center of gravity forward and proximal in a more efficient manner (i.e., improved horizontal velocity). In this case, more forward than up than in the case of a heel toe runner whose calf shank's forward progression is less resisted by the calf shank starting more dorsiflexed (vertical) than a foot flat runner.
To analyze the sprint foot in function, an alignment change of the calf shank and foot keel is made. Advantage is taken of the foot keel having all of its concavities with their longitudinal axis orientation parallel to the frontal plane. The calf shank is plantar flexed and slid posterior on the foot keel. This lowers the distal circles even further than on the flat foot runner with the multi-use foot keel like that in
The sprinters have increased range of motion, forces and momentum (inertia)—momentum being a prime mover. Since their stance phase deceleration phase is shorter than their acceleration phase, increased horizontal linear velocities are achieved. This means that at initial contact, when the toe touches the ground, the ground pushes posteriorly on the foot and the foot pushes anteriorly on the ground. The calf shank which has increased forces and momentum is forced into even greater flexion and downward movement than the initial contact foot flat runner. As a consequence to these forces, the foot's long arch concavity is loaded by expansion and the calf shank is loaded by expansion. These expansion forces are resisted to a greater extent than all the other previously mentioned forces associated with running. As a consequence, the dynamic response capability of the foot is proportional to the force applied. The human tibia fibula calf shank response is only associated with the energy force potential—it is a straight structure and it cannot store energy. These expansion forces in the prosthetic foot of the invention in sprinting are greater in magnitude than all the other previously mentioned forces associated with walking and running. As a consequence, the dynamic response capability of the foot is proportional to the applied forces and increased amputee athletic performance, as compared with human body function, is possible.
The prosthetic foot 53 depicted in
The upper end of the calf shank 55 is formed with an elongated opening 59 for receiving a pylon 15. Once received in the opening, the pylon can be securely clamped to the calf shank by tightening bolts 60 and 61 to draw the free side edges 62 and 63 of the calf shank along the opening together. This pylon connection can be readily adjusted by loosening the bolts, telescoping the pylon relative to the calf shank to the desired position and reclamping the pylon in the adjusted position by tightening the bolts. This shank configuration 55 is advantageous for the pediatric lower extremity amputee. By utilizing a tubular pylon in recepticale 59 the length of the prosthesis can easily accommodate growth length adjustments.
The prosthetic foot 70 according to a further embodiment of the invention is depicted in
The spiral shape at the lower end of the calf shank has a radius of curvature which progressively increases as the calf shank spirals outwardly from a radially inner end 76 thereof and as the calf shank extends upwardly from its lower, spiral end to its upper end, which may be curved or straight. It has been found that this construction creates a prosthetic foot with an integrated ankle and calf shank with a variable radii response outcome similar to the parabola shaped calf shank of the invention, while at the same time allowing the coupling element 73 and the calf shank 72 to be more posterior on the foot keel 71. As a result, the calf shank and coupling element are more centrally concealed in the ankle and leg of a cosmetic covering 77, see
The coupling element 73 is formed of plastic or metal alloy, and is adjustably fastened at its anterior end to the posterior of foot keel 71 by a threaded fastener 78 as shown in
The posterior end of the coupling element includes a cross member 80 which is secured between two longitudinally extending plates 81 and 82 of the coupling element by metal screws 83 and 84 at each end of the cross member. The radially inner end 76 of the spiral 75 is secured to the cross member 80 of the coupling element by a threaded fastener 85 as depicted in
The posterior surface of the cross member 86 supports a wedge 89 formed of plastic or rubber, for example, which is adhesively bonded at 90 to the cross member. The wedge serves as a stop to limit dorsiflexion of the upwardly extending calf shank in gait. The size of the wedge can be selected, wider at 89′ in
A prosthetic socket, not shown, attached to the amputee's lower leg stump can be connected to the upper end of the calf shank 72 via an adapter 92 secured to the upper end of the calf shank by fasteners 93 and 94 as shown in
The prosthetic foot 100 of the embodiment of the invention of
The lower end of the calf shank 105 is reversely curved in the form of a spiral 110. A radially inner end of the spiral 110 is fastened to the coupling element by a connector 111 in the form of a threaded bolt and nut extending through facing openings in the calf shank and the coupling element. The coupling element posterior portion 112 is reversely curved to house the spiral lower end of the calf shank, which is supported at the upper end of the curved portion 112 by the connector 111.
A stop 113 connected to the coupling element of the foot keel by fasteners 114 and 115, limits dorsiflexion of the calf shank. A cosmetic covering anterior of the calf shank in the shape of a human foot and lower leg is optionally located over the foot keel 101 and at least he lower end of the calf shank 105 with the calf shank extending upwardly from the foot keel within the lower leg covering in the manner illustrated and described in connection with the embodiment of
The prosthetic foot 100 of the embodiment of
The prosthetic foot 100 in
A curvilinear spring 118 is adjustably supported at its base on the upper end of the calf shank, for example between the calf shank and an adapter, not shown, secured to the calf shank, with fasteners 119. The lower, free end of the spring is positioned to interact with the flexible strap. When the strap is tensioned the spring changes the direction of the longitudinal extent of the strap. Anterior movement of the upper end of the calf shank in gait tensions/further tensions (if the strap is initially preloaded in tension) the strap and loads/further loads the spring to store energy in force loading of the prosthetic foot in gait. This stored energy is returned by the spring in force unloading of the prosthetic foot to increase the kinetic power generated for propulsive force by the prosthetic foot in gait.
When the strap 116 is shortened using the slide adjustment 117 to initially preload the strap in tension prior to use of the prosthetic foot, the strap tension serves to assist posterior movement of the upper end of the resilient shank as well as control anterior movement of the calf shank during use of the prosthesis. Assisting the posterior movement can be helpful in attaining a rapid foot flat response of the prosthetic foot at heel strike in the initial stance phase of gait akin to that which occurs in a human foot and ankle in gait at heel strike where plantarflexion of the foot occurs.
The assisting posterior movement and the controlling anterior movement of the upper end of the resilient calf shank during use of the prosthesis using the posterior calf device 114 are each effective to change the ankle torque ratio of the prosthetic foot in gait by affecting a change in the sagittal plane flexure characteristic for longitudinal movement of the upper end of the calf shank in response to force loading and unloading during a person's use of the prosthetic foot. The natural physiologic ankle torque ratio in the human foot in gait, defined as the quotient of the peak dorsiflexion ankle torque that occurs in the late terminal stance of gait divided by the plantar flexion ankle torque created in the initial foot flat loading response after heel strike in gait has been reported as 11.33 to 1. An aim of changing the sagittal plane flexure characteristic for longitudinal movement of the upper end of the calf shank using the posterior calf device 114 is to increase the ankle torque ratio of the prosthesis to mimic that which occurs in the human foot in gait. This is important for achieving proper gait with the prosthesis and, for a person with one natural foot and one prosthetic foot, for achieving symmetry in gait. Preferably, through controlling anterior movement and possibly assisting posterior movement using the posterior calf device 114, the ankle torque ratio of the prosthesis is increased so that the peak dorsiflexion ankle torque which occurs in the prosthesis is an order of magnitude greater than the plantar flexion ankle torque therein. More preferably, the ankle torque ratio is increased to a value of about 11 to 1, to compare with the reported natural ankle torque ratio of 11.33 to 1.
A further purpose of the posterior calf device is to improve the efficiency of the prosthetic foot in gait by storing additional elastic energy in the spring 118 of the device during force loading of the prosthesis and to return the stored elastic energy during force unloading to increase the kinetic power generated for propulsive force by the prosthetic foot in gait. The device 114 may be considered to serve the purpose in the prosthetic foot that the human calf musculature serves in the human foot, ankle and calf in gait, namely efficiently generating propulsive force on the person's body in gait utilizing the development of potential energy in the body during force loading of the foot and the conversion of that potential energy into kinetic energy for propulsive force during force unloading of the foot. Approaching or even exceeding the efficiencies of the human foot in the prosthetic foot of the invention with the posterior calf device is important for restoring “normal function” to an amputee for example. The control of anterior movement of the upper end of the calf shank 105 by the posterior calf device 114 is effective to limit the range of anterior movement of the upper end of the calf shank. The foot keel in the prosthetic foot 100 by the expansion of its resilient longitudinal arch in the coupling element 107 and the compression of reversely curved portion 112 of the coupling element also contributes to storing energy during force loading in gait as discussed above. This potential energy is returned as kinetic power for generating propulsive during force unloading in gait.
The prosthesis 120 in
The posterior calf device 123 on the prosthetic foot 120 includes a coiled spring 131 supported at its one end at the upper end of the calf shank for movement therewith. A second, free end of the coiled spring has one end of a flexible elongated member, strap 132, secured thereto by a metal clip 133. The clip is connected at its one end to a first end of the strap and at its other end is hooked over in clamping engagement with the free end of the coiled spring as depicted in
Anterior movement of the upper end of the shank relative to the foot keel and lower end of the shank in gait is yieldably resisted by expansion of the coiled spring 131 and by posterior flexing of the lower end of the retainer member 135 to store energy during force loading of the prosthesis in the late mid-stance phase of gait, which stored energy is released during force unloading thereby contributing to ankle power generation in the prosthesis and improving efficiency. The coiled spring 131 is formed of spring steel in the embodiment but other metal alloys or non-metals such as plastic could be employed. The spring member 135 is formed of carbon fiber encapsulated in epoxy resin in the embodiment but other materials, including a metal alloy, could be used. The flexible strap 132, like the strap 116 in
The prosthesis 140 in the embodiment of
The prosthetic foot 150 of the embodiment of
The posterior calf device 169 in
This concludes the description of the example embodiments. Although the present invention has been described with reference to a number of illustrative embodiments, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this invention. For example, the lower end of the calf shank in the prosthetic foot of the invention is not limited to a parabola shape or a spiral shape but can be hyperbolic or otherwise downward convexly, curvilinearly configured to produce the desired motion outcomes of the foot when connected to the foot keel to form the ankle joint area of the foot. The features of the various embodiments including the materials for construction could also be used with one another. For example, the posterior calf devices of the embodiments of
This application is a U.S. national phase under 35 U.S.C. §371 of international application no. PCT/US2005/011291 filed Apr. 1, 2005 which is a continuation in part of U.S. application Ser. No. 10/814,260 filed Apr. 1, 2004, now U.S. Pat. No. 7,611,534 issued Nov. 3, 2009, and which claims priority of U.S. provisional application Ser. No. 60/558,119 filed Apr. 1, 2004, and which is a continuation in part of U.S. application Ser. No. 10/814,155 filed Apr. 1, 2004, now U.S. Pat. No. 7,410,503 issued Aug. 12, 2008. This application is also a continuation in part of U.S. application Ser. No. 10/473,682 filed Mar. 29, 2002, now U.S. Pat. No. 7,507,259 issued Mar. 24, 2009.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/011291 | 4/1/2005 | WO | 00 | 9/26/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/097009 | 10/20/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
450297 | Neubert | Apr 1891 | A |
640540 | Daniels | Jan 1900 | A |
810180 | Wintermute | Jan 1906 | A |
1502593 | Shrodes | Nov 1923 | A |
2453969 | Carter | Nov 1948 | A |
3335428 | Gajdos | Aug 1967 | A |
4555817 | McKendrick | Dec 1985 | A |
4645509 | Poggie et al. | Feb 1987 | A |
4721510 | Cooper et al. | Jan 1988 | A |
4822363 | Phillips | Apr 1989 | A |
4892554 | Robinson | Jan 1990 | A |
4911724 | Fikes | Mar 1990 | A |
4938776 | Masinter | Jul 1990 | A |
4959073 | Merlette | Sep 1990 | A |
4994086 | Edwards | Feb 1991 | A |
5019109 | Voisin | May 1991 | A |
5062859 | Naeder | Nov 1991 | A |
5066305 | Firth | Nov 1991 | A |
5112356 | Harris et al. | May 1992 | A |
5116383 | Shorter et al. | May 1992 | A |
5139525 | Kristinsson | Aug 1992 | A |
5156632 | Wellershaus | Oct 1992 | A |
5181932 | Phillips | Jan 1993 | A |
5181933 | Phillips | Jan 1993 | A |
5219365 | Sabolich | Jun 1993 | A |
5258039 | Goh et al. | Nov 1993 | A |
5290319 | Phillips | Mar 1994 | A |
5312669 | Bedard | May 1994 | A |
5314499 | Collier, Jr. | May 1994 | A |
5376133 | Gramnas | Dec 1994 | A |
5376139 | Pitkin | Dec 1994 | A |
5376141 | Phillips | Dec 1994 | A |
5387246 | Phillips | Feb 1995 | A |
5443522 | Hiemisch | Aug 1995 | A |
5443527 | Wilson | Aug 1995 | A |
5458656 | Phillips | Oct 1995 | A |
5464441 | Phillips | Nov 1995 | A |
5482513 | Wilson | Jan 1996 | A |
5486209 | Phillips | Jan 1996 | A |
5507838 | Chen | Apr 1996 | A |
5509936 | Rappoport et al. | Apr 1996 | A |
5509937 | Allard et al. | Apr 1996 | A |
5509938 | Phillips | Apr 1996 | A |
5514185 | Phillips | May 1996 | A |
5545230 | Kinsinger et al. | Aug 1996 | A |
5549714 | Phillips | Aug 1996 | A |
5571213 | Allen | Nov 1996 | A |
5593456 | Merlette | Jan 1997 | A |
5593457 | Phillips | Jan 1997 | A |
5653767 | Allen et al. | Aug 1997 | A |
5653768 | Kania | Aug 1997 | A |
5695526 | Wilson | Dec 1997 | A |
5695527 | Allen | Dec 1997 | A |
5702488 | Wood et al. | Dec 1997 | A |
5725598 | Phillips | Mar 1998 | A |
5728176 | Phillips | Mar 1998 | A |
5728177 | Phillips | Mar 1998 | A |
5746773 | Littig | May 1998 | A |
5766264 | Lundt | Jun 1998 | A |
5766265 | Phillips | Jun 1998 | A |
5776205 | Phillips | Jul 1998 | A |
5800568 | Atkinson et al. | Sep 1998 | A |
5800569 | Phillips | Sep 1998 | A |
5824112 | Phillips | Oct 1998 | A |
5897594 | Martin et al. | Apr 1999 | A |
5899944 | Phillips | May 1999 | A |
5944760 | Christensen | Aug 1999 | A |
5976191 | Phillips | Nov 1999 | A |
5993488 | Phillips | Nov 1999 | A |
6051026 | Biedermann et al. | Apr 2000 | A |
6071313 | Phillips | Jun 2000 | A |
6077301 | Pusch | Jun 2000 | A |
6083265 | Shorter et al. | Jul 2000 | A |
6099572 | Mosler et al. | Aug 2000 | A |
6187052 | Molino et al. | Feb 2001 | B1 |
6197066 | Gabourie | Mar 2001 | B1 |
6206932 | Johnson | Mar 2001 | B1 |
6206934 | Phillips | Mar 2001 | B1 |
6228043 | Townsend et al. | May 2001 | B1 |
6241776 | Christensen | Jun 2001 | B1 |
6270468 | Townsend et al. | Aug 2001 | B1 |
6280479 | Phillips | Aug 2001 | B1 |
6290730 | Pitkin et al. | Sep 2001 | B1 |
6350286 | Atkinson et al. | Feb 2002 | B1 |
6402790 | Celebi | Jun 2002 | B1 |
6406500 | Phillips | Jun 2002 | B1 |
6443995 | Townsend et al. | Sep 2002 | B1 |
6514293 | Jang et al. | Feb 2003 | B1 |
6527811 | Phillips | Mar 2003 | B1 |
6562075 | Townsend et al. | May 2003 | B2 |
6602295 | Doddroe et al. | Aug 2003 | B1 |
6663673 | Christensen | Dec 2003 | B2 |
6929665 | Christensen | Aug 2005 | B2 |
7108723 | Townsend et al. | Sep 2006 | B2 |
7172630 | Christensen | Feb 2007 | B2 |
7226485 | Townsend et al. | Jun 2007 | B2 |
7341603 | Christensen | Mar 2008 | B2 |
20020040249 | Phillips | Apr 2002 | A1 |
20020077706 | Phillips | Jun 2002 | A1 |
20020087216 | Atkinson et al. | Jul 2002 | A1 |
20020116072 | Rubie et al. | Aug 2002 | A1 |
20020133237 | Christesen | Sep 2002 | A1 |
20020143408 | Townsend et al. | Oct 2002 | A1 |
20030009238 | Whayne | Jan 2003 | A1 |
20030028256 | Townsend et al. | Feb 2003 | A1 |
20030045944 | Mosler et al. | Mar 2003 | A1 |
20030093158 | Phillips et al. | May 2003 | A1 |
20030120354 | Doddroe et al. | Jun 2003 | A1 |
20030191540 | Townsend et al. | Oct 2003 | A1 |
20070213841 | Townsend et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
2103341 | Apr 1995 | CA |
325171 | Oct 1920 | DE |
19717298 | May 1998 | DE |
298 20 904 | Jun 1999 | DE |
298 23 435 | Sep 1999 | DE |
29920434 | May 2002 | DE |
0 648 479 | Oct 1993 | DK |
0 331 468 | Sep 1989 | EP |
0 648 479 | Apr 1995 | EP |
0793949 | Sep 1997 | EP |
2 640 499 | Jun 1990 | FR |
2 734 151 | Nov 1996 | FR |
2734151 | Nov 1996 | FR |
2 173 569 | Oct 1986 | GB |
9-327473 | Dec 1997 | JP |
11-299815 | Nov 1999 | JP |
3020324 | Jan 2000 | JP |
9227 | Jul 2000 | KZ |
2132665 | Jul 1999 | RU |
2137443 | Sep 1999 | RU |
2153308 | Jul 2000 | RU |
2219877 | Dec 2003 | RU |
WO 9100070 | Jan 1991 | WO |
WO 9410942 | May 1994 | WO |
WO 9717042 | May 1997 | WO |
WO 0071061 | Nov 2000 | WO |
WO 0202034 | Jan 2002 | WO |
WO 0230340 | Apr 2002 | WO |
WO 02078578 | Oct 2002 | WO |
WO 2005097008 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080281436 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60558119 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10814260 | Apr 2004 | US |
Child | 10594798 | US | |
Parent | 10814155 | Apr 2004 | US |
Child | 10814260 | US | |
Parent | 10594798 | US | |
Child | 10814260 | US | |
Parent | 10473682 | Sep 2003 | US |
Child | 10594798 | US |