The present invention generally relates to methods of packaging prosthetic heart valves and, more particularly, to assemblies and methods for sterile storage of dry prosthetic heart valves and their delivery systems.
Heart valve disease continues to be a significant cause of morbidity and mortality, resulting from a number of ailments including rheumatic fever and birth defects. Currently, the primary treatment of aortic valve disease is valve replacement. Worldwide, approximately 300,000 heart valve replacement surgeries are performed annually. About one-half of these patients receive bioprosthetic heart valve replacements, which utilize biologically derived tissues for flexible fluid occluding leaflets.
The most successful bioprosthetic materials for flexible leaflets are whole porcine valves and separate leaflets made from bovine pericardium stitched together to form a tri-leaflet valve. The most common flexible leaflet valve construction includes three leaflets mounted to commissure posts around a peripheral support structure with free edges that project toward an outflow direction and meet or coapt in the middle of the flowstream. A suture-permeable sewing ring is provided around the inflow end.
Bioprosthetic heart valves are conventionally packaged in jars filled with preserving solution for shipping and storage prior to use in the operating theater. To minimize the possibility of damage to the relatively delicate bioprosthetic heart valves, they are stabilized with bracketing structure to prevent them from striking the inside of the jar. Prior to implantation in a patient, the valve is removed from the jar and then rinsed in a shower or immersed and agitated in a saline bath. Prosthetic valves typically have a valve holder centrally located and sutured thereto—to the inflow sewing ring for mitral valves and to the outflow commissure tips for aortic valves.
Glutaraldehyde is widely used as a storage solution due to its sterilant properties but is known to contribute to calcification. Strategies to incorporate chemicals to block or minimize unbound glutaraldehyde residues in the final product have been demonstrated to mitigate in vivo calcification.
One such strategy is to dehydrate the bioprosthetic tissue in a glycerol/ethanol mixture, sterilize with ethylene oxide, and package the final product “dry.” This process eliminates the potential toxicity and calcification effects of glutaraldehyde as a sterilant and storage solution. There have been several methods proposed to use sugar alcohols (i.e., glycerin), alcohols, and combinations thereof as post-glutaraldehyde processing methods so that the resulting tissue is in a “dry” state rather than a wet state with excess glutaraldehyde. Glycerol-based methods can be used for such storage, such as described in Parker et al. (Thorax 1978 33:638). Likewise, U.S. Pat. No. 6,534,004 (Chen et al.) describes the storage of bioprosthetic tissue in polyhydric alcohols such as glycerol. In processes where the tissue is dehydrated in an ethanol/glycerol solution, the tissue may be sterilized by ethylene oxide (ETO), gamma irradiation, or electron beam irradiation.
More recently, Dove, et al. in U.S. Patent Publication No. 2009/0164005 propose solutions for certain detrimental changes within dehydrated tissue that can occur as a result of oxidation. Dove, et al. propose permanent capping of the aldehyde groups in the tissue (reductive amination). Dove, et al. also describe the addition of chemicals (e.g. antioxidants) to the dehydration solution (e.g., ethanol/glycerol) to prevent oxidation of the tissue during sterilization (ethylene oxide, gamma irradiation, electron beam irradiation, etc.) and storage.
In view of the development of dry tissue heart valves, opportunities for alternative packaging for such valves arise that will save money and facilitate deployment in the operating field.
The present application discloses methods of sterile packaging for dry bioprosthetic heart valves in combination with their delivery systems. New tissue treatment technology allows for packaging the tissue valves without liquid glutaraldehyde in a dry package. A double sterile barrier package disclosed herein contains, protects and preserves the dry bioprosthesis during ETO sterilization, transit and storage.
A system for packaging a dry tissue heart valve and its delivery system disclosed herein includes a dry tissue heart valve coupled to its valve delivery system. A primary container sized to receive the dry tissue heart valve coupled to its delivery system has a gas-permeable seal. A secondary container sized to receive the primary container is made of a gas-impermeable material and has a dual seal including a gas-permeable seal and a gas-impermeable seal. The primary container may comprise a flexible pouch or a relatively rigid tray. Likewise, the secondary container may comprise a flexible pouch or a relatively rigid tray. In one embodiment both the primary and secondary containers comprise relatively rigid trays. The secondary container may comprise a non-gas permeable foil label seal or foil pouch. The secondary container may also contain a desiccant.
In accordance with one embodiment, the valve delivery system includes a collapsible handle, which may have telescoping sections. Desirably, the telescoping sections include gas flow apertures open to interior lumens. In another embodiment, the prosthetic heart valve is expandable, and the delivery system includes a balloon catheter. Alternatively, the prosthetic heart valve has a non-expandable valve portion and an expandable stent, and the delivery system includes a balloon catheter.
Another method disclosed herein is for packaging a dry tissue heart valve, and comprises the steps of:
providing a primary container having a gas-permeable seal;
placing a dry tissue heart valve and its delivery system in the primary container and closing the gas-permeable seal;
limiting movement of the heart valve in the primary container while providing gas flow passages around the heart valve;
placing the sealed primary container with heart valve and delivery system therein into a secondary container made of a gas-impermeable material and sealing the secondary container with a gas-permeable seal to form a dual barrier assembly;
subjecting the dual barrier assembly to gas-based sterilization; and
applying a gas-impermeable seal to the secondary container to prevent oxygen or water from passing therethrough.
In the aforementioned method, the step of subjecting comprises exposing the dual barrier assembly to ethylene oxide (ETO) gas. In accordance with a preferred embodiment, the primary container is a tray having an upper surface and a cavity surrounded by an upper rim and descending downward therefrom, the tray being made of gas-impermeable material, wherein the dry tissue heart valve and its delivery system are placed in the tray cavity. Further, the step of sealing the tray includes covering the tray upper surface with a gas-permeable lid. The secondary container may be a second tray having an upper surface and a cavity surrounded by an upper rim and descending downward therefrom. The second tray is made of gas-impermeable material and the cavity is sized to receive the first tray, and the gas-impermeable seal is a gas-impermeable label sealed to the upper rim of the second tray. In one embodiment, the second tray comprises a double flanged upper rim, and further includes a gas-permeable lid sealed to an inner flange and the gas-impermeable label sealed to an outer flange. Or, the secondary container may be a flexible pouch including a gas-impermeable seal, and the pouch may also include a gas-permeable seal inside of the gas-impermeable seal.
In accordance with one embodiment of the present application, a system for handling a heart valve includes a prosthetic heart valve, a heart valve delivery system, and a valve holder removably secured to the prosthetic heart valve. The heart valve delivery system features a collapsible handle with a series of concentric telescoping sections, the handle having a collapsed state and an elongated state. A distal telescoping section of the handle has a locking head projecting in a distal direction. The valve holder includes a handle coupler extending in a proximal direction and having structure sized and shaped to mate with the locking head of the handle so that the prosthetic heart valve extends distally from the distal telescoping section of the handle. In a preferred embodiment, the telescoping sections are generally tubular and gradually enlarge in diameter from the distal telescoping section to a proximal telescoping section. A proximal telescoping section desirably has an ergonomic grip with undulations for receiving fingers of a user.
In one embodiment, the telescoping sections include interfering lips that prevent any one section from passing completely within another section and that prevent the sections from disengaging past the elongated state. The system may further include elastomeric seals between adjacent telescoping sections to provide frictional tightness between the telescoping sections. The locking head is preferably elastomeric and the structure on the handle coupler sized and shaped to mate with the locking head comprises an internal cavity into which the elastomeric locking head closely fits. Desirably, all but a proximal telescoping section include outwardly directed sealing sections on proximal ends thereof, and all but the distal telescoping section include an inwardly-directed lip on distal ends thereof and an inwardly-directed circular feature spaced closely from distal ends thereof. Converting the handle to the elongated state locks each sealing section in a region between the inwardly-directed lip and the inwardly-directed circular feature of the adjacent telescoping section.
The system is particularly useful for handling dry prosthetic tissue valves. The system may further include storage containers for the prosthetic heart valve, heart valve delivery system, and valve holder. For instance, a primary container is sized to receive the heart valve coupled to its holder and the delivery system with the handle in its collapsed state, the primary container having a gas-permeable seal. A secondary container is sized to receive the primary container, the secondary container being made of a gas-impermeable material and having a dual seal including a gas-permeable seal and a gas-impermeable seal. The telescoping sections may include gas flow apertures open to interior lumens to permit good flow during gas sterilization.
Another method for handling a heart valve comprises first procuring a sterile package containing a prosthetic heart valve removable secured to a valve holder. The holder is coupled to a heart valve delivery system having a collapsible handle with a series of concentric telescoping sections. The handle has a collapsed state with a first length and an elongated state with a second length relatively longer than the first length, and the handle is contained in the sterile package in its collapsed state. The method includes removing the valve, holder and handle from the sterile package, converting the handle from its collapsed state to its elongated state, including pulling the telescoping sections to lengthen the handle until adjacent telescoping sections lock together, and delivering and implanting the prosthetic heart valve.
In the preceding method, the telescoping sections are preferably generally tubular and gradually enlarge in diameter from a distal telescoping section to a proximal telescoping section, and wherein the proximal telescoping section has an ergonomic grip with undulations for receiving fingers of a user. The telescoping sections may include interfering lips that prevent any one section from passing completely within another section and that prevent the sections from disengaging past the elongated state. Desirably, elastomeric seals are provided between adjacent telescoping sections to provide frictional tightness between the telescoping sections. In a preferred embodiment, all but a proximal telescoping section include outwardly directed sealing sections on proximal ends thereof, and all but a distal telescoping section include an inwardly-directed lip on distal ends thereof and an inwardly-directed circular feature spaced closely from distal ends thereof, wherein converting the handle to the elongated state locks each sealing section in a region between the inwardly-directed lip and the inwardly-directed circular feature of the adjacent telescoping section. The distal telescoping section of the handle preferably has a locking head projecting in a distal direction and the valve holder includes a handle coupler extending in a proximal direction and having structure sized and shaped to mate with the locking head of the handle so that the prosthetic heart valve extends distally from the distal telescoping section of the handle. Further, the locking head is preferably elastomeric and the structure on the handle coupler sized and shaped to mate with the locking head comprises an internal cavity into which the elastomeric locking head closely fits.
The handling method is particularly useful for dry prosthetic tissue valves and the sterile package contains no liquid preservative. The sterile container may include a primary container and a secondary container, the primary container having a gas-permeable seal and providing gas flow passages therewithin around the heart valve, the sealed primary container being placed within the secondary container. The secondary container includes a dual seal with a gas-permeable seal inside of a gas-impermeable seal capable of preventing oxygen or water from passing therethrough. The method further includes removing the gas-impermeable seal from the secondary container and subjecting the sterile container to gas-based sterilization, removing the gas-permeable seal from the secondary container, removing the gas-permeable seal from the primary container, and performing the step of removing the valve, holder and handle from the sterile package. Preferably, the primary container is a tray having an upper surface and a cavity surrounded by an upper rim and descending downward therefrom, the tray being made of gas-impermeable material, wherein the dry tissue heart valve and its delivery system are placed in the tray cavity. In one embodiment, the secondary container comprises a flexible pouch.
A further understanding of the nature and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.
The invention will now be explained and other advantages and features will appear with reference to the accompanying schematic drawings wherein:
The present invention provides improved packaging systems for dry prosthetic heart valves and their delivery systems that provides an efficient vehicle for gas sterilization, and prevents oxidation of the valve during long-term storage. The packaging systems for storing dry prosthetic tissue heart valves do not require liquid containment.
The present application provides techniques for storing bioprosthetic heart valves, in particular valves that have been dried and are not stored immersed in a preservative solution. The term “dried” or “dry” bioprosthetic heart valves refers simply to the ability to store those heart valves without the preservative solutions. There are a number of proposed methods for drying bioprosthetic heart valves, and for drying tissue implants in general, and the present application provides a storage solution for bioprosthetic heart valves that are processed by any of these methods. A particularly preferred method of drying bioprosthetic heart valves is disclosed in U.S. Patent Publication No. 2008/0102439 to Tian, et al. An alternative drying method is disclosed in U.S. Pat. No. 6,534,004 to Chen, et al. Again, these and other methods for drying bioprosthetic heart valves may be used prior to implementing the storage techniques described herein.
A number of exemplary bioprosthetic heart valves and their delivery systems are shown and described in the present application. Each of these different types of heart valves may be processed so that they are stored dry. The reader will understand that the present methodologies apply to any and all bioprosthetic heart valves that are stored dry, and are not limited to those exemplary valves shown herein. In particular, prosthetic heart valves for implant at any of the four native valve annuluses—aortic, mitral, pulmonary, and tricuspid—may be dried and stored in accordance with the principles described herein.
Additionally, a number of techniques for packaging the dry bioprosthetic heart valves and their delivery systems are illustrated and described herein, though these techniques can also apply to other packaging configurations. In general, a bioprosthetic heart valve must be stored in sterile conditions, which requires at least one sterile container. Preferably, however, a dual-barrier packaging system is used to reduce the chance of contamination of the implant at the time of surgery.
The heart valve 20 comprises a plurality, preferably three, of flexible leaflets 24 that are mounted to a peripheral stent structure 26 and form fluid occluding surfaces within the valve orifice to form a one-way valve. The stent structure 26 includes a plurality of generally axially extending commissures 28 circumferentially distributed around the valve between and in the same number as the number of leaflets 24. Although not shown, additional components of the heart valve 20 typically include an inner stent and/or wireform support structure that provide a structural skeleton surrounding an inflow orifice and extending up the commissures 28. The inner components of the heart valve 20 may be made of suitable metal or plastic. As is well known, adjacent flexible leaflets 24 connect to and extend upward to meet along each of the commissures 28. In the illustrated embodiment, the structural components of the heart valve 20 support each flexible leaflet 24 along a valve cusp 30 and along two commissure 28 edges. A free edge of each leaflet 24 extends inward toward a central flow orifice and coapts, or mates, with the free edges of the other leaflets, as shown. The valve orifice is oriented around an axis along an inflow-outflow direction through the valve. The valve commissures 28 project in the outflow direction, with the convex valve cusps 30 extending in the inflow direction between adjacent commissures. Although not shown, bioprosthetic heart valves often include on the inflow end a sewing ring that conforms to the undulating contours of the valve cusps, or defines a generally circular, planar ring. The present application should not be considered limited to a particular valve construction unless explicitly stated herein.
The flexible leaflets 24 may be made from a variety of bioprosthetic tissue, such as bovine pericardium where the individual leaflets 24 are cut from pericardial sac of a cow. Some recent valves include conditioned leaflets 24 where the thickness of individual leaflets varies at different points, such as being thinner in the middle and thicker around the edges where sutures pass. Techniques such as compression of the pericardium, laser shaving or mechanical skiving may be utilized. An exemplary dry tissue heart valve that may be stored without need for liquid preservatives in the packaging systems described herein may be obtained from Edwards Lifesciences of Irvine, Calif. One preferred tissue treatment process includes applying a calcification mitigant such as a capping agent or an antioxidant to the tissue to specifically inhibit oxidation in dehydrated tissue and reduce in vivo calcification. In one method, tissue leaflets in assembled bioprosthetic heart valves are pretreated with an aldehyde capping agent prior to dehydration and sterilization. Exemplary processes are described in U.S. Patent Application No. 2009-0164005 to Dove, et al., filed Jun. 25, 2009, the disclosure of which is expressly incorporated herein by reference.
As mentioned above, the heart valve 20 is representative of any number of bioprosthetic heart valves, though the one shown is most suited for aortic annulus implant. In particular, the outflow commissures 28 of the valve 20 are secured to a holder 40 on the distal end of the delivery system 22. The illustrated holder 40 has three legs that extend radially outward from a central hub into proximity with the tips of the valve commissures 28 and are secured thereto, though alternatively the holder may have legs that angle outward and axially and couple to the mid-point of the valve cusps 30.
In the orientation shown, the valve 20 is advanced with its inflow end leading. Because most conventional aortic valve deliveries are accomplished through the ascending aorta down to the aortic annulus, the inflow end is the leading or distal end (away from the user) in terms of the delivery orientation. Of course, alternative aortic valve delivery orientations are possible, such as transapically through the left ventricular apex to the aortic annulus. In the same manner, conventional mitral valve deliveries are typically accomplished through the left atrium with the outflow end and commissures 28 as the leading or distal end in terms of the delivery orientation. Thus, for example, a representative mitral heart valve would have its inflow end mounted to the holder and its commissures projecting distally, or to the left in the sense of
Likewise, the particular delivery system 22 exemplifies many delivery systems, which typically include the holder 40 and an elongated handle for manipulation by the surgeon. For instance, many conventional systems utilize a simple elongated rod which may or may not be bendable and which includes a distal male threaded end which couples to a female threaded socket in the holder 40. The exemplary delivery system 22 is particularly well-suited to the storage techniques described herein because it can be collapsed from its extended configuration shown in
During implant, the surgeon manipulates the extended delivery system 22 and advances the heart valve 20 into implant position at the target annulus. Once in position, and typically after anchoring sutures have been deployed between a sewing ring (not shown) and the surrounding native annulus, the surgeon severs the attachment sutures coupling the holder 40 to the valve 20, and removes the delivery system 22.
Now with reference to
The main components of the telescoping delivery system 22—the grip, intermediate, and distal sections—are desirably made of a lightweight and rigid polymer such as ABS (Acrylonitrile-Butadiene-Styrene), though any lightweight material suitable for surgical use may be used. More particularly, materials for the delivery system components may be a heat-extruded or injection-molded polymer, or machined stainless steel, cobalt chrome, Nitinol, or other metal alloy. The plunger rod 74 is also made of a rigid polymer, such as ABS, though the locking head 76 is desirably formed of an elastomeric material such as silicone rubber. Likewise, a pair of O-ring seals 78 interposed between the telescoping sections are each formed of an elastomeric material such as silicone. The O-ring seals 78 provide a degree of frictional tightness between the telescoping sections that rigidifies the elongated assembly to facilitate manipulation of the heart valve 20 during delivery, though using silicone adds lubricity and therefore smoothes relative sliding of the sections.
Referring to the exploded view of
With reference now to
The holder 40 further includes a cylindrical handle coupler 102 extending in a proximal direction. As seen in
In use, the prosthetic heart valve 20 and delivery system 22 are packaged in the collapsed configuration of
Preferably, the lid 112 is closely dimensioned to the perimeter of the upper rim 114, and the band of adhesive is a pressure-seal or a heat seal adhesive to facilitate sealing under pressure and/or temperature. The material of the lid 112 is breathable, or gas-permeable, to permit gas sterilization of the contents sealed within the tray 110, in particular the dry tissue heart valve 20. One suitable gas-permeable material is a sheet of high-density polyethylene fibers, which is difficult to tear but can easily be cut with scissors. The material is highly breathable and water vapor and gasses can pass through the fibers, but not liquid water. For instance, various Tyvek materials from DuPont may be used. Also, exemplary hot-melt adhesives used to secure the lid 112 to the tray 110 may be obtained from Perfecseal or Oliver-Tolas, for example. Such a material permits sterilization of the tray contents using Ethylene Oxide (ETO), which gradually passes through the lid 112 to the interior tray. The lid 112 presents a sterile barrier and prevents ingress of microorganisms. The tray 110 is a gas-impermeable molded material, such as a polyethylene terephthalate copolymer (PETG). Various medical storage materials and packaging suitable for assembly of components of the present application are available from companies such as Dupont, Perfecseal, Oliver-Tolas, and Mangar. Other means of sterilization include gamma irradiation or electron beam irradiation.
Ethylene oxide (ETO), also called oxirane, is the organic compound with the formula C2H4O. It is commonly handled and shipped as a refrigerated liquid. ETO is often used as sterilant because it kills bacteria (and their endospores), mold, and fungi. It is used to sterilize substances that would be damaged by high temperature techniques such as pasteurization or autoclaving. Ethylene oxide is widely used to sterilize the majority of medical supplies such as bandages, sutures, and surgical implements in a traditional chamber sterilization method, where a chamber has most of the oxygen removed (to prevent an explosion) and then is flooded with a mixture of ethylene oxide and other gases that are later aerated.
Certain features of the delivery system 22 and tray 110 facilitate gas sterilization, such as with ETO, though other means such as gamma irradiation or electron beam irradiation could be used. Specifically, the delivery system 22 provides gas flow passages for gas flow in and out of the various components. Good flow of sterilization gas through the components facilitates complete and rapid sterilization of the dry bioprosthetic tissue heart valve 20 and rapid removal of the residual ethylene oxide and ethylene chlorohydrin (ECH) residual gas. With reference to
One advantage of the packaging solutions described herein is a double sterile barrier, wherein the inner and outer sterile containers allow for gas sterilization, such as with ETO, and with a second seal the outer sterile container also provides an oxygen barrier to the product after sterilization. The inner sterile container has been described above with reference to
Desirably, a desiccant is used within the inner and/or the outer packaging layers. For instance, a desiccant pouch may be inserted with the heart valve and delivery system into the inner package, to absorb any residual water vapor trapped therein when the gas-permeable tray lid 112 is closed. A second desiccant pouch may be inserted between the inner and outer barriers to absorb any residual water vapor therein, or it may be the only desiccant pouch used.
The present application describes two different secondary barriers—one a storage tray similar to that described earlier, and the other a flexible pouch. The secondary barrier protects and preserves the primary sterile barrier package in a sterile environment, and prevents oxygen from reaching the heart valve within. A further outer shelf box may be used to facilitate temperature monitoring during distribution and storage, and protect the delicate implant from distribution hazards such as shock, impact and extreme temperatures.
The delivery system 142 includes an elongated catheter 144 having an expansion balloon 146 near a distal end thereof. The prosthetic heart valve 140 mounts around the balloon 146 and is expanded thereby. The system further includes proximal luer connectors 148 for delivery of balloon inflation fluid, passage of a guide wire, or other such functions. In the exemplary embodiment, the prosthetic heart valve 140 includes a plurality of balloon-expandable struts 150 in between three axially-oriented commissure bars 152. Bioprosthetic tissue mounts within the framework created by the struts 150 and bars 152, such as with supplementary fabric.
In a preferred embodiment, the secondary pouch 182 includes the dual seal system mentioned above. In particular, a first gas-permeable portion 192 adjacent an open end (to the left), and a second, larger gas-impermeable portion 194 that is closed on the right end. The entire pouch 182 may be made of the gas-impermeable portion 194, except for a strip of the first portion 192 on the upper layer, or the first portion 192 may form both the upper and lower layers of the pouch adjacent the open end. A first seal 196 extends across the width of the open mouth of the pouch 182 in the area of the first gas-permeable portion 192. The second seal 198 also extends across the width of the pouch 182 but fully within the second gas-impermeable portion 194. During packaging, the primary storage tray 110 is placed within the pouch 182 and the first seal 196 closed, at which time the entire contents are gas-sterilized. After the assembly is sterile, the second seal 198 is closed to prevent any further oxygen ingress to the interior of the pouch 182.
The two seals 196, 198 enable gas sterilization of the contents of the pouch 182 prior to full sealing. More particularly, the first seal 196 may be closed at which time the package may be subject to ETO sterilization. Because the first seal 196 extends across the gas-permeable first portion 192, sterilizing gas can enter the interior of the pouch 182. After sterilization, second seal 198 is closed to prevent any further gas, in particular oxygen, from entering the interior of the pouch 182.
The storage pouch 182 provides a flexible secondary sterile barrier, and may be constructed of various materials or laminates having at least one gas-impermeable layer, with a foil/polyethylene fiber laminate being preferred. An inner layer of the foil material, such as available from Amcor, may feature a laminate of Low Density Polyethylene (LDPE) to facilitate seal under pressure and temperature. A tear notch on the pouch 182 may be provided for easy opening With the second seal 198 closed, the foil pouch 182 provides an oxygen and moisture barrier after ETO sterilization.
The illustrated delivery system 212 includes a handle 220 having a distal end 222 that attaches to the holder 218. The handle 220 includes a through bore that receives an elongated catheter 224 having a balloon 226 on a distal end thereof. Advancement of the catheter 224 through the handle 220 enables positioning of the balloon 226 within the expandable stent 216. More details on such a hybrid prosthetic heart valve 210 and its delivery system 212 are provided in U.S. patent application Ser. No. 12/821,628, filed Jun. 23, 2010, the disclosure of which is expressly incorporated herein by reference. Additionally, an alternative delivery system for such a hybrid prosthetic heart valve is disclosed in U.S. Provisional Patent Application Ser. No. 61/381,931 [ECV-6368PRO], filed Sep. 10, 2010, the disclosure of which is also expressly incorporated herein by reference.
The outer storage tray 250 provides a rigid secondary sterile barrier that protects and preserves the inner sterile barrier formed by the inner storage tray 240 and its lid 242. As with the earlier primary storage trays, the outer storage tray 250 may be constructed of a gas-impermeable molded material, such as a polyethylene terephthalate copolymer (PETG). Once the sealed inner tray 240 is placed within the outer storage tray 250, a gas-permeable lid 254 seals against the flange 252 and permits sterilization gas (e.g., ETO) to reach the spaces within both trays.
Subsequently, a gas-impermeable label 262 sized to cover the secondary storage tray 250 is shown. The label 262 is applied over the sterilized tray 250, and sealed on top of the lid 254. Once pressure adhered or heat sealed against the lid, the label 262 provides a complete barrier to gas transfer. The label 262 preferably includes a layer of metal foil laminated to a layer of a gas-permeable material such as DuPont 1073B Tyvek, or more preferably is a single layer of foil. The label 262 may have information printed thereon about the contents of the packaging, such as implant type, model, manufacturer, serial number, date of packaging, etc. A layer of pressure sensitive adhesive is provided to seal on top of the previously attached lid 254.
Alternatively, the secondary storage tray 250 features a double flange (not shown) around its upper edge. And inner flange may first be sealed with a die-cut and heat seal adhesive coated gas-permeable lid (e.g., Tyvek), such as lid 254, after placement of the inner sterile barrier package, enabling subsequent ETO sterilization of the entire package, and in particular the space between the two sterile barriers. A gas-impermeable label such as the foil label 262 is then sealed to an outer flange.
The packaging solutions disclosed herein facilitate access to prosthetic heart valves and their delivery systems at the time of implantation. The process for removing the hybrid heart valve 210 and delivery system 212 of
Subsequently, the technician detaches the lid 242, exposing the assembly seen in
The packaging assemblies herein provide a number of distinctive advantages to manufacturers of dry prosthetic valves. Due to presence of a gas-permeable sterile barrier such as a Tyvek Header (breathable vent) the product can easily be ETO sterilized and aerated for acceptable levels of residuals. After appropriate aeration time, the outer container, or second barrier, can be sealed (e.g., foil to foil) to prevent long term oxidation of the dry tissue valve. The ETO sterilization obviates traditional oven sterilization, therefore reducing the amount of energy spent in heating the packaged product in an oven for multiple days. Similarly, elimination of autoclaving of the jars and closures before packaging will reduce the energy consumption required in the sterilization process.
As mentioned, the double sterile barrier allows for gas sterilization, such as with ETO, but also provides an oxygen barrier to the product after sterilization. Consequently, the entire assembly can be reliably stored in oxygen-free conditions for extended periods of time, even years, yet the outer sterile container can be removed at the time of use without exposing the contents of the inner sterile container to contaminants. The double layer of packaging enables sterile transfer of the inner package to the sterile operating field, and the inner package can even be temporarily stored for significant periods before the product is used. The new package design will be lighter in weight due to the choice of materials (PETG/Tyvek and air vs. Polypropylene with glutaraldehyde), which will reduce the shipping costs for single unit shipments.
Indeed, the biggest advantage over existing “wet” heart valve package designs is the elimination of storage and handling of liquid glutaraldehyde during the packaging and storage process, as well as the absence of glutaraldehyde at the time of use. This reduces hazards to the health of employees, customers, and patients, as well as the environment. Additionally, disposal of glutaraldehyde is bio-hazardous and therefore OSHA requires neutralization of the chemical before disposal or placement of appropriate controls for disposal. Due to decreased handling and critical storage requirements described herein, the packaging process is rendered less complex. The elimination of glutaraldehyde will not require an increased level of insulation from higher temperatures as the dry tissue valve already has the capability to withstand temperatures as high as 55° C. Therefore this will likely reduce the bulkiness of the design by reducing the size and insulation used for shipping the valve during summers and winters.
Current tissue valves available from Edwards Lifesciences are packaged in a 3.8 oz polypropylene jar/closure system with liquid glutaraldehyde. The presence of liquid glutaraldehyde requires the package design to maintain a state of temperature that will not overheat or freeze the tissue valve. Therefore the current package is bulky and heavier due to presence of EPS (Expanded Polystyrene) foam end caps outside the secondary package (shelf carton) which insulates from extreme temperature conditions. The polypropylene 3.8 oz jar/closure system with liquid glutaraldehyde, secondary package and foam insulation make the package design bulky and heavy resulting in increased space for storage and increased costs for shipping. The current single unit summer pack weighs approximately 0.85 lbs where as the current single unit winter pack weighs approximately 1.85 lbs. The packages disclosed herein are significantly lighter.
While the invention has been described in its preferred embodiments, it is to be understood that the words which have been used are words of description and not of limitation. Therefore, changes may be made within the appended claims without departing from the true scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 13/324,124, filed Dec. 13, 2011, now U.S. Pat. No. 9,498,317, which claims the benefit of U.S. Patent Application No. 61/423,785, filed Dec. 16, 2010, the entire disclosures of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
888855 | Sisco | May 1908 | A |
1404071 | Thompson | Jan 1922 | A |
1780268 | Miller | Nov 1930 | A |
1960279 | Read | May 1934 | A |
2110572 | Foote | Mar 1938 | A |
2623442 | Thaxton | Dec 1952 | A |
2774473 | Williams | Dec 1956 | A |
2838173 | Emery | Jun 1958 | A |
2887215 | Hutchison | May 1959 | A |
3114457 | Knapp | Dec 1963 | A |
3394954 | Sams | Jul 1968 | A |
3554369 | Paschke | Jan 1971 | A |
3642123 | Knox | Feb 1972 | A |
3728839 | Glick | Apr 1973 | A |
3818894 | Wichterle et al. | Jun 1974 | A |
4011947 | Sawyer | Mar 1977 | A |
4085845 | Perfect | Apr 1978 | A |
4101031 | Cromie | Jul 1978 | A |
4182446 | Penny | Jan 1980 | A |
4206844 | Thukamoto et al. | Jun 1980 | A |
4211325 | Wright | Jul 1980 | A |
4329076 | Coreth | May 1982 | A |
4357274 | Werner | Nov 1982 | A |
4657133 | Komatsu et al. | Apr 1987 | A |
4679556 | Lubock et al. | Jul 1987 | A |
4697703 | Will | Oct 1987 | A |
4743231 | Kay et al. | May 1988 | A |
4801015 | Lubock et al. | Jan 1989 | A |
4856648 | Krueger | Aug 1989 | A |
4865871 | Livesey et al. | Sep 1989 | A |
4891319 | Roser | Jan 1990 | A |
5167223 | Koros et al. | Dec 1992 | A |
5200399 | Wettlaufer et al. | Apr 1993 | A |
5236450 | Scott | Aug 1993 | A |
5259508 | Beckerman | Nov 1993 | A |
5292802 | Rhee et al. | Mar 1994 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5306500 | Rhee et al. | Apr 1994 | A |
5336616 | Livesey et al. | Aug 1994 | A |
5476516 | Seifter et al. | Dec 1995 | A |
5480425 | Ogilive | Jan 1996 | A |
5531785 | Love et al. | Jul 1996 | A |
5560487 | Starr | Oct 1996 | A |
5578076 | Krueger et al. | Nov 1996 | A |
5582607 | Lackman | Dec 1996 | A |
5591194 | Berthiaume | Jan 1997 | A |
5615770 | Applebaum et al. | Apr 1997 | A |
5669551 | Sigloch | Sep 1997 | A |
5690226 | N'Guyen | Nov 1997 | A |
5720391 | Dohm et al. | Feb 1998 | A |
5776187 | Krueger et al. | Jul 1998 | A |
5782914 | Schankereli | Jul 1998 | A |
5800531 | Cosgrove et al. | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5823342 | Caudillo et al. | Oct 1998 | A |
5856102 | Bierke-Nelson et al. | Jan 1999 | A |
5868253 | Krueger et al. | Feb 1999 | A |
5972014 | Nevins | Oct 1999 | A |
5980569 | Scirica | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
6090138 | Chasak et al. | Jul 2000 | A |
6102944 | Huynh | Aug 2000 | A |
6126007 | Kari et al. | Oct 2000 | A |
6197053 | Cosgrove et al. | Mar 2001 | B1 |
6199696 | Lytle et al. | Mar 2001 | B1 |
6293970 | Wolfinbarger, Jr. et al. | Sep 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6338740 | Carpentier | Jan 2002 | B1 |
6346094 | West et al. | Feb 2002 | B2 |
6416547 | Erickson et al. | Jul 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6534004 | Chen et al. | Mar 2003 | B2 |
6544289 | Wolfinbarger, Jr. et al. | Apr 2003 | B2 |
6569200 | Wolfinbarger, Jr. et al. | May 2003 | B2 |
6589591 | Mansouri et al. | Jul 2003 | B1 |
6591998 | Haynes et al. | Jul 2003 | B2 |
6622864 | Debbs et al. | Sep 2003 | B1 |
6652594 | Francis et al. | Nov 2003 | B2 |
6723122 | Yang et al. | Apr 2004 | B2 |
6736845 | Marquez et al. | May 2004 | B2 |
6919172 | DePablo et al. | Jul 2005 | B2 |
6962774 | Okuda et al. | Nov 2005 | B2 |
6966925 | Stobie | Nov 2005 | B2 |
6996952 | Gupta et al. | Feb 2006 | B2 |
7063726 | Crouch et al. | Jun 2006 | B2 |
7125418 | Duran et al. | Oct 2006 | B2 |
7176256 | Rhee et al. | Feb 2007 | B2 |
7389874 | Quest et al. | Jun 2008 | B2 |
7699168 | Ryan et al. | Apr 2010 | B2 |
7712606 | Salahieh et al. | May 2010 | B2 |
7806926 | Stobie | Oct 2010 | B2 |
7842084 | Bicer | Nov 2010 | B2 |
7866468 | Kyritsis | Jan 2011 | B2 |
8105375 | Navia et al. | Jan 2012 | B2 |
8187324 | Webler et al. | May 2012 | B2 |
8361144 | Fish et al. | Jan 2013 | B2 |
8652145 | Maimon et al. | Feb 2014 | B2 |
20010023372 | Chen et al. | Sep 2001 | A1 |
20020013621 | Stobie et al. | Jan 2002 | A1 |
20020120328 | Pathak et al. | Aug 2002 | A1 |
20020138137 | Cox | Sep 2002 | A1 |
20030070944 | Nigam | Apr 2003 | A1 |
20030083752 | Wolfinbarger et al. | May 2003 | A1 |
20030121810 | Roshdy | Jul 2003 | A1 |
20030125805 | Johnson et al. | Jul 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030165659 | Yoshimura | Sep 2003 | A1 |
20030203183 | Hester et al. | Oct 2003 | A1 |
20030217415 | Crouch et al. | Nov 2003 | A1 |
20040093004 | Schultz | May 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040148017 | Stobie | Jul 2004 | A1 |
20040176798 | Epstein et al. | Sep 2004 | A1 |
20050027236 | Douk | Feb 2005 | A1 |
20050075725 | Rowe | Apr 2005 | A1 |
20050113910 | Paniagua et al. | May 2005 | A1 |
20050241981 | Gupta et al. | Nov 2005 | A1 |
20050246035 | Wolfinbarger et al. | Nov 2005 | A1 |
20050268573 | Yan | Dec 2005 | A1 |
20060073592 | Sun et al. | Apr 2006 | A1 |
20060155363 | LaDuca et al. | Jul 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060265053 | Hunt | Nov 2006 | A1 |
20070061008 | Salahieh et al. | Mar 2007 | A1 |
20070104395 | Kinigakis et al. | May 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070244551 | Stobie | Oct 2007 | A1 |
20070255390 | Ducke et al. | Nov 2007 | A1 |
20070260301 | Chuter et al. | Nov 2007 | A1 |
20080033545 | Bergin | Feb 2008 | A1 |
20080071367 | Bergin et al. | Mar 2008 | A1 |
20080082163 | Woo | Apr 2008 | A1 |
20080102439 | Tian et al. | May 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080183181 | Treacy et al. | Jul 2008 | A1 |
20080200977 | Paul | Aug 2008 | A1 |
20090099650 | Bolduc | Apr 2009 | A1 |
20090130162 | Pathak et al. | May 2009 | A2 |
20090138072 | Gendreau | May 2009 | A1 |
20090164005 | Dove et al. | Jun 2009 | A1 |
20090182405 | Arnault De La Menardiere et al. | Jul 2009 | A1 |
20090236253 | Merckle et al. | Sep 2009 | A1 |
20090292262 | Adams et al. | Nov 2009 | A1 |
20100084459 | Little | Apr 2010 | A1 |
20100161036 | Pintor | Jun 2010 | A1 |
20100174363 | Castro | Jul 2010 | A1 |
20100331972 | Pintor | Dec 2010 | A1 |
20110137409 | Yang et al. | Jun 2011 | A1 |
20110137410 | Hacohen | Jun 2011 | A1 |
20110147251 | Hodshon et al. | Jun 2011 | A1 |
20110214398 | Liburd | Sep 2011 | A1 |
20110240511 | Bolton et al. | Oct 2011 | A1 |
20110301700 | Fish | Dec 2011 | A1 |
20120271281 | Schertiger | Oct 2012 | A1 |
20150175331 | Sheu | Jun 2015 | A1 |
20170056149 | Rajpara et al. | Mar 2017 | A1 |
20190358018 | Rajpara | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
102006027304 | Dec 2007 | DE |
0169259 | Jan 1986 | EP |
2005132491 | May 2005 | JP |
2009528089 | Aug 2009 | JP |
9510314 | Apr 1995 | WO |
9640345 | Dec 1996 | WO |
9807452 | Feb 1998 | WO |
0041649 | Jul 2000 | WO |
03006179 | Jan 2003 | WO |
2004006810 | Jan 2004 | WO |
2005073091 | Aug 2005 | WO |
2007101159 | Sep 2007 | WO |
2008035337 | Mar 2008 | WO |
2010068527 | Jun 2010 | WO |
2011109630 | Sep 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20170073099 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
61423785 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13324124 | Dec 2011 | US |
Child | 15357998 | US |