Prosthetic heart valve with collapsible holder

Information

  • Patent Grant
  • 11911273
  • Patent Number
    11,911,273
  • Date Filed
    Friday, October 9, 2020
    3 years ago
  • Date Issued
    Tuesday, February 27, 2024
    2 months ago
Abstract
A prosthetic heart valve holder system includes a prosthetic heart valve having a base at an inflow end, a plurality of commissure posts extending from the base toward an outflow end, and valve leaflets secured to the commissure posts to permit flow through the heart valve. A deflector is provided at the outflow end having a central hub and a plurality of arms extending from the central hub secured to and covering the tips of respective commissure posts. A valve support body is secured to the base and a post connects the valve support body to the hub of the deflector. The plurality of arms are sufficiently collapsible such that, in a first position, free ends of the arms are located axially between the hub and the valve support body to prevent suture looping during an implant procedure, and in a second position, the hub is located axially between the free ends of the arms and the valve support body to permit removal of the deflector from the outflow side of the valve, through the valve leaflets, to the inflow side of the valve.
Description
BACKGROUND
Field

The present disclosure generally concerns medical devices, deployment mechanisms, and methods for deploying such medical devices. More specifically, the disclosure relates to surgical replacement of heart valves that have malformations and/or dysfunctions. Embodiments of the invention relate to holders for facilitating the implantation of prosthetic heart valves at such native heart valves sites, for example, for a mitral valve replacement procedure. Embodiments of the invention also relate to methods of using the holders to facilitate implantation of prosthetic heart valves.


Description of Related Art

Referring first to FIG. 1, the human heart is generally separated into four pumping chambers which pump blood through the body. Each chamber is provided with its own one-way exit valve. The left atrium receives oxygenated blood from the lungs and advances the oxygenated blood to the left ventricle through the mitral (or bicuspid) valve. The left ventricle collects the oxygenated blood from the left atrium and pushes it through the aortic valve to the aorta, where the oxygenated blood is then distributed to the rest of the body. Deoxygenated blood from the body is then collected at the right atrium and advanced to the right ventricle through the tricuspid valve. The right ventricle then advances the deoxygenated blood through the pulmonary valve and the pulmonary artery to the lungs to again supply the blood with oxygen.


Each of the valves associated with the chambers of the heart are one-way valves that have leaflets to control the directional flow of the blood through the heart, and to prevent backflow of the blood into other chambers or blood vessels that are upstream of the particular chamber. The valves are each supported by an annulus having a dense fibrous ring attached either directly or indirectly to the atrial or ventricular muscle fibers. When a valve become diseased or damaged, leakage or regurgitation may occur, where some of the blood travels back upstream through the diseased or damaged valve, and the efficiency and/or general functionality of the heart may be compromised.


Various surgical techniques can be performed to repair or replace a diseased or damaged valve. In some valve replacement procedures, the leaflets of the diseased or damaged native valve are first removed to prepare the valve annulus for receiving the prosthetic valve. FIG. 2 shows an example of one type of popular prosthetic valve 1 that is a tissue-type bioprosthetic valve generally constructed with natural-tissue valve leaflets 2, made for example, from porcine tissue or bovine pericardium, or from artificially synthesized tissue, that are mounted on a surrounding valve stent structure 3. The shape and structure of the leaflets 2 are supported by a number of commissure posts 4 positioned circumferentially around the valve stent structure 3. In these valves, a biocompatible cloth-covered suture or sewing ring 5 can also be provided on an inflow end of the stent structure 3 of the valve 1, for attachment to the native valve annulus. Such prosthetic valves function much like natural human heart valves, where the leaflets coapt against one another to effect the one-way flow of blood.


When implanting a tissue type prosthetic valve as described above at a native valve annulus, a number of sutures may be involved in the attachment process, many of which may be pre-installed for providing a track on which the valve is advanced along, or “parachuted” down, until it is properly positioned at the implant site. Additional attachment sutures may also be applied between the prosthetic valve and the heart walls after proper placement, to securely attach or hold the valve implant in place. Meanwhile, in some cases, the prosthetic valves are implanted through small access channels using one of various minimally invasive surgical procedures, where visibility at the implant site may be impeded or obstructed. In addition, depending on the direction of implantation, for example, with some mitral valve replacement procedures, commissure posts of the stent or frame, or other portions of the prosthetic valve may be pointed distally and located on a blind side of the valve.


Each of the above factors may lead to tangling of the pre-installed sutures with the valve prosthesis, most commonly with the commissure posts of the frame, since they provide a protrusion on which the sutures can easily loop around and tangle. This type of entanglement of sutures with prosthetic valves is referred to as “suture looping,” which specifically refers to instances where a pre-installed suture is inadvertently wrapped around one or more of the commissure post tips, where it can then migrate towards and damage the leaflets or interfere with proper leaflet coaptation or other valve operation when the sutures are tightened or secured, resulting in improper valve operation. In some cases, such tangling may not be apparent to the practitioner at the time of implantation, and will only be revealed some time later when valve operation is observed to be improper or other complications arise in the patient, in which case, it may be necessary to initiate another procedure to repair or replace the prosthetic valve.


SUMMARY

Attempts have been made to resolve the problem of suture looping, some of which revolve around the holders which hold the prosthetic valves when they are delivered to the native valve annulus. In one example, a holder has a mechanism that urges the commissure posts of the prosthetic valve radially inward during delivery, so that the ends of the commissure posts are pointed inwards, to reduce the possibility of sutures catching against or looping around them. After the valve prosthesis is delivered to the implant site, the holder is removed, releasing and expanding the commissure posts to their original positions. However, although the commissure posts are biased inwardly during delivery, since the ends of the commissure posts remain free, these holders have not been fully effective in eliminating instances of suture looping.


Meanwhile, Edwards Lifesciences has developed another valve holder system, known as Tricentrix®, specifically for use in mitral valve replacement procedures to protect the valve from suture looping during valve implantation. The system includes monofilament deflection sutures that attach to both the holder and pairs of commissures of the prosthetic valve, so that the sutures run across the outflow end of the valve between the ends of the commissures. When the holder is actuated, a central post extends distally through the prosthetic valve between the leaflets and pushes against the sutures in the middle of the valve between the commissures, pushing the sutures distally and causing an angled tent-like or umbrella shape of sutures. The pressure on the sutures deflects the commissures slightly inward, while also forming the angled umbrella shape of the sutures that slope outwardly and downwardly from the central post to the commissure posts. These angled surfaces deflect away from the prosthetic valve any other sutures, such as the pre-installed attachment sutures, mentioned above, that might otherwise engage and be looped around a commissure or valve leaflet.


Other holders have also been developed in an attempt to further reduce instances of suture looping. However, some of these holders are very complex, for example, incorporating various rotary and advancement mechanisms in addition to the original hold and release mechanisms, such that a number of additional steps must be taken by the practitioner to operate the holders correctly. Many of these holders have proven to be too complicated and/or prone to user error, such as a failure to execute all deployment steps in the correct order. Consequently, when practitioners use these holders improperly, suture looping can still occur, while the implant process may also be further complicated by issues arising from user error.


In addition to the above, many of the newer holder designs also incorporate many additional parts that interact with one another or that must be assembled by the practitioner or other end user, which may also lead to additional complications. For example, where additional parts must be threaded into one another, cross-threading can occur when the threads of the various parts are inadvertently misaligned. This and/or other interactions between the additional parts may lead to increased possibility of the holder being damaged or breaking, and of loose fragments being generated.


Features of the invention provide for new holder systems and methods of using the holder systems, which reduce or eliminate the occurrence of suture looping or other damage to the prosthetic valves during implantation. Operation of the holders is also simplified, where the additional features of the holders can be pre-deployed or integrated for deployment or actuation automatically when performing existing steps already well-known by users, thereby reducing or eliminating mistakes caused by user error and increasing patient safety. The holders can also have a reduced number of parts and/or provide for integrated alignment features or other safety features, so that cross-threading or other damaging interactions between parts can also be prevented. These holders can also be made at similar or reduced costs compared to existing holders. In addition, reducing the number of deployment steps reduces the time to complete the surgical procedure, and reduces the complexity of training, or retraining, needed to learn the procedure.


In one embodiment of the invention, a prosthetic heart valve holder system includes a prosthetic heart valve having an inflow end and an outflow end and a flow axis therethrough. The heart valve further has a base at the inflow end, a plurality of commissure posts extending from the base toward the outflow end and circumferentially spaced around the flow axis, and valve leaflets secured to the commissure posts to permit flow through the heart valve, each commissure post having a tip at the outflow end. The valve holder system further includes a deflector at the outflow end having a central hub and a plurality of arms extending from the central hub. A first end of each of the arms are secured to the central hub and a second end of each of the arms are secured to and cover a tip of a respective commissure post of the plurality of commissure posts. A valve support body is secured to the base at the inflow end and a post extends from the valve support body at the inflow end of the heart valve, through the valve leaflets, to the hub of the deflector at the outflow end. The plurality of arms of the deflector are sufficiently collapsible such that, in a first position, the second end of each of the plurality of arms is located axially between the hub and the valve support body such that the deflector prevents suture looping during an implant procedure. In a second position, the hub is located axially between the second end of each of the plurality of arms of the deflector and the valve support body to permit removal of the deflector from the outflow side of the valve, through the valve leaflets, to the inflow side of the valve without damaging the valve leaflets after detachment of the deflector arms from the tips of the commissures.


In a preferred embodiment of the prosthetic heart valve system, the plurality of commissures posts is at least three commissure posts and the plurality of arms of the deflector is at least three arms. In other embodiments, the post is a solid pin and the post may be molded or press-fit to the deflector. In a further embodiment, the deflector and the valve support may be permanently fixed a first distance apart from one another by the post. The prosthetic heart valve, the deflector and the valve support body may also be mounted in a package in the first position.


In a further preferred embodiment of the invention, the deflector is a monolithic body of flexible material. The flexible material preferably has a durometer in the range of Shore A30 to Shore A70. In an alternative embodiment, each of the plurality of arms has a transversely extending notch that forms a living hinge. In other embodiments, a layer of material that is resistant to viscoelastic stress relaxation, such as a layer of cloth, is embedded in or overmolded to the arms of the deflector. Preferably the plurality of arms of the deflector are held taut between the central hub and the plurality of commissure posts. In another embodiment, the second end of each arm is a channel member that extends over the top and three sides of the tip of the respective commissure post.


In a further embodiment, the prosthetic heart valve holder system includes an adaptor configured to be detachably connected to the valve support body on an opposite side of the valve support body from the deflector. The adaptor can be detachably connected to the valve support body by a suture.


A plurality of additional sutures can be routed from the opposite side of the valve support body, through respective commissure posts to the tips of the commissure posts, through respective deflector arms, back to the tips and back down the commissure posts, through the valve support body again and fixed to the opposite side of the valve support body. In a preferred embodiment, each of the plurality of additional sutures has a portion that is placed over a gap on the opposite side of the valve support body to permit the portions to be all cut in a single action. The adaptor may include a suture shield mounted over the gap to protect the suture portions from premature cutting until the adapter is detached from the valve support body. A handle may also be detachably connectable to the adaptor from the opposite side of the valve support body from the deflector.


In another alternative embodiment, a prosthetic heart valve holder includes a deflector having a central hub and a plurality of arms extending from the central hub, each of the plurality of arms having a first end secured to the central hub and a free second end radially outward from the hub, the valve holder further includes a valve support body and a post extending from the valve support body to the hub of the deflector. The plurality of arms of the deflector are sufficiently collapsible such that, in a first position, the second end of each of the plurality of arms is located axially between the hub and the valve support body, and in a second position, the hub is located axially between the second end of each of the plurality of arms of the deflector and the valve support body.


In a further embodiment, the plurality of arms of the deflector are sufficiently collapsible such that, in a first position, the hub is a first axial distance from the valve support body and the second end of each of the plurality of arms extends an axial distance less than the first axial distance from the valve support body and in a second position, the second end of each of the plurality of arms of the deflector is at an axial distance greater than the first axial distance.


According to embodiments of the invention, holders for prosthetic valve delivery reduce or eliminate occurrences of suture looping and/or other damage to the valves when the valves are implanted, while the mechanisms for deploying these features are integrated into the holders in a way that make it easier for end users to use and deploy.





BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the invention will become apparent from the description of embodiments using the accompanying drawings. In the drawings:



FIG. 1 shows a schematic cross-sectional view of a human heart;



FIG. 2 shows a schematic perspective view of an example of a prosthetic valve that can be used with embodiments of the invention;



FIG. 3 shows an exploded perspective view of a valve holder, adapter and handle for a prosthetic heart valve according to an embodiment of the invention;



FIG. 4 shows a top perspective view of the valve holder, adapter and handle of FIG. 3 in an assembled state;



FIG. 5 shows a bottom perspective view of the valve holder and adapter of FIG. 3 in the assembled state;



FIG. 6 shows a perspective view of the valve holder of FIG. 3 with a prosthetic heart valve;



FIG. 7 shows a top perspective view of a deflector of the valve holder of FIG. 3;



FIG. 8 shows a bottom perspective view of the deflector of FIG. 3;



FIG. 9 shows a top perspective view of a valve support body of the valve holder of FIG. 3;



FIG. 10 shows a bottom perspective view of the valve support body of FIG. 3;



FIG. 11 shows a bottom perspective view of an adapter of the valve holder of FIG. 3;



FIG. 12 shows a top perspective view of the adapter of FIG. 3;



FIG. 13 shows a cross-sectional view of the adapter of FIG. 12;



FIG. 14 shows a bottom perspective view of the valve support body of FIG. 3 with sutures;



FIG. 15 shows a perspective view of the valve holder and prosthetic heart valve of FIG. 3 with the deflector in a collapsed state;



FIG. 16 shows a perspective view of a deflector and a prosthetic heart valve according to a modified embodiment of the invention;



FIG. 17 shows a perspective view of a deflector and a prosthetic heart valve according to a further modified embodiment of the invention;



FIG. 18 shows a perspective view of the deflector and prosthetic heart valve of FIG. 17 with the deflector in a partially collapsed state and the valve leaflets removed to better view the other parts;



FIG. 19 shows a perspective view of a deflector according to a modified embodiment of the invention;



FIG. 20 shows a perspective view of a deflector, a handle adapter and a prosthetic heart valve according to an alternative embodiment of the invention;



FIG. 21 shows a perspective view of a deflector, an adapter, and a prosthetic heart valve mounted to a ring according to another alternative embodiment of the invention.





DETAILED DESCRIPTION

Disclosed herein are various valve holders for assisting in the delivery and implantation of prosthetic heart valves at an implant site, and methods for preparing the prosthetic heart valves for such procedures. Embodiments of the valve holders reduce occurrences of various complications that may arise during implantation, while remaining simple for end users to use. By providing these improved valve holders, damage to the prosthetic valves during surgical procedures can be reduced, and additional costs for extended or additional procedures and replacement valves can be avoided.


The valve holders disclosed herein are particularly useful for avoiding suture looping and other valve damage during advancement of the prosthetic valves to the implant sites as well as during final suturing of the valves at the native valve annulus. In procedures where commissure posts of the prosthetic valve point distally, for example, in many mitral valve replacement procedures, the commissure posts point in the direction of valve advancement and may be more prone to suture looping or other entangling. In these cases, valve holders according to embodiments of the invention provide deflectors that deflect the pre-installed sutures away from the prosthetic valve. In some embodiments, the valve holder system has a deflector that is pre-deployed without requiring any action by the surgeon or operating room staff and is ready for delivery to the native valve annulus upon removal of the packaging. Upon securement of the prosthetic heart valve to the annulus, the deflector is collapsible to permit it to be pulled through the leaflets without causing any damage when the holder is removed from the prosthetic valve. In other embodiments, the surgeon or operating room staff may effect automatic deployment or actuation of the respective valve holders to their deployed positions, using steps that are already associated with handling of existing valve holders. As with the pre-deployed system, upon securement of the prosthetic heart valve to the native valve annulus, the deflector is collapsible to permit it to be pulled through the leaflets without causing any damage when the holder is removed from the prosthetic valve. In this fashion, ease of use of the below described valve holders can be maintained, while user error can be minimized.


With reference to FIGS. 3-6, an embodiment of the prosthetic valve holder system of the present invention includes a valve holder 100 that includes a valve support body 110 attached to a deflector 112 by a central post 114, an adapter 116, an optional handle 118, and a prosthetic heart valve 1. According to an embodiment of the invention, the prosthetic heart valve holder system is provided to the surgical team in a pre-deployed arrangement with the prosthetic valve 1 captured between the valve support body 110 and the deflector 112, as shown in FIG. 6. The post 114 extends through the center of the prosthetic valve through the leaflets 2 and between the support body 110 and the deflector 112. According to this embodiment, the system does not need any steps to activate the suture looping protection, and can be used with or without the handle 118.


With reference to FIGS. 7 and 8, the deflector 112 includes a central hub 130 and three generally radially extending arms 132. Preferably, the deflector is a monolithic body made of a highly flexible material which allows the arms to easily fold when the deflector is pulled through the leaflets of the prosthetic valve after attachment of the valve to the native valve annulus and during release of the holder.


Preferred materials for the deflector are rubber, such as a soft silicone rubber, a soft flexible polymer, or other materials having a durometer in the range of Shore A30-A70, or preferably about Shore A50.


Additionally, the deflector may be overmolded with a cloth, fabric or other thin mesh material to give the arms strength and resistance to viscoelastic stress relaxation, yet maintain the flexibility of the deflector to permit removal through the valve leaflets. The cloth, fabric or mesh may be a single piece embedded in the deflector across the central hub and the three arms or may be multiple pieces.


The central hub 130 of the deflector has a smooth convexly curved top surface 134, a cylindrical side surface 136, and a truncated conical bottom surface 138 that narrows in a direction away from the top surface. The curved top surface 134 is for deflecting away from the leaflets any pre-installed attachment sutures during installation of the prosthetic valve. The conical bottom surface 138 provides a tapered surface to gradually spread the leaflets during retraction and removal of the deflector through the leaflets after the valve has been attached. At the truncated tip of the conical bottom surface, an opening to a bore 142 is provided for receipt of one end of the post 114.


Extending radially and downwardly away from the central hub 130 are the three arms 132. One end of each arm is secured to the cylindrical side surface of 136 of the central hub. The other end of each arm is configured to mount over a tip 6 of a respective commissure post 4 of the prosthetic valve (see FIG. 2). Accordingly, the length of each arm should be sufficient to extend from the central hub to the commissure post and over the commissure post. Preferably, the arms are held taut between the hub and the posts to cause any pre-installed assembly sutures to slide down the deflector during installation of the prosthetic valve, thus preventing suture looping. In addition, the arms may be used to also deflect or urge the commissure posts inward.


To improve the connection between the arms 132 of the deflector 112 and the commissure posts 4, the radially outer end portion of each arm forms a channel member 150 that extends down from the end of each arm. The channel member 150 has an end wall 152 and two side flanges 154 extending radially inward from the end wall to form a channel 156 to receive a tip 6 of a commissure post 4. The end wall 152 of each channel member is thickened and includes two suture holes 158 extending through the end wall into the channel 156. Preferably, the end wall of the deflector is wider than the width of the tip of the commissure post and the side flanges cover a substantial portion of the sides of the tip so as to surround the top and outside of the tip, thereby offering excellent protection against suture looping.


To improve the flexibility of the arms of the deflector, the width (w) of each arm, measured across the top surface of the arm, is gradually tapered or narrowed beginning from a location near the channel member 150 of the arm to a location near the central hub 130.


With reference to FIG. 9, the valve support body 110 is in the form of a circular disk 170 having a raised central platform 172 that is smaller in diameter than the circular disk 170. The central platform 172 is concentric to the circular disk and therefore an outer circumferential portion of the circular disk forms an annular base surface 174 that can receive and be attached to the suture or sewing ring 5 of the prosthetic heart valve (see FIG. 2). The annular base surface 174 is provided with three pairs of suture holes 175a, 175b, 175c through the valve support body, each pair being configured to be aligned with a respective commissure post 4 of the prosthetic heart valve in order to suture the valve 1 to the support body 110.


Projecting up from the raised central platform 172 of the support body is a cylindrical base member 176 centrally located on the platform 172. Furthermore, projecting up from the base member 176 is a truncated conical member 178 having a conical surface that narrows in a direction away from base member 176. The narrowing will assist in preventing any interference between the valve support body 110 and the prosthetic valve leaflets 3 during the surgical procedure. At the truncated tip of the conical member 178, an opening to a bore 180 is provided for receipt of an end of the post 114 (see FIG. 3).


In one embodiment, the post is molded to the conical member 178 of the support body 110 and to the truncated tip of the deflector 112. Other methods of attachment may be used such as a press fit, but the attachment should be secure to prevent detachment during removal of the valve support body 110 and deflector 112 from the prosthetic valve after completion of the surgical procedure. In addition, the post has a small diameter such that it can pass through a central hole 7 of coapted leaflets of the valve, without significantly deforming the leaflets.


A beveled surface 182 is located between the central platform 172 and the base member 176. In an embodiment, a pair of suture holes 184 are located next to each other through the beveled surface in order to provide a securement point for the adapter 116 (see FIG. 3) to the support body 110. It will be appreciated that the suture holes 184 may be placed at other locations of the support body as deemed necessary. Passing through the central platform are also a pair of tool openings 186 such that the valve support body 110 can be grasped and positioned as needed by a surgical instrument (not shown). The openings 186 may be of any suitable shape (e.g., rectangular) to provide a rib 188 or other structure between the openings for grasping.


With reference to FIG. 10, the bottom side 200 of the valve support body 110 includes a central hole 202 to receive the adapter 116 (see FIG. 3). The central hole 202 includes a first axially extending hole portion having opposed flat sides 204 and opposed curved sides 206. At the end of the first axially extending hole portion, shoulders 208 are formed that serve as an abutment to a corresponding portion of the adapter 116. Extending axially further into the valve support body 110 is a second axially extending hole portion having a cylindrical inner surface 210. The second axially extending hole portion is also sized to receive a corresponding portion of the adapter, which will be described in more detail below.


Projecting from the bottom side 200 of the valve support body are a plurality of suture supports 212a, 212b and suture tunnels 214a, 214b, 214c. The suture supports 212a, 212b are rectangular blocks, each with an exposed groove surface 216. The groove is a smooth cylinder or otherwise concave surface. In an embodiment of the invention, the suture supports 212a, 212b are adjacent to each other and their grooved surfaces 216 are aligned such that multiple sutures can be laid across a gap 218 between the suture supports. As will be seen below, this will provide a single cut point to release the valve holder 100 from the prosthetic heart valve 120.


The suture tunnels 214a and 214b each have two columns 220 with an interconnecting span member 222 that together form a tunnel space 224 for receiving one or more sutures therethrough. In one embodiment, there are three support tunnels 214a, 214b, 214c, each located near a respective pair of suture holes 175a, 175b, 175c. Two of the suture tunnels 214a, 214b are located on opposite sides of and adjacent to respective suture supports 212a, 212b such that the tunnel spaces 224 are aligned with the groove surfaces 216 to provide a suture pathway across the gap 218. The third suture tunnel 214c is located next to one of the tool openings 186 and near the third pair of suture holes 175c. It will be appreciated that the number and location of suture supports and suture tunnels for routing and tying down sutures may be varied as desired. In addition, the columns 220 and span members 222 of the suture tunnels are rounded so as not to chafe or abrade the sutures and to provide secure surfaces for tying down the sutures. The valve support body 110 may be made as a single piece out of a rigid plastic material, or other material suitable to safely secure the prosthetic valve during shipment and use.


Packaging guides 230 are also provided on the valve support body 110 in order to secure the valve holder 100 and prosthetic heart valve 120 within a package for shipping. In an embodiment of the invention, the packaging guides are a pair of L-shaped support guides 232 configured to engage packaging components (not shown). A package 60 for the valve holder 110 and prosthetic valve 1 is shown schematically in FIG. 6.


With reference to FIG. 3, the adapter 116 may be employed when the surgeon prefers to use a handle to insert the prosthetic heart valve into the native valve annulus. The adapter provides an attachment mechanism to attach the handle. The adapter may also be used to provide other features, such as suture protection during the implant procedure. The adapter may be made as a single piece out of a rigid plastic material or other suitable material.


With reference to FIGS. 11 and 12, the adapter 116 includes a post member 240 and a suture shield 242. The post member 240 has at one end a first cylindrical member 244 that is sized to fit within the cylindrical inner surface 210 of the valve support body 110. The connection may be a press fit, but the connection should not be so tight as to make it difficult to detach the adapter 116 from the valve support body 110 during the surgical procedure.


At the other end of the post member 240 of the adapter 116 is a second cylindrical member 246 that has a greater outer diameter than the first cylindrical member 244. Located between the first and second cylindrical members is an anti-rotation member 248 having opposed flat sides 250 and opposed curved sides 252. The anti-rotation member is sized to fit within the central hole 202 of the valve support body 110 and is sized to prevent or restrict rotation between the adapter 116 and the valve support body 110. On the end of the anti-rotation member 248 adjacent the first cylindrical member 244, the opposed curved surfaces 252 project to form abutments 254 that can engage the shoulders 208 in the central hole 202 of the valve support body 110. This prevents the adapter from being inserted too far into the valve support body.


The suture shield 242 extends laterally from the end of the second cylindrical member 246 adjacent to the anti-rotation member 248. The suture shield 242 includes two support arms 280 each having a flat surface 282 that can bear against the bottom side 200 of the valve support body. At the end of each support arm 280, a vertical extension member 284 is provided that projects away from the flat surface in the direction of the second cylindrical member 246. The extension members 284 support a suture cover 286 that is arranged to overlap the suture supports 212a, 212b and the suture tunnels 214a, 214b. The suture cover 286 prevents the surgeon or clinician from prematurely cutting the sutures to release the valve support body 110 from the prosthetic heart valve 120. The length and width of the suture cover 286 is preferably sufficient to cover the entire top of each of the suture supports 212a, 212b and suture tunnels 214a, 214b.


The adapter further includes a tab 290 extending laterally in an opposite direction from the suture shield 242. The tab has a flat surface 292 that, similar to the flat surfaces 282 of the suture shield, can bear against the bottom side 200 of the valve support body 110 to form a firm connection. Suture holes 294 are provided through suture shield 242 and are aligned with the suture holes 184 of the valve support body 110 so that a suture can be tied to secure the adapter 116 to the valve support body 110.


With reference to FIG. 13, the post member 240 of the adapter 116 has a central bore 260 running through the second cylindrical member 246, the anti-rotation member 248 and at least a part of the first cylindrical member 244. The central bore 260 has an unthreaded portion 262 at the opening to the second cylindrical member 246. Adjacent the unthreaded portion 262 is a threaded portion 264 in the anti-rotation member 248. The first cylindrical member 244 has a reduced sized bore 266 to receive an unthreaded lead-in section 318 of the handle 118. The bore 266 is the same diameter as or a larger diameter than the lead-in section 318 to provide clearance.


With reference to FIG. 3, the handle 118 has a bendable portion 310 to permit the handle to be bent in order to access the surgical site from different directions and angles. The bendable portion 310 is secured to a rigid portion 312 that includes an unthreaded portion 314 and a threaded portion 316 closer to a tip 318 of the handle than the unthreaded portion. In an embodiment, the outer diameter of a thread 320 of the threaded portion 316 is the same as the outer diameter of the unthreaded portion 314, although the diameter may be different in other embodiments. The outer diameter of the thread 320 is the same as the inner diameter of the unthreaded portion 262 of the central bore 260 of the adapter 116. The length of the unthreaded portion 262 is several millimeters before the start of the threaded portion 204 of the central bore 260. The unthreaded portion 262 helps insure axial alignment between the threads of the adapter and the handle to prevent cross-threading.


Assembly of the prosthetic heart valve holder system of the embodiment of FIGS. 1-13 proceeds as follows. With reference to FIG. 3, one end of the central post 114 is inserted into the bore 142 of the deflector 112 and the other end of the post is inserted into the bore 180 of the valve support body 110. As mentioned earlier, the attachment of the central post to the deflector and the valve support body may be by press fit or overmolding, or any other method, such as a snap fit, that prevents the parts from being detached during the surgical procedure.


The assembled valve support body 110 and deflector 112 are then attached to the prosthetic heart valve 1 (see FIGS. 2 and 4). This may be done by inserting the deflector 112 into the inflow end of the prosthetic heart valve 1. During the process the arms 132 of the deflector will engage the leaflets 2 and bend or fold inward toward the central post while the leaflets are moved out of the way to permit the deflector to pass through the leaflets to the outflow end of the prosthetic valve. The deflector 112 is pushed through the valve until the suture ring 5 of the heart valve engages the annular base surface 174 of the valve support body 110 (see assembled valve holder 100 and prosthetic valve 1 in FIG. 6).


After the suture ring 5 is mounted on the annular base surface 174, the heart valve is rotated on the base surface in order to align the three pairs of suture holes 175a, 175b, 175c of the valve support body with their respective commissure posts 4 of the prosthetic valve. Simultaneously, the deflector arms 132 are aligned with respective tips 6 of the commissure posts 4.


The deflector arms 132 are arranged over the commissure posts 4 such that the tips 6 enter the channels 156 at the outer end portion of each arm. Preferably, the end wall 152 of the deflector arm is wider than the width of the tip and the side flanges 154 cover a portion of the sides of the tip. The angle that the deflector arms 132 form with the central post 114 when mounted to the tips 6 of the commissure post is sufficient to result in the tent-like or umbrella shape, preferably about 25 to 60° such that the ends of the deflector arms attached to the commissure posts are located axially between the central hub 130 and the valve support body 110. In addition, the deflector arms are held taut by the commissure posts 4 causing the deflector to assume an angled tent-like or umbrella shape.


Sutures 11 are used to attach the prosthetic valve to the support body 110 and the arms 132 of the deflector. With reference to FIG. 14, suture 11c is passed through one of the pair of suture holes 175c. The end of the suture 11c is knotted (at x) to prevent it from passing through the hole. Suture 11c is passed through the suture ring 5 and along the commissure post 4 to a location near the tip 6 (not shown). The suture 11c is threaded out of the commissure post and through one of the pair of suture holes 158 of the deflector arm to the outside of the end wall 152 and is threaded back to the tip of the commissure post through the other one of the pair of suture holes 158 and threaded back down the commissure post through the suture ring 5 and through the other one of the pair of suture holes 175c. Suture 11c is threaded through suture tunnel 214c, through suture tunnel 214a, over both suture supports 212a, 212b and tied down to suture tunnel 214b.


Sutures 11a and 11b are similarly passed through respective pairs of suture holes 175a, 175b, through the suture ring 5, up respective commissure posts 4 to the tips 6, routed out and in through respective holes 158 of the deflector arms 132 (see FIG. 6), into the tips 6 and back down the commissure posts 4 through the suture ring 5 and through the adjacent hole of the respective pair of suture holes 175a, 175b. Each suture 11a and 11b is passed through a suture tunnel 214a, 214b over both suture supports 212a, 212b and tied down to the other suture tunnel 214a, 214b. In this way, all three sutures 11a, 11b, 11c are arranged across the gap 218 between the two suture supports 212a, 212b to provide a single cut point at the completion of the surgery to release the valve holder 100 from the prosthetic valve 1.


The suture 11a, 11b, and 11c also hold the deflector arms 132 taut against the commissure posts 4. This results in the arms 132 assuming a tent-like or umbrella shape that will cause the pre-installed sutures to slide or glide off the umbrella during valve placement and thereby preventing suture looping.


When a handle for the holder is desired (see FIG. 3), the adapter 116 is attached to the valve support body 110 by inserting the post member 240 of the adapter 116 into the central hole 202 of the valve support body 110 (see FIG. 10). In particular, the post member 248 is inserted until the first cylindrical member 244 and the anti-rotation member 248 of the post member are fully inserted into the central hole of the valve support body 110. Preferably, the flat surfaces 282 of the suture shield 242 and the flat surface 292 of the tab 290 abut the bottom side 200 of the valve support body 110. Finally, a suture 12 is threaded through suture holes 294 of the suture shield and suture holes 184 in the support body 110 to secure the adapter 116 to the support body (see FIG. 3).


The handle 118 is attached to the adapter 116 by guiding the threaded portion 316 of the handle into the central bore 260 of the adapter 116. The unthreaded portion 262 of the central bore (see FIG. 5) will act as a guide to axially align the handle 118 and the central bore 260 of the adapter to permit the handle to be screwed in without cross-threading.


During the surgical procedure, the handle 118 may be used to guide the prosthetic heart valve holder system to the native valve annulus. Examples of such a procedure for installing a new mitral valve is described in U.S. Patent Application Publication No. 2002/0013621, and U.S. Pat. No. 6,966,925, both incorporated herein by reference.


In order to secure the prosthetic valve to the native valve annulus, a plurality of sutures can be pre-installed within the mitral valve annulus. The sutures are then brought outside the body and passed through the suture ring 5 of the prosthetic valve 1 of the present invention. The handle 118 is then used to guide the valve holder 100 and prosthetic valve 1 along the pre-installed sutures to the native valve annulus.


During delivery of the valve, the pre-deployed deflector 112, with its umbrella shape, prevents entanglement of the commissure posts with the array of preinstalled sutures. Once the valve engages the native valve annulus, the handle can be removed by a single cut of suture 12 that secures the adapter 116 to the valve support body 110 and the adapter is pulled out of the central hole 202 of the valve support body 110. At the same time, the suture shield 242 of the adapter is also removed, exposing the sutures 11a, 11b, 11c that are arranged across gap 218 (see FIG. 14).


The pre-installed sutures may now be tied off to secure the prosthetic valve to the native valve annulus. Once completed, a member of the surgical team can make a single cut across the gap 218 to cut all three sutures 11a, 11b, 11c. The valve holder 100 can then be grasped with a tool, e.g., along the rib 188 between the tool openings 186 (see FIG. 5), and pulled away from the prosthetic valve. With reference to FIG. 15, as the valve holder is pulled from the prosthetic valve, the collapsible arms 132 of the deflector 112 invert, or fold backward, or flexibly bend, when being pulled through the leaflets 2 and the contact is soft enough to cause no damage to the prosthetic valve or leaflets. In this collapsed position, the central hub 130 is located axially between the free ends of the deflector arms 132 and the valve support body 110.


With reference to FIG. 16, another embodiment of a deflector 410 mounted to a prosthetic heart valve 400 includes a central hub 412 and three generally radially extending arms 414. The deflector is a monolithic body made of a material, such as a soft silicone rubber or flexible polymer, which permits the arms to bend up and down.


A first end 416 of each arm is attached to the central hub 412 and each arm extends radially from the central hub to a free end 418. The arms are thin for most of their length, then gradually widen at their free ends to form attachment portions 420. A pair of suture holes 422 are formed through each attachment portion. Sutures may be used to attach the arms to the tips of the commissure posts 402 of the valve 400 as in the first embodiment. It will be appreciated that the deflector 410 may be substituted for the deflector 112 of the first embodiment, or other deflectors described in this application.


With reference to FIG. 17, in another embodiment, the central hub 412 of deflector 410 is tubular to form a central post 430 extending down toward the inflow end of the valve 400. A hole 432 passes through the central post toward the inflow end of the valve. In an alternative embodiment, a suture 440 may be routed up through the post 430 and radially along an arm 414 to a first of the pair of suture holes 422, then passed through the first hole and into the tip of the commissure post 402. The suture is passed back out of the tip and through the second hole of the pair of suture holes 422, along the arm radially inward to the hub 412 and routed back down the hole 432 to be attached on the inflow side of the valve. For example, the sutures 440 may pass through an opening or one of several openings in the conical member 178 or at a cylindrical base 190 next to the conical member (see FIG. 9). One end of the suture 440 may then be routed through the sewing ring 5 of the prosthetic valve and knotted at one of the pair of suture holes 175a in the support body 110 of the first embodiment. The other end of the suture 440 may be routed through the sewing ring 5, and through the other one of the pair of suture holes 175a, and routed through the suture tunnels 214a, 214b, 214c and the suture supports 212a, 212b as desired. Additional sutures are routed in a similar manner to the other two commissure posts 402.



FIG. 17 shows the deflector 410 in a tented shape with the arms 414 bent at each of their ends near the central hub 412 and near the suture holes 422. The arms may also bend anywhere between the ends. FIG. 18 shows the deflector 410 in a partially collapsed shape wherein the central hub 412 is located axially below the free ends 418 of the deflector arms 414. The valve leaflets are removed in FIG. 18 to better view the other parts.


With reference to FIG. 19 another embodiment of a deflector 500 has a living hinge 510. The deflector has a central hub 502 and three generally radially extending arms 504. Each arm has a concavely curved notch 506 extending transversely fully across a bottom side of the arm to form the living hinge 510. A cornered recess 508 may also be formed in a top side of each arm, directly above the notch 506, leaving a thin rib 512 where bending or folding of each arm can occur. Alternatively, the concavely curved notch can be on the top side and the cornered recess can be on the bottom side, or only one side can have a notch or recess, or both sides can have notches or recesses.


In some situations, it may be desirable to move the deflector from an untented position to a tented position while attached to the prosthetic valve. With reference to FIG. 20, the central post 430 of the deflector is secured to a handle adapter 444 (shown schematically). Such an adapter 444 may form part of a valve holder (not shown), such as described in U.S. Pat. No. 6,966,925, incorporated by reference herein, to permit movement and locking of the post and deflector 430 relative to the prosthetic valve 400. With reference to FIG. 21, in another embodiment, the prosthetic valve is mounted to a ring 450. The ring may be used for suture attachment for sutures routed through the central post 430 and/or the adapter 444.


It will be appreciated that several ways of routing sutures between the prosthetic valve 1 and the valve holder 100 are described herein for insuring that those sutures are removed together with the valve holder after the prosthetic valve is delivered to the native valve annulus and that suture routing for one embodiment may be used in other embodiments.


In other alternative embodiments, various different features from the different embodiments discussed above can also be combined into a single modified valve holder. In addition, various other modifications or alternative configurations can also be made to the valve holder according to the above described embodiments of the invention.


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.


Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially can in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms can vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.


In view of the many possible embodiments to which the principles of the disclosure can be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is defined by the following claims.

Claims
  • 1. A prosthetic heart valve holder comprising: a deflector having a hub and a plurality of arms extending radially outwardly from the hub, each of the arms having a first end connected to the hub and a free second end positioned radially outwardly from the hub;a valve support body; anda post extending between and connecting the valve support body and the hub, wherein an outer width of the hub is greater than an outer width of the post;wherein the arms are deflectable axially relative to the hub, such that in a first configuration the second ends of the arms are positioned closer axially to the valve support body than the hub is to the valve support body, and in a second configuration the second ends of the arms are positioned farther away axially from the valve support body than the hub is to the valve support body.
  • 2. The prosthetic heart valve holder of claim 1, wherein the deflector comprises at least three arms.
  • 3. The prosthetic heart valve holder of claim 1, wherein an end of the post is insertable into the hub of the deflector.
  • 4. The prosthetic heart valve holder of claim 1, wherein the post comprises a solid pin.
  • 5. The prosthetic heart valve holder of claim 1, wherein the post is molded or press-fit to the hub of the deflector.
  • 6. The prosthetic heart valve holder of claim 1, wherein an axial distance between the hub of the deflector and the valve support body remains fixed.
  • 7. The prosthetic heart valve holder of claim 1, further comprising an adaptor that is detachably connectable to a side of the valve support body opposite the post and the deflector, wherein the adaptor comprises a suture shield for covering sutures which connect a prosthetic heart valve to the prosthetic heart valve holder.
  • 8. The prosthetic heart valve holder of claim 1, further comprising a handle that is detachably connectable to a side of the valve support body opposite the post.
  • 9. A prosthetic heart valve holder comprising: a deflector having a hub and a plurality of arms extending radially outwardly from the hub, each of the arms having a first end connected to the hub and a free second end positioned radially outwardly from the hub;a valve support body; anda post extending between and connecting the valve support body and the hub, wherein each of the arms remains entirely spaced apart from the post;wherein the arms are deflectable axially relative to the hub, such that in a first configuration the second ends of the arms are positioned closer axially to the valve support body than the hub is to the valve support body, and in a second configuration the second ends of the arms are positioned farther away axially from the valve support body than the hub is to the valve support body.
  • 10. The prosthetic heart valve holder of claim 9, wherein the deflector comprises at least three arms.
  • 11. The prosthetic heart valve holder of claim 9, wherein the hub is positioned between the post and each of the arms and prevents the arms from contacting the post.
  • 12. The prosthetic heart valve holder of claim 9, wherein each of the arms defines a transversely extending notch that forms a living hinge.
  • 13. The prosthetic heart valve holder of claim 9, wherein the post comprises a solid pin.
  • 14. The prosthetic heart valve holder of claim 9, wherein the post is molded or press-fit to the hub of the deflector.
  • 15. The prosthetic heart valve holder of claim 9, wherein an axial distance between the hub of the deflector and the valve support body remains fixed.
  • 16. The prosthetic heart valve holder of claim 9, further comprising an adaptor that is detachably connectable to a side of the valve support body opposite the post and the deflector, wherein the adaptor comprises a suture shield for covering sutures which connect a prosthetic heart valve to the prosthetic heart valve holder.
  • 17. The prosthetic heart valve holder of claim 9, further comprising a handle that is detachably connectable to a side of the valve support body opposite the post.
  • 18. A prosthetic heart valve holder comprising: a deflector having a hub and a plurality of arms extending radially outwardly from the hub, each of the arms having a first end connected to the hub and a free second end positioned radially outwardly from the hub;a valve support body; anda post extending between and connecting the valve support body and the hub;wherein the arms are deformable axially relative to the hub, such that in a first configuration the second ends of the arms are positioned closer axially to the valve support body than the hub is to the valve support body, and in a second configuration the second ends of the arms are positioned farther away axially from the valve support body than the hub is to the valve support body.
  • 19. The prosthetic heart valve holder of claim 18, wherein the arms of the deflector comprise a material with a durometer in the range of shore A30 to shore A70.
  • 20. The prosthetic heart valve holder of claim 18, wherein each of the arms defines a transversely extending notch that forms a living hinge.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/963,311, filed Apr. 26, 2018, now U.S. Pat. No. 10,799,353, which claims the benefit of U.S. Application No. 62/491,998, filed Apr. 28, 2017, the entire contents all of which incorporated by reference herein for all purposes.

US Referenced Citations (379)
Number Name Date Kind
3143742 Cromie Aug 1964 A
3320972 High et al. May 1967 A
3371352 Siposs et al. Mar 1968 A
3546710 Shumakov et al. Dec 1970 A
3574865 Hamaker Apr 1971 A
3755823 Hancock Sep 1973 A
3839741 Haller Oct 1974 A
3997923 Possis Dec 1976 A
4035849 Angell et al. Jul 1977 A
4078468 Civitello Mar 1978 A
4079468 Liotta et al. Mar 1978 A
4084268 Ionescu et al. Apr 1978 A
4106129 Carpentier et al. Aug 1978 A
4172295 Batten Oct 1979 A
4217665 Bex et al. Aug 1980 A
4218782 Rygg Aug 1980 A
4259753 Liotta et al. Apr 1981 A
RE30912 Hancock Apr 1982 E
4340091 Skelton et al. Jul 1982 A
4343048 Ross et al. Aug 1982 A
4364126 Rosen et al. Dec 1982 A
4388735 Ionescu et al. Jun 1983 A
4441216 Ionescu et al. Apr 1984 A
4451936 Carpentier et al. Jun 1984 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4501030 Lane Feb 1985 A
4506394 Bedard Mar 1985 A
4535483 Klawitter et al. Aug 1985 A
4566465 Arhan et al. Jan 1986 A
4605407 Black et al. Aug 1986 A
4626255 Reichart et al. Dec 1986 A
4629459 Ionescu et al. Dec 1986 A
4680031 Alonso Jul 1987 A
4687483 Fisher et al. Aug 1987 A
4705516 Barone et al. Nov 1987 A
4725274 Lane et al. Feb 1988 A
4731074 Rousseau et al. Mar 1988 A
4778461 Pietsch et al. Oct 1988 A
4790843 Carpentier et al. Dec 1988 A
4851000 Gupta Jul 1989 A
4888009 Lederman et al. Dec 1989 A
4914097 Oda et al. Apr 1990 A
4960424 Grooters Oct 1990 A
4993428 Arms Feb 1991 A
5010892 Colvin et al. Apr 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5147391 Lane Sep 1992 A
5163955 Love et al. Nov 1992 A
5258023 Reger Nov 1993 A
5316016 Adams et al. May 1994 A
5326370 Love et al. Jul 1994 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5360014 Sauter et al. Nov 1994 A
5360444 Kusuhara Nov 1994 A
5376112 Duran Dec 1994 A
5396887 Imran Mar 1995 A
5397351 Pavcnik et al. Mar 1995 A
5423887 Love et al. Jun 1995 A
5425741 Lemp et al. Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5449384 Johnson Sep 1995 A
5449385 Religa et al. Sep 1995 A
5469868 Reger Nov 1995 A
5487760 Villafana Jan 1996 A
5488789 Religa et al. Feb 1996 A
5489296 Love et al. Feb 1996 A
5489297 Duran Feb 1996 A
5489298 Love et al. Feb 1996 A
5500016 Fisher Mar 1996 A
5533515 Coller et al. Jul 1996 A
5549665 Vesely et al. Aug 1996 A
5562729 Purdy et al. Oct 1996 A
5571215 Sterman et al. Nov 1996 A
5573007 Bobo, Sr. Nov 1996 A
5578076 Krueger et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5618307 Donlon et al. Apr 1997 A
5626607 Malecki et al. May 1997 A
5628789 Vanney et al. May 1997 A
5693090 Unsworth et al. Dec 1997 A
5695503 Krueger et al. Dec 1997 A
5713952 Vanney et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5728064 Burns et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735894 Krueger et al. Apr 1998 A
5752522 Murphy May 1998 A
5755782 Love et al. May 1998 A
5766240 Johnson Jun 1998 A
5800527 Jansen et al. Sep 1998 A
5814097 Sterman et al. Sep 1998 A
5814098 Hinnenkamp et al. Sep 1998 A
5824064 Taheri Oct 1998 A
5824068 Bugge Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5848969 Panescu et al. Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855801 Lin et al. Jan 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5895420 Mirsch, II et al. Apr 1999 A
5902308 Murphy May 1999 A
5908450 Gross et al. Jun 1999 A
5919147 Jain Jul 1999 A
5921934 Teo Jul 1999 A
5921935 Hickey Jul 1999 A
5924984 Rao Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
5984973 Girard et al. Nov 1999 A
6010531 Donlon et al. Jan 2000 A
6042554 Rosenman et al. Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6066160 Colvin et al. May 2000 A
6074418 Buchanan et al. Jun 2000 A
6081737 Shah Jun 2000 A
6083179 Oredsson Jul 2000 A
6099475 Seward et al. Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6117091 Young et al. Sep 2000 A
6126007 Kari et al. Oct 2000 A
6162233 Williamson, IV et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6176877 Buchanan et al. Jan 2001 B1
6197054 Hamblin, Jr. et al. Mar 2001 B1
6217611 Klostermeyer Apr 2001 B1
6231561 Frazier et al. May 2001 B1
6241765 Griffin et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6264611 Ishikawa et al. Jul 2001 B1
6283127 Sterman et al. Sep 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6312465 Griffin et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6350282 Eberhardt Feb 2002 B1
6371983 Lane Apr 2002 B1
6375620 Oser et al. Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6409674 Brockway et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6442413 Silver Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6468305 Otte Oct 2002 B1
6491624 Lotfi Dec 2002 B1
6582462 Andersen et al. Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6645143 VanTassel et al. Nov 2003 B2
6652464 Schwartz et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6675049 Thompson et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6741885 Park et al. May 2004 B1
6764508 Roehe et al. Jul 2004 B1
6767362 Schreck Jul 2004 B2
6773457 Ivancev et al. Aug 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6795732 Stadler et al. Sep 2004 B2
6805711 Quijano et al. Oct 2004 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6895265 Silver May 2005 B2
6908481 Cribier Jun 2005 B2
6939365 Fogarty et al. Sep 2005 B1
6964682 Nguyen-Thien-Nhon et al. Nov 2005 B2
7011681 Vesely Mar 2006 B2
7018404 Holmberg et al. Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7033322 Silver Apr 2006 B2
7052466 Scheiner et al. May 2006 B2
7070616 Majercak et al. Jul 2006 B2
7082330 Stadler et al. Jul 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7195641 Palmaz et al. Mar 2007 B2
7201771 Lane Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7238200 Lee et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7261732 Justino Aug 2007 B2
RE40377 Williamson, IV et al. Jun 2008 E
7416530 Turner et al. Aug 2008 B2
7422603 Lane Sep 2008 B2
7513909 Lane et al. Apr 2009 B2
7556647 Drews et al. Jul 2009 B2
7569072 Berg et al. Aug 2009 B2
7621878 Ericson et al. Nov 2009 B2
7871432 Bergin Jan 2011 B2
7916013 Stevenson Mar 2011 B2
7998151 St. Goar et al. Aug 2011 B2
8066650 Lee et al. Nov 2011 B2
8248232 Stevenson et al. Aug 2012 B2
8253555 Stevenson et al. Aug 2012 B2
8340750 Prakash et al. Dec 2012 B2
8401659 Von Arx et al. Mar 2013 B2
8454684 Bergin et al. Jun 2013 B2
8529474 Gupta et al. Sep 2013 B2
8622936 Schenberger et al. Jan 2014 B2
9101264 Acquista Aug 2015 B2
9101281 Reinert et al. Aug 2015 B2
9693862 Campbell et al. Jul 2017 B2
20010039435 Roue et al. Nov 2001 A1
20010039436 Frazier et al. Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020020074 Love et al. Feb 2002 A1
20020026238 Lane et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020058995 Stevens May 2002 A1
20020123802 Snyders Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020188348 DiMatteo et al. Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030036795 Andersen et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030125805 Johnson et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030167089 Lane Sep 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20040010296 Swanson et al. Jan 2004 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040027306 Amundson et al. Feb 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040044406 Woolfson et al. Mar 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040167573 Williamson et al. Aug 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040206363 McCarthy et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040225355 Stevens Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043760 Fogarty et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050065614 Stinson Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050159811 Lane Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050228493 Bicer Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050251252 Stobie Nov 2005 A1
20050261765 Liddicoat Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060095125 Chinn et al. May 2006 A1
20060122634 Ino et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060154230 Cunanan et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060195185 Lane et al. Aug 2006 A1
20060195186 Drews et al. Aug 2006 A1
20060207031 Cunanan et al. Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060271172 Tehrani Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070016285 Lane et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070078509 Lotfy Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070100440 Figulla et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070150053 Gurskis et al. Jun 2007 A1
20070156233 Kapadia et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070179604 Lane Aug 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225801 Drews et al. Sep 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070255398 Yang et al. Nov 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265701 Gurskis et al. Nov 2007 A1
20070270944 Bergheim et al. Nov 2007 A1
20070282436 Pinchuk Dec 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080033543 Gurskis et al. Feb 2008 A1
20080046040 Denker et al. Feb 2008 A1
20080119875 Ino et al. May 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080319543 Lane Dec 2008 A1
20090036903 Ino et al. Feb 2009 A1
20090192591 Ryan et al. Jul 2009 A1
20090192599 Lane et al. Jul 2009 A1
20100004739 Vesely Jan 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100145438 Barone Jun 2010 A1
20100256723 Murray Oct 2010 A1
20120123284 Kheradvar May 2012 A1
20120296382 Shuros et al. Nov 2012 A1
20130144379 Najafi et al. Jun 2013 A1
20140039609 Campbell Feb 2014 A1
20140128964 Delaloye May 2014 A1
20140188221 Chung et al. Jul 2014 A1
20140364707 Kintz et al. Dec 2014 A1
20150045635 Tankiewicz et al. Feb 2015 A1
20160045316 Braido et al. Feb 2016 A1
20190321170 Green et al. Oct 2019 A1
Foreign Referenced Citations (6)
Number Date Country
0125393 Nov 1984 EP
0143246 Jun 1985 EP
1116573 Jul 1985 SU
1697790 Dec 1991 SU
9213502 Aug 1992 WO
9742871 Nov 1997 WO
Related Publications (1)
Number Date Country
20210022862 A1 Jan 2021 US
Provisional Applications (1)
Number Date Country
62491998 Apr 2017 US
Continuations (1)
Number Date Country
Parent 15963311 Apr 2018 US
Child 17067598 US