The present invention relates generally to prosthetic heart valves, and specifically to prosthetic heart values configured for transfemoral delivery.
Aortic valve replacement in patients with severe valve disease is a common surgical procedure. The replacement is conventionally performed by open heart surgery, in which the heart is usually arrested and the patient is placed on a heart bypass machine. In recent years, prosthetic heart valves have been developed which are implanted using minimally invasive procedures such as transapical or percutaneous approaches. These methods include compressing the prosthesis radially to reduce its diameter, inserting the prosthesis into a delivery tool, such as a catheter, and advancing the delivery tool to the correct anatomical position in the heart. Once properly positioned, the prosthesis is deployed by radial expansion within the native valve annulus.
PCT Publication WO 05/002466 to Schwammenthal et al., relevant portions of which are incorporated herein by reference, describes prosthetic devices for treating aortic stenosis.
PCT Publication WO 06/070372 to Schwammenthal et al., relevant portions of which are incorporated herein by reference, describes a prosthetic device having a single flow field therethrough, adapted for implantation in a subject, and shaped so as to define a fluid inlet and a diverging section, distal to the fluid inlet.
US Patent Application Publication 2006/0149630 to Schwammenthal et al., relevant portions of which are incorporated herein by reference, describes a prosthetic device including a valve-orifice attachment member attachable to a valve in a blood vessel and including a fluid inlet, and a diverging member that extends from the fluid inlet, the diverging member including a proximal end near the fluid inlet and a distal end distanced from the proximal end. A distal portion of the diverging member has a larger cross-sectional area for fluid flow therethrough than a proximal portion thereof.
US Patent Application Publication 2004/0236411 to Sarac et al., relevant portions of which are incorporated herein by reference, describes a prosthetic valve for replacing a cardiac valve, which includes an expandable support member and at least two valve leaflets made of a first layer of biological material selected from peritoneal tissue, pleural tissue or pericardial tissue. A second layer of biological material is attached to the support member. The second layer is also made from peritoneal tissue, pleural tissue or pericardial tissue. The second layer includes a radially inwardly facing surface that defines a conduit for directing blood flow. The valve leaflets extend across the conduit to permit unidirectional flow of blood through the conduit. Methods for making and implanting the prosthetic valve are also described.
US Patent Application Publication 2006/0259136 to Nguyen et al., relevant portions of which are incorporated herein by reference, describes a heart valve prosthesis having a self-expanding multi-level frame that supports a valve body comprising a skirt and plurality of coapting leaflets. The frame transitions between a contracted delivery configuration that enables percutaneous transluminal delivery, and an expanded deployed configuration having an asymmetric hourglass shape. The valve body skirt and leaflets are constructed so that the center of coaptation may be selected to reduce horizontal forces applied to the commissures of the valve, and to efficiently distribute and transmit forces along the leaflets and to the frame. Alternatively, the valve body may be used as a surgically implantable replacement valve prosthesis.
The following patents and patent application publications, relevant portions of which are incorporated herein by reference, are of interest:
US Patent Application Publication 2005-0197695 to Stacchino et al.
U.S. Pat. No. 6,312,465 to Griffin et al.
U.S. Pat. No. 5,908,451 to Yeo
U.S. Pat. No. 5,344,442 to Deac
U.S. Pat. No. 5,354,330 to Hanson
US Patent Application Publication 2004-0260389 to Case et al.
U.S. Pat. No. 6,730,118 to Spencer et al.
U.S. Pat. No. 7,018,406 to Seguin et al.
U.S. Pat. No. 7,018,408 to Bailey et al.
U.S. Pat. No. 6,458,153 and US Patent Application Publication 2003-0023300 to Bailey et al.
US Patent Application Publication 2004-0186563 to Lobbi
US Patent Application Publication 2003-0130729 to Paniagua et al.
US Patent Application Publication 2004-0236411 to Sarac et al.
US Patent Application Publication 2005-0075720 to Nguyen et al.
US Patent Application Publication 2006-0058872 to Salahieh et al.
US Patent Application Publication 2005-0137688 to Salahieh et al.
US Patent Application Publication 2005-0137690 to Salahieh et al.
US Patent Application Publication 2005-0137691 to Salahieh et al.
US Patent Application Publication 2005-0143809 to Salahieh et al.
US Patent Application Publication 2005-0182483 to Osborne et al.
US Patent Application Publication 2005-0137695 to Salahieh et al.
US Patent Application Publication 2005-0240200 to Bergheim
US Patent Application Publication 2006-0025857 to Bergheim et al.
US Patent Application Publication 2006-0025855 to Lashinski et al.
US Patent Application Publication 2006-0047338 to Jenson et al.
US Patent Application Publication 2006-0052867 to Revuelta et al.
US Patent Application Publication 2006-0074485 to Realyvasquez
US Patent Application Publication 2003-0149478 to Figulla et al.
U.S. Pat. No. 7,137,184 to Schreck
U.S. Pat. No. 6,296,662 to Caffey
U.S. Pat. No. 6,558,418 to Carpentier et al.
U.S. Pat. No. 7,267,686 to DiMatteo et al.
In some embodiments of the present invention, a prosthetic heart valve prosthesis comprises a collapsible support frame and a prosthetic valve. The support frame is typically shaped so as to define three commissural posts to which the prosthetic valve is coupled, and an upstream skirt that is configured to apply an axial force in a downstream direction on an upstream side of the native annulus and left ventricular outflow tract (LVOT). A portion of cells of the support frame are shaped so as to define a plurality of outwardly-extending short axial support arches, which extend in a radially outward direction (away from the central longitudinal axis of the prosthesis). The shape of the support frame allows the valve prosthesis to be implanted such that an upstream section of the prosthesis is positioned upstream to the native annulus of the patient, while the axial support arches protrude over the tips of the native leaflets, and collectively define an outer diameter that is greater than the diameter of the tips of the native leaflets. The axial support arches are distributed around the circumference of the frame such that, depending on the rotational orientation of the valve prosthesis, the arches engage and rest against either a native valve commissure (riding astride the commissure) or a leaflet tip, such that the valve prosthesis is anchored axially regardless of the rotational orientation of the prosthesis. The axial support arches are sized so as to not extend to the floors of the aortic sinuses.
The support frame applies an axial force to the native valve complex from below and above the complex, anchoring the valve prosthesis in place, and inhibiting migration of the prosthetic valve both upstream and downstream. This configuration also allows the valve prosthesis to apply outward radial force to the native valve, in order to prevent blood leakage between the valve prosthesis and the native valve. Such outward radial force typically does not substantially aid with fixation of the valve prosthesis at the native valve complex.
There is therefore provided, in accordance with an embodiment of the present invention, apparatus including a valve prosthesis for attachment to a native valve complex of a subject, the prosthesis including:
a support frame, which is shaped so as to define:
a plurality of axial support arches, which extend in a radially outward direction, and are configured to apply, regardless of a rotational orientation of the support frame with respect to the native valve complex, an upstream axial force to a downstream side of one or more native structures selected from the group consisting of: native leaflet tips of the native valve complex, and native valve commissures, and
an upstream skirt, which is configured to apply a downstream axial force on an upstream side of the native valve complex; and
a prosthetic heart valve, coupled to a portion of the support frame.
For some applications, the axial support arches extend in an upstream and radially outward direction. For other applications, the axial support arches extend radially outward in a direction orthogonal to a central longitudinal axis of the prosthesis. Typically, the axial support arches protrude radially outward over the native leaflet tips. Typically, the axial support arches are sized so as to not extend to floors of aortic sinuses of the native valve complex.
For some applications, the support frame is configured to assume a radially collapsed position for delivery to the native valve complex, and a radially expanded position upon implantation at the native valve complex.
For some applications, the support frame is shaped so as to define a multiple of three of the axial support arches. For some applications, a longitudinal distance from an upstream-most portion of each of the axial support arches to a downstream-most portion of the axial support arch is no more than 15 mm.
For some applications, the support frame is shaped so as to define a plurality of commissural posts, and at least one end of each of the axial support arches is coupled to one of the commissural posts.
For some applications, the axial support arches extend in the upstream and radially outward direction at an angle of between 110 and 30 degrees with respect to a central longitudinal axis of the prosthesis.
For some applications, the valve prosthesis is configured to not radially squeeze native leaflets of the native valve complex between any elements of the valve prosthesis. Typically, the valve prosthesis is configured such that the upstream and downstream axial forces together anchor the valve prosthesis to the native valve complex.
For some applications, the prosthetic valve is coupled to a downstream section of the support frame, the support frame is shaped so as to define a throat section longitudinally between the upstream skirt and the downstream section, a cross-sectional area of the valve prosthesis gradually decreases from the upstream skirt to the throat section, and gradually increases from the throat section to the downstream section, and a cross-sectional area of the throat section is less than a cross-sectional area of an aortic annulus of the native valve complex.
There is further provided, in accordance with an embodiment of the present invention, a method including:
providing a valve prosthesis, which includes (a) a support frame, which is shaped so as to define (i) a plurality of axial support arches, which extend in a radially outward direction, and (ii) an upstream skirt, and (b) a prosthetic heart valve, coupled to a portion of the support frame; and
positioning the valve prosthesis at a native valve complex of a subject, such that:
the axial support arches apply, regardless of a rotational orientation of the support frame with respect to the native valve complex, an upstream axial force to a downstream side of one or more native structures selected from the group consisting of: native leaflet tips of the native valve complex, and native valve commissures, and
the upstream skirt applies a downstream axial force on an upstream side of the native valve complex.
For some applications, providing the valve prosthesis includes providing the valve prosthesis such that the axial support arches extend in an upstream and radially outward direction. For other applications, providing the valve prosthesis includes providing the valve prosthesis such that the axial support arches extend radially outward in a direction orthogonal to a central longitudinal axis of the prosthesis.
For some applications, positioning the valve prosthesis does not include rotationally aligning the valve prosthesis with respect to the native valve complex.
For some applications, positioning the valve prosthesis includes positioning the valve prosthesis such that the axial support arches protrude radially outward over the native leaflet tips. For some applications, positioning the valve prosthesis includes positioning the valve prosthesis such that the axial support arches do not extend to floors of aortic sinuses of the native valve complex.
For some applications, positioning the valve prosthesis includes: radially collapsing the support frame prior to delivery of the valve prosthesis to the native valve complex; transluminally delivering the valve prosthesis to a vicinity of the native valve complex while the support frame is radially collapsed; and radially expanding the support frame at the native valve complex.
Typically, positioning the valve prosthesis includes positioning the valve prosthesis such that the upstream and downstream axial forces together anchor the valve prosthesis to the native valve complex.
The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings.
Valve prosthesis 30 is configured to be implanted in a native diseased valve of a patient, such as a native stenotic aortic or pulmonary valve, using a minimally-invasive approach, such as a beating heart endovascular retrograde transaortic, e.g. transfemoral, procedure. Support frame 40 is typically collapsed or crimped so that its diameter is reduced in order to facilitate loading onto a catheter or cannula for delivery to the native valve site during a minimally-invasive delivery procedure, as described hereinbelow with reference to
Support frame 40 is typically shaped to define an upstream section 22, a throat section 24, and a downstream section 26 (as indicated in
Typically, support frame is elastic, and is shaped so as to define a plurality of collapsible cells. For example, the support frame may be fabricated by cutting a solid tube. The cells may be diamond-shaped, parallelogram-shaped, or otherwise shaped to be conducive to collapsing the frame. Downstream section 26 is typically shaped so as to define bulging upstream skirt 31, which is configured to apply a downstream axial force directed toward the ascending aorta. Optionally, skirt 31 is shaped so as to define one or more barbs 32 positioned circumferentially such that the barbs pierce the native vale annulus in order to provide better anchoring. Typically, valve prosthesis 30 further comprises a skirt covering 35 which is coupled to upstream skirt 31, such as by sewing the covering within the skirt (configuration shown in
Typically, a portion of the cells of support frame 40 are shaped to define a plurality of outwardly-extending short axial support arches 33, which extend in a radially outward direction (away from central longitudinal axis 16). For some applications, axial support arches 33 also extend in an upstream direction (as shown in the figures), while for other applications, the axial support arches extend in a downstream direction, or in a direction orthogonal to central longitudinal axis 16 (configurations not shown). Axial support arches 33 are distributed around the circumference of the frame at a predetermined height from the upstream end of the frame, and may be either evenly (as shown in
For some applications, as shown in
The shape of support frame 40 allows valve prosthesis 30 to be implanted such that upstream section 22 is positioned upstream to the native annulus of the patient, while axial support arches 33 protrude over the tips of the native leaflets, and collectively define an outer diameter D that is greater than the diameter of the tips of the native leaflets. Axial support arches 33 flare out laterally in an upstream direction during deployment at an angle β with central longitudinal axis 16 of valve prosthesis 30. Angle β is typically between about 170 and about 10 degrees, such as between about 110 and about 30 degrees. Axial support arches 33 are radially distributed around the frame such that, depending on the rotational orientation of valve prosthesis 30, the axial support arches engage and rest against either a native valve commissure (riding astride the commissure) or a leaflet tip, such that the valve prosthesis is anchored axially regardless of the rotational orientation of the prosthesis, as described in more detail hereinbelow with reference to
Although exactly three commissural posts 34 are shown in the figures, for some applications valve prosthesis 30 comprises fewer or more posts 34, such as two posts 34, or four or more posts 34. It is noted that approximately 90% of humans have exactly three aortic sinuses. The three posts provided in most embodiments correspond to these three aortic sinuses. For implantation in the approximately 10% of patients that have exactly two aortic sinuses, prosthesis 30 may include exactly two posts.
Valve prosthesis 30 is shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
For some applications, prosthesis 30 is implanted using some of the techniques described with reference to
Feelers 261 are initially partially retracted into an outer tube 264, such that only a small portion of the feelers extend out through slits 262 defined by the outer tube, and rest against an outer surface of the outer tube, as shown in
In the present patent application, including in the claims, the word “downstream” means near or toward the direction in which the blood flow is moving, and “upstream” means the opposite direction. For embodiments in which the valve prosthesis is implanted at the aortic valve, the aorta is downstream and the ventricle is upstream. As used in the present patent application, including in the claims, the “native valve complex” includes the native semilunar valve leaflets, the annulus of the valve, the subvalvular tissue on the ventricular side, and the lower half of the semilunar sinuses. As used in the present application, including in the claims, a “native semilunar valve” is to be understood as including: (a) native semilunar valves that include their native leaflets, and (b) native semilunar valves, the native leaflets of which have been surgically excised or are otherwise absent.
For some applications, techniques described herein are performed in combination with techniques described in a US provisional patent application filed on even date herewith, entitled, “Prosthetic heart valve having identifiers for aiding in radiographic positioning,” which is assigned to the assignee of the present application and is incorporated herein by reference.
The scope of the present invention includes embodiments described in the following applications, which are assigned to the assignee of the present application and are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of any appended claims. All figures, publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
The present application claims the benefit of: (a) U.S. Provisional Application No. 60/978,794, filed Oct. 10, 2007, entitled, “Prosthetic heart valve specially adapted for transfemoral delivery,” and (b) a US provisional application Ser. No. ______, filed Sep. 15, 2008, entitled, “Prosthetic heart valve for transfemoral delivery,” both of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60978794 | Oct 2007 | US |