Prosthetic heart valve having identifiers for aiding in radiographic positioning

Information

  • Patent Grant
  • 10806570
  • Patent Number
    10,806,570
  • Date Filed
    Thursday, March 29, 2018
    6 years ago
  • Date Issued
    Tuesday, October 20, 2020
    4 years ago
Abstract
A prosthetic heart valve having identifiers for aiding in radiographic positioning is described.
Description
FIELD OF THE INVENTION

The present invention relates generally to prosthetic heart valves, and specifically to techniques for accurately positioning such valves during implantation procedures.


BACKGROUND

Aortic valve replacement in patients with severe valve disease is a common surgical procedure. The replacement is conventionally performed by open heart surgery, in which the heart is usually arrested and the patient is placed on a heart bypass machine. In recent years, prosthetic heart valves have been developed which are implanted using minimally invasive procedures such as transapical or percutaneous approaches. These methods involve compressing the prosthesis radially to reduce its diameter, inserting the prosthesis into a delivery tool, such as a catheter, and advancing the delivery tool to the correct anatomical position in the heart. Once properly positioned, the prosthesis is deployed by radial expansion within the native valve annulus.


While these techniques are substantially less invasive than open heart surgery, the lack of line-of-sight visualization of the prosthesis and the native valve presents challenges, because the physician cannot see the actual orientation of the prosthesis during the implantation procedure. Correct positioning of the prostheses is achieved using radiographic imaging, which yields a two-dimensional image of the viewed area. The physician must interpret the image correctly in order to properly place the prostheses in the desired position. Failure to properly position the prostheses sometimes leads to device migration or to improper functioning. Proper device placement using radiographic imaging is thus critical to the success of the implantation.


PCT Publication WO 05/002466 to Schwammenthal et al., which is assigned to the assignee of the present application and is incorporated herein by reference, describes prosthetic devices for treating aortic stenosis.


PCT Publication WO 06/070372 to Schwammenthal et al., which is assigned to the assignee of the present application and is incorporated herein by reference, describes a prosthetic device having a single flow field therethrough, adapted for implantation in a subject, and shaped so as to define a fluid inlet and a diverging section, distal to the fluid inlet.


US Patent Application Publication 2006/0149360 to Schwammenthal et al., which is assigned to the assignee of the present application and is incorporated herein by reference, describes a prosthetic device including a valve-orifice attachment member attachable to a valve in a blood vessel and including a fluid inlet, and a diverging member that extends from the fluid inlet, the diverging member including a proximal end near the fluid inlet and a distal end distanced from the proximal end. A distal portion of the diverging member has a larger cross-sectional area for fluid flow therethrough than a proximal portion thereof.


US Patent Application Publication 2005/0197695 to Stacchino et al., describes a cardiac-valve prosthesis adapted for percutaneous implantation. The prosthesis includes an armature adapted for deployment in a radially expanded implantation position, the armature including a support portion and an anchor portion, which are substantially axially coextensive with respect to one another. A set of leaflets is coupled to the support portion. The leaflets can be deployed with the armature in the implantation position. The leaflets define, in the implantation position, a flow duct that is selectably obstructable. The anchor portion can be deployed to enable anchorage of the cardiac-valve prosthesis at an implantation site.


The following patents and patent application publications, are set forth as background:

  • U.S. Pat. No. 6,312,465 to Griffin et al.
  • U.S. Pat. No. 5,908,451 to Yeo
  • U.S. Pat. No. 5,344,442 to Deac
  • U.S. Pat. No. 5,354,330 to Hanson
  • US Patent Application Publication 2004/0260389 to Case et al.
  • U.S. Pat. No. 6,730,118 to Spencer et al.
  • U.S. Pat. No. 7,018,406 to Seguin et al.
  • U.S. Pat. No. 7,018,408 to Bailey et al.
  • U.S. Pat. No. 6,458,153 and US Patent Application Publication 2003/0023300 to Bailey et al.
  • US Patent Application Publication 2004/0186563 to Lobbi
  • US Patent Application Publication 2003/0130729 to Paniagua et al.
  • US Patent Application Publication 2004/0236411 to Sarac et al.
  • US Patent Application Publication 2005/0075720 to Nguyen et al.
  • US Patent Application Publication 2006/0058872 to Salahieh et al.
  • US Patent Application Publication 2005/0137686 Salahieh et al.
  • US Patent Application Publication 2005/0137690 to Salahieh et al.
  • US Patent Application Publication 2005/0137691 to Salahieh et al.
  • US Patent Application. Publication 2005/0143809 to Salahieh et al.
  • US Patent Application Publication 2005/0182483 to Osborne et al.
  • US Patent Application Publication 2005/0137695 to Salahieh et al.
  • US Patent Application Publication 2005/0240200 to Bergheim
  • US Patent Application Publication 2006/0025857 to Bergheim et al.
  • US Patent Application Publication 2006/0025855 to Lashinski et al.
  • US Patent Application Publication 2006/0047338 to Jenson et al.
  • US Patent Application Publication 2006/0052867 to Revuelta et al.
  • US Patent Application Publication 2006/0074485 to Realyvasquez
  • US Patent Application Publication 2006/0259136 to Nguyen et al.
  • U.S. Pat. No. 7,137,184 to Schreck
  • U.S. Pat. No. 6,296,662 to Caffey


SUMMARY

In some embodiments of the present invention, a prosthetic heart valve prosthesis comprises three commissural posts to which are coupled a prosthetic valve. The commissural posts are shaped so as define therethrough respective openings that serve as radiographic identifiers during an implantation procedure. During the procedure, the valve prosthesis, including the commissural posts, is initially collapsed within a delivery tube. Before expanding the valve prosthesis, a physician uses radiographic imaging, such as x-ray fluoroscopy, to provide visual feedback that aids the physician in rotationally aligning the commissural posts with respective native commissures of a native semilunar valve. The identifiers strongly contrast with the rest of the commissural posts and the valve prosthesis, which comprise a radiopaque material. Without such identifiers, it is generally difficult to three-dimensionally visually distinguish the commissural posts from one another and from the rest of the valve prosthesis, because the radiographic imaging produces a two-dimensional representation of the three-dimensional valve prosthesis. When the valve prosthesis is in a collapsed state, the elements thereof overlap in a two-dimensional image and are generally indistinguishable.


In some embodiments of the present invention, the physician selects one of the commissural posts having a radiographic identifier, and attempts to rotationally align the selected post with one of the native commissures, such as the commissure between the left and right coronary sinuses. Because the radiographic image is two-dimensional, all of the posts appear in the image as though they are in the same plane. The physician thus cannot distinguish between two possible rotational positions of the posts: (1) the desired rotational position, in which the selected post faces the desired native commissure, and (2) a rotational position 180 degrees from the desired rotational position, in which the selected post faces the side of the native valve opposite the desired native commissure. For example, if the desired native commissure is the commissure between the left and right coronary sinuses, in position (2) the post is rotationally aligned with the noncoronary sinus, although this undesired rotation is not apparent in the radiographic image.


To ascertain whether the posts are in rotational Position (1) or (2), the physician slightly rotates the valve prosthesis. If the radiographic identifier on the selected post appears to move in the radiographic image in the same direction as the rotation, the selected post is correctly rotationally aligned in the desired position (1). If, on the other hand, the radiographic identifier appears to move in the direction opposite the direction of rotation, the selected post is incorrectly rotationally aligned in position (2). To correct the alignment, the physician may rotate the valve prosthesis approximately 60 degrees in either direction, thereby ensuring that one of the two other posts is now rotationally aligned in position (1). (The valve prosthesis typically has three-fold rotational symmetry, such that rotation of 60 degrees is sufficient to properly align one of the posts with the selected native commissure, and the prosthesis need not be rotated a full 180 degrees.) In these embodiments, the openings through the posts that define the radiographic identifiers may assume any convenient shape, such as a slit.


In some embodiments of the present invention, the openings that define the radiographic identifiers are shaped to be reflection-asymmetric along respective post axes that are generally parallel with a central longitudinal axis of the prosthesis when the posts assume their collapsed position. For example, the identifiers may be shaped as one or more reflection-asymmetric characters, such as numbers or letters of the alphabet, e.g., B, C, D, E, etc. The physician can thus readily identify the true orientation of the selected post that appears to be rotationally aligned with the selected native commissure. If the identifier on the selected post appears in the correct left-right orientation, the selected post is aligned in the desired position (1). If, on the other hand, the identifier appears as the mirror image of its correct left-right orientation, the selected post is incorrectly rotationally aligned in position (2). To correct the alignment, the physician may rotate the valve prosthesis approximately 60 degrees in either direction, thereby ensuring that one of the two other posts is now rotationally aligned in position (1).


There is therefore provided, in accordance with an embodiment of the present invention, apparatus including a valve prosthesis, which includes a prosthetic heart valve, and three or more commissural posts, to which the prosthetic heart valve is coupled. The posts are arranged circumferentially around a central longitudinal axis of the valve prosthesis, and are configured to assume a collapsed position prior to implantation of the prosthesis, and an expanded position upon the implantation of the prosthesis. One or more of the commissural posts are provided with respective radiographic identifiers that are shaped to be reflection-asymmetric about respective post axes that are generally parallel with the central longitudinal axis when the posts assume the collapsed position.


For some applications, the radiographic identifiers have the shape of one or more reflection-asymmetric characters.


In an embodiment, the one or more of the commissural posts are shaped to define respective openings therethrough which define the respective radiographic identifiers. Alternatively, the radiographic identifiers include a material having a first radiopacity that is different from a second radiopacity of the commissural posts, which material is coupled to the one or more of the commissural posts.


For some applications, the valve prosthesis includes exactly three commissural posts.


There is further provided, in accordance with an embodiment of the present invention, a method including:


providing a valve prosthesis that includes a prosthetic heart valve, and three or more commissural posts, to which the prosthetic heart valve is coupled, which posts are arranged circumferentially around a central longitudinal axis of the valve prosthesis, and are configured to assume a collapsed position prior to implantation of the prosthesis, and an expanded position upon the implantation of the prosthesis, and at least one of which commissural posts is provided with a radiographic identifier;


while the posts assume the collapsed position, placing, via a blood vessel of the subject, the valve prosthesis at least partially in a heart of a subject in a vicinity of a native heart valve having native commissures;


generating a fluoroscopic image of the native commissures and valve prosthesis; and


rotationally aligning the at least one of the commissural posts with one of the native commissures using the radiographic identifier visible in the image.


In an embodiment, rotationally aligning includes rotating the valve prosthesis; observing whether the at least one of the commissural posts appears to move in the image in the same direction that the valve prosthesis is rotated, or in an opposite direction; and, if the at least one of the commissural posts appears to move in the image. in the opposite direction, rotating the valve prosthesis to correct. a rotational alignment of the valve prosthesis.


For some applications, the valve prosthesis includes exactly three commissural posts, and is configured to have three-fold rotational symmetry, and rotating the valve prosthesis to correct the rotational alignment includes rotating the valve prosthesis approximately 60 degrees.


In an embodiment, the radiographic identifier is shaped to be reflection-asymmetric about a post axis of the at least one of the commissural posts, which axis is generally parallel with the central longitudinal axis when the posts assume the collapsed position. For some applications, the radiographic identifier has the shape of a reflection-asymmetric character.


For some applications, rotationally aligning includes observing in the image whether the radiographic identifier appears in a correct left-right orientation, and, if the radiographic identifier does not appear in the correct left-right orientation, rotating the valve prosthesis to correct a rotational alignment of the valve prosthesis. For some applications, the valve prosthesis includes exactly three commissural posts, and is configured to have three-fold rotational symmetry, and rotating the valve prosthesis to correct the rotational alignment includes rotating the valve prosthesis approximately 60 degrees.


In an embodiment, the at least one of the commissural posts is shaped to define an opening therethrough which defines the radiographic identifier. Alternatively, the radiographic identifier includes a material having a first radiopacity that is different from a second radiopacity of the at least one of the commissural posts, which material is coupled to the at least one of the commissural posts.


For some applications, the one of the native commissures is a native commissure (CRL) between a left coronary sinus and a right coronary sinus, and rotationally aligning includes rotationally aligned the one of the commissural posts with the CRL.


There is still further provided, in accordance with an embodiment of the present invention, a method including:


providing a valve prosthesis that includes a prosthetic heart valve, and three or more commissural posts, to which the prosthetic heart valve is coupled, which posts are arranged circumferentially around a central longitudinal axis of the valve prosthesis, and are configured to assume a collapsed position prior to implantation of the prosthesis, and an expanded position upon the implantation of the prosthesis;


while the posts assume the collapsed position, placing, via a blood vessel of the subject, the valve prosthesis at least partially in a heart of a subject in a vicinity of a native heart valve having native commissures;


generating a fluoroscopic image of the native commissures and valve prosthesis; and


rotationally aligning the at least one of the commissural posts with one of the native commissures by:


rotating the valve prosthesis,


observing whether the at least one of the commissural posts appears to move in the image in the same direction that the valve prosthesis is rotated, or in an opposite direction, and


if the at least one of the commissural posts appears to move in the image in the opposite direction, rotating the valve prosthesis to correct a rotational alignment of the valve prosthesis.


For some applications, the valve prosthesis includes exactly three commissural posts, and is configured to have three-fold rotational symmetry, and rotating the valve prosthesis to correct the rotational alignment includes rotating the valve prosthesis approximately 60 degrees.


There is additionally provided, in accordance with an embodiment of the present invention, apparatus including a valve prosthesis, which includes:


a prosthetic heart valve;


a support structure, which includes a first material having a first radiopacity; and


one or more radiographic identifiers, which include a second material having a second radiopacity different from the first radiopacity, and which are coupled to the support structure at respective locations.


In an embodiment, the radiographic identifiers are shaped to be reflection-asymmetric about respective identifier axes that are generally parallel with a central longitudinal axis of the valve prosthesis.


For some applications, the identifiers are arranged circumferentially around a central longitudinal axis of the valve prosthesis.


For some applications, the support structure is shaped so as to define a bulging proximal skirt, and the identifiers are coupled to the skirt.


For some applications, the support structure includes three or more commissural posts, to which the prosthetic heart valve is coupled, which posts are arranged circumferentially around a central longitudinal axis of the valve prosthesis, the locations at which the identifiers are coupled to the support structure are not on the posts, and the locations are radially aligned with the posts.


For some applications, the support structure includes three or more commissural posts, to which the prosthetic heart valve is coupled, which posts are arranged circumferentially around a central longitudinal axis of the valve prosthesis, and the locations at which the identifiers are coupled to the support structure are on the posts.


The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a fully-assembled valve prosthesis, in accordance with an embodiment of the present invention;



FIGS. 2A and 2B are schematic illustrations of a collapsible outer support structure and a collapsible inner support structure, respectively, prior to assembly together into the valve prosthesis of FIG. 1, in accordance with an embodiment of the present invention;



FIG. 3 is a schematic illustration of a subject undergoing a transapical or percutaneous valve replacement procedure, in accordance with an embodiment of the present invention;



FIG. 4 shows an exemplary fluoroscopic view generated with a fluoroscopic system during a valve replacement procedure, in accordance with an embodiment of the present invention;



FIG. 5 shows an exemplary ultrasound view generated with an ultrasound probe during a valve replacement procedure, in accordance with an embodiment of the present invention;



FIGS. 6A and 6B are schematic and fluoroscopic views, respectively, of the valve prosthesis of FIG. 1 in a collapsed position in a catheter, in accordance with an embodiment of the present invention;



FIGS. 7A and 7B are schematic illustrations of the valve prosthesis of FIG. 1 in situ upon completion of transapical and retrograde transaortic implantation procedures, respectively, in accordance with respective embodiments of the present invention;



FIGS. 7C-7E are schematic illustrations of an implantation procedure of an alternative configuration of the valve prosthesis of FIG. 1, in accordance with an embodiment of the present invention;



FIGS. 8A-B are schematic illustrations of the valve prosthesis of FIG. 1 positioned within the aortic root, in accordance with an embodiment of the present invention;



FIG. 9 is a flow chart that schematically illustrates a method for ascertaining whether the valve prosthesis of FIG. 1 or FIGS. 7C-E are properly rotationally aligned with the native commissures, in accordance with an embodiment of the present invention and



FIGS. 10A and 10B are schematic illustrations of reflection-asymmetric radiographic identifiers on commissural posts of the valve prosthesis of FIG. 1 or FIGS. 7C-E, in accordance with respective embodiments of the present invention.





DETAILED DESCRIPTION


FIG. 1 is a schematic illustration of a fully-assembled valve prosthesis 10, in accordance with an embodiment of the present invention. Typically, valve prosthesis 10 comprises exactly three commissural posts 11, arranged circumferentially around a central longitudinal axis 13 of valve prosthesis 10. Valve prosthesis 10 further comprises a prosthetic distal valve 104 coupled to couple to commissural posts 11. Valve 104 typically comprises a pliant material 105. Pliant material 105 of valve 104 is configured to collapse inwardly (i.e., towards central longitudinal axis 13) during diastole, in order to inhibit retrograde blood flow, and to open outwardly during systole, to allow blood flow through the prosthesis. For some applications, valve prosthesis 10 comprises a collapsible inner support structure 12 that serves as a proximal fixation member, and a collapsible outer support structure 14 that serves as a distal fixation member.


One or more (e.g., all) of commissural posts 11 are shaped so as define therethrough respective openings 16 that serve as radiographic identifiers during an implantation procedure, as described herein below with reference to FIGS. 3-8B. The openings may assume any convenient, shape, for example, slits, as shown in FIGS. 1, 2A-B, and 6A-B. In some embodiments, the openings are shaped to be reflection-asymmetric along respective post axes generally parallel with central longitudinal axis 13 of prosthesis 10 when the posts assume their collapsed position, as described herein below with reference to FIGS. 10A-B. For some applications, in addition to serving as the radiographic identifiers, openings 16 are used for coupling valve 104 to support structures 12 and 14. Although pliant material 105 of valve 104 at least partially fills openings 16, the material is substantially more radiolucent than commissural posts 11, and thus does not reduce the radiographic visibility of the radiographic identifiers. Alternatively, one or more of posts 11 do not necessarily define openings 16, and the one or more posts instead comprise radiographic identifiers comprising a material having a radiopacity different from (greater or less than) the radiopacity of posts 11, such as gold or tantalum.


Valve prosthesis 10 is configured to be placed in a native diseased valve of a subject, such as a native stenotic aortic or pulmonary valve, using a minimally-invasive approach, such as a beating heart transapical procedure, such as described herein below with reference to FIG. 7A, or a retrograde transaortic procedure, such as described herein below with reference to FIG. 7B. As used in the present application, including in the claims, a “native semilunar valve” is to be understood as including: (a) native semilunar valves that include their native leaflets, and (b) native semilunar valves, the native leaflets of which have been surgically excised or are otherwise absent.


Reference is made to FIG. 2A, which is a schematic illustration of collapsible outer support structure 14 prior to assembly with inner support structure 12, in accordance with an embodiment of the present invention. In this embodiment, outer support structure 14 is shaped so as to define a plurality of distal diverging strut supports 20, from which a plurality of proximal engagement arms 22 extend radially outward in a proximal direction. Engagement arms 22 are typically configured to be at least partially disposed within aortic sinuses of the subject, and, for some applications, to engage and/or rest against floors of the aortic sinuses, and to apply an axial force directed toward a left ventricle of the subject. Outer support structure 14 comprises a suitable material that allows mechanical deformations associated with crimping and expansion of valve prosthesis 10, such as, but not limited to, nitinol or a stainless steel alloy (e.g., AISI 316).


Reference is made to FIG. 23, which is a schematic illustration of collapsible inner support structure 12 prior to assembly with outer support structure 14, in accordance with an embodiment of the present invention. For some applications, inner support structure 12 is shaped so as to define a plurality of distal diverging inner struts 30, and a bulging proximal skirt 32 that extends from the struts. A proximal portion 34 of proximal skirt 32 is configured to engage a left ventricular outflow tract (LVOT) of the subject and/or periannular tissue at the top of the left ventricle. A relatively narrow throat section 36 of proximal skirt 32 is configured to be positioned at a valvular annulus of the subject, and to engage the native valve leaflets. Inner support structure 12 comprises, for example, nitinol, a stainless steel alloy, another metal, or another biocompatible material.


Reference is again made to FIG. 1. Inner and outer support structures 12 and 14 are assembled together by placing outer support structure 14 over inner support structure 12, such that cuter strut supports 20 are aligned with, and typically support, respective inner struts 30, and engagement arms 22 are placed over a portion of proximal skirt 32. Inner struts 30 and outer strut supports 20 together define commissural posts 11.


Although exactly three commissural posts 11 are shown in the figures, for some applications valve prosthesis 10 comprises fewer or more posts 11, such as two posts 11, or four or more posts 11.


Typically, valve prosthesis 10 further comprises a graft covering 106 which is coupled to proximal skirt 32, such as by sewing the covering within the skirt (configuration shown in FIG. 1) or around the skirt (configuration not shown). Inner support structure 12 thus defines a central structured body for flow passage that proximally terminates in a flared inlet (proximal skirt 32) that is configured to be seated within an LVOT immediately below an aortic annulus/aortic valve. For some applications, graft covering 106 is coupled at one or more sites to pliant material 105.


In an embodiment of the present invention, a portion valve prosthesis 10 other than commissural posts 11, e.g., proximal skirt. 32, is shaped so as to define openings 16 that serve as radiographic identifiers. Alternatively or additionally, the commissural posts or this other portion of the prosthesis comprise radiographic identifiers comprising a material having a radiopacity different from (greater or less than) the radiopacity of other portions of the prosthesis. For some applications, the radiographic identifiers are radially aligned with commissural posts 11.



FIG. 3 is a schematic illustration of a subject 200 undergoing a transapical or percutaneous valve replacement procedure, in accordance with an embodiment of the present invention. A fluoroscopy system 210 comprises a fluoroscopy source 213, a fluoroscopy detector 212, and a monitor 214. Fluoroscopy source 213 is positioned over subject 200 so as to obtain a left anterior oblique (LAO) projection of between 30 and 45, such as between 30 and 40, degrees with a 30-degree cranial tilt (for orthogonal projection of the annulus). Typically, imaging is enhanced using an ultrasound probe 216.



FIG. 4 shows an exemplary fluoroscopic view 220 generated with fluoroscopic system 210 during a valve replacement procedure, in accordance with an embodiment of the present invention. In the view, a right coronary sinus (RCS) 222 and a left coronary sinus (LCS) 224 are visible, as are the respective coronary arteries that originate from the sinuses. The view also shows a commissure 226 between the right and left sinuses (CRL). RCS 222, LCS 224, and CRL 226 serve as clear anatomical landmarks during the replacement procedure, enabling the physician to readily ascertain the layout of the aortic root.



FIG. 5 shows an exemplary ultrasound view 230 generated with ultrasound probe 216 during a valve replacement procedure, in accordance with an embodiment of the present invention. In the view, the RCS, LCS, and non-coronary sinus (N) are visible. The orientation of view 230 can be seen with respect to a sternum 232 and a spine 234, as well as with respect to fluoroscopy detector 212.



FIGS. 6A and 6B are schematic and fluoroscopic views, respectively, of valve prosthesis 10 in a collapsed position in a catheter 300, in accordance with an embodiment of the present invention. In this embodiment, openings 16 are shaped as slits. As can be seen in FIG. 613, these slits are clearly visible with fluoroscopy.


Reference is made to FIGS. 7A and 7B, which are schematic illustrations of valve prosthesis 10 in situ upon completion of transapical and retrograde transaortic implantation procedures, respectively, in accordance with respective embodiments of the present invention.


In the transapical procedure, as shown in FIG. 7A, an introducer overtube or trocar 150 is inserted into a left ventricular apex 156 using a Seldinger technique. Through this trocar, a delivery catheter (not shown in the figure) onto which collapsed valve prosthesis 10 is mounted, is advanced into a left ventricle 357 where its motion is terminated, or through left ventricle 357 until the distal end of a dilator (not shown) passes native aortic valve leaflets 358. For example, apex 356 may be punctured using a standard Seldinger technique, and a guidewire may be advanced into an ascending aorta 360. Optionally, a native aortic valve 340 is partially dilated to about 15-20 mm (e.g., about 16 mm), typically using a standard valvuloplasty balloon catheter. (In contrast, full dilation would be achieved utilizing dilation of 20 mm or more.) Overtube or trocar 350 is advanced into the ascending aorta. Overtube or trocar 350 is pushed beyond aortic valve 340 such that the distal end of overtube or trocar 350 is located above the highest point of native aortic valve 340. The dilator is removed while overtube or trocar 350 remains in place with its distal end located above aortic valve 340. Alternatively, the procedure may be modified so that overtube or trocar 350 is placed within left ventricle 350 and remains within the left ventricle throughout the entire implantation procedure. Valve prosthesis 10 is advanced through the distal end of overtube or trocar 350 into ascending aorta. 360 distal to native leaflets 358.


Valve prosthesis 10, typically while still within the catheter, is rotated to align arms 22 with aortic sinuses 364, as described herein below with reference to FIGS. 8A-B or FIGS. 10A-B. After the prosthesis is properly rotationally aligned, withdrawal of the catheter causes engagement arms 22 to flare out laterally to an angle which is typically predetermined by design, and to open in an upstream direction. Gentle withdrawal of the delivery catheter, onto which prosthesis 10 with flared-out arms 22 is mounted, causes the arms to slide into aortic sinuses 364. Release of the device from the delivery catheter causes a lower inflow portion of prosthesis 10 to unfold and press against the upstream side of native leaflets 358, thereby engaging with the upstream fixation arms in the aortic sinuses. The upstream fixation arms serve as counterparts to the lower inflow portion of the prosthesis in a mechanism that locks the native leaflets and the surrounding periannular tissue for fixation.


For some applications, prosthesis 10 is implanted using techniques described with reference to FIGS. 5A-C in U.S. application Ser. No. 12/050,628, filed Mar. 18, 2008, entitled, “Valve suturing and implantation procedures,” which is incorporated herein by reference.


In the retrograde transaortic procedure, as shown in FIG. 7B, valve prosthesis 10 is positioned in a retrograde delivery catheter 450. A retrograde delivery catheter tube 451 of catheter 450 holds engagement arms 22, and a delivery catheter cap 452 holds proximal skirt 32 (not shown). A guidewire 490 is transaortically inserted into left ventricle 357. Optionally, stenotic aortic valve 340 is partially dilated to about 15-20 mm (e.g., about 16 mm), typically using a standard valvuloplasty balloon catheter. Retrograde delivery catheter 450 is advanced over guidewire 490 into ascending aorta 360 towards native aortic valve 340. Retrograde delivery catheter 450 is advanced over guidewire 490 until delivery catheter cap 452 passes through native aortic valve 340 partially into left ventricle 357.


Valve prosthesis 10, typically while still within the catheter, is rotated to align arms 22 with aortic sinuses 364, as described herein below with reference to FIGS. 8A-B or FIGS. 1A-B. Retrograde delivery catheter tube 451 is pulled back (in the direction indicated schematically by an arrow 455), while a device stopper (not shown) prevents valve prosthesis 10 within tube 451 from being pulled back with tube 451, so that engagement arms 22 are released and flare out laterally into the sinuses. At this stage of the implantation procedure, proximal skirt 32 of prosthesis 10 remains in delivery catheter cap 452.


Delivery catheter cap 452 is pushed in the direction of the apex of the heart, using a retrograde delivery catheter cap shaft (not shown) that passes through tube 451 and prosthesis 10. This advancing of cap 452 frees proximal skirt 32 to snap or spring open, and engage the inner surface of the LVOT. Retrograde delivery catheter tube 451 is further pulled back until the rest of valve prosthesis 10 is released from the tube. Retrograde delivery catheter tube 451 is again advanced over the shaft toward the apex of the heart, until tube 451 rejoins cap 452. Retrograde delivery catheter 450 and guidewire 490 are withdrawn from left ventricle 357, and then from ascending aorta 360, leaving prosthesis 10 in place.


For some applications, prosthesis 10 is implanted using techniques described with reference to FIGS. 9A-G in above-mentioned U.S. application Ser. No. 12/050,628.


Reference is made to FIGS. 7C-7E, which are schematic illustrations of an implantation procedure of an alternative configuration of valve prosthesis 10, in accordance with an embodiment of the present invention. In this configuration, valve prosthesis 10 does not comprise proximal engagement arms 22. Even without these arms, which rest in the sinus floors and thus may aid in properly rotationally aligning the prosthesis, the techniques described herein achieve proper alignment of the prosthesis. For some applications, valve prosthesis 10 is configured as described in a US provisional patent application filed on even date herewith, entitled, “Prosthetic heart valve for transfemoral delivery,” which is assigned to the assignee of the present application and is incorporated herein by reference.



FIG. 7C shows valve prosthesis 10 positioned in retrograde delivery catheter 450, which is advanced into left ventricle 357 over guidewire 490. Valve prosthesis 10, typically while still within the catheter, is rotated to align commissural posts 11 with the native commissures, as described herein below with reference to FIGS. 8A-B or FIGS. 10A-B. After the prosthesis is properly rotationally aligned, withdrawal of the catheter causes expansion of the frame of prosthesis, as shown in FIG. 7D. FIG. 7E shows this configuration of prosthesis 10 positioned within the aortic root (viewed from the aorta). The frame of the prosthesis is shaped so as to define distal support members 492, which extend in a downstream direction (i.e., they do not extend into the floors of the aortic sinuses). Distal support elements 492 are configured to rest against the downstream portion of the aortic sinuses upon implantation of valve prosthesis 10, so as to provide support against tilting of the prosthesis with respect to a central longitudinal axis of the prosthesis. As can be seen in FIG. 7E, commissural posts 11 of the valve prosthesis are rotationally aligned with native commissures 494.


Reference is made to FIGS. 8A-B, which are schematic illustrations of valve prosthesis 10 positioned within the aortic root (viewed from the aorta), in accordance with an embodiment of the present invention. As described above with reference to FIGS. 7A-B, during an implantation procedure, a delivery catheter is inserted into an overtube and advanced until the distal end of commissural posts 11 arrive near the end of the overtube.


For configurations of valve prosthesis 10 that include proximal engagement arms 22, the arms are still within the catheter. To properly rotationally align pests with the native commissures, the physician rotates valve prosthesis 10 under fluoroscopy until one 496 of commissural posts 11 is aligned with one of the native commissures, such as commissure 226 between the right and left sinuses (CRL). In an attempt to achieve such a rotational position, the physician rotates the prosthesis until one of openings 16 that serve as radiographic identifiers is centered from the viewpoint of the fluoroscopic LAO projection such as shown in FIG. 6B (openings 16 are not visible from the view of FIGS. 8A-B). The other two commissural posts 11 flank the centered post.


At this stage of the procedure, because the radiographic image is two-dimensional and all of the posts appear in the image as though they are in the same plane, it is difficult for the physician to ascertain whether commissural post 496 selected for alignment is:

    • (1) in the desired rotational position, closer to fluoroscopy detector 212 (FIG. 3) than are the other two commissures, and thus properly aligned with the CRL 226, as shown in FIG. 8A; or
    • (2) farther away from the fluoroscopy detector than are the other two posts, rotated 180 degrees from the desired rotational position, as shown in FIG. 8B. In this rotational orientation, centered post 496 projects itself onto CRL 226, but actually faces the noncoronary sinus (N) away from the fluoroscopy detector, such that valve prosthesis 10 is misaligned by 60 degrees (because the prosthesis typically has three-fold rotational symmetry).


Reference is made to FIG. 9, which is a flow chart that schematically illustrates a method 500 for ascertaining whether the posts are in the first or second possible rotational position, in accordance with an embodiment of the present invention. At an initial rotation step 502, the physician slightly rotates valve prosthesis 10. At an apparent rotation check step 504, the physician ascertains whether the radiographic identifier on the selected post appears to move in the radiographic image in the same direction as the rotation. If the identifier appears to move in the same direction as the rotation, the physician ascertains that the selected post is correctly rotationally aligned in the desired position (1) (after the physician slightly rotates the prosthesis in the opposite direction to return it to its initial position), at a proper alignment ascertainment step 506. If, on the other hand, the radiographic identifier appears to move in the direction opposite the direction of rotation, the physician ascertains that the selected post is incorrectly rotationally aligned in position (2), at an improper alignment ascertainment step 508. To correct the alignment, the physician rotates the valve prosthesis approximately 60 degrees in either direction, thereby ensuring that one of the two other posts is now rotationally aligned in position (1), at an alignment correction step 510. (The valve prosthesis typically has three-fold rotational symmetry, such that rotation of 60 degrees is sufficient to properly align one of the posts with the selected native commissure, and the prosthesis need not be rotated a full 180 degrees.) For example, assume that at initial rotation step 502 the physician rotates the prosthesis clockwise, as viewed from the aorta. If the valve prosthesis is properly aligned, the radiographic identifier on the selected post appears to move toward the LCS at apparent rotation check step 504. Once the valve prosthesis is properly aligned, commissural posts 11 are released from the catheter, as well as proximal engagement arms 22, for configurations of the prosthesis that include such arms, at a commissural post release step 512. In these embodiments, openings 16 through posts 11 that define the radiographic identifiers may assume any convenient shape, such as a slit.


In an embodiment of the present invention, this technique for rotationally aligning posts 11 with the native commissures is used for aligning a valve prosthesis that does not include radiographic identifiers. Instead of using such identifiers, the physician observes elements of the prosthesis that are discernible in the radiographic images, such as posts 11.



FIGS. 10A and 10B are schematic illustrations of reflection-asymmetric radiographic identifiers 600 on commissural posts 11, in accordance with respective embodiments of the present invention. Identifiers 600 may be used with both the configuration of valve prosthesis 10 described hereinabove with reference to FIG. 1, and that described hereinabove with reference to FIGS. 7C-E. Openings 16 that define radiographic identifiers 600 are shaped to be reflection-asymmetric along respective, post axes 604 that are generally parallel central longitudinal axis 13 of prosthesis 10 when the posts assume their collapsed position. For example, as shown in FIG. 10A, identifiers 600 may be shaped as one or more reflection-asymmetric letters of the alphabet, such as B, C, D, E, etc., or numbers. Alternatively, the identifier may be shaped as any reflection-symmetric symbol, such as the inverted elongated L shown in FIG. 10B. The physician can thus readily identify the true orientation of the selected post that appears to be rotationally aligned with the selected native commissure. If the identifier on the selected post appears in the correct left-right orientation, the selected post is aligned in the desired position (1), as described hereinabove with reference to FIGS. 8A-B. If, on the other hand, the identifier appears as the mirror image of its correct left-right orientation, the selected post is incorrectly rotationally aligned in position (2) as described hereinabove with reference to FIGS. 8A-B. To correct the alignment, the physician rotates the valve prosthesis approximately 60 degrees in either direction, thereby ensuring that one of the two other posts is now rotationally aligned in position (1).


For some applications, such as shown in FIG. 10A, at least one of commissural posts 11 is shaped so as to define both reflection-asymmetric radiographic identifier 600 and another reflection-symmetric shape 610, such as a slit. For example, such a slit may have a mechanical purpose, such as coupling valve 104 to support structures 12 and 14, as described hereinabove with reference to FIG. 1. Alternatively, the physician may use reflection-symmetric shape 610 for rotational orientation as described hereinabove with reference to FIGS. 8A-B in the event that reflection-asymmetric radiographic identifiers 600 are not be clearly visible in the radiographic image during a particular implantation procedure.


For some applications, reflection-asymmetric radiographic identifiers 600 are not defined by openings 16, but instead comprise a material having a radiopacity different from (greater or less than) the radiopacity of other portions of the posts. For some applications, a portion of valve prosthesis 10 other than commissural posts 11 comprises radiographic identifiers 600 (whether defined by openings, or comprising a material having a different radiopacity).


For some applications, techniques described herein are performed in combination with techniques described in a US provisional patent application filed on even date herewith, entitled, “Prosthetic heart valve for transfemoral delivery,” which is assigned to the assignee of the present application and is incorporated herein by reference.


The scope of the present invention includes embodiments described in the following applications, which are assigned to the assignee of the present application and are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:

  • U.S. patent application Ser. No. 11/024,908, filed Dec. 30, 2004, entitled, “Fluid flow prosthetic device,” which issued as U.S. Pat. No. 7,201,772;
  • International Patent Application PCT/IL2005/001399, filed Dec. 29, 2005, entitled, “Fluid flow prosthetic device,” which published as PCT Publication WO 06/070372;
  • International Patent Application PCT/IL2004/000601, filed Jul. 6, 2004, entitled, “Implantable prosthetic devices particularly for transarterial delivery in the treatment of aortic stenosis, and methods of implanting such devices,” which published as PCT Publication WO 05/002466, and U.S. patent application Ser. No. 10/563,384, filed Apr. 20, 2006, in the national stage thereof, which published as US Patent Application Publication 2006/0259134;
  • U.S. Provisional Application 60/845,728, filed Sep. 19, 2006, entitled, “Fixation member for valve”;
  • U.S. Provisional Application 60/852,435, filed Oct. 16, 2006, entitled, “Transapical delivery system with ventriculo-arterial overflow bypass”;
  • U.S. application Ser. No. 11/728,253, filed Mar. 23, 2007, entitled, “Valve prosthesis fixation techniques using sandwiching”;
  • International Patent Application PCT/IL2007/001237, filed Oct. 16, 2007, entitled, “Transapical delivery system with ventriculo-arterial overflow bypass,” which published as POT Publication WO 2008/047354; and/or
  • U.S. application Ser. No. 12/050,628, filed Mar. 18, 2008, entitled, “Valve suturing and implantation procedures.”


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. A method comprising the steps of: providing a valve prosthesis that includes a prosthetic heart valve, wherein the valve prosthesis has a collapsed configuration and an expanded configuration, and at least one radiographic identifier;wherein the valve prosthesis is configured to have threefold rotational symmetry;while the valve prosthesis is in the collapsed configuration, placing, via a blood vessel of the subject, the valve prosthesis at least partially in a heart of a subject in a vicinity of a native heart valve having native commissures;generating a fluoroscopic image of the native commissures and valve prosthesis; androtationally aligning the radiographic identifier visible in the image with at least one of the native commissures;wherein rotationally aligning comprises: rotating the valve prosthesis;observing whether the radiographic identifier appears to move in the image in the same direction that the valve prosthesis is rotated, or in an opposite direction; andif the radiographic identifier appears to move in the image in the opposite direction, rotating the valve prosthesis approximately 60 degrees to correct a rotational alignment of the valve prosthesis.
  • 2. The method of claim 1, wherein the valve prosthesis includes a plurality of commissural posts.
  • 3. The method of claim 2, wherein the valve prosthesis includes exactly three commissural posts.
  • 4. The method of claim 2, wherein the radiographic identifier is shaped to be reflection-asymmetric about a post axis of one of the plurality of commissure posts, which the post axis is generally parallel with a central longitudinal axis of the valve prosthesis when the plurality of commissure posts assume the collapsed configuration.
  • 5. The method of claim 4, wherein the radiographic identifier has a shape of a reflection-asymmetric character.
  • 6. The method of claim 2, wherein the radiographic identifier comprises a material having a first radiopacity that is different from a second radiopacity of the plurality of commissural posts, which material is coupled to each of the plurality of commissural posts.
  • 7. The method of claim 2, wherein the native commissures of the native heart valve include a first native commissure between a left coronary sinus and a right coronary sinus of the native heart valve and wherein rotationally aligning comprises rotationally aligning one of the plurality of commissural posts with the first native commissure.
  • 8. The method of claim 2, wherein at least one of the plurality of commissure posts includes an opening that serves as the at least one radiographic identifier.
  • 9. The method of claim 2, wherein the at least one radiographic identifier is positioned on at least one of the plurality of commissure posts.
  • 10. The method of claim 9, wherein at least one of the plurality of commissure posts includes an opening and the radiographic identifier is positioned adjacent the opening.
  • 11. The method of claim 10, wherein the opening is a reflection-symmetric shape.
  • 12. The method of claim 2, wherein at least one of the plurality of commissural posts is shaped so as to define both reflection asymmetrical radiographic identifier and a reflection-symmetric shape.
  • 13. The method of claim 1, wherein the radiographic identifier is shaped like a letter of the alphabet.
  • 14. The method of claim 1, wherein the radiographic identifier is shaped like a number.
  • 15. The method of claim 1, wherein the radiographic identifier is a slit.
  • 16. The method of claim 1, wherein the radiographic identifier is shaped to be reflection-asymmetric about a longitudinal axis which is generally parallel with a central longitudinal axis of the valve prosthesis when the valve prosthesis assumes the collapsed configuration.
  • 17. The method of claim 1, wherein the radiographic identifier has a shape of a reflection-asymmetric character.
  • 18. The method of claim 1, wherein the valve prosthesis includes a frame, wherein the radiographic identifier comprises a material having a first radiopacity that is different from a second radiopacity of the frame, which material is coupled to the frame.
  • 19. The method of claim 1, wherein the valve prosthesis includes a frame, wherein at least a portion of the frame is shaped so as to define both reflection asymmetrical radiographic identifier and a reflection-symmetric shape.
  • 20. The method of claim 1, wherein the valve prosthesis includes a frame, wherein at least a portion of the frame includes an opening that serves as the at least one radiographic identifier.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of and claims priority to U.S. patent application Ser. No. 14/641,545, filed Mar. 9, 2015, now allowed, which is a Division of and claims priority to U.S. patent application Ser. No. 12/559,945, filed Sep. 15, 2009, now U.S. Pat. No. 8,998,981, which claims the benefit under 35 U.S.C. § 119(c) of U.S. Patent Application No. 61/192,201, filed Sep. 15, 2008, which are incorporated by references in their entirety.

US Referenced Citations (632)
Number Name Date Kind
3334629 Cohn Aug 1967 A
3409013 Berry Nov 1968 A
3540431 Mobin-Uddin Nov 1970 A
3587115 Shiley Jun 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3642004 Osthagen et al. Feb 1972 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
3874388 King et al. Apr 1975 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4233690 Akins Nov 1980 A
4265694 Boretos May 1981 A
4291420 Reul Sep 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4425908 Simon Jan 1984 A
4470157 Love Sep 1984 A
4501030 Lane Feb 1985 A
4574803 Storz Mar 1986 A
4580568 Gianturco Apr 1986 A
4592340 Boyles Jun 1986 A
4610688 Silvestrini et al. Sep 1986 A
4612011 Kautzky Sep 1986 A
4647283 Carpentier et al. Mar 1987 A
4648881 Carpentier et al. Mar 1987 A
4655771 Wallsten Apr 1987 A
4662885 DiPisa, Jr. May 1987 A
4665906 Jervis May 1987 A
4681908 Broderick et al. Jul 1987 A
4710192 Liotta et al. Dec 1987 A
4733665 Palmaz Mar 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4796629 Grayzel Jan 1989 A
4797901 Baykut Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4834755 Silvestrini et al. May 1989 A
4856516 Hillstead Aug 1989 A
4872874 Taheri Oct 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4909252 Goldberger Mar 1990 A
4917102 Miller et al. Apr 1990 A
4922905 Strecker May 1990 A
4954126 Wallsten Sep 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5002559 Tower Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5061273 Yock Oct 1991 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5161547 Tower Nov 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5217483 Tower Jul 1993 A
5232445 Bonzel Aug 1993 A
5272909 Nguyen et al. Dec 1993 A
5295958 Shturman Mar 1994 A
5327774 Nguyen et al. Jul 1994 A
5332402 Teitelbaum et al. Jul 1994 A
5344442 Deac Sep 1994 A
5350398 Pavcnik et al. Sep 1994 A
5354330 Hanson et al. Oct 1994 A
5370685 Stevens Dec 1994 A
5389106 Tower Feb 1995 A
5397351 Pavcnik et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5415633 Lazarus et al. May 1995 A
5431676 Dubrul et al. Jul 1995 A
5443446 Shturman Aug 1995 A
5449384 Johnson Sep 1995 A
5480424 Cox Jan 1996 A
5489294 McVenes et al. Feb 1996 A
5489297 Duran Feb 1996 A
5496346 Horzewski et al. Mar 1996 A
5500014 Quijano et al. Mar 1996 A
5507767 Maeda et al. Apr 1996 A
5545209 Roberts et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5575818 Pinchuk Nov 1996 A
5580922 Park et al. Dec 1996 A
5591195 Taheri et al. Jan 1997 A
5609626 Quijano et al. Mar 1997 A
5645559 Hachtman et al. Jul 1997 A
5665115 Cragg Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5695498 Tower Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716417 Girard et al. Feb 1998 A
5746709 Rom et al. May 1998 A
5749890 Shaknovich May 1998 A
5766151 Valley et al. Jun 1998 A
5782809 Umeno et al. Jul 1998 A
5800456 Maeda et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824041 Lenker Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824061 Quijano et al. Oct 1998 A
5824064 Taheri Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5843158 Lenker et al. Dec 1998 A
5851232 Lois Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5860996 Tower Jan 1999 A
5861028 Angell Jan 1999 A
5868783 Tower Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5906619 Olson et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5908451 Yeo Jun 1999 A
5913842 Boyd et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5997573 Quijano et al. Dec 1999 A
6022370 Tower Feb 2000 A
6022374 Imran Feb 2000 A
6027525 Suh et al. Feb 2000 A
6029671 Stevens et al. Feb 2000 A
6042589 Marianne Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson, IV Mar 2000 A
6051104 Jang Apr 2000 A
6059809 Amor et al. May 2000 A
6110201 Quijano et al. Aug 2000 A
6146366 Schachar Nov 2000 A
6159239 Greenhalgh Dec 2000 A
6162208 Hipps Dec 2000 A
6162245 Jayaraman Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6203550 Olson Mar 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6218662 Tchakarov et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6248116 Chevilon Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6277555 Duran et al. Aug 2001 B1
6296662 Caffey Oct 2001 B1
6299637 Shaolia et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6309382 Garrison et al. Oct 2001 B1
6309417 Spence et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6338735 Stevens Jan 2002 B1
6348063 Yassour et al. Feb 2002 B1
6350277 Kocur Feb 2002 B1
6352708 Duran et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6380457 Yurek et al. Apr 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6530949 Konya et al. Mar 2003 B2
6530952 Vesely Mar 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6562058 Seguin et al. May 2003 B2
6569196 Vesely May 2003 B1
6585758 Chouinard et al. Jul 2003 B1
6592546 Barbut et al. Jul 2003 B1
6605112 Moll et al. Aug 2003 B1
6613077 Gilligan et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6652571 White et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6656213 Solem Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673109 Cox Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6689144 Gerberding Feb 2004 B2
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6692513 Streeter et al. Feb 2004 B2
6695878 McGuckin, Jr. et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6719789 Cox Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752828 Thornton Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6786925 Schoon Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6792979 Konya et al. Sep 2004 B2
6797002 Spence Sep 2004 B2
6821297 Snyders Nov 2004 B2
6830575 Stenzel et al. Dec 2004 B2
6830584 Seguin Dec 2004 B1
6830585 Artof Dec 2004 B1
6846325 Liddicoat Jan 2005 B2
6866650 Stevens Mar 2005 B2
6872223 Roberts Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6883522 Spence et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890330 Streeter et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908481 Cribier Jun 2005 B2
6913600 Valley et al. Jul 2005 B2
6929653 Streeter Aug 2005 B2
6936066 Palmaz et al. Aug 2005 B2
6939365 Fogarty et al. Sep 2005 B1
6951571 Srivastava Oct 2005 B1
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin et al. Dec 2005 B2
6986742 Hart et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991649 Sievers Jan 2006 B2
7018401 Hyodoh et al. Mar 2006 B1
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7041128 McGuckin, Jr. et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7048014 Hyodoh et al. May 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7105016 Shui et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7128759 Osborne et al. Oct 2006 B2
7137184 Schreck Nov 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7160319 Chouinard et al. Jan 2007 B2
7175656 Khairkhahan Feb 2007 B2
7186265 Sharkawy et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201761 Woolfson et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7252682 Seguin Aug 2007 B2
7300457 Palmaz Nov 2007 B2
7300463 Liddicoat Nov 2007 B2
7316706 Bloom et al. Jan 2008 B2
7329278 Seguin Feb 2008 B2
7335218 Wilson et al. Feb 2008 B2
7338520 Bailey et al. Mar 2008 B2
7374571 Pease et al. May 2008 B2
7377938 Sarac et al. May 2008 B2
7381218 Shreck Jun 2008 B2
7384411 Condado Jun 2008 B1
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470284 Lambrecht et al. Dec 2008 B2
7481838 Carpentier et al. Jan 2009 B2
7544206 Cohn et al. Jun 2009 B2
7547322 Sarac et al. Jun 2009 B2
7556646 Yang et al. Jul 2009 B2
7806919 Bloom et al. Oct 2010 B2
8052750 Tuval et al. Nov 2011 B2
8784478 Tuval et al. Jul 2014 B2
8998981 Tuval et al. Apr 2015 B2
20010002445 Vesely Mar 2001 A1
20010001314 Davison et al. May 2001 A1
20010007956 Letac et al. Jul 2001 A1
20010010017 Letac et al. Jul 2001 A1
20010011189 Drasler et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025196 Chinn et al. Sep 2001 A1
20010032013 Marton Oct 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010044647 Pinchuk et al. Nov 2001 A1
20020010508 Chobotov Jan 2002 A1
20020029014 Jayaraman Mar 2002 A1
20020032480 Spence et al. Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020035396 Heath Mar 2002 A1
20020042650 Vardi et al. Apr 2002 A1
20020052651 Myers et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020072789 Hackett et al. Jun 2002 A1
20020095209 Zadno-Azizi et al. Jul 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020103533 Langberg et al. Aug 2002 A1
20020107565 Greenhalgh Aug 2002 A1
20020111674 Chouinard et al. Aug 2002 A1
20020123802 Snyders Sep 2002 A1
20020133183 Lentz et al. Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020156521 Ryan et al. Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020193871 Beyersdorf et al. Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030028247 Cali Feb 2003 A1
20030036791 Bonhoeffer et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030065386 Weadock Apr 2003 A1
20030069492 Abrams et al. Apr 2003 A1
20030109924 Cribier Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030130726 Thorpe et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030139804 Hankh et al. Jul 2003 A1
20030149475 Hyodoh et al. Aug 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030191519 Lombardi et al. Oct 2003 A1
20030199913 Dubrul et al. Oct 2003 A1
20030199963 Tower et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030212410 Stenzel et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040088045 Cox May 2004 A1
20040092858 Wilson et al. May 2004 A1
20040092989 Wilson et al. May 2004 A1
20040093005 Durcan May 2004 A1
20040093060 Sequin et al. May 2004 A1
20040093075 Kuehn May 2004 A1
20040097788 Mourles et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040106990 Spence et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122516 Fogarty Jun 2004 A1
20040127979 Wilson Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040167573 Williamson Aug 2004 A1
20040167620 Ortiz Aug 2004 A1
20040186563 Iobbi Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040210240 Saint Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215333 Duran Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040225353 McGuckin, Jr. Nov 2004 A1
20040225354 Allen Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267357 Allen et al. Dec 2004 A1
20050010246 Streeter Jan 2005 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050010287 Macoviak Jan 2005 A1
20050015112 Cohn et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050049692 Numamoto Mar 2005 A1
20050049696 Siess Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050060029 Le Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075712 Biancucci Apr 2005 A1
20050075717 Nguyen Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075724 Svanidze Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050075730 Myers Apr 2005 A1
20050075731 Artof Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050096568 Kato May 2005 A1
20050096692 Linder et al. May 2005 A1
20050096724 Stenzel et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050113910 Paniagua May 2005 A1
20050119688 Berheim Jun 2005 A1
20050131438 Cohn Jun 2005 A1
20050137686 Salahieh Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug Jun 2005 A1
20050137695 Salahieh Jun 2005 A1
20050137701 Salahieh Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050143809 Salahieh Jun 2005 A1
20050148997 Valley et al. Jul 2005 A1
20050149181 Eberhardt Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050187616 Realyvasquez Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203605 Dolan Sep 2005 A1
20050203618 Sharkawy Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050234546 Nugent Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050283962 Boudjemline Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004469 Sokel Jan 2006 A1
20060009841 McGuckin et al. Jan 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058775 Stevens et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074485 Realyvasques Apr 2006 A1
20060089711 Dolan Apr 2006 A1
20060100685 Seguin et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060142848 Gabbay Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060167474 Bloom et al. Jul 2006 A1
20060178740 Stacchino et al. Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060206192 Tower et al. Sep 2006 A1
20060206202 Bonhoefer et al. Sep 2006 A1
20060212111 Case et al. Sep 2006 A1
20060247763 Slater Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060276882 Case et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070005131 Taylor Jan 2007 A1
20070010878 Raffiee et al. Jan 2007 A1
20070016286 Case et al. Jan 2007 A1
20070027518 Herrmann et al. Feb 2007 A1
20070027533 Douk Feb 2007 A1
20070038295 Case et al. Feb 2007 A1
20070043431 Melsheimer Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070073392 Heyninck-Janitz Mar 2007 A1
20070078509 Lotfy et al. Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070100439 Cangialosi May 2007 A1
20070100440 Figulla May 2007 A1
20070100449 O'Neil et al. May 2007 A1
20070112415 Bartlett May 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070162113 Sharkawy et al. Jul 2007 A1
20070185513 Woolfson et al. Aug 2007 A1
20070203391 Bloom et al. Aug 2007 A1
20070225681 House Sep 2007 A1
20070232898 Huynh et al. Oct 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20070238979 Huynh et al. Oct 2007 A1
20070239254 Marchand et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244544 Birdsall et al. Oct 2007 A1
20070244545 Birdsall et al. Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070244553 Rafiee et al. Oct 2007 A1
20070244554 Rafiee et al. Oct 2007 A1
20070244555 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070244557 Rafiee et al. Oct 2007 A1
20070250160 Rafiee Oct 2007 A1
20070255394 Ryan Nov 2007 A1
20070255396 Douk et al. Nov 2007 A1
20070288000 Bonan Dec 2007 A1
20080004696 Vesely Jan 2008 A1
20080009940 Cribier Jan 2008 A1
20080015671 Bonhoeffer Jan 2008 A1
20080021552 Gabbay Jan 2008 A1
20080048656 Tan Feb 2008 A1
20080065001 Marchand et al. Mar 2008 A1
20080065206 Liddicoat Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080077234 Styrc Mar 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080133003 Seguin et al. Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147105 Wilson et al. Jun 2008 A1
20080147180 Ghione et al. Jun 2008 A1
20080147181 Ghione et al. Jun 2008 A1
20080147182 Righini et al. Jun 2008 A1
20080154355 Benichow et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161910 Revuelta et al. Jul 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080215143 Seguin et al. Sep 2008 A1
20080215144 Ryan et al. Sep 2008 A1
20080228254 Ryan Sep 2008 A1
20080228263 Ryan Sep 2008 A1
20080234797 Stryc Sep 2008 A1
20080243246 Ryan et al. Oct 2008 A1
20080255651 Dwork Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080262593 Ryan et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090012600 Styrc et al. Jan 2009 A1
20090048656 Wen Feb 2009 A1
20090054976 Tuval et al. Feb 2009 A1
20090069886 Suri et al. Mar 2009 A1
20090069887 Righini et al. Mar 2009 A1
20090069889 Suri et al. Mar 2009 A1
20090082858 Nugent et al. Mar 2009 A1
20090085900 Weiner Apr 2009 A1
20090099653 Suri et al. Apr 2009 A1
20090138079 Tuval et al. May 2009 A1
20090164004 Cohn Jun 2009 A1
20090171447 VonSegesser et al. Jul 2009 A1
20090192585 Bloom et al. Jul 2009 A1
20090192586 Tabor et al. Jul 2009 A1
20090192591 Ryan et al. Jul 2009 A1
20090198316 Laske et al. Aug 2009 A1
20090216310 Straubinger et al. Aug 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090216313 Straubinger et al. Aug 2009 A1
20090222082 Lock et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240264 Tuval et al. Sep 2009 A1
20090240320 Tuval Sep 2009 A1
20090287296 Manasse Nov 2009 A1
20100036479 Hill et al. Feb 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
20100161045 Righini Jun 2010 A1
20100198346 Keogh et al. Aug 2010 A1
20100234940 Dolan Sep 2010 A1
20100256723 Murray Oct 2010 A1
Foreign Referenced Citations (48)
Number Date Country
2007-100074433 Oct 2007 CN
3640745 Jun 1987 DE
195 32 846 Mar 1997 DE
195 46 692 Jun 1997 DE
195 46 692 Jun 1997 DE
198 57 887 Jul 2000 DE
199 07 646 Aug 2000 DE
100 49 812 Apr 2002 DE
100 49 813 Apr 2002 DE
100 49 815 Apr 2002 DE
1057460 Jun 2000 EP
1255510 Nov 2002 EP
1469797 Nov 2005 EP
2788217 Dec 1999 FR
2815844 May 2000 FR
2056023 Mar 1981 GB
2433700 Dec 2007 GB
1271508 Nov 1986 SU
9529640 Nov 1995 WO
0047136 Aug 2000 WO
0135870 May 2001 WO
0147438 Jul 2001 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0164137 Sep 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
03003943 Jan 2003 WO
03003949 Jan 2003 WO
03011195 Feb 2003 WO
04019825 Mar 2004 WO
04089250 Oct 2004 WO
05004753 Jan 2005 WO
2005002466 Jan 2005 WO
05046528 May 2005 WO
06026371 Mar 2006 WO
2006070372 Jul 2006 WO
08047354 Apr 2008 WO
08138584 Nov 2008 WO
08150529 Dec 2008 WO
09002548 Dec 2008 WO
09029199 Mar 2009 WO
09042196 Apr 2009 WO
09045338 Apr 2009 WO
09061389 May 2009 WO
09091509 Jul 2009 WO
09111241 Sep 2009 WO
Non-Patent Literature Citations (40)
Entry
Andersen, H.R. et al, “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” Euro. Heart J. (1992) 13:704-708.
Babaliaros, et al., “State of the Art Percutaneous Intervention for the Treatment of Valvular Heart Disease: A Review of the Current Technologies and Ongoing Research in the Field of Percutaneous Heart Valve Replacement and Repair,” Cardiology 2007; 107:87-96.
Bailey, “Percutaneous Expandable Prosthetic Valves,” In: Topol EJ, ed. Textbook of Interventional Cardiology. vol. II. Second edition. WB Saunders, Philadelphia, 1994:1268-1276.
Block, et al., “Percutaneous Approaches to Valvular Heart Disease,” Current Cardiology Reports, vol. 7 (2005) pp. 108-113.
Bonhoeffer, et al, “Percutaneous Insertion of the Pulmonary Valve,” Journal of the American College of Cardiology (United States), May 15, 2002, pp. 1664-1669.
Bonhoeffer, et al, “Percutaneous Replacement of Pulmonary Valve in a Right-Ventricle to Pulmonary-Artery Prosthetic Conduit with Valve Dysfunction,” Lancet (England), Oct. 21, 2000, pp. 1403-1405.
Bonhoeffer, et al, “Transcatheter Implantation of a Bovine Valve in Pulmonary Position: A Lamb Study,” Circulation (United States), Aug. 15, 2000, pp. 813-816.
Boudjemline, et al, “Images in Cardiovascular Medicine. Percutaneous Aortic Valve Replacement in Animals,” Circulation (United States), Mar. 16, 2004, 109, p. e161.
Boudjemline, et al, “Is Percutaneous Implantation of a Bovine Venous Valve in the Inferior Vena Cava a Reliable Technique to Treat Chronic Venous Insufficiency Syndrome?” Medical Science Monitor—International Medical Journal of Experimental and Clinical Research (Poland), Mar. 2004, pp. BR61-BR66.
Boudjemline, et al, “Off-pump Replacement of the Pulmonary Valve in Large Right Ventricular Outflow Tracts: A Hybrid Approach,” Journal of Thoracic and Cardiovascular Surgery (United States), Apr. 2005, pp. 831-837.
Boudjemline, et al, “Percutaneous Aortic Valve Replacement: Will We Get There?” Heart (British Cardiac Society) (England), Dec. 2001, pp. 705-706.
Boudjemline, et al, “Percutaneous Implantation of a Biological Valve in the Aorta to Treat Aortic Valve Insufficiency—A Sheep Study,” Medical Science Monitor—International Medical Journal of Experimental and Clinical Research (Poland), Apr. 2002, pp. BR113-BR116.
Boudjemline, et al, “Percutaneous Implantation of a Biological Valve in Aortic Position: Preliminary Results in a Sheep Study,” European Heart Journal 22, Sep. 2001, p. 630.
Boudjemline, et al, “Percutaneous Implantation of a Valve in the Descending Aorta in Lambs,” European Heart Journal (England), Jul. 2002, pp. 1045-1049.
Boudjemline, et al, “Percutaneous Pulmonary Valve Replacement in a Large Right Ventricular Outflow Tract: An Experimental Study,” Journal of the American College of Cardiology (United States), Mar. 17, 2004, pp. 1082-1087.
Boudjemline, et al, “Percutaneous Valve Insertion: A New Approach,” Journal of Thoracic and Cardiovascular Surgery (United States), Mar. 2003, pp. 741-742.
Boudjemline, et al, “Stent Implantation Combined with a Valve Replacement to Treat Degenerated Right Ventricle to Pulmonary Artery Prosthetic Conduits,” European Heart Journal Sep. 22, 2001, p. 355.
Boudjemline, et al, “Steps Toward Percutaneous Aortic Valve Replacement,” Circulation (United States), Feb. 12, 2002, pp. 775-778.
Boudjemline, et al, “The Percutaneous Implantable Heart Valve,” Progress in Pediatric Cardiology (Ireland), 2001, pp. 89-93.
Boudjemline, et al, “Transcatheter Reconstruction of the Right Heart,” Cardiology in the Young (England), Jun. 2003, pp. 308-311.
Coats, et al, “The Potential Impact of Percutaneous Pulmonary Valve Stent Implantation on Right Ventricular Outflow Tract Re-Intervention,” European Journal of Cardio-Thoracic Surgery (England), Apr. 2005, pp. 536-543.
Cribier, A. et al, “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description,” Circulation (2002) 3006-3008.
Davidson et al., “Percutaneous therapies for valvular heart disease,” Cardiovascular Pathology 15 (2006) 123-129.
Hanzel, et al., “Complications of percutaneous aortic valve replacement: experience with the Criber-Edwards™ percutaneous heart valve,” EuroIntervention Supplements (2006), 1 (Supplement A) A3-A8.
Huber, et al., “Do Valved Stents Compromise Coronary Flow?” Eur. J. Cardiothorac. Surg. 2004;25:754-759.
Khambadkone, “Nonsurgical Pulmonary Valve Replacement: Why, When, and How?” Catheterization and Cardiovascular Interventions—Official Journal of the Society for Cardiac Angiography & Interventions (United States), Jul. 2004, pp. 401-408.
Khambadkone, et al, “Percutaneous Implantation of Pulmonary Valves,” Expert Review of Cardiovascular Therapy (England), Nov. 2003, pp. 541-548.
Khambadkone, et al, “Percutaneous Pulmonary Valve Implantation: Early and Medium Term Results,” Circulation 108 (17 Supplement), Oct. 28, 2003, p. IV-375.
Khambadkone, et al, “Percutaneous Pulmonary Valve Implantation: Impact of Morphology on Case Selection,” Circulation 108 (17 Supplement), Oct. 28, 2003, p. IV-642-IV-643.
Lutter, et al, “Percutaneous Aortic Valve Replacement: An Experimental Study. I. Studies on Implantation,” The Journal of Thoracic and Cardiovascular Surgery, Apr. 2002, pp. 768-776.
Lutter, et al, “Percutaneous Valve Replacement: Current State and Future Prospects,” Annals of Thoracic Surgery (Netherlands), Dec. 2004, pp. 2199-2206.
Ma, Ling, et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio Thoracic Surgery, 28:194-198, 2005.
Medtech Insight, “New Frontiers in Heart Valve Disease,” vol. 7, No. 8 (2005).
Palacios, “Percutaneous Valve Replacement and Repair, Fiction or Reality?” Journal of American College of Cardiology, vol. 44, No. 8 (2004) pp. 1662-1663.
Pelton et al., “Medical Uses of Nitinol,” Materials Science Forum vols. 327-328, pp. 63-70 (2000).
Ruiz, “Transcathether Aortic Valve Implantation and Mitral Valve Repair: State of the Art,” Pediatric Cardiology, vol. 26, No. 3 (2005).
Saliba, et al, “Treatment of Obstructions of Prosthetic Conduits by Percutaneous Implantation of Stents,” Archives des Maldies du Coeur et des Vaisseaux (France), 1999, pp. 591-596.
Webb, et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation (2006), 113;842-850.
Stassano et al., “Mid-term results of the valve-on-valve technique for bioprosthetic failure,” Eur. J. Cardiothorac. Surg. 2000; 18:453-457.
Pavcnik et al., “Aortic and venous valve for percutaneous insertion,” Min. Invas. Ther. & Allied Techol. 2000, vol. 9, pp. 287-292.
Related Publications (1)
Number Date Country
20180214265 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
61192201 Sep 2008 US
Continuations (2)
Number Date Country
Parent 14641545 Mar 2015 US
Child 15939497 US
Parent 12559945 Sep 2009 US
Child 14641545 US