Prosthetic heart valve having multi-level sealing member

Information

  • Patent Grant
  • 11744700
  • Patent Number
    11,744,700
  • Date Filed
    Monday, July 27, 2020
    3 years ago
  • Date Issued
    Tuesday, September 5, 2023
    8 months ago
Abstract
Embodiments of a prosthetic heart valve are disclosed. An implantable prosthetic valve may be radially collapsible to a collapsed configuration and radially expandable to an expanded configuration. The prosthetic valve may comprise an annular frame, a leaflet structure positioned within the frame and a plurality of outer skirts positioned around an outer surface of the frame, each outer skirt comprising an inflow edge secured to the frame and an outflow edge secured at intervals to the frame. The plurality of outer skirts may include a first outer skirt and a second outer skirt, wherein in the expanded configuration the first and second outer skirts include openings unsecured to the frame between the intervals. The inflow edge of the first annular outer skirt may be secured to the frame with sutures including radiopaque material. The first annular outer skirt may include radiopaque dye.
Description
FIELD

The present disclosure concerns embodiments of a prosthetic heart valve.


BACKGROUND

The human heart can suffer from various valvular diseases. These valvular diseases can result in significant malfunctioning of the heart and ultimately require replacement of the native valve with an artificial valve. There are a number of known artificial valves and a number of known methods of implanting these artificial valves in humans.


Various surgical techniques may be used to replace or repair a diseased or damaged valve. Due to stenosis and other heart valve diseases, thousands of patients undergo surgery each year wherein the defective native heart valve is replaced by a prosthetic valve. Another less drastic method for treating defective valves is through repair or reconstruction, which is typically used on minimally calcified valves. The problem with surgical therapy is the significant risk it imposes on these chronically ill patients with high morbidity and mortality rates associated with surgical repair.


When the native valve is replaced, surgical implantation of the prosthetic valve typically requires an open-chest surgery during which the heart is stopped and patient placed on cardiopulmonary bypass (a so-called “heart-lung machine”). In one common surgical procedure, the diseased native valve leaflets are excised and a prosthetic valve is sutured to the surrounding tissue at the valve annulus. Because of the trauma associated with the procedure and the attendant duration of extracorporeal blood circulation, some patients do not survive the surgical procedure or die shortly thereafter. It is well known that the risk to the patient increases with the amount of time required on extracorporeal circulation. Due to these risks, a substantial number of patients with defective native valves are deemed inoperable because their condition is too frail to withstand the procedure. By some estimates, more than 50% of the subjects suffering from valve stenosis who are older than 80 years cannot be operated on for valve replacement.


Because of the drawbacks associated with conventional open-heart surgery, percutaneous and minimally-invasive surgical approaches are garnering intense attention. In one technique, a prosthetic valve is configured to be implanted in a much less invasive procedure by way of catheterization. For instance, U.S. Pat. Nos. 5,411,522 and 6,730,118, which are incorporated herein by reference, describe collapsible transcatheter heart valves that can be percutaneously introduced in a compressed state on a catheter and expanded in the desired position by balloon inflation or by utilization of a self-expanding frame or stent.


An important design parameter of a transcatheter heart valve is proper positioning of the heart valve, for example on the balloon prior to inflation as well as at implantation location, so as to prevent final positioning of a reversed valve. A further important design parameter is minimization of paravalvular leak (PVL). PVL may include complications such as blood flowing through a channel between the structure of the implanted valve and cardiac tissue, for example as a result of a lack of appropriate sealing.


SUMMARY

An exemplary embodiment of a prosthetic heart valve may include an annular frame, a leaflet structure positioned within the frame, and two or more annular outer skirts positioned around an outer surface of the frame. The two or more outer skirts may each comprise an inflow edge secured to the frame and an outflow edge, wherein the outflow edges of the two or more outer skirts may define one or more upper openings allowing retrograde blood flow between the outer surface of the frame and the two or more skirts to create a plurality of regions of turbulent blood flow along the prosthetic valve.


Some embodiments of an implantable prosthetic valve may be radially collapsible to a collapsed configuration and radially expandable to an expanded configuration. Some embodiments of the prosthetic valve may comprise an annular frame, a leaflet structure positioned within the frame, and a plurality of outer skirts positioned around an outer surface of the frame. Each outer skirt may comprise an inflow edge secured to the frame and an outflow edge secured at intervals to the frame. The plurality of outer skirts may include a first outer skirt and a second outer skirt, wherein in the expanded configuration the first and the second outer skirts may include openings unsecured to the frame between the intervals.


In some embodiments, the inflow edge of the first outer skirt may be secured to the frame with sutures including radiopaque material. In some embodiments, the first outer skirt may comprise markings formed from radiopaque dye.


In some embodiments, the openings of the first outer skirt and the second outer skirt may be circumferentially aligned. Additionally and/or alternatively, in some embodiments, the openings may not lie flat against the outer surface of the frame and are spaced radially outward from the frame in the expanded configuration. Additionally and/or alternatively, the inflow edge of the second outer skirt may contact the outflow edge of the first outer skirt without any axial spacing between. The outflow edge of at least one of the plurality of outer skirts may be unsecured to the frame. The plurality of outer skirts may be positioned in series along the length of the frame between an inflow edge of the frame and an outflow edge of the frame. The axial height of a least two of the plurality of skirts may be the same.


Some embodiments of a prosthetic heart valve may include an annular frame having an inflow end and an outflow end, a leaflet structure positioned within the frame and an annular skirt mounted on the frame. The skirt may comprise radiopaque markings, which can comprise one or both of radiopaque sutures and radiopaque dye, to facilitate positioning of the prosthetic valve under fluoroscopy.


The foregoing and other objects, features, and advantages of the disclosure will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a perspective view an exemplary embodiment of a prosthetic heart valve.



FIG. 2 shows a top view of the prosthetic heart valve of FIG. 1



FIG. 3 shows a perspective view of an exemplary frame of the prosthetic heart valve of FIG. 1.



FIG. 4 shows a side elevation view of the prosthetic heart valve of FIG. 1 with the outer skirts removed to show the assembly of an inner skirt and valvular structure mounted on the frame.



FIG. 5 shows an exemplary outer skirt laid out flat.



FIG. 6 is a schematic representation of the prosthetic heart valve of FIG. 1 showing the flow of blood on the outside of the prosthetic heart valve when implanted in a native heart valve annulus.



FIG. 7A is a side elevation view of a prosthetic valve having a plurality of outer skirts, according to another embodiment, in an expanded configuration.



FIG. 7B is a side elevation view of the prosthetic valve of FIG. 7A in a collapsed configuration.



FIG. 8 is an enlarged view of the inflow end portion of the prosthetic valve of FIG. 7A.



FIG. 9 shows another embodiment of a skirt laid out flat.



FIG. 10 shows the skirt of FIG. 9 secured to the frame of FIG. 3.





DETAILED DESCRIPTION

For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the disclosure are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The disclosure is not restricted to the details of any foregoing embodiments. The disclosure extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods.


As used herein, the terms “a”, “an”, and “at least one” encompass one or more of the specified element. That is, if two of a particular element are present, one of these elements is also present and thus “an” element is present. The terms “a plurality of” and “plural” mean two or more of the specified element.


As used herein, the term “and/or” used between the last two of a list of elements means any one or more of the listed elements. For example, the phrase “A, B, and/or C” means “A”, “B,”, “C”, “A and B”, “A and C”, “B and C”, or “A, B, and C.”


As used herein, the term “coupled” generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.



FIGS. 1 and 2 show perspective and top plan views, respectively, of a prosthetic heart valve 10, according to one embodiment. The illustrated prosthetic valve is adapted to be implanted in the native aortic annulus, although in other embodiments it can be adapted to be implanted in the other native annuluses of the heart (the mitral valve, pulmonary valve and triscupid valve). The prosthetic valve 10 may have one or more of the following components: a stent, or frame, 12, a valvular structure 14 and/or an inner skirt, or sealing member, 16. The valve 10 may also include two or more outer skirts, or sealing members. For example, the valve may include a first outer skirt, or sealing member, 18, a second outer skirt, or sealing member, 20 and a third outer skirt, or sealing member, 22.


The valvular structure 14 can comprise three leaflets 24, collectively forming a leaflet structure, which can be arranged to collapse in a tricuspid arrangement, as best shown in FIG. 2. The lower edge of leaflet structure 14 desirably has an undulating, curved scalloped shape. By forming the leaflets with this scalloped geometry, stresses on the leaflets are reduced, which in turn improves durability of the valve. Moreover, by virtue of the scalloped shape, folds and ripples at the belly of each leaflet (the central region of each leaflet), which can cause early calcification in those areas, can be eliminated or at least minimized. The scalloped geometry also reduces the amount of tissue material used to form leaflet structure, thereby allowing a smaller, more even crimped profile at the inflow end of the valve. The leaflets 24 can be formed of pericardial tissue (e.g., bovine pericardial tissue), biocompatible synthetic materials, or various other suitable natural or synthetic materials as known in the art and described in U.S. Pat. No. 6,730,118, which is incorporated by reference herein. Further details regarding the structure of the leaflets and the technique for mounting the leaflets 24 to the frame and the inner skirt are disclosed in U.S. Publication No. 2012/0123529, which is incorporated herein by reference.


The bare frame 12 is shown in FIG. 3. The frame 12 has an inflow end 40 and an outflow end 42. The frame 12 in the illustrated embodiment comprises a plurality of angled struts 44 arranged in a plurality of circumferential rows of struts along the length of the frame. One or more pairs of adjacent rows of angled struts 44 can be connected by vertical struts 46. The rows of struts 44 closet to the outflow end of frame 12 also can be connected to each other with a plurality of circumferentially spaced commissure supports 48 (for example, three) and vertical struts 46. The commissure supports 48 can be formed with respective slots, or commissure windows, 50 that are adapted to mount the commissures of the valvular structure 14 to the frame, as described in greater detail below.


The frame 12 can be made of any of various suitable plastically-expandable materials (e.g., stainless steel, etc.) or self-expanding materials (e.g., Nitinol) as known in the art. Alternatively, the frame can be mechanically-expandable. When constructed of a plastically-expandable material, the frame 12 (and thus the prosthetic valve 10) can be crimped to a radially compressed state on a delivery catheter and then expanded inside a patient by an inflatable balloon or equivalent expansion mechanism. When constructed of a self-expandable material, the frame 12 (and thus the prosthetic valve 10) can be crimped to a radially compressed state and restrained in the compressed state by insertion into a sheath or equivalent mechanism of a delivery catheter. Once inside the body, the valve can be advanced from the delivery sheath, which allows the valve to expand to its functional size.


Suitable plastically-expandable materials that can be used to form the frame 12 include, without limitation, stainless steel, a nickel based alloy (e.g., a cobalt-chromium or a nickel-cobalt-chromium alloy), polymers, or combinations thereof. In particular embodiments, frame 12 is made of a nickel-cobalt-chromium-molybdenum alloy, such as MP35N™ (tradename of SPS Technologies), which is equivalent to UNS R30035 (covered by ASTM F562-02). MP35N™/UNS R30035 comprises 35% nickel, 35% cobalt, 20% chromium, and 10% molybdenum, by weight. It has been found that the use of MP35N to form frame 12 provides superior structural results over stainless steel. In particular, when MP35N is used as the frame material, less material is needed to achieve the same or better performance in radial and crush force resistance, fatigue resistances, and corrosion resistance. Moreover, since less material is required, the crimped profile of the frame can be reduced, thereby providing a lower profile valve assembly for percutaneous delivery to the treatment location in the body.


The frame 12 can have other configurations or shapes in other embodiments. For example, the frame 12 can comprise a plurality of circumferential rows of angled struts 44 connected directly to each other without vertical struts 46 or commissure supports 48 between adjacent rows of struts 44, or the rows of struts 44 can be evenly spaced with vertical struts 46 and/or commissure supports 48. In other embodiments, the frame can comprise a braided metal.


The inner skirt 16 may have a plurality of functions, which may include to assist in securing the valvular structure 14 and/or the outer skirts to the frame 12 and to assist in forming a good seal between the valve and the native annulus by blocking the flow of blood through the open cells of the frame 12 below the lower edge of the leaflets. The inner skirt 16 may comprise a tough, tear resistant material such as polyethylene terephthalate (PET), although various other synthetic or natural materials can be used. The thickness of the skirt desirably is less than 6 mil, and desirably less than 4 mil, and even more desirably about 2 mil. In particular embodiments, the skirt 16 can have a variable thickness, for example, the skirt can be thicker at its edges than at its center. In one implementation, the skirt 16 can comprise a PET skirt having a thickness of about 0.07 mm at its edges and about 0.06 mm at its center. The thinner skirt can provide for better crimping performances while still providing good perivalvular sealing.



FIG. 4 shows the frame 12, leaflet structure 14 and the inner skirt 16 after securing the leaflet structure to the inner skirt to the frame and then securing these components to the frame. The inner skirt 16 can be secured to the inside of frame 12 via sutures 26. Valvular structure 14 can be attached to the inner skirt via one or more thin PET reinforcing strips (not shown) along the lower (inflow) edges of the leaflets. The reinforcing strips collectively can form a sleeve, which may enable a secure suturing and protect the pericardial tissue of the leaflet structure from tears. Valvular structure 14 can be sandwiched between the inner skirt 16 and the thin PET strips. Sutures 28, which secure the PET strips and the leaflet structure 14 to inner skirt 16, can be any suitable suture, such as an Ethibond suture. Sutures 28 desirably track the curvature of the bottom edge of leaflet structure 14. The outflow end portion of the valvular structure 14 can be secured to the commissure supports 48. In particular, each leaflet 24 can have opposing tab portions, each of which is paired with an adjacent tab portion of another leaflet to form a commissure 54. As best shown in FIG. 4, the commissures 54 can extend through windows 50 of respective commissure supports 48 and sutured in place.


In FIG. 4, the inner skirt 16 terminates short of the commissures supports 48 and does not extend the entire length of the frame 12. In alternative embodiments, the inner skirt 16 can extend the entire length or substantially the entire length of the frame 12 from the inflow end 40 to the outflow end 42. Extending the inner skirt 16 the entire length of the frame 12 can be advantageous for use in securing the outer skirts to the frame at any location along the length of the frame.


Known fabric skirts comprise a weave of warp and weft fibers that extend perpendicular to each other and with one set of fibers extending perpendicularly to the upper and lower edges of the skirt. When the metal frame, to which the fabric skirt is secured, is radially compressed, the overall axial length of the frame increases. Unfortunately, a fabric skirt, which inherently has limited elasticity, cannot elongate along with the frame and therefore tends to deform the struts of the frame and prevents uniform crimping.


The inner skirt may be woven from a first set of fibers, or yarns or strands, and a second set of fibers, or yarns or strands, both of which are non-perpendicular to the upper edge and the lower edge of the skirt. In particular embodiments, the first set of fibers and the second set of fibers extend at angles of about 45 degrees relative to the upper and lower edges. The inner skirt 16 can be formed by weaving the fibers at 45 degree angles relative to the upper and lower edges of the fabric. Alternatively, the skirt can be diagonally cut from a vertically woven fabric (where the fibers extend perpendicular to the edges of the material) such that the fibers extend at 45 degree angles relative to the cut upper and lower edges of the skirt. The opposing short edges of the inner skirt desirably are non-perpendicular to the upper and lower edges. For example, the short edges desirably extend at angles of about 45 degrees relative to the upper and lower edges and therefore are aligned with the first set of fibers. Therefore the overall shape of the inner skirt may be that of a rhomboid.


As shown in FIG. 1, the valve 10 may include two or more outer skirts mounted on the outside of the frame 12. The two or more outer skirts may be assembled on the valve 10 outer diameter and may be positioned at different levels or locations along the length of the frame. For example, as shown in FIG. 1, the valve 10 may include the first outer skirt 18, the second outer skirt 20 and the third outer skirt 22. One or more of the first, second and third outer skirts 18, 20, 22 may be sutured to the inner skirt. Additionally and/or alternatively, one or more of the first, second and third outer skirts 18, 20, 22 may be sutured to the frame. Each outer skirt desirably comprises a tubular or cylindrical shape when mounted on the frame 12 so as to extend completely around the outer surface of the frame.



FIG. 5 shows a flattened view of one of the outer skirts 18, 20, 22 prior to its attachment to the frame 12 and/or inner skirt 16. The outer skirts 18, 20, 22 can be laser cut or otherwise formed from a strong, durable piece of material, such as woven PET, although other synthetic or natural materials can be used. The outer skirts 18, 20, 22 can have a substantially straight lower edge 30 and an upper edge 32 defining a plurality of alternating projections 34 and notches 36. While the illustrated embodiment includes three such outer skirts, the prosthetic valve can have two outer skirts or more than three outer skirts (e.g., four, five, or six outer skirts) in alternative embodiments. Each outer skirt 18, 20, 22 can have the same height (measured from the lower edge 30 to the upper edge). In alternative embodiments, the height of the outer skirts can vary from one outer skirt to the next.


As best shown in FIG. 1, the lower edge 30 of the first outer skirt 18 can be sutured to the lower edge of the inner skirt 16 and/or the first rung of struts 44 of the frame at the inflow end of the prosthetic valve. The lower edge 30 of the second outer skirt 20 can be sutured to the inner skirt 16 and/or the struts 44 of the frame 12 downstream and adjacent the upper edge 32 of the first outer skirt 18. The lower edge 30 of the third outer skirt 22 can be sutured to the inner skirt 16 and/or the struts 44 of the frame 12 downstream and adjacent the upper edge 32 of the second outer skirt 20. In particular embodiments, the lower edges 30 of the outer skirt 18, 20, 22 are tightly sutured or otherwise secured (e.g., by welding or an adhesive) to the inner skirt 16 to catch retrograde blood flowing between the frame and the outer skirts, as further described below.


The outer skirts 18, 20, 22 can be slightly axially spaced from each other along the length of the frame 12 so that there is some spacing between the lower edge of one outer skirt and the upper edge of an adjacent outer skirt. In alternative embodiment, the outer skirts 18, 20, 22 can be positioned relative to each other with the lower edge 30 of each outer skirt contacting the upper edge 32 of an adjacent outer skirt (except at the inflow end of the frame) without any axial spacing between adjacent outer skirts. In other embodiments, the axial spacing between adjacent outer skirts can vary along the length of the frame. In addition, the height of the outer skirts (measured from the lower edge 30 to the upper edge 32) can vary from one skirt to the next.


The upper edges 32 of the outer skirts desirably are secured to the frame 12 and/or the inner skirt 16 at spaced-apart locations around the circumference of the frame to form a plurality of openings 38 that can received retrograde blood flow. In the illustrated embodiment, for example, the projections 34 of the outer skirts can be sutured to the struts 44 of the frame 12 and/or the inner skirt 16. As shown, the corners of the projections 34 of the first and second outer skirts 18, 20 can be folded over respective struts 44 and secured with sutures 52. The projections 34 of the third outer skirt 22 can be secured to the inner skirt 16 as shown or to the struts 44 at the outflow end 42 of the frame.


The notches 36 can remain unattached to the inner skirt 16 and the frame 12 to form the openings 38 during radial expansion of the prosthetic valve, as explained in further detail below. The outer skirts 18, 20, 22 may be attached to the inner skirt and/or frame such that the notches 36 and the openings 38 of the outer skirts 18, 20, 22 are aligned along the length of the valve (as shown in FIG. 1). Alternatively, the notches 36 and the openings 38 of one outer skirt can be angularly or circumferentially offset from the notches and the openings of another outer skirt. For example, the openings 38 of the first outer skirt 18 can be circumferentially offset from the openings 38 of one or both of second and third outer skirts 18, 20, 22 and the openings 38 of the second outer skirt 20 can be circumferentially offset from the openings 38 of one or both of the first and third outer skirts 18, 22.


Each of the outer skirts 18, 20, 22 may be secured to the frame 12 such that when the frame is in its expanded state, there is excess material or slack between the lower and upper edges 30, 32 of the skirt that does not lie flat against the outer surface of the frame 12. In other words, the outer skirts 18, 20, 22 can include excess material, which causes the skirts to billow outwardly as the frame foreshortens (i.e., shortens in length) during radial expansion.


When the valve 10 is deployed within the body (e.g., within the native aortic valve), the outer skirts 18, 20, 22 can cooperate with the inner skirt 16 to prevent or at least minimize paravalvular leakage. In another advantageous feature, the slack between the lower and upper edges of the two or more outer skirts allows the frame 12 to elongate axially during crimping without any resistance from the outer skirt.


The outer skirts 18, 20, 22 may lower the risk of paravalvular leakage (PVL) dramatically due to numerous mechanisms. PVL includes blood flowing through a channel between the structure of the implanted valve and cardiac tissue as a result of a lack of appropriate sealing between the prosthetic valve and the surrounding tissue. The disclosed valve may reduce PVL by means that are dynamic in nature (e.g. opening of the pockets), and others may be based on elements that are meant to impede flow by means of turbulence. An example of how the disclosed prosthetic valve 10 may reduce PVL includes the physical obstruction to the flow. In other words, the outer skirts can extend into and fill gaps between the frame 12 and the surrounding native annulus to assist in forming a good fluid tight seal between the valve and the native annulus. Additionally and/or alternatively, due to the openings along the upper edges of the skirts, retrograde blood can flow into the pockets and further open or radially expand the outer skirts with rising back pressure (e.g., diastolic pressure when implanted at the aortic position), similar to the action of a sail, to enhance the sealing of the skirts against the surrounding tissue.


Additionally and/or alternatively, in the long term, there may also be a biological cascade reaction that takes place that reduces PVL. In particular, fibrin deposition may initially seal the pores of the fabric material used for the outer skirts, which can lead to blood clotting, and in the long run, replacement of the outer skirts by fibrotic tissue.


Additionally and/or alternatively, another mechanism by which the outer skirts can reduce PVL is turbulent flow created by the skirt openings 38. Explaining further, FIG. 6 shows the prosthetic valve 10 deployed within the body (e.g., the native aortic valve). Arrows 70 represent antegrade blood flow that flows through the prosthetic valve 10 (e.g., during systole for the aortic position) and arrows 72 represent retrograde blood flow that flows in the opposite direction on the outside of the prosthetic valve (e.g., diastole for the aortic position). Retrograde blood can flow into the openings 38, which create regions of turbulent blood flow at each of the outer skirts 18, 20, 22, as represented by arrows 74. The turbulent flow 74 interferes with the generally laminar retrograde flow 72, thereby reducing leakage or regurgitation through cavities larger than the outer diameter of the outer skirts. In other words, the multiple outer skirts can induce a series of turbulent flow obstructions along the leak path with each opening along the length of the prosthetic valve at least partially interrupting and reducing retrograde flow. Thus, when placed in series, the openings can produce sufficient turbulence along the length of the prosthetic valve to prevent or at least minimize PVL. In this manner, the sealing members may functionally operate in a manner similar to Tesla's Valvular Conduit. Moreover, multiple obstructions along the length of the prosthetic valve provided by the skirts can promote clotting and biologic sealing with the native tissue.


A prosthetic valve having multiple outer skirts placed in series can take advantage of the potentially high ratio between the length and diameter of the potential leak channel defined between the outside of the prosthetic valve and the surrounding adjacent anatomy. At higher ratios, a greater number of such obstructions can be implemented, thus creating a better seal. Moving in a direction from the inlet to the outlet of the prosthetic valve, the implantation zone for the prosthetic valve can start at the left ventricular outflow tract (LVOT) and end at the free edges of the native leaflets. The length of the potential leak channel can be maximized if the prosthetic valve extends along this entire interface. For example, the prosthetic valve can extend about 2-4 mm adjacent the LVOT and about 10-16 mm adjacent the aortic annulus and native leaflets. Thus, in this example, the anatomical sealing zone can be approximately 12-20 mm.


The number of skirts in the two or more skirts may be variable and may depend on valve design and on leak obstruction optimization. Additionally and/or alternatively, locations of the two or more skirts along the valve height as well as the height of each skirt may vary depending on the particular application.



FIGS. 7A, 7B and 8 show another embodiment of a prosthetic valve, indicated generally at 100. The prosthetic valve 100 can comprises a stent or frame 102, a plurality of outer skirts 104, 106, 108 positioned in series along the length of the frame, and a valvular structure (not shown in FIGS. 7 and 8 but can be the valvular structure 14). The prosthetic valve 100 can also include an inner skirt, such as the inner skirt 16. Each outer skirt can include a lower edge 110 secured to the outside of the frame 102 and an upper edge 112.


The outer skirts 104, 106, 108 differ from the outer skirts 18, 20, 22 in that the outer skirts 104, 106, 108 need not be connected to the frame 102 along their upper edges 112. As such, the entire upper edge 112 of each outer skirt can be radially spaced outwardly from the outer surface of the frame 102 when the prosthetic valve is deployed to form a continuous upper opening extending 360-degrees around the frame.



FIG. 7B shows the prosthetic valve 100 in a radially compressed state for delivery into a patient's body on a delivery catheter. In the delivery configuration, the outer skirts 104, 106, 108 can be folded against the outer surface of the frame 102. When deployed inside the body (e.g., after being released from the sheath of the delivery catheter), the stent 102 can radially expand and the outer skirts can pivot away from the outer surface of the frame, as depicted in FIG. 7A. The outer skirts, which can be formed from PET fabric or another suitable material, can be shape-set to pivot away from the frame when deployed from the sheath.


In lieu of or in addition to shape-setting the skirt material, the outer skirts can include a plurality of struts 114 that are pivotally connected to the frame at the lower edges 110 of the skirts (as shown in FIG. 8). The struts 114 can be formed from a shape-memory metal (e.g., Nitinol) that are configured to pivot outwardly from the frame to bias the skirts to their deployed state when the prosthetic valve is deployed from the sheath. Alternatively, the outer skirts can comprise a fabric weave that include relatively more rigid fibers or filaments or metal wires (e.g., Nitinol wires) extending in the axial direction (from the lower edges 110 to the upper edges 112) that bias the skirts to their deployed state.


In some embodiments, one or more of the outer skirts of the prosthetic valve may include multiple openings projecting from the frame of the prosthetic valve. The height and angle of each opening may be optimized to maximize flow obstruction. Additionally and/or alternatively, one or more of the outer skirts may include fringes at the upper edges of the skirt material to further perturb the leak flow. Additionally and/or alternatively, the roughness of the surfaces of the outer skirts (the inner surfaces and/or the outer surfaces) can be increased to promote flow perturbation of retrograde blood, thereby enhancing the sealing effect of the skirts. The surface roughness can be increased by forming the skirts from a fabric or textile comprising a pile (a cut pile or loop pile), similar to the weave of a towel or carpet.


The materials used to form the soft components of a prosthetic valve, such as the skirts and the leaflets of the valvular structure typically are not visible under fluoroscopy. Consequently, it may be difficult for the physician to confirm that the prosthetic valve is oriented in the right direction with the inflow end of the prosthetic valve positioned upstream of the outflow end of the prosthetic valve prior to deployment. This may be particularly problematic if the frame of the prosthetic valve has an axially symmetric shape (the frame is symmetric relative to a plane perpendicular to the frame length) so that it may be difficult to discern the orientation of the frame under fluoroscopy.


In particular embodiments, a prosthetic valve can have a skirt (which can be an outer skirt or an inner skirt) that has radiopaque markings to assist with proper orientation relative to the desired implantation site. FIG. 9 shows a skirt 200 having radiopaque markings in the form of, for example, vertical and/or horizontal lines 202, 204, respectively. The radiopaque markings on the skirt can also comprise various other shapes, such as diagonal lines, arrows, circles, etc.


The lines 202, 204 may be printed on the skirt fabric using a radiopaque dye. Additionally and/or alternatively, the lines 202, 204 may be formed on the skirt fabric using radiopaque sutures or threads. Both the dye and/or the sutures may include one or more radiopaque materials, such as platinum, platinum-iridium, gold and/or other metals. The radiopaque sutures can comprise, for example, conventional sutures (e.g., 6/0 sutures) coated with a radiopaque material or having radiopaque markings along the length of the sutures. Because the markings are visible under fluoroscopy, the physician can use the markings to confirm the prosthetic valve is mounted in the correct orientation on the delivery apparatus to prevent deployment of an inverted valve and to position the prosthetic valve relative to the desired implantation site.



FIG. 10 shows a prosthetic valve similar to that shown in FIG. 1 but with the skirt 200 mounted to the outside of the frame. In lieu of or in addition to the radiopaque markings on the skirt 200, radiopaque sutures 206 can be used to secure the lower and/or upper edge of the skirt to the frame 12. The radiopaque sutures 206 can be used to confirm the correct orientation of prosthetic valve and to facilitate proper axial positioning of the skirt within a calcified annulus during valve deployment. Additionally and/or alternatively, radiopaque sutures can be wrapped directly around or otherwise secured to selected struts of the frame, for example, the struts at the inflow and/or outflow ends of the frame or at the lower and/or upper edges of the skirt.


In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the disclosure and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is defined by the following claims. We therefore claim as my disclosure all that comes within the scope and spirit of these claims.

Claims
  • 1. An implantable prosthetic valve, comprising: a radially expandable and compressible annular frame;a valvular structure disposed within the frame and coupled to the frame; andan outer skirt positioned around an outer surface of the frame; anda plurality of radiopaque sutures forming a plurality of discrete radiopaque markings arranged on the outer skirt at a plurality of circumferentially spaced locations;wherein the radiopaque sutures are positioned to indicate an orientation of the prosthetic valve relative to a delivery apparatus and a native heart valve under fluoroscopy, and wherein the radiopaque marking formed by the radiopaque sutures are in the form of vertical lines.
  • 2. An implantable prosthetic valve, comprising: a radially expandable and compressible annular frame;a valvular structure disposed within the frame and coupled to the frame; andan outer skirt positioned around an outer surface of the frame; anda plurality of radiopaque sutures forming a plurality of discrete radiopaque markings arranged on the outer skirt at a plurality of circumferentially spaced locations and one or more additional radiopaque sutures connecting an upper edge of the outer skirt to the frame;wherein the radiopaque sutures are positioned to indicate an orientation of the prosthetic valve relative to a delivery apparatus and a native heart valve under fluoroscopy.
  • 3. The prosthetic valve of claim 1, further comprising one or more additional radiopaque sutures connecting a lower edge of the outer skirt to the frame.
  • 4. The prosthetic valve of claim 1, further comprising one or more additional radiopaque sutures wrapped around struts of the frame at an inflow end of the frame.
  • 5. An implantable prosthetic valve, comprising: a radially expandable and compressible annular frame;a valvular structure disposed within the frame and coupled to the frame; andan outer skirt positioned around an outer surface of the frame; anda plurality of radiopaque sutures forming a plurality of discrete radiopaque markings arranged on the outer skirt at a plurality of circumferentially spaced locations and one or more additional radiopaque sutures wrapped around struts of the frame at an outflow end of the frame;wherein the radiopaque sutures are positioned to indicate an orientation of the prosthetic valve relative to a delivery apparatus and a native heart valve under fluoroscopy.
  • 6. The prosthetic valve of claim 2, wherein the radiopaque markings formed by the radiopaque sutures are in the form of vertical lines.
  • 7. An implantable prosthetic valve, comprising: a radially expandable and compressible annular frame;a valvular structure disposed within the frame and coupled to the frame; andan outer skirt positioned around an outer surface of the frame; anda plurality of radiopaque sutures forming a plurality of discrete radiopaque markings arranged on the outer skirt at a plurality of circumferentially spaced locations;wherein the radiopaque sutures are positioned to indicate an orientation of the prosthetic valve relative to a delivery apparatus and a native heart valve under fluoroscopy, andwherein the radiopaque markings formed by the radiopaque sutures are in the form of arrows.
  • 8. The prosthetic valve of claim 1, wherein the radiopaque sutures comprise radiopaque material extending along a length of the one or more radiopaque sutures.
  • 9. An implantable prosthetic valve, comprising: a radially expandable and compressible annular frame;a valvular structure disposed within the frame and coupled to the frame; andan outer skirt positioned around an outer surface of the frame; anda plurality of radiopaque sutures forming a plurality of discrete radiopaque markings arranged on the outer skirt at a plurality of circumferentially spaced locations;wherein the radiopaque sutures are positioned to indicate an orientation of the prosthetic valve relative to a delivery apparatus and a native heart valve under fluoroscopy, andwherein the radiopaque material is in the form of a coating extending along the length of the sutures.
  • 10. An implantable prosthetic valve, comprising: a radially expandable and compressible annular frame;a valvular structure disposed within the frame and coupled to the frame; andan outer skirt positioned around an outer surface of the frame; anda plurality of radiopaque sutures forming a plurality of discrete radiopaque markings arranged on the outer skirt at a plurality of circumferentially spaced locations;wherein the radiopaque sutures are positioned to indicate an orientation of the prosthetic valve relative to a delivery apparatus and a native heart valve under fluoroscopy, andwherein the radiopaque material is in form of markings extending along the length of the sutures.
  • 11. An implantable prosthetic valve, comprising: a radially expandable and compressible annular frame;a valvular structure comprising a plurality of leaflets disposed within the frame; anda sealing member disposed on and extending continuously around an outer circumference of the frame, the sealing member comprising an inflow edge coupled to the frame via one or more radiopaque sutures;wherein the sealing member comprises radiopaque markings, separate from the radiopaque sutures, configured to indicate the orientation of the frame.
  • 12. The prosthetic valve of claim 11, wherein the sealing member comprises an outflow edge coupled to the frame via one or more additional radiopaque sutures.
  • 13. The prosthetic valve of claim 11, further comprising one or more additional radiopaque sutures coupled to an inflow end of the frame.
  • 14. The prosthetic valve of claim 11, further comprising one or more additional radiopaque sutures coupled to an outflow end of the frame.
  • 15. The prosthetic valve of claim 11, wherein the radiopaque sutures comprise radiopaque material extending along a length of the one or more radiopaque sutures.
  • 16. The prosthetic valve of claim 11, wherein the markings comprise a plurality of vertical lines.
  • 17. The prosthetic valve of claim 11, wherein the radiopaque markings comprise additional radiopaque sutures stitched to the sealing member.
  • 18. A method, comprising: inserting a delivery apparatus into the vasculature of a patient, the delivery apparatus coupled to an implantable prosthetic valve comprising a radially expandable and compressible annular frame, a valvular structure disposed within the frame, an outer skirt positioned around and coupled to an outer surface of the frame, a plurality of radiopaque sutures forming a plurality of discrete radiopaque markings arranged on the outer skirt at a plurality of circumferentially spaced locations, and one or more additional radiopaque sutures connecting an upper edge of the outer skirt to the frame;advancing the prosthetic valve to a selected implantation site;determining, using fluoroscopy, the position of the radiopaque markings relative to the implantation site to determine the orientation of the prosthetic valve relative to the implantation site; andradially expanding the prosthetic valve to a radially expanded configuration.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 16/214,561, filed on Dec. 10, 2018, which is a continuation of U.S. patent application Ser. No. 15/425,029, filed on Feb. 6, 2017, which claims the benefit of U.S. Provisional Patent Application No. 62/294,739, filed Feb. 12, 2016, all of which are incorporated by reference herein in their entirety.

US Referenced Citations (331)
Number Name Date Kind
3365728 Edwards et al. Jan 1968 A
3409013 Berry Nov 1968 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3725961 Magovern et al. Apr 1973 A
3755823 Hancock Sep 1973 A
3983581 Angell et al. Oct 1976 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4441216 Ionescu et al. Apr 1984 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4820299 Philippe et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5258023 Reger Nov 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5476506 Lunn Dec 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628786 Banas et al. May 1997 A
5628792 Lentell May 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5693088 Lazarus Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5755783 Stobie et al. May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5769882 Fogarty et al. Jun 1998 A
5776188 Shepherd et al. Jul 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5843161 Solovay Dec 1998 A
5843179 Vanney et al. Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
6015431 Thornton et al. Jan 2000 A
6027525 Suh et al. Feb 2000 A
6110198 Fogarty et al. Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6206911 Milo Mar 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6306164 Kujawski Oct 2001 B1
6350277 Kocur Feb 2002 B1
6352547 Brown et al. Mar 2002 B1
6352554 De Paulis Mar 2002 B2
6425916 Garrison et al. Jul 2002 B1
6440764 Focht et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz et al. Mar 2003 B2
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6652578 Bailey et al. Nov 2003 B2
6663667 Dehdashtian et al. Dec 2003 B2
6689123 Pinchasik Feb 2004 B2
6716244 Klaco Apr 2004 B2
6729356 Baker et al. May 2004 B1
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6769161 Brown et al. Aug 2004 B2
6773456 Gordon et al. Aug 2004 B1
6783542 Eidenschink Aug 2004 B2
6814754 Greenhalgh Nov 2004 B2
6830584 Seguin Dec 2004 B1
6846325 Liddicoat Jan 2005 B2
6878162 Bales et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6904909 Andreas et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6911040 Johnson et al. Jun 2005 B2
6936067 Buchanan Aug 2005 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7096554 Austin et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7147663 Berg et al. Dec 2006 B1
7175652 Cook et al. Feb 2007 B2
7192441 Sherry Mar 2007 B2
7225518 Eidenschink et al. Jun 2007 B2
7264632 Wright et al. Sep 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7318278 Zhang et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7393360 Spenser et al. Jul 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7563280 Anderson et al. Jul 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7655034 Mitchell et al. Feb 2010 B2
7731742 Schlick et al. Jun 2010 B2
7780725 Haug et al. Aug 2010 B2
7785366 Maurer et al. Aug 2010 B2
7959672 Salahieh et al. Jun 2011 B2
7993394 Hariton et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8105377 Liddicoat Jan 2012 B2
8128681 Shoemaker et al. Mar 2012 B2
8167932 Bourang et al. May 2012 B2
8291570 Eidenschink et al. Oct 2012 B2
8425593 Braido et al. Apr 2013 B2
8430925 Forster et al. Apr 2013 B2
8449606 Eliasen et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8652203 Quadri et al. Feb 2014 B2
8721717 Shoemaker et al. May 2014 B2
8747463 Fogarty et al. Jun 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808356 Braido et al. Aug 2014 B2
8845721 Braido et al. Sep 2014 B2
8979922 Jayasinghe et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
9078781 Ryan et al. Jul 2015 B2
9220594 Braido et al. Dec 2015 B2
9241794 Braido et al. Jan 2016 B2
9289296 Braido et al. Mar 2016 B2
9326856 Schraut et al. May 2016 B2
9345571 Braido et al. May 2016 B1
9351828 Braido et al. May 2016 B2
9351831 Braido et al. May 2016 B2
9351832 Braido et al. May 2016 B2
9414911 Braido et al. Aug 2016 B2
9545307 Braido et al. Jan 2017 B2
9549815 Braido et al. Jan 2017 B2
10179043 Cohen-Tzemach Jan 2019 B2
10500039 Braido Dec 2019 B2
10722354 Cohen-Tzemach Jul 2020 B2
20010021872 Bailey et al. Sep 2001 A1
20010027338 Greenberg Oct 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20020026094 Roth Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020138135 Duerig et al. Sep 2002 A1
20020173842 Buchanan Nov 2002 A1
20030050694 Yang et al. Mar 2003 A1
20030074058 Sherry Apr 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030158597 Quiachon et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030236567 Elliot Dec 2003 A1
20040033364 Spiridigliozzi et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040082989 Cook et al. Apr 2004 A1
20040098096 Eton May 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040260389 Case et al. Dec 2004 A1
20050043790 Seguin Feb 2005 A1
20050075728 Nguyen et al. Apr 2005 A1
20050096736 Osse et al. May 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050188525 Weber et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20060004469 Sokel Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060183383 Asmus et al. Aug 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060259137 Artof et al. Nov 2006 A1
20070005131 Taylor Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070112422 Dehdashtian May 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080183271 Frawley et al. Jul 2008 A1
20080275537 Limon Nov 2008 A1
20090099653 Suri et al. Apr 2009 A1
20090125118 Gong May 2009 A1
20090132035 Roth et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090192591 Ryan et al. Jul 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090299452 Eidenschink et al. Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100049313 Alon Feb 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100168844 Toomes et al. Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20110015729 Jimenez et al. Jan 2011 A1
20110022157 Essinger Jan 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120035719 Forster et al. Feb 2012 A1
20120123529 Levi et al. May 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120259409 Nguyen et al. Oct 2012 A1
20120271398 Essinger Oct 2012 A1
20130023985 Khairkhahan et al. Jan 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130274873 Delaloye et al. Oct 2013 A1
20130310926 Hariton Nov 2013 A1
20130317598 Rowe et al. Nov 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20130338765 Braido et al. Dec 2013 A1
20140194981 Menk et al. Jul 2014 A1
20140200661 Pintor et al. Jul 2014 A1
20140209238 Bonyuet et al. Jul 2014 A1
20140277389 Braido Sep 2014 A1
20140277417 Schraut et al. Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350663 Braido et al. Nov 2014 A1
20140350667 Braido et al. Nov 2014 A1
20150073541 Salahieh et al. Mar 2015 A1
20150073545 Braido Mar 2015 A1
20150073546 Braido Mar 2015 A1
20150127098 Braido et al. May 2015 A1
20150142104 Braido May 2015 A1
20150157455 Hoang et al. Jun 2015 A1
20150209136 Braido et al. Jul 2015 A1
20150257878 Lane et al. Sep 2015 A1
20150282932 Neuman et al. Oct 2015 A1
20160213466 Braido et al. Jul 2016 A1
20160213468 Braido et al. Jul 2016 A1
20160242904 Braido et al. Aug 2016 A1
20160296324 Bapat Oct 2016 A1
20180008402 Braido Jan 2018 A1
20200146818 Lane May 2020 A1
20210059814 Bapat Mar 2021 A1
Foreign Referenced Citations (96)
Number Date Country
2002212418 Mar 2006 AU
0144167 Sep 1903 DE
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 Mar 1984 EP
0597967 May 1994 EP
0592410 Oct 1995 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1570809 Sep 2005 EP
1796597 Jun 2007 EP
2155114 Feb 2010 EP
2299938 Mar 2011 EP
2572675 Mar 2013 EP
2572676 Mar 2013 EP
2698129 Feb 2014 EP
2745805 Jun 2014 EP
2749254 Jul 2014 EP
2815723 Dec 2014 EP
2815724 Dec 2014 EP
2815725 Dec 2014 EP
2967851 Jan 2016 EP
2926766 Feb 2016 EP
3028670 Jun 2016 EP
3028671 Jun 2016 EP
3025680 Feb 2017 EP
3025681 Feb 2017 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2056023 Mar 1981 GB
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
5301768 Feb 1993 WO
9724080 Jul 1997 WO
9829057 Jul 1998 WO
9748350 Jun 1999 WO
9930646 Jun 1999 WO
9933414 Jul 1999 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
0018333 Apr 2000 WO
0041652 Jul 2000 WO
0044313 Aug 2000 WO
0047139 Aug 2000 WO
0106959 Feb 2001 WO
0135878 May 2001 WO
0149213 Jul 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0219951 Mar 2002 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03003949 Jan 2003 WO
03047468 Jun 2003 WO
03037222 Oct 2003 WO
03088873 Oct 2003 WO
03096932 Nov 2003 WO
2005034812 Apr 2005 WO
2005084595 Sep 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
2006005015 Apr 2006 WO
2006111391 Oct 2006 WO
2006127089 Nov 2006 WO
2006138173 Dec 2006 WO
2005102015 Apr 2007 WO
2007047488 Apr 2007 WO
2007067942 Jun 2007 WO
2007097983 Aug 2007 WO
2008005405 Jan 2008 WO
2008015257 Feb 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008147964 Dec 2008 WO
2008150529 Dec 2008 WO
2009033469 Mar 2009 WO
2009042196 Apr 2009 WO
2009094501 Jul 2009 WO
2010121076 Oct 2010 WO
2015036790 Mar 2015 WO
Non-Patent Literature Citations (10)
Entry
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992.
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009.
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992.
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994.
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989.
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197.
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989.
Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986.
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986.
Supplemental Search Report for International Patent Application No. 17750752.2-1113 / 3413842 PCT/US2017017172, completed Jan. 21, 2019.
Related Publications (1)
Number Date Country
20200352710 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62294739 Feb 2016 US
Continuations (2)
Number Date Country
Parent 16214561 Dec 2018 US
Child 16940198 US
Parent 15425029 Feb 2017 US
Child 16214561 US