Prosthetic heart valve

Information

  • Patent Grant
  • 12064347
  • Patent Number
    12,064,347
  • Date Filed
    Wednesday, December 28, 2022
    a year ago
  • Date Issued
    Tuesday, August 20, 2024
    4 months ago
Abstract
A prosthetic valve is provided that includes a tubular valve body and a plurality of prosthetic leaflets disposed within a lumen of the valve body. The valve body includes struts arranged in a cellular structure defined by first and second circumferential rows of four-sided closed cells. Each of the four-sided closed cells is defined by some of the struts, which are shaped so as to collectively define the following four sides: a left upstream side, a right upstream side, a left downstream side, and a right downstream side. The struts are joined at four corners of the four-side closed cell. Each of the four sides of each of the four-sided closed cells is double-strutted. Other embodiments are also described.
Description
FIELD OF THE INVENTION

Some applications of the present invention relate in general to valve replacement. More specifically, some applications of the present invention relate to prosthetic valves for replacement of a cardiac valve.


BACKGROUND

Ischemic heart disease causes regurgitation of a heart valve by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the valve annulus.


Dilation of the annulus of the valve prevents the valve leaflets from fully coapting when the valve is closed. Regurgitation of blood from the ventricle into the atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the ventricle secondary to a volume overload and a pressure overload of the atrium.


SUMMARY OF THE INVENTION

For some applications, an implant is provided having a valve body that defines a lumen, an upstream support portion, and a plurality of legs. The implant is percutaneously deliverable to a native heart valve in a compressed state, and is expandable at the native valve. The implant comprises an inner frame and an outer frame. Typically, the upstream support portion is at least partly defined by the inner frame, and the legs are at least partly defined by the outer frame. The implant is secured at the native valve by sandwiching tissue of the native valve between the upstream support portion and the legs. For some applications, a flexible pouch extends radially outward from the valve body. For some such applications, the arms and the legs narrow the pouch therebetween to form a narrowed portion of the pouch, thereby dividing an interior space of the pouch into (a) an inner portion, radially inward from the narrowed portion, and in fluid communication with the lumen, and (b) an outer portion, radially outward from the narrowed portion, and in fluid communication with the inner portion via the narrowed portion.


There is therefore provided, in accordance with an application of the present invention, apparatus, including:


a frame assembly that includes:

    • a valve body that circumscribes a longitudinal axis and defines a lumen along the axis;
    • a plurality of upstream arms that are coupled to the valve body at a first axial level with respect to the longitudinal axis, each of the arms extending radially outward from the valve body to a respective arm-tip; and
    • a plurality of downstream legs that are coupled to the valve body at a second axial level with respect to the longitudinal axis, and that extend radially outward from the valve body and toward the plurality of arms;


a plurality of prosthetic leaflets, disposed within the lumen, and arranged to facilitate one-way upstream-to-downstream fluid flow through the lumen, the first axial level being upstream of the second axial level; and


a flexible pouch that defines an interior space therein, the pouch shaped and coupled to the frame assembly such that:

    • the pouch extends radially outward from the valve body, and
    • the arms and the legs narrow the pouch therebetween to form a narrowed portion of the pouch, so as to define:
      • an inner portion of the interior space, radially inward from the narrowed portion, and in fluid communication with the lumen, and
      • an outer portion of the interior space, radially outward from the narrowed portion, and in fluid communication with the inner portion via the narrowed portion.


In an application, at the narrowed portion, the legs extend in an upstream direction past the arms.


In an application, the arms are disposed inside the pouch.


In an application, the arms and the legs are arranged such that, at the narrowed portion, the arms and the legs alternate circumferentially.


In an application, the inner portion of the interior space is in fluid communication with the lumen via a plurality of discrete windows defined by the apparatus.


In an application, the apparatus further includes a belt wrapped around the frame assembly downstream of the windows, circumscribing the lumen, each of the windows being bounded, at a downstream edge of the window, by the belt.


In an application, the leaflets are arranged to form a plurality of commissures therebetween, and are attached to the frame assembly at the commissures, and the belt is disposed over the commissures.


In an application:


the pouch has an upstream surface and a downstream surface, and,


at the narrowed portion, each of the legs pushes the downstream surface toward the upstream surface.


In an application, at the narrowed portion, each of the legs pushes the downstream surface into contact with the upstream surface.


In an application, at the narrowed portion, each of the legs forms a respective bulge in the upstream surface by pressing the downstream surface against the upstream surface.


In an application, the pouch is stitched to the arms.


In an application, at the narrowed portion, the pouch is stitched to the arms but not to the legs.


In an application, the frame assembly includes (i) a valve frame that defines the valve body and the plurality of upstream arms, and (ii) an outer frame that circumscribes the valve frame, and defines the plurality of downstream legs.


In an application, an upstream portion of the pouch is attached to the valve frame, and a downstream portion of the pouch is attached to the outer frame.


In an application, the apparatus further includes at least one coagulation component. disposed within the outer portion of the interior space, and configured to promote blood coagulation within the outer portion of the interior space.


In an application, the coagulation component is annular, and, within the outer portion of the interior space, circumscribes the longitudinal axis.


There is further provided, in accordance with an application of the present invention, apparatus, including:


a frame assembly that includes:

    • a valve body that circumscribes a longitudinal axis and defines a lumen along the axis:
    • a plurality of upstream arms that are coupled to the valve body at a first axial level with respect to the longitudinal axis, each of the arms extending radially outward front the valve body to a respective arm-tip; and
    • a plurality of downstream legs that are coupled to the valve body at a second axial level with respect to the longitudinal axis, and that extend radially outward from the valve body and toward the plurality of arms;


a tubular liner that lines the lumen, and that has an upstream end and a downstream end;


a plurality of prosthetic leaflets, disposed within the lumen, attached to the liner, and arranged to facilitate one-way upstream-to-downstream fluid flow through the lumen, the first axial level being upstream of the second axial level;


a first sheet of flexible material, the first sheet having (i) a greater perimeter, and (ii) a smaller perimeter that defines an opening, the first sheet being attached to the plurality of arms with the opening aligned with the lumen of the valve body; and


a second sheet of flexible material:

    • the second sheet having a first perimeter and a second perimeter,
    • the first perimeter being attached to the greater perimeter of the first sheet around the greater perimeter of the first sheet.
    • the second sheet extending from the first perimeter radially inwards and downstream toward the second perimeter, the second perimeter circumscribing, and attached to the valve body al a third axial level that is downstream of the first axial level. and:


the first sheet, the second sheet, and the liner define an inflatable pouch therebetween, the inflatable pouch defining an interior space therein, the first sheet defining an upstream wall of the pouch, the second sheet defining a radially-outer wall of the pouch, and the liner defining a radially-inner wall of the pouch, and


each of the legs presses the second sheet into contact with the first sheet.


In an application, the arms are disposed inside the pouch.


In an application, each of the legs forms a respective bulge in the first sheet by pressing the second sheet against the first sheet.


In an application, the legs extend in an upstream direction past the arms.


In an application, the frame assembly includes (i) a valve frame that defines the valve body and the plurality of upstream arms, and (ii) an outer frame that circumscribes the valve frame, and defines the plurality of downstream legs.


In an application, an upstream portion of the pouch is attached to the valve frame, and a downstream portion of the pouch is attached to the outer frame.


In an application, the plurality of legs forms a narrowed portion of the pouch by pressing the second sheet into contact with the first sheet, the narrowed portion of the pouch circumscribing the valve body.


In an application, at the narrowed portion, the second sheet is not stitched to the legs.


In an application, the arms and the legs are arranged such that, at the narrowed portion. the arms and the legs alternate circumferentially.


In an application, the narrowed portion of the pouch shapes the pouch to define:

    • an inner portion of the interior space, radially inward From the narrowed portion, and in fluid communication with the lumen, and
    • an outer portion of the interior space, radially outward from the narrowed portion, and in fluid communication with the inner portion via the narrowed portion.


In an application, the apparatus further includes at least one coagulation component, disposed within the outer portion of the interior space, and configured to promote blood coagulation within the outer portion of the interior space.


In an application, the coagulation component is annular, and, within the outer portion of the interior space, circumscribes the longitudinal axis.


In an application, the interior space is in fluid communication with the lumen via a plurality of discrete windows defined by the apparatus.


In an application, the apparatus further includes a belt wrapped around the frame assembly downstream of the windows, circumscribing the lumen, each of the windows being bounded, at a downstream edge of the window, by the belt.


In an application, the leaflets are arranged to form a plurality of commissures therebetween, and are attached to the frame assembly at the commissures, and the belt is disposed over the commissures.


The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-E and 2 are schematic illustrations of an implant and a frame assembly of the implant, in accordance with some applications of the invention;



FIGS. 3A-F are schematic illustrations showing the implantation of the implant at a native valve of a heart of a subject, in accordance with some applications of the invention;



FIGS. 4, 5A-C, and 6 are schematic illustration of implants and their frames, in accordance with some applications of the invention;



FIG. 7 is a schematic illustration of an outer frame of a frame assembly of an implant, in accordance with some applications of the invention;



FIG. 8 is a schematic illustration of a frame assembly, in accordance with some applications of the invention;



FIGS. 9A-B are schematic illustrations of an inner frame, and an implant comprising the inner frame, in accordance with some applications of the invention;



FIGS. 10A-B are schematic illustrations of an inner frame, and an implant comprising the inner frame, in accordance with some applications of the invention;



FIGS. 11A-B are schematic illustrations of an inner frame, and an implant comprising the inner frame, in accordance with some applications of the invention;



FIGS. 12A-H are schematic illustrations of a technique for use with a frame of a prosthetic valve, in accordance with some applications of the invention;



FIGS. 13A-E, 14A-D, 15A-C, 16A-C, 17, 18A-C, and 19 are schematic illustrations of an implant, and steps in the assembly of the implant, in accordance with some applications of the invention: and



FIGS. 20, and 21A-C are schematic illustrations of an implant, in accordance with some applications of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS

Reference is made to FIGS. 1A-E and 2, which are schematic illustrations of an implant 20 and a frame assembly 22 of the implant, in accordance with some applications of the invention. Implant 20 serves as a prosthetic valve for use at a native heart valve of a subject typically the mitral valve. Implant 20 has a compressed state for minimally-invasive (typically transluminal, e.g., transfemoral) delivery, and an expanded state into which the implant is transitioned at the native heart valve, and in which the implant provides prosthetic valve functionality. Implant 20 comprises frame assembly 22, flexible sheeting 23, and a valve member, such as prosthetic leaflets 58.



FIGS. 1A-E show implant 20 and frame assembly 22 in the expanded state. For clarity, FIGS. 1A-D show frame assembly 22 alone. FIG. 1A shows an isometric exploded view of frame assembly 22, and FIG. 1B shows a side exploded view of the frame assembly. FIGS. 1C and 1D are side- and top-views, respectively, of frame assembly 22, assembled. FIG. 1E is a perspective view of implant 20, including sheeting 23 and leaflets 58.


Implant 20 has an upstream end 24, a downstream end 26, and defines a central longitudinal axis ax1 therebetween. Frame assembly 22 comprises a valve frame 30 that comprises a valve body (which is a generally tubular portion) 32 that has an upstream end 34 and a downstream end 36, and is shaped to define a lumen 38 through the valve body from its upstream end to its downstream end. Valve body 32 circumscribes axis ax1, and thereby defines lumen 38 along the axis. Throughout this application, including the specification and the claims, unless stated otherwise, “upstream” and “downstream,” e.g., with respect to the ends of implant 20, are defined with respect to the longitudinal axis or implant 20, by the Orientation and functioning of leaflets 58, which facilitate one-way upstream-to-downstream fluid flow through lumen 38.


Valve frame 10 further comprises a plurality of arms 46 each of which, in the expanded state. extends radially outward from valve body 32. In this context, the term “extends radially outward” is not limited to extending in a straight line that is orthogonal to axis ax1, but rather, and as shown for arms 46, includes extending away from axis ax1 while curving in an upstream and/or downstream direction. Typically, and as shown, each arm 46 extends from valve body 32 in an upstream direction, and curves radially outward. That is, the portion of arm 46 closest to valve body 32 extends primarily upstream away from the valve body (e.g., extending radially outward only a little, extending not at all radially outward, or even extending radially inward a little), and the arm then curves to extend radially outward. The curvature of arms 46 is described in more detail hereinbelow.


Valve body 32 is defined by a repeating pattern of cells that extends around central longitudinal axis ax1. In the expanded state of each tubular portion, these cells are typically narrower at their upstream and downstream extremities than midway between these extremities. For example, and as shown, the cells may be roughly diamond or astroid in shape. Typically, and as shown. valve body 32 is defined by two stacked, tessellated rows of cells an upstream row 29a of first-row cells, and a downstream row 29b of second-row cells. Frame 30 is typically made by cutting (e.g., laser-cutting) its basic (i.e., raw) structure from a tube of, for example, Nitinol (followed by re-shaping and heat treating to form its shape-set structure). Although valve body 32 is therefore typically monolithic, because the resulting cellular structure of valve body 32 resembles an open lattice, it may be useful to describe it as defining a plurality of joists 28 that connect at nodes 100 to form the cellular structure.


Typically, and as shown, each arm 46 is attached to and extends from a site 35 that is at the connection between two adjacent cells of upstream row 29a. That is, site 35 is a connection node between first-row cells. The tessellation between rows 29a and 29b is such that site 35 may alternatively be described as the upstream extremity of cells of downstream row 29b. That is, the upstream extremity of each second-row cell is coincident with a respective connection node between first-row cells. Site 35 is therefore a node 100 that connects four joists 28. Upstream end 34 of valve body 32 may be described as defining alternating peaks and troughs, and sites 35 are downstream of the peaks (e.g., at the troughs).


It is hypothesized by the inventors that connecting arm 46 to valve body 32 at site 35 (instead of at upstream end 34) maintains the length of the lumen of the tubular portion, but also advantageously reduces the distance that the tubular portion extends into the ventricle of the subject, and thereby reduces a likelihood of inhibiting blood flow out of the ventricle through the left ventricular outflow tract. It is further hypothesized by the inventors that because each site 35 is a node 100 that connects four joists (whereas each node 100 that is at upstream end 34 connects only two joists), sites 35 are inure rigid, and therefore connecting arms 46 to valve body 32 at sites 35 provides greater rigidity to each arm.


Sheeting 23 may comprise one or more individual sheets, which may or may not be connected to each other. The individual sheets may comprise the same or different materials. Typically, sheeting 23 comprises a fabric, e.g., comprising a polyester, such as polyethylene terephthalate. Arms 46 are typically covered with sheeting 23. Typically, and as shown in FIG. 1E, an annular sheet 25 of sheeting 23 is disposed over arms 46, extending between the arms, e.g., so as to reduce a likelihood of paravalvular leakage. For some such applications, excess sheeting 23 is provided between arms 46, so as to facilitate movement of arms 46 independently of each other. Annular sheet 25 typically covers the upstream side of arms 46, but may alternatively or additionally cover the downstream side of the arms.


Alternatively, each arm 46 may be individually covered in a sleeve of sheeting 23, thereby facilitating independent movement of the arms.


Arms 46, and typically the sheeting that covers the arms, define an upstream support portion 40 of implant 20.


Other surfaces of frame assembly 22 may also be covered with sheeting 23. Typically, sheeting 23 covers at least part of valve body 32, e.g., defining a liner 27 that lines an inner surface of the valve body, and thereby defining lumen 38.


Support 40 has an upstream surface, and a downstream surface. Each arm 46 is typically curved such that a downstream surface of support 40 defines an annular concave region 152, and an annular convex region 154 radially outward from the concave region. That is, in region 152 the downstream surface of support 40 (e.g., the downstream surface of each arm 46 thereof) is concave, and in region 154 the downstream surface of the support is convex.


Concave region 152 extends radially between a concave-region inner radius r1 and a concave-region outer radius r2. Convex region 154 extends radially between a convex-region inner radius r3 and a concave-region outer radius r4. It is to be noted that in this context (including the specification and the claims), the term “radius” means a radial distance from axis ax1.


For some applications, and as shown, each arm 46 has a serpentine shape, such that there is no discernable gap between concave region 152 and convex region 154. For such applications, each arm 46 has an inflection point where region 152 transitions into region 154. For such applications, radius r2 and radius r3 are coincident, and collectively define an inflection radius at which the inflection point of each arm lies.


For some applications, radius r1 is the radius of tubular portion 32. For some applications, there is a discernable gap between regions 152 and 154. For example, each arm may be curved in regions 152 and 154, but have a straight portion between these regions.


Although regions 152 and 154 may be locally defined with respect to one or more particular arms 46, these regions typically completely circumscribe axis ax1.


Frame assembly 22 further comprises a plurality of legs 50, each of which, in the expanded state, extends radially outward and in an upstream direction from a respective leg-base 66 to a respective leg-tip 68. Each leg 50 defines a tissue-engaging flange 54, which is typically the most radially outward part of the leg, and includes leg-tip 68. Typically, legs 50 are defined by an outer frame (or “leg frame”) 60 that circumscribes and is coupled to valve frame 30.


Frames 30 and 60 define respective coupling elements 31 and 61, which are fixed with respect to each other at coupling points 52. For some applications, frames 30 and 60 are attached to each other only at coupling points 52. Although frames 30 and 60 are attached to each other at coupling points 52, radial forces may provide further coupling between the frames, e.g., frame 30 pressing radially outward against frame 60.


Typically, coupling points 52 are circumferentially aligned with legs 50 (and flanges 54 thereof), but circumferentially offset with respect to arms 46. That is, the coupling points are typically at the same rotational position around axis ax1 as the legs, but are rotationally 21) staggered with respect to the rotational position of the arms.


Coupling points 52 are typically disposed circumferentially around frame assembly 22 on a transverse plane that is orthogonal to axis ax1. That is, coupling points 52 are typically all disposed at the same longitudinal position along axis ax1. Typically, coupling points 52 are disposed longitudinally between upstream end 24 and downstream end 26 of frame assembly 22, but not at either of these ends. Further typically, coupling points 52 are disposed longitudinally between upstream end 34 and downstream end 36 of tubular portion 32, but not at either of these ends. As shown, tubular portion 32 is typically barrel-shaped—i.e., slightly wider in the middle than at either end. For some applications, and as shown, coupling points 52 are disposed slightly downstream of the widest part of tubular portion 32. For example, coupling points 52 may be 0.5-3 mm downstream of the widest part of tubular portion 32. Alternatively or additionally, the longitudinal distance between the widest part of tubular portion 32 and coupling points 52 may be 20-50 percent (e.g., 20-40 percent) of the longitudinal distance between the widest part of the tubular portion and downstream end 36.


Coupling elements 31 are typically defined by (or at least directly attached to) legs 50. Therefore legs 50 are fixedly attached to frame 30 at coupling points 52. Despite the fixed attachment of legs 50 to frame 30, frame 60 comprises a plurality of struts 70 that extend between, and connect, adjacent legs. Struts 70 are typically arranged in one or more rings 72, e.g., a first (e.g., upstream) ring 74 and a second (e.g., downstream) ring 76. For some applications, and as shown, frame 60 comprises exactly two rings 72. Each ring is defined by a pattern of alternating peaks 64 and troughs 62, the peaks being further upstream than the troughs. Each ring is typically coupled to legs 50 at troughs 62—i.e., such that peaks 64 are disposed circumferentially between the legs. Peaks 64 are therefore typically circumferentially aligned with arms 46. That is, peaks 64 are typically at the same rotational position around axis ax1 as arms 46.


The elongate element of frame 60 that defines leg 50 continues in a downstream direction past ring 74 and coupling element 61, and couples ring 74 to ring 76. However, throughout this patent application, leg 50 itself is defined as the free portion of this elongate element that extends from ring 74. Leg-base 66 may be defined as the region of leg 50 that is coupled to the remainder of frame 60 (e.g., to ring 74). Because each leg 50 extends in a generally upstream direction, leg-base 66 may also be defined as the most downstream region of leg 50.


In the expanded state, the leg-tip 68 of each leg is typically disposed radially between radius r3 and radius r4. That is, the leg-tip 68 of each leg is aligned with convex region 154.


Frame 60 is typically cut from a single tube, e.g., of Nitinol. Therefore, the radial thickness of the frame is typically consistent throughout—e.g., it is the wall thickness of the tube from which it was cut. However, the circumferential width of components of frame 60 (i.e., the width of the component measured around the circumference of the frame) may differ. For example, for some applications, a circumferential thickness W2 of legs 50 may be at least three times greater than a circumferential thickness W1 of struts 70. Greater circumferential thickness typically provides the component with greater rigidity.


Valve frame 30 and outer frame 60 are typically each cut from respective metallic tubes, e.g., of Nitinol. This is typically the case for each of the implants described herein. More specifically, for each of the implants described herein:

    • (1) the valve frame is typically cut from a metallic tube to form a raw valve-frame structure in which the arms and the projections extend axially from the valve body, and the raw valve-frame structure is subsequently shape-set to form a shape-set valve-frame structure in which (i) the valve body is wider than in the raw valve-frame structure, and (ii) the arms extend radially outward from the valve body; and
    • (2) the outer frame is typically cut from a metallic tube to form a raw outer-frame structure in which the legs (including the flanges) extend axially, and the raw outer-frame structure is subsequently shape-set to form a shape-set outer-frame structure in which (i) the rings are wider than in the raw outer-frame structure, and (ii) the flanges extend radially outward from the rings.


Prosthetic leaflets 58 are disposed within lumen 38, and are configured to facilitate one-way liquid flow through the lumen from upstream end 34 to downstream end 36. Leaflets 58 thereby define the orientation of the upstream and downstream ends of valve body 32, and of implant 20 in general.


Typically, implant 20 is biased (e.g., shape-set) to assume its expanded state. For example, frames 30 and 60 may be constructed from a shape-memory metal such as Nitinol or a shape-memory polymer. Transitioning of implant 20 between the respective states is typically controlled by delivery apparatus, such as by constraining the implant in a compressed state within a capsule and/or against a control rod, and selectively releasing portions of the implant to allow them to expand.



FIG. 2 shows implant 20 in its compressed state, for delivery to the heart of the subject, e.g., within a capsule 170 or delivery tube. Capsule 90 may be a capsule or a catheter. For clarity, only frame assembly 22 of implant 20 is shown. In the compressed state, arms 46 define a ball 18 at an end of valve body 32. It is to be noted that in this context, the term “ball” (including the specification and the claims) means a substantially bulbous element. The ball may be substantially spherical, spheroid, ovoid, or another bulbous shape.


In the compressed state, frame assembly 22 defines a waist 56 (i.e., is waisted) at a longitudinal site between the valve body and the ball. For some applications, and as shown, waist 56 is longitudinally upstream of frame 60, and is therefore primarily defined by valve frame 30. However, for some such applications, the downstream limit of the waist may be defined by the upstream limit of frame 60 (e.g., flanges 54 thereof).


It is to be noted that, typically, the bulbous shape of ball 48 is interrupted at waist 56, i.e., where the frame transitions from the ball to the waist. For some applications, and as shown, valve frame 30 is monolithic (e.g., cut from a single metal tube), and defines both valve body 32 and arms 46. For some applications, and as shown, in the compressed state, the overall shape of valve frame 30 resembles that of an air rifle pellet or a shuttlecock (e.g., see the cross-section in FIG. 2). For some applications, a longitudinal cross-section of frame 30 has an overall shape that resembles a keyhole.


For some applications, at waist 56, frame 30 (and typically frame assembly 22 overall) has a transverse diameter (110 that is less than 5 mm (e.g., 2-4 mm). For some applications, ball 48 has a greatest transverse diameter d11 of 8-12 mm (e.g., 9-11 mm). For some applications, transverse diameter d10 is less than 10 percent (e.g., less than 30 percent, such as 10-30 percent) of transverse diameter d11.


Due to waist 56, while implant 20 is in its compressed state and disposed within capsule 90, the implant and capsule define a toroidal gap 57 therebetween. Toroidal gap 57 circumscribes longitudinal axis ax1 of the implant around waist 56. Therefore, valve body 32 extends in a first longitudinal direction (i.e., in a generally downstream direction) away from gap 57, and arms 16 extend in a second longitudinal direction (i.e., in a generally upstream direction) away from the gap. For applications in which implant 20 is delivered to the native valve transfemorally, valve body 32 is closer to the open end of capsule 90 than is gap 57, and arms 46 (e.g., ball 48) are further from the open end of capsule 90 than is gap 57. For some applications, and as shown, a downstream limit of gap 57 is defined by the tips of flanges 54. For some applications, and as shown, an upstream limit of gap 57 is defined by the downstream side of arms 46.


It is to be noted that, typically, frame 60 is disposed only downstream of toroidal gap 57, but the frame 30 is disposed both upstream and downstream of the toroidal gap.


Reference is again made to FIG. 1E. For some applications, implant 20 comprises a polytetrafluoroethylene (e.g., Teflon) ring 78 attached to downstream end 26. Ring 78 circumscribes lumen 38 at downstream end 36 of valve body 32, and typically at downstream end 26 of implant 20. Therefore ring 78 serves as a downstream lip of lumen 38. Typically, ring 78 is attached (e.g., stitched) to both frame 30 and frame 60. For example, ring 78 may be attached to frame 60 at troughs 62. For some applications, ring 78 is stitched to downstream end 36 of valve body 32 by stiches 99 that wrap around the ring (i.e., through the opening of the ring and around the outside of the ring) but do not pierce the ring (i.e., the material of the ring).


Typically, ring 78 covers downstream end 26 of the implant (e.g., covers the frames at the downstream end). It is hypothesized by the inventors that ring 78 advantageously protects tissue (e.g., native leaflets and/or chordae tendineae) from becoming damaged by downstream end 26 of implant 20. There is therefore provided, in accordance with some applications of the invention, apparatus comprising:

    • a valve body, having an upstream end and a downstream end, shaped to define a lumen from the upstream end to the downstream end, the lumen defining a longitudinal axis of the prosthetic valve, and the downstream end of the valve body having;
    • a fabric liner, lining the lumen;
    • a valve member, disposed within the lumen of the valve body; and
    • a polytetrafluoroethylene ring coupled to the downstream end of the valve body such that the ring circumscribes the lumen at the downstream end of the valve body.


Reference is made to FIGS. 3A-F, which are schematic illustrations showing the implantation of implant 20 at a native valve 10 of a heart 4 of a subject, in accordance with some applications of the invention. Valve 10 is shown as a mitral valve of the subject, disposed between a left atrium 6 and a left ventricle 8 of the subject. However, implant 20 may be implanted at another heart valve of the subject, mutatis mutandis. Similarly, although FIGS. 3A-F show implant 20 being delivered transseptally via a sheath 88, the implant may alternatively be delivered by any other suitable route, such as transatrially, or transapically.


Implant 20 is delivered, in its compressed state, to native valve 10 using a delivery tool 160 that is operable from outside the subject (FIG. 3A). Tool 160 typically comprises an extracorporeal controller 162 (e.g., comprising a handle) at a proximal end of the tool, and a shall 164 extending from the controller to a distal portion of the tool. At the distal portion of tool 160, the tool typically comprises a capsule 170 comprising one or more capsule portions 172, 174 (described below), and a mount 166. Mount 166 is coupled (typically fixed) to shaft 164. Controller 162 is operable to control deployment of implant 20 by transitioning the tool between a delivery state (FIG. 3A), an intermediate state (FIG. 3E), and an open state (FIG. 3F). Typically, implant 20 is delivered within capsule 170 of tool 160 in its delivery state, the capsule retaining the implant in the compressed state. Implant 20 typically comprises one or more appendages 80 at downstream end 26, each appendage typically shaped to define a catch or other bulbous element at the end of the appendage, and to engage mount 166, e.g., by becoming disposed within notches in the mount. Appendages 80 are typically defined by valve frame 30, but may alternatively be defined by outer frame 60. Capsule 170 retains appendages 80 engaged with mount 166 by retaining implant 20 (especially downstream end 26 thereof) in its compressed state. A transseptal approach, such as a transfemoral approach, is shown. At this stage, frame assembly 22 of implant 20 is as shown in FIG. 2.


Subsequently, flanges 54 are deployed—i.e., are allowed to protrude radially outward, e.g., by releasing them from capsule 170 (FIG. 3B). For example, and as shown, capsule 170 may comprise a distal capsule-portion 172 and a proximal capsule-portion 174, and the distal capsule-portion may be moved distally with respect to implant 20, so as to expose flanges 54 while continuing to restrain upstream end 24 and downstream end 26 of implant 20. In FIG. 3B, upstream support portion 40 (e.g., arms 46) is disposed within capsule-portion 174, and downstream end 36 of tubular portion 32 is disposed within capsule-portion 172.


Typically, and as shown in FIGS. 3A-B, tool 160 is positioned such that when flanges 54 are deployed, they are deployed within atrium 6 and/or between leaflets 12 of the subject. Subsequently, the tool is moved downstream (distally, for a transseptal approach) until the leaflets are observed to coapt upstream of flanges 54 (FIG. 3C). It is hypothesized by the inventors that this reduces how far into ventricle 8 the flanges become disposed, and therefore reduces the distance that the deployed flanges must be moved in an upstream direction in order to subsequently engage the leaflets, and therefore reduces the likelihood of inadvertently or prematurely ensnaring tissue such as chordae tendineae. This is described in more detail, mutatis mutandis, in WO 2016/125160 to Hariton et al., filed Feb. 3, 2016, which is incorporated herein by reference.


Alternatively, flanges 54 may be initially deployed within ventricle 8.


Subsequently, implant 20 is moved upstream, such that flanges 54 engage leaflets 12 of valve 10 (FIG. 3D).


Subsequently, delivery tool 160 is transitioned into its intermediate state, thereby allowing implant 20 to assume a partially-expanded state in which upstream support portion 40 is expanded. e.g., by releasing the upstream support portion from capsule 170 (FIG. 3E). For example, and as shown, proximal capsule-portion 174 may be moved proximally with respect to mount 166 and/or implant 20, so as to expose upstream support portion 40 (e.g., arms 46). Typically, in this state, upstream support portion 40 has expanded to have a diameter that is at least 80 percent (e.g., at least 90 percent, e.g., at least 95 percent) of its diameter in the expanded state of implant 20 (e.g., the diameter after implantation is complete), while downstream end 26 of the implant remains compressed. For some applications, in the partially-expanded state, upstream support portion 40 has expanded to its fully-expanded diameter. That is, downstream end 36 of tubular portion 32 remaining disposed within capsule-portion 172 typically does not inhibit, by more than 20 percent, if at all, the expansion of upstream support portion 40. However, in the partially-expanded state of implant 20, legs 50 are partially inhibited from expanding, such that each leg-lip 68 is radially aligned with concave region 152. That is, each leg-tip 68 is disposed radially between concave-region inner radius r1 and concave-region outer radius r2.


In the intermediate state, leaflets 12 of native valve 10 are sandwiched between upstream support portion 40 (e.g., annular sheet 25 thereof) and legs 50 (e.g., flanges 54 thereof). It is to be noted that appendages 80 remain engaged with mount 166.


Subsequently, delivery tool 160 is transitioned into its open state, thereby allowing implant 20 to expand toward its expanded state (i.e., such that tubular portion 32 widens to its fully-expanded state) (FIG. 3F). For example, capsule-portion 172 may be moved distally with respect to mount 166 and/or implant 20. The resulting expansion of downstream end 26 of implant 20 disengages appendages 80, and thereby implant 20 as a whole, from mount 166. Appendages 80 are not visible in FIG. 3F (or FIG. 3C) because they are obscured by ring 78.


In the expanded state of implant 20, each leg-tip 68 is radially aligned with convex region 154. That is, each leg-tip 68 is disposed radially between convex-region inner radius r3 and convex-region outer radius r4. This is also illustrated in FIG. 1C.


Tool 160 (e.g., capsule-portion 172 thereof) may then be withdrawn via lumen 38 of implant 20, and removed from the body of the subject.


Reference is made to FIGS. 4, and 5A-C, which are schematic illustrations of implants, in accordance with some applications of the invention. FIG. 4 shows an implant 120. FIG. 5A shows an implant 220, FIG. 5B shows a frame assembly 222 of implant 220 after shape-setting, and FIG. 5C shows a valve frame 230 of frame assembly 222 prior to shape-setting (i.e., the shape-set valve-frame structure).


Implants 120 and 220 are typically the same as implant 20, described hereinabove, except where noted. Sheeting 23 forms annular sheet 25 that is disposed over and typically stitched to arms 46. Implant 120 thereby comprises valve body 32 (e.g., as described hereinabove), and an upstream support portion 140 that itself comprises arms 46 and annular sheet 25. Similarly, implant 220 comprises valve body 32 and an upstream support portion 240 that itself comprises arms 46 and annular sheet 25.


Implants 120 and 220 each further comprises a respective plurality of elongate projections 146 or 246. Whereas arms 46 are covered by sheeting 23, the projections extend in an upstream direction through sheeting 23. For some applications, and as shown for projections 146, the projections extend through annular sheet 25. For some applications, and as shown for projections 246, the projections extend between annular sheet 25, and a portion of sheeting 23 that lines valve body 32 (e.g., at a seam where these two portions of sheeting 23 are joined). The projections and arms 46 are both configured to be positioned in atrium 6 of the heart. For some applications, and as shown for projections 146, the projections extend through annular sheet 25.


It is to be noted that projection 146 and 246 are distinct from appendages 80, which are disposed at the other end of the valve body.


Each projection terminates in a nub 148 or 248 that facilitates snaring of the projection using a transcatheter snare, lasso, or similar tool. It is to be understood that the shapes shown for the nubs are merely examples, and that the scope of the invention includes any suitably shaped nub. It is hypothesized by the inventors that the projections facilitate repositioning and/or retrieval of the implant during and/or after implantation, using a snare, lasso, or similar tool. The projections are typically positioned and/or shaped such that nubs 148 or 248 are not in contact with annular sheet 25 or atrial tissue (e.g., are disposed at least 5 mm away (e.g., 5-25 mm away) from annular sheet 25 or atrial tissue). For some applications, and as shown for projections 146 of implant 120, the projections curve outwards and then inwards toward the central longitudinal axis of the implant (i.e., are shaped to be concave toward the axis). For some applications, and as shown for projections 246 of implant 220, the projections do not extend radially outward from the valve body. Projections 246 typically extend axially in an upstream direction away from the valve body (i.e., generally parallel to axis ax1, i.e., within 10 degrees of axis ax1).


Regarding implant 120 (FIG. 4), projections 146 extend from sites 35 in a similar way to arms 46. Projections 146 may be structurally similar to arms 46, and may even be identically cut when frame 30 is initially cut from the original metal tube (i.e., in the raw valve-frame structure). However, projections 146 have a different curvature to arms 46 (e.g., they may be bent differently post-cutting), and are curved such that they extend through annular sheet 25. Whereas at least some of arms 46 typically reach and press against the atrial wall, projections 146 are typically shaped such that nubs 148 are not in contact with the atrial wall. Typically, each projection 146 replaces an arm 46, such that the cumulative sum of arms and projections is twelve. FIG. 4 shows an embodiment comprising six arms 46 and six projections 146, but the scope of the invention includes other ratios, such as nine arms 46 and three projections 146.



FIG. 5A shows implant 220, comprising a frame assembly 222, leaflets 58, and sheeting 23. FIG. 5B shows frame assembly 222 alone, the frame assembly comprising (i) a valve frame 230 that defines valve body 32, and (ii) an outer frame 260. FIG. 5C shows the basic structure of valve frame 230, as it is initially cut from a tube (typically a metallic tube, such as a Nitinol tube), e.g., before the frame is shape-set into the shape shown in FIG. 5B. Although this basic structure is tubular, FIG. 5C depicts the structure two-dimensionally, as though the cut-out structure were cut longitudinally, and unrolled to become flat.


Except where noted, frame assembly 222, valve frame 230, and outer frame 260 are typically identical to frame assembly 22, valve frame 30, and outer frame 60, mutatis mutandis. For some applications, implant 220 is identical to implant 20 except for projections 246.


In contrast to projections 146 of implant 120, each projection 246 of implant 220 extends from a respective site 37 that is at the upstream extremity (i.e., peak) of a respective first-row cell of upstream row 29a or valve body 32 (i.e., from upstream end 34 of the valve body). Projections 246 thereby alternate with, rather than replace, arms 46. Therefore, it is possible for implant 220 to comprise projections 246 in addition to twelve arms 46. Implant 220 may comprise an equal number of projections 246 and arms 46, but typically, the implant comprises fewer projections than arms. For example, implant 220 may comprise half as many, or fewer, projections 246 than arms 46—e.g., a third as many, or a quarter as many projections as arms. Projections 246 and arms 46 are typically evenly distributed circumferentially, and therefore typically at least two arms (e.g., at least three arms, such as at least four arms) are disposed circumferentially between each projection and each of its circumferentially-neighboring projections. FIGS. 5A-C show implant 220 comprising three projections 246 and twelve arms 46, with four arms disposed circumferentially between each projection and each of its circumferentially-neighboring projections. FIGS. 11A-B, described hereinbelow, show an implant in which three arms are disposed circumferentially between each projection and each of its circumferentially-neighboring projections.


Each projection 246 has a projection-length d13, measured from the upstream extremity of the respective first-row cell (i.e., from site 37). Each of the arms has an arm-length d14, measured from the upstream extremity of the respective second-row cell (i.e., site 35). Arm-length d14 is greater than projection-length d13 (e.g., 2-20 times greater, e.g., 4-20 times greater, such as 4-10 times greater). For some applications, arm-length d14 is 20-28 mm, such as 22-26 mm (e.g., 22-23 mm, 23.5-24.5 mm, or 25-26 mm). For some applications, projection-length d13 is 2-10 mm (e.g., 3-8 mm, e.g., 4-6 mm, such as about 5 mm).


Typically, each arm 46 (i) has a narrow portion 46a that is attached to, and extends from, the upstream extremity of the respective second-row cell, and (ii) at a widening zone 46b, widens into a wide portion 46c that extends from the narrow portion, and is wider than the narrow portion. Narrow portion 46a has a narrow-portion length d20 that is typically at least 30 percent of arm-length (e.g., at least 40 percent, such as 40-80 percent, such as 40-60 percent). Wide portion 46c has a wide-portion length that is at least 30 percent of arm-length d14 (e.g., at least 40 percent, such as 40-80 percent, such as 40-60 percent).


Wide portion 46c has a width d15 that is typically 1.5-6 times greater (e.g., 2-4 times greater, such as 2.5-3.5 times greater) than a width d16 of narrow portion 46a. For some applications width d15 is 1-2 mm (e.g., 1.4-1.8 mm, such as 1.6 mm). Width d16 is typically 0.2-0.8 mm (e.g., 0.4-0.6 mm, such as 0.5 mm). It is to be noted that, although individual parts of arm 46 within portion 46c may be narrower than within portion 46a, these individual parts form a back-and-forth pattern that results in wide portion 46c being, overall, wider than narrow portion 46a. Typically, wide portion 46c is more flexible, in at least one plane, than narrow portion 46a. Therefore, wide portion 46c is also a flexible portion of arm 46.


Each projection 246 has a width d17 that is typically 0.2-0.8 mm (e.g., 0.4-0.6 mm, such as 0.5 mm). Each nub has a nub-width d18 that is typically 1-2 mm (e.g., 1.4-1.8 mm, such as 1.6 mm), and a nub-length d19 that is typically 0.5-1 mm (e.g., 0.7-0.9 mm, such as 0.8 mm). Wide portion 46c is typically at least 3 times (e.g., at least 10 times) longer than nub-length d19.


As described hereinabove, the valve frame is typically monolithic, cut from a single tube. Typically, and as shown in FIG. 5C, while valve frame 230 is in its raw valve-frame structure (e.g., described hereinabove with reference to FIGS. 1A-E, mutatis mutandis), nubs 248 are disposed between arms 46. As shown in FIG. 5C, arms 46 and projections 246 may be dimensioned such that, while valve frame 230 is in its raw valve-frame structure, nubs 248 are disposed between narrow portions 46a of arms 46. That is, nubs 248 may be disposed axially closer than wide portion 46c to valve body 32. Thereby, arms 46 and projections 246 efficiently fit adjacently to each other within a single cutout from tube of a particular diameter. Narrow-portion length d20 is typically greater than projection-length d13 (e.g., at least 1.5 times greater, such as 1.5-3 times greater).


Reference is now made to FIG. 6, which shows the basic structure of a variant 230a of valve frame 230, in accordance with some applications of the invention. FIG. 6 shows variant 230a as it is initially cut from a tube (typically a metallic tube, such as a Nitinol tube), e.g., before the frame is shape-set. FIG. 6 shows a two-dimensional view, as though the cut-out structure were cut longitudinally, and unrolled to become flat. Similarly to with frame 230 (FIG. 5C), nubs 248 of variant 230a are disposed between arms 46. However, projections 246a of variant 230a are longer than projections 246 of frame 230, and nubs 248a are therefore disposed between wide portions 46c of arms 46. In order to accommodate this, in frame 230a. at least the arms 46 that are adjacent to nubs 248a are deflected circumferentially (which is represented two-dimensionally as being laterally deflected) compared to their positions in frame 230, and are typically unevenly spaced. During subsequent shape setting, arms 46 are typically circumferentially displaced, e.g., such that they are evenly spaced. Variant 230a may be used in place of any other valve frame described herein, mutatis mutandis. Similarly, variant 230a may be used in combination with other technologies described herein, mutatis mutandis.


Reference is made to FIG. 7, which is a schematic illustration of an outer frame 60a, in accordance with some applications of the invention. Outer frame 60a is typically identical to outer frame 60 except that peaks 64a of frame 60a have a larger radius of curvature than do peaks 64 of frame 60. Outer frame 60a may be used in place of any other outer frame described herein, mutatis mutandis. Similarly, frame 60a may be used in combination with other technologies described herein, mutatis mutandis.


Reference is made to FIG. 8, which is a schematic illustration of a frame assembly 22b, in accordance with some applications of the invention. Frame assembly 22b comprises a valve frame 30b and an outer frame 60b. Except where noted, frame assembly 22b, valve frame 30b, and outer frame 60b are as described for frame assembly 22, valve frame 30, and outer frame 60, respectively.


Outer frame 60b comprises (or defines) (1) a first (e.g., upstream) ring 74b defined by a pattern of alternating first-ring peaks and first-ring troughs, (2) a second (e.g., downstream) ring 76b defined by a pattern of alternating second-ring peaks and second-ring troughs, and a plurality of legs 50, each of the legs coupled to the first ring and the second ring, and extending radially outward.


Valve frame 3011 comprises a tubular portion (e.g., a tubular frame) that has a cellular structure defined by a plurality of metallic elements with spaces therebetween a e.g., as described for valve frame 30, mutatis mutandis.


The cellular structure of the valve frames described herein may also be viewed as defining rings of alternating peaks and troughs, the rings circumscribing the longitudinal axis of the implant. Whereas the waveform (i.e., the peak-trough waveform) of the rings of the outer frame are in phase with each other, the phase of the waveform of the rings of the valve frame typically alternate with respect to each other. That is, for the valve frame, the waveform of one ring is out of phase (e.g., is in antiphase) with that of its axially-adjacent rings. For example, and with reference to FIG. 1B, valve frame 30 defines a first (e.g., upstream) ring 182, a second (e.g., middle) ring 184, and a third (e.g., downstream) ring 186, and ring 184 is in antiphase with rings 182 and 184. Valve frame 30b similarly defines a first (e.g., upstream) ring 182b, a second (e.g., middle) ring 184b, and a third (e.g., downstream) ring 186b, and ring 184b is in antiphase with rings 182b and 184b.


Typically, and as shown for each of the implants described herein, when the frame assembly is assembled, (1) the waveform of one of outer frame rings is in-phase with the waveform of the inner frame ring with which it is axially aligned, and (2) the waveform of one of outer frame rings is out of phase (e.g., is in antiphase) with the waveform of the inner frame ring with which it is axially aligned. For example, and with reference to FIG. 1C, ring 74 is in-phase with the ring of the inner frame with which it is axially aligned (ring 184), whereas ring 76 is in antiphase with the ring of the inner frame with which it is axially aligned (ring 186). Similarly, for frame assembly 22b, ring 74b is in-phase with the ring of the inner frame with which it is axially aligned (ring 184b), whereas ring 76b is in antiphase with the ring of the inner frame with which it is axially aligned (ring 186b).


Because ring 76b is in antiphase with ring 186b, the peaks of ring 76b are not disposed directly radially outward from respective parts of frame 30b, and therefore are not in contact with frame 30b. However, despite ring 74b being in phase with ring 184b, and the peaks of ring 74b being disposed directly radially outward from respective parts of frame 30b, the peaks of ring 74b are also not in contact with frame 30b. That is, frame assembly 22 defines a radial gap 188 between frames 30 and 60 at the peaks of ring 74b. Typically, therefore, none of the peaks of the rings of frame 60b is in contact with inner frame 30b. In contrast, for frame assembly 22, although the peaks of ring 76 are not in contact with frame 30, the peaks of ring 74 typically are in contact with frame 30.


The features of frame assembly 22b may be used in combination with other implants described herein. For example, other frame assemblies described herein may be shaped to define gap 188, mutatis mutandis.


Reference is made to FIGS. 9A-B, which are schematic illustrations of an inner frame 330a, and an implant 320a comprising inner frame 330a, in accordance with some applications of the invention. Inner frame 330a may be used in place of other inner frames of implants described herein, mutatis mutandis. Similarly, frame 330a may be used in combination with other technologies described herein, mutatis mutandis. Inner frame 330a comprises a valve body (which is a generally tubular portion) 332a that has an upstream end 334a and a downstream end 336a, and is shaped to define a lumen through the valve body from its upstream end to its downstream end. Valve frame 330a further comprises a plurality of arms 46, each of which, in the expanded state, extends radially outward from valve body 332a.


Valve body 332a has a cellular structure defined by a plurality of joists 28 connected at a plurality of nodes 102, the joists and nodes delimiting cells of the cellular structure. Except where noted, inner frame 330a is generally the same as inner frame 230 (or inner frame 30), mutatis mutandis, and valve body 332a is generally the same as valve body 32, mutatis mutandis. Compared to valve body 32, valve body 332a comprises additional joists 28, which are hypothesized by the inventors to increase strength and rigidity. In particular, the additional joists are hypothesized by the inventors to increase the resistance of the valve body to compression toward axis ax1, including resistance to circumferential compression (e.g., compression that would otherwise reduce the diameter of the valve body, but that would retain the valve body in a generally cylindrical shape) and localized compression (e.g., compression that would otherwise reduce the diameter of the valve body at only certain locations, causing the valve body to become more oval in transverse cross-section).


Referring back to FIGS. 1A-B, the cellular structure of valve body 32 is such that its nodes 100 typically connect 2-4 of its joists. For example, a node 100a connects two joists, and a node 100b connects four joists. (In this context, neither arms 46 nor projections 246 are joists of the valve body's cellular structure, and so sites 35 and 34 are also nodes that connect 2-4 joists.) In contrast, the cellular structure of valve body 332a is such that some of its nodes 102 are minor nodes 104, and some are major nodes 106. Minor nodes 104 connect 2-4 joists, whereas major nodes 106 connect 6-8 joists. Typically, and as shown, major nodes 106 connect 6 joists (again, excluding arms 46, which are not joists of the valve body's cellular structure). Typically, and as shown, minor nodes 104 connect 2 joists. Therefore, for some applications, none of the nodes 102 of the cellular structure of valve body 332a connects 4 joists.


Similarly to valve body 32 of frame 30, the cells of the cellular structure of valve body 332a comprise a first circumferential row 109a of cells, and a second circumferential row 109b of cells. That is, row 109a is a row of first-row cells, and row 109b is a row of second-row cells. Each of the cells of row 109a is connected to each of its circumferentially-adjacent first-row cells at a respective major node 106. Typically, and as shown, each of the cells of row 109a is longitudinally delimited by two minor nodes 104 (i.e., the upstream end and the downstream end of each cell is at a respective minor node). It is to be noted that, typically, each of the cells of row 109a is not connected to another cell at these minor nodes 104 (i.e., the minor nodes that longitudinally delimit the first-row cell).


Each of the cells of row 109b is connected to each of its circumferentially-adjacent second-row cells at a respective major node 106. Typically, and as shown, each of the cells of row 109b is longitudinally delimited by at least one major node 106 (e.g., is delimited by one major node at an upstream end of the cell). Typically, and as shown, each of the cells of row 109b is also longitudinally delimited by a minor node 104 (e.g., at a downstream end of the cell). For some applications, and as shown, each of the major nodes 106 at which circumferentially-adjacent first-row cells are connected is also the major node that longitudinally-delimits a respective second-row cell (e.g., at the upstream end of the second-row cell). In the example shown, that common major node 106 is also site 35, at which arms 46 are attached to the valve body.


The cells of the cellular structure of valve body 332a are typically delimited by exactly four nodes 102.


Frame 330a defines coupling elements 31, which are fixed to coupling elements 61 of frame 60 at coupling points, as described hereinabove for frame assembly 22, mutatis mutandis. For some applications, and as shown, coupling elements 31 are defined by respective major nodes 106. Therefore, for some applications, a frame assembly comprises (i) inner frame 330a that defines valve body 332a, and (ii) an outer frame (e.g., frame 60) that circumscribes the valve body, and is coupled to the inner frame by being fixed to major nodes of the valve body. For such applications, coupling elements 31 are typically defined by the major nodes at which circumferentially-adjacent second-row cells are connected.


For some applications, and as shown, valve body 332a is defined by exactly two stacked, tessellated rows 109 of cells. That is, typically, first row 109a is the most upstream row, second row 108b is the most downstream row, and these two rows are tessellated with each other. Therefore, for some applications, all the cells of the cellular structure of valve body 332a are either first-row cells or second-row cells.


Valve body 332a may be described as comprising pairs 108 of joists 28 that run generally parallel to each other. In the expanded state of the valve body (i.e., the state shown in FIG. 7) the joists 28 of each pair 108 are disposed 0.1-1 mm (e.g., 0.25-0.9 mm, such as 0.25-0.65 mm) from each other. Although the joists 28 of each pair 108 run generally parallel to each other, they typically only share one node 102 in common. That shared common node is typically a major node 106. That is, at a first end of each pair 108, both joists 28 are typically connected to each other at a major node. In some cases, at a second end of each pair 108, one of the joists connects to another major node 106, but the other joist connects to a minor node 104 that is disposed a distance d12 away from the major node at the second end of the pair. In other cases, at the second end of each pair 108. one of the joists connects to a first minor node, and the other joist connects to another minor node that is disposed a distance d12 away from the first minor node. Distance d12 is typically 0.1-1 mm (e.g., 0.25-0.9 mm, such as 0.25-0.65 mm).


For some applications, and as shown, the arrangement of joists 28 in pairs 108 results in the joists that delimit the cells of first row 109a not delimiting the cells of second row 109b. That is, for some applications, no individual joist 28 delimits both a first-row cell and a second-row cell.


Another aspect of valve body 332a is as follows: Major nodes 106 are typically arranged in major-node rows, each major-node row circumscribing longitudinal axis ax1 at a respective major-node-row longitudinal site, and minor nodes 104 are typically arranged in minor-node rows, each minor-node row circumscribing the longitudinal axis at a respective minor-node-row longitudinal site. Along at least part of axis ax1, the minor-node-row longitudinal sites alternate with the major-node-row longitudinal sites. For some applications, along at least this part of axis ax1, at least 3 minor-node-row longitudinal sites alternate with at least 2 major-node-row longitudinal sites, e.g., in the order minor-major-minor-major-minor, as shown.


Reference is now made to FIGS. 10A-B which are schematic illustrations of an inner frame 330b, and an implant 320b comprising inner frame 330b, in accordance with some applications of the invention. Inner frame 330b may be used in place of other inner frames of implants described herein, mutatis mutandis.


Inner frame 330b comprises a valve body (which is a generally tubular portion) 332b that has an upstream end 334b and a downstream end 336b, and is shaped to define a lumen through the valve body from its upstream end to its downstream end. Valve frame 330b further comprises a plurality of anus 46, each of which, in the expanded state, extends radially outward from valve body 332b. Inner frame 330b is typically the same as inner frame 330a, except where noted. Compared to inner frame 330a, inner frame 330b comprises additional joists 28 at upstream end 334b. That is, in contrast to inner frame 330a, for inner frame 330b pairs 108 of joists are also disposed at the upstream side of the upstream row of cells.


In frame 330a, sites 37 are coincident with the upstream extremity of a respective upstream-row cell. In contrast, in frame 330b, sites 37 are not coincident with the upstream extremity of a respective upstream-row cell. Rather, sites 37 are coincident with a minor node that joins the joists that are paired with (e.g., that are parallel with) the joists of the respective upstream-row cell.


Implant 320b is typically the same as implant 320a, except that it comprises inner frame 330b instead of inner frame 330a.


Reference is now made to FIGS. 11A-B, which are schematic illustrations of an inner frame 330c, and an implant 320c comprising inner frame 330c, in accordance with some applications of the invention. Inner frame 330c may be used in place of other inner frames of implants described herein, mutatis mutandis.


Inner frame 330c comprises a valve body (which is a generally tubular portion) 332c that has an upstream end 334c and a downstream end 336c, and is shaped to define a lumen through the valve body from its upstream end to its downstream end. Valve frame 330c further comprises a plurality of arms 46, each of which, in the expanded state, extends radially outward from valve body 332c. Inner frame 330c is typically the same as inner frame 330b, except where noted.


In general, for implants having an expandable cellular structure, such as the valve bodies described herein, for a given size of the implant, a cellular structure that defines fewer, larger cells, advantageously facilitates radial compression (i.e., “crimping”) to a smaller diameter than does a comparable cellular structure that defines more, smaller cells. However, this is typically at the expense of strength and rigidity of the expanded valve. As described hereinabove, the presence of additional joists 28 (e.g., in inner frames 330a, 330b, and 330c) to form pairs 108 is hypothesized to increase strength and rigidity, in particular with respect to compression toward the central longitudinal axis. As a result, it is further hypothesized by the inventors that using such a paired joist cellular structure facilitates reducing the number, and increasing the size, of the cells of the valve body, in order to achieve a valve body that is radially compressible to a smaller diameter while maintaining sufficient strength and rigidity.


Accordingly, valve body 332c of inner frame 330c has fewer, larger cells compared to valve body 32 of inner frame 30, and is therefore radially compressible to a smaller diameter. Whereas each row of cells of valve body 32 includes 12 cells, each row of cells of valve body 332c includes 9 cells. More generally, whereas the rotationally-symmetrical pattern of valve body 32 has 12 repeats (e.g., 12 cells per cell row, 12 minor nodes per minor-node row, 12 major nodes per major-node row, 12 coupling elements, 12 arms 46), the rotationally-symmetrical pattern of valve body 132c has only 9 repeats. (Both valve body 32 and valve body 332c typically have 3 appendages 80 and 3 projections 246.) Both valve body 32 and valve body 332c define two rows of cells. Therefore, whereas valve body 32 defines 24 cells in total, valve body 332c defines 18 cells in total. Whereas valve body 32 defines exactly 24 major nodes, valve body 332c defines exactly 18 major nodes.


For some applications, and as shown, inner frame 330c comprises additional joists 28 at upstream end 334c (e.g., similarly to inner frame 330b). That is, for such applications, pairs 108 of joists are typically also disposed at the upstream side of the upstream row of cells of inner frame 330c. For such applications, implant 320c is typically the same as implant 320b, except that implant 320c comprises 9 rotationally-symmetrical repeats, rather than 12.


For some applications, inner frame 330c does not comprise additional joists 28 at upstream end 334c, and is instead more like inner frame 330a in this regard.


Reference is again made to FIGS. 9A-11B. It is to be noted that although the above-described arrangements of joists connected at major and minor nodes are described in the context of a prosthetic heart valve, the scope of the invention includes using such arrangements in other implants or components thereof that comprise a cellular structure, such as stents.


Reference is made to FIGS. 12A-H, which are schematic illustrations of a technique for use with a frame of a prosthetic valve, in accordance with some applications of the invention. The technique is for augmenting a tissue-engaging flange of the frame with a soft pad 300. To illustrate the technique. FIGS. 12A-H show the technique being used to augment flanges 54 of outer frame 60 with soft pads 300, hut it is to be noted that the technique may be used with any suitable frame, mutatis mutandis.



FIG. 12A shows frame 60, which has tissue-engaging flanges 54. A model 302 of a soft pad 300 with which each flange 54 is to be augmented is affixed to the respective flange (FIG. 12B). Subsequently, a mold 304 is formed by (i) positioning frame 60 such that models 302 are supported within a fluid 310f of a first substance 310 while the first substance solidifies, and (ii) subsequently, removing the models from the first substance, leaving a cavity in the solidified first substance. For example, and as shown in FIGS. 12C-E, a bath 306 of fluid 310f may be prepared, and frame 60 may be inverted and lowered into the bath such that models 302 are supported within the fluid (FIG. 12C). First substance 310 is allowed to solidify into solidified first substance 310s (FIG. 12D). Subsequently, frame 60 is withdrawn from the bath, thereby removing models 302 from solidified first substance 310s, such that each model leaves a respective cavity 308 in solidified first substance 310s (FIG. 12E).


Models 302 are then removed from flanges 54 (FIG. 12F). Pads 300 are then formed by: (i) placing flanges 54 in contact with a second substance 312 by repositioning the frame such that each flange is supported within a respective cavity 308, and introducing a fluid 312f of the second substance to the cavity (FIG. 12G), and (ii) while the flange remains in contact with the second substance, allowing the second substance to solidify into solidified second substance 312s and to become affixed to the flange. Subsequently, flanges 54 are removed from cavities 308 with formed pads 300 (comprising solidified second substance 312s) affixed to the flanges (FIG. 12H).


The technique described with reference to FIGS. 12A-H may be used with a frame that has a single tissue-engaging flange. However, as shown, the technique is typically used with a frame that has a plurality of flanges, e.g., to augment all the flanges simultaneously. It is to be noted that flanges 54 are not all disposed on the same side of frame assembly 22 (i.e., after frames 30 and 60 have been attached to each other). For example, flanges 54 are not all at the upstream end of the prosthetic valve or at the downstream end of the prosthetic valve. Rather, they are disposed downstream of the tips of arms 46 and upstream of downstream end 26.


Furthermore, flanges 54 are arranged circumferentially around the longitudinal axis of the prosthetic valve. Flanges 54 (and eventually pads 300) are arranged circumferentially around frame 30 longitudinally between the upstream end and the downstream end of frame 30, exclusive. For some applications, the flanges being not all disposed on the same side might inhibit the use of the technique of FIGS. 12A-H to simultaneously augment all of the flanges.


For example, it may be difficult to place all of models 302 into the fluid first substance, or to place all of flanges 54 into the fluid second substance, without also placing other portions of the frame assembly into the fluid substance. The two-frame nature of frame assembly 22 advantageously allows flanges 54 to be augmented with pads before frame 60 is attached to frame 30. Because all of flanges 54 are disposed at the same side (e.g., the upstream side) of frame 60, they can all be placed into the fluid substances simultaneously.


An alternative solution is also contemplated by the inventors, in which an annular bath is positioned circumscribing the central portion of the prosthetic valve or frame assembly, such that all flanges can be placed into the fluid substances even when the flanges are not all disposed on the same side of a prosthetic valve or frame assembly.


For some applications, substance 310 and/or substance 312 may be a mixture of constituents that is initially fluid upon mixing, and that solidifies as the constituents react with each other. For some applications, fluid substance 310f and/or fluid substance 312f is fluid because it is in a molten state, and solidifies as it cools. When solidified, second substance 312 is typically soft, flexible, and/or resilient. For some applications, second substance 312 (or at least solidified second substance 312s) is a foam. For some applications, second substance 312 comprises silicone, polyurethane, a thermoplastic elastomer such as Santoprene (™), and/or polyether block amide.


For some applications, the techniques described with reference to FIGS. 12A-H are alternatively or additionally used, mutatis mutandis, to augment the downstream end of the implant with one or more pads, e.g., to serve a similar function to ring 78 described hereinabove.


Reference is made to FIGS. 13A-E, 14A-D, 15A-C, 16A-C, 17, 18A-C, and 19, which are schematic illustrations of an implant 420, and steps in the assembly of the implant, in accordance with some applications of the invention. In particular, these figures illustrate steps in the attachment of various flexible components to the frame assembly of the implant, such as steps in the dressing of the frame assembly with various sheets of flexible material. Implant 420 is shown as comprising frame assembly 222, and is typically identical to implant 220 except for where described otherwise. However, it is to be noted that the steps described with reference to FIGS. 13A-18C may be used, mutatis mutandis, to assemble other implants, including the other implants described herein.



FIGS. 13A-E show flexible components of implant 420. FIGS. 13A-B are perspective and side views, respectively. of a valvular assembly 430, comprising leaflets 58 arranged to serve as a check valve. In valvular assembly 430, each leaflet 58 defines (i) an upstream surface 457, past which blood will flow through implant 420 in an upstream-to-downstream direction, and (ii) a downstream surface 459, against which blood will press when the valvular assembly closes and inhibits blood flow in a downstream-to-upstream direction. Valvular assembly 430 typically further comprises a liner 427 and/or a plurality of connectors 432. Liner 427 of implant 420 generally corresponds to liner 27 of implant 20, mutatis mutandis. Typically, valvular assembly 430 comprises three leaflets 58 and three connectors 432. Connectors 432 couple the leaflets to each other to form commissures, and are used to secure the leaflets, at the commissures, to frame assembly 222. Connectors 432 are arranged circumferentially, and leaflets 58 extend radially inward from the connectors. For some applications, valvular assembly 430, and connectors 432 in particular, are as described in PCT patent application publication WO 2018/029680 to Hariton et al., and/or U.S. patent application Ser. No. 15/878,206 to Hariton et al. both of which are incorporated herein by reference.


Each leaflet 58 is attached (e.g., stitched) to liner 427 along a line (e.g., a stitch line) 437. Each leaflet 58 defines a free edge 458, which is typically straight, and at which the leaflet coapts with the other leaflets 58. Stitch line 437 is typically curved. Each leaflet typically defines a curved edge (e.g., an upstream edge) 456 at which the leaflet is attached to liner 427. The curve of edge 456 and/or stitch line 437 is concave toward the downstream end of valvular assembly 430, such that edge 456 and/or stitch line 437 (i) become closer to the downstream end of the valvular assembly at connectors 432, and (ii) are closest to the upstream end of the valvular assembly about midway circumferentially between the connectors. That is, edge 456 has an apex about midway circumferentially between connectors 432.


Typically, and as shown, leaflets 58 extend further axially downstream (i.e., downstream with respect to axis ax1) than does liner 427. Therefore, a downstream portion of each leaflet 58 is typically circumferentially exposed from liner 427. For some applications, and as shown, liner 427 is shaped to define regions 428 at which a downstream edge 436 of the liner recedes from the downstream end of valvular assembly 430. At each region 428, more of the respective leaflet 58 is circumferentially exposed. Each region 428 is typically circumferentially aligned with the concavity defined by edge 456 and/or stitch line 437. At regions 428, downstream edge 436 of liner 427 is typically stitched to ring 182 of frame 230. Therefore, for some applications, the most upstream parts of downstream edge 436 of liner 427 are closer to the upstream end of the implant than is the most downstream parts of arms 46. As described in more detail hereinbelow, in implant 420, regions 428 of liner 427 facilitate the provision of windows 482 into a pouch 490.



FIG. 13C shows a sheet 440 of flexible material. Typically, and as shown, sheet 440 is provided flat, and in the shape of a major are of an annulus, having a first are-end 442a and a second are-end 442b. Sheet 440 of implant 420 generally corresponds to annular sheet 25 of implant 20, mutatis mutandis.



FIG. 3D shows a sheet 450 of flexible material. Sheet 450 is annular, and defines an inner perimeter 452, an outer perimeter 454, and a radial dimension d21 therebetween.



FIG. 13E shows a sheet 460 of flexible material. Sheet 460 is shaped to define a belt 462 and a plurality of elongate strips 461. Each strip 464 defines a respective central strip-axis ax2, and extends along its strip-axis from belt 462 to the end 466 of the strip. Typically, belt 462 is linear and defines a belt-axis ax3, and strip-axis ax2 is orthogonal to the belt-axis. Typically, strips 464 are parallel to each other. Each strip 464 has first and second edges 468 (e.g., a first edge 468a and a second edge 468b), which extend on either side of axis ax2, between belt 462 and end 466.


As indicated by the reference numeral 23, sheets 440, 450, and 460 may all be considered components of sheeting 23. For some applications, liner 427, sheet 440, sheet 450, and/or 460 comprise (e.g., consist of) the same material as each other. Typically, sheets 440, 450, and 460 are provided as flat, and are subsequently shaped during assembly of implant 420, e.g., as described hereinbelow.


For applications in which sheet 440 is provided flat and in the shape of a major arc of an annulus, sheet 440 is shaped into an open frustum by attaching (e.g., stitching) ends 442a and 442b together (FIGS. 14A-B). This is represented by a stitch line 444 in FIG. 14B. Alternatively, sheet 440 may be provided in the open frustum shape. The open frustum shape has a greater perimeter 446 at a first base of the frustum, and a smaller perimeter 448 at a second base of the frustum. Perimeter 448 defines an opening, and sheet 440 is stitched to arms 46 such that the opening is aligned with the lumen defined by valve body 32 of frame 30 (FIG. 14C), and typically such that the sheet covers an upstream side of the arms. FIG. 14D shows valvular assembly 430 having been coupled to frame assembly 222. This step may be performed after sheet 440 is stitched to arms 46 (as shown) or beforehand. Valvular assembly 430 is placed inside valve body 32 of frame 30, and is attached by stitching connectors 432 and liner 427 to frame assembly 222. Connectors 432 are typically stitched to ring 184 and/or ring 186. For some applications, the attachment of connectors 432 to frame assembly 222 is as described in PCT patent application publication WO 2018/029680 to Hariton et al., and/or U.S. patent application Ser. No.15/878,206 to Hariton et al. (now U.S. Pat. No. 9,987,132), both of which are incorporated herein by reference.


Kindly amend the text on p. 40, lines 4-14, as follows:






    • U.S. patent application Ser. No. 15/668,559 to lamberger et al., filed Aug. 3, 2017, and entitled “Prosthetic heart valve” (now U.S. Pat. No. 10,537,426)

    • U.S. patent application Ser. No. 15/956,956 to Iamberger et al., filed Apr. 19, 2018, and entitled “Prosthetic heart valve” (now U.S. Pat. No. 10,575,948)

    • PCT patent application IL2018/050725 to Hariton et al., filed Jul. 4, 2018, and entitled “Prosthetic heart valve” (which published as WO 2019/026059)

    • U.S. patent application Ser. No. 16/135,969 to Hariton et al., filed Sep. 19, 2018, and entitled, “Prosthetic valve with inflatable cuff configured for radial extension” (which published as U.S. 2019/0083248)

    • U.S. patent application Ser. No. 16/135,979 to Hariton et al., filed Sep. 19, 2018, and entitled, “Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors” (which published as U.S. 2019/0083249).





Smaller perimeter 448 of sheet 440 is stitched to an upstream edge 434 of liner 427, to form a substantially sealed channel through implant 420. This stitching is represented by a stitch line 435. Typically, and as shown, projections 246 extend between, and are sandwiched between, perimeter 448 of sheet 440 and upstream edge 434 of liner 427. Upstream edge 434 is typically circular.


Downstream edge 436 of liner 427 is stitched to valve body 32 of frame 30. Typically, downstream edge 436 is shaped and positioned to approximately conform to rings 182 and 184, and is stitched to these rings.


It is to be noted that throughout this patent application (including the specification and the claims) stitching of a perimeter or edge of a sheet to a perimeter or edge of another sheet, does not necessarily mean that the sheets are stitched at their absolute edges (i.e., their free edges). Rather, in this context, the “perimeter” or “edge” also includes the adjacent area of the sheet, as is understood by one of ordinary skill in the stitching art, and as is typically required for effective stitching.


Valvular assembly 430 is typically positioned within frame assembly such that the apex of curved edge 456 of each leaflet 58 is disposed axially close to (e.g., axially within 2 mm of, e.g., within 1 mm of) an upstream end 34 of valve body 32. Valvular assembly 430 is also typically positioned within frame assembly such that free edge 458 of each leaflet 58 is disposed downstream of leg 50.


Subsequently, sheet 450 is attached to frame assembly 222 (FIGS. 15A-C). Outer perimeter 454 of sheet 450 is stitched to greater perimeter 446 of the sheet 440 (FIG. 15A). This is represented by stitch line 455. Typically, perimeter 454 is larger than perimeter 446, and is brought inwards to be stitched to perimeter 446 (e.g., making sheet 450 frustoconical), with inner perimeter 452 disposed axially away from frame assembly 222 (e.g., further axially away than outer perimeter 454 from the frame assembly).


Subsequently, sheet 450 is everted by bringing inner perimeter 452 toward frame assembly 222, and passing the inner perimeter around the tips of arms 46—i.e., axially past the tips of all of the arms (FIG. 15B). Typically, and as shown, arms 46 collectively define an arm-span d23 that is wider than perimeter 452. That is, the tips of arms 46 typically define a perimeter that is greater than perimeter 452. For some applications, the passage of inner perimeter 452 around the tips of arms 46 is facilitated by bending (e.g., temporarily) one or more of arms 46.


Inner perimeter 452 is advanced over at least part of valve body 32 toward a downstream end of frame assembly 222, and is stitched in place. Typically, perimeter 452 is advanced between the valve body and legs 50, such that perimeter 452 circumscribes valve body 32, and legs 50 are disposed radially outside of sheet 150. As described hereinabove, each leg 50 extends radially outward and in an upstream direction from a respective leg-base 66 to a respective leg-tip 68. Each leg therefore extends at an acute angle to define a respective cleft 250 between the leg and valve body 32 (e.g., the tubular portion), the cleft open to the upstream direction. Typically, perimeter 452 is tucked into clefts 250, and is stitched into place. Frame assembly 222 defines a distance d22, measured along a straight line, between the ends of arms 46 and clefts 250. For clarity, distance d22 may be defined as a distance between (i) an imaginary ring described by the ends of arms 46, and (ii) an imaginary ring described by clefts 250.


The dimensions and positioning of sheet 450 defines an inflatable pouch 490 that is bounded by sheet 450 (e.g., defining an outer and/or downstream wall of the pouch), sheet 440 (e.g., defining an upstream wall of the pouch), and liner 427 (e.g., defining an inner wall of the pouch). Pouch 490 typically circumscribes the longitudinal axis of the implant and/or the valve body of frame assembly 222 (e.g., the pouch is a cuff), and further typically extends radially outward from the valve body. Typically, an upstream portion of pouch 490 is attached to valve frame 30 (e.g., and is not attached to outer frame 60), and a downstream portion of the pouch is attached to the outer frame. As described in more detail hereinbelow, at least one respective window 482 into pouch 490 is defined between each leaflet 58 and perimeter 452.



FIG. 16A-C show steps in dressing frame assembly 222 with sheet 460, in accordance with some applications of the invention. Each strip 461 is formed into a respective pocket 478 (FIGS. 16A-B). Each strip is folded over itself, about a fold-line 463 that is orthogonal to strip-axis ax2, thereby forming (i) a first strip-portion 464a that extends from belt 462 to the fold-line, and (ii) a second strip-portion 464b that extends from fold-line hack toward the belt. First strip-portion 464a and second strip-portion 464b are stitched together at first edge 468a and second edge 468b. The resulting pocket 478 is typically elongate, and has (i) an opening 470 defined at least in part by end 466 of the strip, and (ii) a tip 472 at the fold-line.


For some applications, a soft pad 476 is provided in each pocket 478, typically at tip 472. For some such applications, and as shown in FIG. 15B, pad 476 is formed from a piece of foam 474 (e.g., comprising polyurethane). Piece of foam 474 may initially be generally cubic. For some applications, and as shown, piece of foam 474 is folded to form a niche 477 in pad 476, typically after having been at least partly flattened by compression. Pad 476 may be introduced into pocket 478 before the pocket is fully formed (e.g., as shown), or may be subsequently introduced into the pocket via opening 470.


Alternatively, pads 300 may be used in place of pads 476, and may be added to flanges 54 as described with reference to FIGS. 12A-H, mutatis mutandis.


For applications in which pad 476 is used, each strip-portion 464a and 464b typically defines a widened region 479 adjacent to fold-line 463, such that when pockets 478 are formed, a receptacle for pad 476 is formed.


Pockets 478 are subsequently slid onto legs 50, and belt 462 is wrapped around frame assembly 222 downstream of legs 50 (e.g., downstream of the axial level at which the legs are coupled to the valve body). Belt 462 is typically positioned such that it is disposed over the commissures of leaflets 58 and/or over connectors 432. That is, the belt is typically wrapped around the frame assembly at an axial level such t For applications in which pads 476 are used, flanges 54 of legs 50 are typically advanced into niches 477 of the pads. Belt 462 (e.g., the edge of the belt from which pockets 478 extend) is stitched to sheet 450. More specifically, the upstream edge of belt 462 is stitched circumferentially to perimeter 452 of sheet 450. This is represented by a stitch line 465. Therefore, once implant 420 is assembled, the edge of belt 462 from which pockets 478 extend is an upstream edge of the belt, while the edge that is closest to the downstream end of the implant is a downstream edge of the belt. Legs 50, within pockets 478, extend radially outward from between belt 462 and sheet 450 (e.g., at stitch line 465).


For some applications, tips 472 and/or pads 476 are further secured to flanges 54 by stitching 475, which may pass through a hole 55 (labeled in FIG. 1A) defined in each flange 54. Stitching 475 is visible in FIGS. 18A-C.


As shown in FIG. 16C, for some applications, polytetrafluoroethylene ring 78 is typically also attached to frame assembly 222. For some such applications, in addition to being stitched to frame assembly 222, ring 78 is also stitched to belt 462 (e.g., to the edge of the belt opposite pockets 478—i.e., the downstream edge of the belt).



FIG. 17 shows a ribbon 480 being wrapped around the leg-base 66 of each leg 50, in accordance with some applications of the invention. For some applications, the ends of ribbon 480 overlap. Ribbons 480 are stitched in place, but the stitches are typically not disposed in cleft 250. As shown, ribbons 480 may be stitched to belt 462. Although ribbons 480 are shown being used in combination with pockets 478 (and are therefore wrapped around the pockets at leg-base 66), it is to be noted that ribbons 480 may alternatively be used for applications in which legs 50 are generally uncovered. Ribbon 480 covers cleft 250, and is hypothesized by the inventors to reduce a likelihood of tissue (e.g., leaflet or chordae tissue) from becoming wedged in and/or damaged by the cleft.



FIGS. 18A-C show implant 420 alter its assembly. FIG. 18A is an upper perspective view (e.g., showing upstream surfaces of the implant), FIG. 18B shows a side view, and FIG. 18C shows a lower perspective view (e.g., showing downstream surfaces of the implant).


As described with reference to FIGS. 3E-F, implant 20 (which comprises frame assembly 22) is secured in place at the native valve by sandwiching tissue of the native valve between the implant's upstream support portion 40 and flanges 54. Implants that comprise frame assembly 222, such as implant 220, are typically secured in the same way, mutatis mutandis. Implants that further comprise pouch 490, such as implant 420, are typically secured similarly, but with pouch 490 disposed between the upstream support portion and the tissue of the native valve. Therefore in at least some regions of implant 420, the tissue of the native valve is sandwiched between flanges 54 and pouch 490, e.g., as shown in FIG. 19.


Windows 482 open into pouch 490 from the lumen of the valve body. Once implant 420 has been implanted at the native valve, windows 482 are disposed functionally within ventricle 8, whereas at least portions of pouch 490 are disposed functionally within atrium 6. Therefore, during ventricular systole, ventricular pressure (which is much greater than atrial pressure) forces blood into pouch 490, thereby inflating the pouch. This inflation presses pouch 490 against the tissue of the native valve, it is hypothesized by the inventors that this inhibits paravalvular leakage of blood, especially during ventricular systole. For example, the pouch may seal a paravalvular gap at the commissures of the native valve. For some applications, inflation of pouch 490 squeezes tissue of the native valve (e.g., native leaflets) between the pouch and flanges 54. Pouch 490 is typically dimensioned such that if, in a particular region, tissue is not disposed between a flange 54 and pouch 490, inflation of the pouch presses the pouch against the flange.


There is therefore provided, in accordance with an application of the present invention, apparatus, comprising:

    • a frame assembly (e.g., frame assembly 222) that comprises: (i) a valve body that circumscribes a longitudinal axis and defines a lumen along the axis; (ii) a plurality of arms (e.g., arms 46) that are coupled to the valve body at a first axial level with respect to the longitudinal axis (e.g., defined by sites 35), each of the arms extending radially outward from the valve body to a respective arm-tip; and (iii) a plurality of ventricular legs (e.g., legs 50) that (a) are coupled to the valve body at a second axial level with respect to the longitudinal axis (e.g., defined by coupling points 52), the second axial level being downstream of the first axial level, and that (b) extend radially outward from the valve body and toward the plurality of arms;
    • a tubular liner (e.g., liner 427) that lines the lumen, and that has an upstream end and a downstream end;
    • a plurality of prosthetic leaflets (e.g., leaflets 58), disposed within the lumen, attached to the liner, and arranged to facilitate one-way upstream-to-downstream fluid flow through the lumen;
    • a first sheet of flexible material (e.g., sheet 440), the first sheet having (i) a greater perimeter, and (ii) a smaller perimeter that defines an opening, the first sheet being attached to the plurality of arms with the opening aligned with the lumen of the valve body; and
    • a second sheet of flexible material (e.g., sheet 450):
      • the second sheet having a first perimeter and a second perimeter,
      • the first perimeter being attached to the greater perimeter of the first sheet around the greater perimeter of the first sheet,
      • the second sheet extending from the first perimeter radially inwards and downstream toward the second perimeter, the second perimeter circumscribing,
      • and attached to, the valve body at a third axial level that is downstream of the first axial level.


The first sheet, the second sheet, and the liner define inflatable pouch 490 therebetween, the first sheet defining an upstream wall of the pouch, the second sheet defining a radially-outer wall of the pouch, and the liner defining a radially-inner wall of the pouch. The apparatus defines a plurality of windows (e.g., windows 482) from the lumen into the pouch, each of the windows bounded by the liner at upstream edges of the window, and bounded by the second perimeter and/or belt 462 at a downstream edge of the window. Each window 482 is typically discrete—i.e., bounded on all sides, and separate from other windows. For some applications in which downstream edge 436 of liner 427 is stitched to ring 182 of frame 230, the most upstream parts of windows 482 are closer to the upstream end of the implant than are the most downstream parts of arms 46.


Typically, and as shown, pouch 490 circumscribes the valve body of implant 420.


Typically, and as shown in FIG. 18C, each window 482 spans more than one cell of the valve body. This is represented by the multiple instances of reference numeral 482 in FIG. 18C.


For some applications, and as shown, each window spans at least partly of five cells of the valve body. For some such applications, and as shown. each window spans substantially all of two cells (e.g., two cells of row 29a) and about half (e.g., 40-60 percent) of each of three cells (e.g., three cells of row 29b). Each window 482 is bounded by liner 127 at an upstream edge of the window. Typically, and as shown, the upstream edge of each window 482 is defined at rings 182 and 184 of valve frame 230, at which region 428 of liner 427 is stitched to the valve frame. At the downstream edge of each window, the window is bounded by perimeter 452, and also by belt 462. Therefore, at the downstream edge of each window 482, the window may be considered to be hounded by stitch line 465.


For some applications, the upstream edge of each window 482 is the shape of a capital letter M, e.g., with the apices of the letter M at upstream end 34 of the valve body, and with the vertex of the letter M at a site 35. Because region 428 of liner 427 follows, and is stitched to, the joists of valve frame 230 at region 428 of the liner, it is hypothesized by the inventors that this arrangement reinforces the upstream edge of window 482, e.g., increasing durability compared to an arrangement in which the upstream edge of the window crosses between joists of the valve frame.


As described hereinabove, sheet 440 typically covers an upstream side of arms 46. Once pouch 490 has been formed, at least most of each arm 46 is therefore disposed inside the pouch. As also described hereinabove, sheet 440 is stitched to arms 46. Once pouch 490 has been formed, the pouch (i.e., the part of the pouch defined by sheet 440) is therefore stitched to arms 46.


For some applications, a circumferential stitch line 445 is used to stitch sheet 440 to sheet 450 at a radius smaller than the overall radius of upstream support portion 40 (i.e., radially inward from the tips of arms 46), typically sandwiching arms 46 between these two sheets. Stitch line 445 is typically radially aligned with region 154 and/or wide (and flexible) portion 46c of arm 46. This typically creates a region 484 in which the portions of sheets 440 and 450 that are disposed radially outward from stitch line 445 are isolated front pouch 490. For such applications, the ends of arms 46 are therefore typically disposed in region 484, and are isolated from pouch 490.


For some applications, and as shown, sheet 450 is sufficiently baggy that the sheet (e.g., pouch 490) may extend radially outward beyond arms 46, particularly if uninhibited by tissue of the native valve. This may be achieved by radial dimension d21 of sheet 450 being greater than distance d22 between the ends arms 46 and clefts 250. For some applications, dimension d21 is more than 30 percent greater (e.g., more than 50 percent greater) than distance d22. For example, dimension d21 may be 30-100 percent greater (e.g., 30-80 percent greater, e.g., 40-80 percent greater, such as 50-70 percent greater) than distance d22. As shown, pouch 490 may extend radially outward beyond arms 46 irrespective of the presence of stitch line 445, which is disposed radially-inward from the ends of arms 46.


Regarding the axial position (i.e., the position along the longitudinal axis of implant 420) of pouch 490 and windows 482. For some applications, pouch 490 extends, with respect to the longitudinal axis of implant 420, further upstream than the leaflets. That is, for some applications, upstream regions of pouch 490 (e.g., those closest to prosthetic valve support 40) are situated further upstream than even the apex of curved edge 456 of leaflets 58. For some applications, and as shown, each of leaflets 58 is attached to liner 427 upstream of windows 482. That is, at least the apex of curved edge 456 of leaflets 58 is disposed upstream of windows 482. Free edge 458 of each leaflet 58 is typically disposed downstream of the third axial level—i.e., the axial level at which perimeter 452 of sheet 450 is attached to frame assembly 222. That is, leaflets 58 typically extend further downstream than pouch 490. For some applications. and as shown, the third axial level (i.e., the axial level at which perimeter 452 of sheet 450 is attached to frame assembly 222) is upstream of the second axial level (i.e., the axial level at which legs 50 are attached to the valve body).


It is to be noted that, whereas liner 427 is disposed on the inside of valve body 32, sheet 450 and belt 462 are disposed on the outside of the valve body. Axially downstream of windows 482, valve body 32 is typically not lined i.e., no liner is typically disposed between leaflets 58 and frame 30. However, belt 462 circumscribes valve body 32 and serves a similar function to a liner—channeling fluid through the lumen of the valve body.


It is to be noted that projections 246 are not visible in FIG. 18B. For some applications, and as shown, the projection-length of projections 246 (e.g., see projection-length d13 in FIG. 5C) is such that the projections do not extend further upstream than the tips of arms 46. For some applications, and as shown, projections 246 extend further upstream than the highest part of arms 46 within concave region 152. For some applications, and as shown, projections 246 extend to an axial height that is between (a) that of the tips of arms 46, and (b) that of the highest part of arms 46 within concave region 152. This is illustrated perhaps most clearly in FIG. 9A, which shows inner frame 330a, but is applicable to each of the inner frames described herein, mutatis mutandis.


Reference is made to FIGS. 20, and 21A-C, which are schematic illustrations of implant 420, in accordance with some applications of the invention. Pouch 490 defines an interior space 500. For some applications, and as shown, arms 46 and legs 50 (e.g., flanges 54 thereof) narrow pouch 490 therebetween to form a narrowed portion 510 of the pouch. Narrowed portion 510 typically circumscribes valve body 32 and/or the longitudinal axis of the implant—e.g., the narrowed portion being annular. This thereby defines (i) an inner portion 502 of the interior space, radially inward from narrowed portion 510, and in fluid communication with lumen 38 of the implant (e.g., via windows 482), and (ii) an outer portion 504 of the interior space, radially outward from the narrowed portion, and in fluid communication with inner portion 502 via the narrowed portion. At narrowed portion 510 each leg 50 (e.g., flange 54 thereof) typically pushes sheet 450 (which defines a downstream surface of pouch 490) toward sheet 440 (which defines an upstream surface of the pouch), such as pressing sheet 450 into contact with sheet 440.


Typically, and as shown, arms 46 and legs 50 alternate circumferentially. That is, when viewed from above, an arm 46 is disposed circumferentially on either side of each leg 50, and a leg is disposed circumferentially on either side of each arm. This is illustrated for implant 22 in FIG. 1D, mutatis mutandis. For applications in which arms 46 and legs 50 alternate circumferentially, at narrowed portion 510 each leg 50 (e.g., flange 54 thereof) forms a respective bulge 506 in sheet 440 (i.e., the upstream surface of pouch 490) by pressing sheet 450 (i.e., the downstream surface of the pouch) against the upstream surface (see FIG. 18A). Bulges 506 are therefore disposed circumferentially between arms 46. It is typically the tip of each leg 50 that presses into sheet 450, and therefore bulges 506 are typically compact (e.g., as opposed to being elongate).


It is to be noted that narrowed portion 510 is therefore formed without pouch 490 being sandwiched directly between arms 46 and legs 50. It is also to be noted that, at narrowed portion 510, pouch 490 is stitched to arms 46 but not to legs 50. For some applications, at narrowed portion 510, legs 50 extend in an upstream direction past arms 46. (This can be understood from FIG. 1C, mutatis mutandis). For some applications, this configuration results in sheet 450 billowing between legs 50, e.g., as indicated by reference numeral 508 in FIG. 18C.


It is to be noted that the configuration described hereinabove exists in implant 420 even prior to implantation—i.e., even in the absence of tissue captured between arms 46 and flanges 54.


For some applications of the invention, narrowed portion 510 impedes fluid communication between outer portion 504 and inner portion 502 (and thereby between the outer portion and the lumen of the implant). It is hypothesized by the inventors that, for some such applications, this advantageously inhibits blood that has entered outer portion 504, from exiting the outer portion. During ventricular systole, ventricular pressure forces blood through windows 482 into pouch 490 (i.e., inner portion 502 thereof). At least some of this blood typically enters outer portion 504, e.g., due to the relatively high ventricular pressure. It is hypothesized by the inventors that, at least in part due to narrowed portion 510, during ventricular diastole, pressure in the opposite direction is insufficient to force as much blood back out of outer portion 504. It is further hypothesized by the inventors that, for some applications, this results in a net increase in the volume of blood within outer portion 504 during each cardiac cycle. e.g., until resistance inhibits further inflation of outer portion 504. This is illustrated by the sequence of frames A-F in FIG. 20, which represent the state of implant 420 over time. FIG. 20 shows blood 14 entering outer portion 504 only after inner portion 502 has become substantially filled (frames C-D), but for some applications blood may begin to enter outer portion 504 earlier.


It is hypothesized by the inventors that such a configuration of pouch 490 further improves paravalvular sealing provided by the pouch. It is further hypothesized by the inventors that, for some applications of the invention, such a configuration of pouch 490 facilitates the pouch (e.g., outer portion 504 thereof) conforming to the tissue surrounding implant 420, and therefore further facilitating sealing. For example. FIGS. 21A-C show implant 420 disposed at native valve 10, when the anatomy of the native valve (e.g., the annulus and/or leaflets) are uneven with respect to the implant. For example, the anatomy itself may be particularly uneven.


or the implant may have been implanted at a sub-optimal angle with respect to the anatomy. In the example shown, at a zone 520a the anatomy is relatively close to upstream support portion 40, whereas at a zone 520b, the anatomy is relatively spaced apart from the upstream support portion, e.g., resulting in a gap 522 (FIG. 21A). Over time (e.g., between ten seconds and one hour), outer portion 504 fills, in each zone, according to the mechanical constraints of that region (FIGS. 21B-C). In the example shown, in zone 520a outer portion 504 inflates with blood until space between upstream support portion 40 and the anatomy (e.g., annulus or leaflet tissue) is filled, and the anatomy resists further inflation of the outer portion (FIG. 21B). In zone 520b outer portion 504 continues to inflate with blood because, in this zone, the space between the upstream support portion and the anatomy is larger (FIG. 21C). In this way, it is hypothesized by the inventors that implant 420 advantageously adapts to the native anatomy, providing improved paravalvular sealing.


For some applications, at least one coagulation component 530 is disposed within outer portion 504, and is configured to promote blood coagulation within the outer portion. For some applications, coagulation component 530 is annular and, within outer portion 504, circumscribes the longitudinal axis of the implant. For some applications, coagulation component 530 comprises a fabric (e.g., comprising polyethylene terephthalate). For some applications, coagulation component 530 comprises polytetrafluoroethylene (e.g., expanded polytetrafluoroethylene), e.g., in the form of a membrane or ribbon. For some applications, coagulation component 530 comprises a metallic (e.g., nitinol or stainless steel) wire, membrane, or mesh, covered by a fabric or expanded polytetrafluoroethylene. For applications, coagulation component comprises a coagulation-inducing drug coated thereon or embedded therein (e.g., within a fabric). For some applications, coagulation component 530 comprises pericardial tissue (e.g., bovine or porcine).


For some applications of the invention, the scope of the invention includes using one or more of the apparatus and techniques described in this patent application in combination with one or more of the apparatus and techniques described in one or more of the following documents, each of which is incorporated herein by reference:

    • U.S. patent application Ser. No. 15/541,783 to Hariton et al., tiled Jul. 6, 2017, and entitled “Prosthetic valve with axially-sliding frames,” which published as US 2018/0014930 (now U.S. Pat. No. 9,974,651)
    • U.S. patent application Ser. No. 15/668,659 to Hariton et al., filed Aug. 3, 2017, and entitled “Techniques for deployment of a prosthetic valve,” which published as US 2017/0333187
    • U.S. patent application Ser. No. 15/668,559 to Jamberger et al., filed Aug. 3, 2017, and entitled “Prosthetic heart valve”
    • U.S. patent application Ser. No. 15/956,956 to Jamberger et al., filed Apr. 19, 2018, and entitled “Prosthetic heart valve”
    • PCT patent application IL2018/050725 to Hariton et al., filed Jul. 4, 2018, and entitled “Prosthetic heart valve”
    • U.S. patent application Ser. No. 16/135,969 to Hariton et al., filed Sep. 19, 2018, and entitled, “Prosthetic valve with inflatable cuff configured for radial extension”
    • U.S. patent application Ser. No. 16/135,979 to Hariton et al., tiled Sep. 19, 2018, and entitled, “Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors”
    • U.S. provisional patent application 62/560,384 to Hariton et al., filed Sep. 19, 2017, and entitled “Prosthetic valve and methods of use.”


(Some elements in the present patent application are also described in U.S. 62/560,384, U.S. patent application Ser. Nos. 16/135,969, or 16/135,979, but are named differently. For the sake of clarity, element names used in the present application supersede those used in U.S. 62/560,384, U.S. patent application Ser. Nos. 16/135,969, or 16/135,979.)


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. A prosthetic valve comprising: a valve body, which (a) is tubular, (b) has an upstream end, a downstream end, and a central longitudinal axis, and (c) defines a lumen along the central longitudinal axis; anda plurality of prosthetic leaflets, disposed within the lumen, and configured to facilitate one-way movement of fluid through the lumen in an upstream-to-downstream direction,wherein the valve body comprises struts arranged in a cellular structure defined by first and second circumferential rows of four-sided closed cells,wherein each of the four-sided closed cells of the first and the second circumferential rows is defined by some of the struts, which are shaped so as to collectively define the following four sides: a left upstream side, a right upstream side, a left downstream side, and a right downstream side, the struts joined at four corners of the four-side closed cell as follows: the left upstream side is joined to (a) the right upstream side at an upstream corner of the four-sided closed cell and (b) the left downstream side at a left corner of the four-sided closed cell, andthe right downstream side is joined to (a) the left downstream side at a downstream corner of the four-sided closed cell and (b) the right upstream side at a right corner of the four-sided closed cell, and wherein each of the four sides of each of the four-sided closed cells is double-strutted.
  • 2. The prosthetic valve according to claim 1, wherein, for each of the four-sided closed cells of the first and the second circumferential rows: the double-strutted left upstream side comprises inner and outer left-upstream-side struts that run generally parallel to each other with a left upstream gap therebetween,the double-strutted left downstream side comprises inner and outer left-downstream-side struts that run generally parallel to each other with a left downstream gap therebetween,the inner left-upstream-side struts, the outer left-upstream-side struts, the inner left-downstream-side struts, and the outer left-downstream-side struts are joined at a left junction at the left corner,the double-strutted right upstream side comprises inner and outer right-upstream-side struts that run generally parallel to each other with a right upstream gap therebetween,the double-strutted right downstream side comprises inner and outer right-downstream-side struts that run generally parallel to each other with a right downstream gap therebetween, andthe inner right-upstream-side struts, the outer right-upstream-side struts, the inner right-downstream-side struts, and the outer right-downstream-side struts are joined at a right junction at the right corner.
  • 3. The prosthetic valve according to claim 1, wherein, for a portion of the four-sided closed cells: the double-strutted left upstream side comprises inner and outer left-upstream-side struts that run generally parallel to each other with a left gap therebetween,the double-strutted right upstream side comprises inner and outer right-upstream-side struts that run generally parallel to each other with a right gap therebetween,the inner left-upstream-side strut and the inner right-upstream-side strut are joined at an inner upstream junction,the outer left-upstream-side strut and the outer right-upstream-side strut are joined at an outer upstream junction, andthe inner upstream junction and the outer upstream junction define an upstream junction gap therebetween.
  • 4. The prosthetic valve according to claim 1, wherein, for each of the four-sided closed cells of at least one of the first and the second circumferential rows: the double-strutted left downstream side comprises inner and outer left-downstream-side struts that run generally parallel to each other with a left gap therebetween,the double-strutted right downstream side comprises inner and outer right-downstream-side struts that run generally parallel to each other with a right gap therebetween,the inner left-downstream-side strut and the inner right-downstream-side strut are joined at an inner downstream junction,the outer left-downstream-side strut and the outer right-downstream-side strut are joined at an outer downstream junction, andthe inner downstream junction and the outer downstream junction define a downstream junction gap therebetween.
  • 5. The prosthetic valve according to claim 4, wherein, for each of the four-sided closed cells of the first and the second circumferential rows: the inner and the outer left-downstream-side struts are joined at a left junction at the left corner, andthe inner and the outer right-downstream-side struts are joined at a right junction at the right corner.
  • 6. The prosthetic valve according to claim 1, wherein, for each of a portion of the four-sided closed cells: the double-strutted left downstream side comprises inner and outer left-downstream-side struts that run generally parallel to each other with a left gap therebetween,the double-strutted right downstream side comprises inner and outer right-downstream-side struts that run generally parallel to each other with a right gap therebetween,the inner left-downstream-side strut and the inner right-downstream-side strut are joined at an inner downstream junction,the outer left-downstream-side strut and the outer right-downstream-side strut are joined at an outer downstream junction,the inner downstream junction and the outer downstream junction define a downstream junction gap therebetween,the double-strutted left upstream side comprises inner and outer left-upstream-side struts that run generally parallel to each other with a left gap therebetween,the double-strutted right upstream side comprises inner and outer right-upstream-side struts that run generally parallel to each other with a right gap therebetween,the inner left-upstream-side strut and the inner right-upstream-side strut are joined at an inner upstream junction,the outer left-upstream-side strut and the outer right-upstream-side strut are joined at an outer upstream junction, andthe inner upstream junction and the outer upstream junction define an upstream junction gap therebetween.
  • 7. The prosthetic valve according to claim 1, wherein, for a portion of the four-sided closed cells: the double-strutted left upstream side comprises inner and outer left-upstream-side struts that run generally parallel to each other with a left gap therebetween,the double-strutted right upstream side comprises inner and outer right-upstream-side struts that run generally parallel to each other with a right gap therebetween,the inner left-upstream-side strut, the outer left-upstream-side strut, the inner right-upstream-side strut, and the outer right-upstream-side strut are joined at an upstream junction.
  • 8. The prosthetic valve according to claim 7, wherein, for the portion of the four-sided closed cells: the double-strutted left downstream side comprises inner and outer left-downstream-side struts that run generally parallel to each other with a left gap therebetween,the double-strutted right downstream side comprises inner and outer right-downstream-side struts that run generally parallel to each other with a right gap therebetween,the inner left-downstream-side strut and the inner right-downstream-side strut are joined at an inner downstream junction,the outer left-downstream-side strut and the outer right-downstream-side strut are joined at an outer downstream junction, andthe inner downstream junction and the outer downstream junction define a downstream junction gap therebetween.
  • 9. The prosthetic valve according to claim 1, wherein the right corners of the four-sided closed cells of at least one of the first and the second circumferential rows are connected at respective junctions to the left corners of circumferentially-adjacent four-sided closed cells in the circumferential row.
  • 10. The prosthetic valve according to claim 9, wherein the junctions are shaped so as to define respective central openings therethrough.
  • 11. The prosthetic valve according to claim 1, wherein the struts in the cellular structure are curved.
  • 12. The prosthetic valve according to claim 1, wherein the upstream and the downstream corners of each of the four-sided closed cells are rounded.
  • 13. The prosthetic valve according to claim 1, wherein the left and the right corners each of the four-sided closed cells are rounded.
  • 14. The prosthetic valve according to claim 1, wherein the left downstream side and the right downstream side of each of the four-sided closed cells of the first circumferential row also define the right upstream side and the left upstream side, respectively, of two circumferentially-adjacent four-sided closed cells of the second circumferential row, respectively.
  • 15. The prosthetic valve according to claim 1, wherein all the cells of the cellular structure of the valve body are either four-sided closed cells of the first circumferential row or four-sided closed cells of the second circumferential row.
  • 16. The prosthetic valve according to claim 1, wherein the first and the second circumferential rows are disposed at opposing ends of the valve body.
  • 17. The prosthetic valve according to claim 1, wherein the prosthetic valve comprises a frame assembly that comprises (i) an inner frame that defines the valve body, and (ii) an outer frame that circumscribes the valve body, and is coupled to the inner frame by being fixed to a plurality of junctions between circumferentially-adjacent four-sided closed cells.
  • 18. The prosthetic valve according to claim 1, further comprising a plurality of arms, which extend radially outward from the valve body when the prosthetic valve is in an expanded state.
  • 19. The prosthetic valve according to claim 1, further comprising a plurality of arms, which are shaped so as to define (a) respective first ends joined to the valve body and (b) respective second free ends, wherein, when the prosthetic valve is in an expanded state, the second free ends are disposed at a greater distance from a central longitudinal axis than the respective first ends.
  • 20. The prosthetic valve according to claim 19, wherein the first ends of the arms are joined to the valve body at respective corners of the four-sided closed cells.
  • 21. The prosthetic valve according to claim 19, wherein each of the arms is joined to a junction between the right corner of one of the four-sided closed cells and the left corner of a circumferentially-adjacent second one of the four-sided closed cells in the circumferential row.
  • 22. The prosthetic valve according to claim 19, wherein the second free ends are disposed at different longitudinal sites from the respective first ends when the prosthetic valve is in the expanded state.
  • 23. The prosthetic valve according to claim 1, comprising a frame that defines the valve body, wherein the frame is made by cutting from a tube, such that the valve body is monolithic.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a Continuation application of U.S. patent application Ser. No. 17/101,787 to Hariton et al., filed Nov. 23, 2020, and entitled “Prosthetic valve with appendages,” (now U.S. Pat. 11,571,298) which is: (1) a Continuation application of U.S. patent application Ser. No. 16/269,328 to Hariton et al., filed Feb. 6, 2019, and entitled “Prosthetic heart valve with pouch,” (now U.S. Pat. No. 10,888,421) which is a Continuation-In-Part of: International patent application PCT/IL2018/050725 to Hariton et al., filed July 4, 2018, and entitled “Prosthetic heart valve,” which published as WO 2019/026059, and which is a Continuation-In-Part of U.S. patent application Ser. No. 15/956,956 to Iamberger et al., filed Apr. 19, 2018, (now U.S. Pat. No. 10,575,948) and entitled “Prosthetic heart valve;”U.S. patent application Ser. No. 16/135,969 to Hariton et al., filed Sep. 19, 2018, and entitled “Prosthetic valve with inflatable cuff configured for radial extension,” which published as U.S. 2019/0083248 (now US Pat. No. 11,819,405) and which claims benefit of U.S. provisional patent application 62/560,384 to Hariton et al., filed Sep. 19, 2017, and entitled “Prosthetic valve and methods of use;” andU.S. patent application Ser. No. 16/135,979 to Hariton et al., filed Sep. 19, 2018, and entitled “Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors,” (now U.S. Pat. No. 11,304,805) which claims benefit of U.S. provisional patent application 62/560,384 to Hariton et al., filed Sep. 19, 2017, and entitled “Prosthetic valve and methods of use,” and (2) a Continuation-In-Part of U.S. patent application Ser. No. 16/776,581 to Hariton et al., filed Jan. 30, 2020, entitled, “Prosthetic heart valve,” which published as US 2020/0163761 (now U.S. Pat. No. 11,793,633) and which is a Continuation of International Patent Application PCT/IL2018/050725 to Hariton et al., filed Jul. 4, 2018, and entitled “Prosthetic heart valve,” which published as WO 2019/026059, and which: (a) claims priority from: U.S. patent application Ser. No. 15/668,559 to lamberger et al., filed Aug. 3, 2017, and entitled “Prosthetic heart valve” (now U.S. Pat. No. 10,537,426),U.S. provisional patent application 62/560,384 to Hariton et al., filed Sep. 19, 2017, and entitled “Prosthetic valve and methods of use,” andU.S. patent application Ser. No. 15/956,956 to Iamberger et al., filed Apr. 19, 2018, and entitled “Prosthetic heart valve,” (now U.S. Pat. No. 10,575,948); and (b) is a Continuation-In-Part of U.S. patent application Ser. No. 15/956,956 to Iamberger et al., filed Apr. 19, 2018, and entitled “Prosthetic heart valve,” (now U.S. Pat. No. 10,575,948) which is a Continuation-In-Part of U.S. patent application Ser. No. 15/668,559 to Iamberger et al., filed Aug. 3, 2017, and entitled “Prosthetic heart valve,” (now U.S. Pat. No. 10,537,426). All of the above applications are incorporated herein by reference.

US Referenced Citations (1948)
Number Name Date Kind
3604488 Wishart et al. Sep 1971 A
3656185 Carpentier Apr 1972 A
3840018 Heifetz Oct 1974 A
3874388 King et al. Apr 1975 A
3898701 La Russa Aug 1975 A
4042979 Angell Aug 1977 A
4118805 Reimels Oct 1978 A
4214349 Munch Jul 1980 A
4222126 Boretos et al. Sep 1980 A
4261342 Aranguren Apr 1981 A
4275469 Gabbay Jun 1981 A
4340091 Skelton et al. Jul 1982 A
4423525 Vallana et al. Jan 1984 A
4434828 Trincia Mar 1984 A
4473928 Johnson Oct 1984 A
4602911 Ahmadi et al. Jul 1986 A
4625727 Leiboff Dec 1986 A
4712549 Peters et al. Dec 1987 A
4778468 Hunt et al. Oct 1988 A
4853986 Allen Aug 1989 A
4892541 Alonso Jan 1990 A
4917698 Carpenter et al. Apr 1990 A
4961738 Mackin Oct 1990 A
4972494 White et al. Nov 1990 A
4994077 Dobben Feb 1991 A
5061277 Carpentier et al. Oct 1991 A
5078739 Martin Jan 1992 A
5104407 Lam et al. Apr 1992 A
5108420 Marks Apr 1992 A
5201757 Heyn et al. Apr 1993 A
5201880 Wright Apr 1993 A
5258008 Wilk Nov 1993 A
5300034 Behnke Apr 1994 A
5306296 Wright et al. Apr 1994 A
5314473 Godin May 1994 A
5325845 Adair Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5397351 Pavcnik et al. Mar 1995 A
5405378 Strecker Apr 1995 A
5443500 Sigwart Aug 1995 A
5450860 O'Connor Sep 1995 A
5473812 Morris et al. Dec 1995 A
5477856 Lundquist Dec 1995 A
5601572 Middleman et al. Feb 1997 A
5607444 Lam Mar 1997 A
5607470 Milo Mar 1997 A
5626609 Zvenyatsky et al. May 1997 A
5647857 Anderson et al. Jul 1997 A
5669919 Sanders et al. Sep 1997 A
5674279 Wright et al. Oct 1997 A
5683402 Cosgrove et al. Nov 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5709695 Northrup, III Jan 1998 A
5713948 Uflacker Feb 1998 A
5716370 Williamson et al. Feb 1998 A
5716397 Myers Feb 1998 A
5716417 Girard et al. Feb 1998 A
5728116 Rosenman Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5741297 Simon Apr 1998 A
5749371 Zadini et al. May 1998 A
5765682 Bley et al. Jun 1998 A
5776140 Cottone Jul 1998 A
5810882 Bolduc Sep 1998 A
5824066 Gross Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5868777 Lam Feb 1999 A
5873906 Lau et al. Feb 1999 A
5876373 Giba et al. Mar 1999 A
5935098 Blaisdell et al. Aug 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5961440 Schweich et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5961549 Nguyen et al. Oct 1999 A
5980565 Jayaraman Nov 1999 A
5984959 Robertson Nov 1999 A
6010530 Goicoechea Jan 2000 A
6019787 Richard et al. Feb 2000 A
6042554 Rosenman Mar 2000 A
6042607 Williamson, IV Mar 2000 A
6045497 Schweich et al. Apr 2000 A
6050936 Schweich et al. Apr 2000 A
6059715 Schweich et al. May 2000 A
6059827 Fenton May 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6102945 Campbell Aug 2000 A
6106550 Magovern Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6113612 Swanson et al. Sep 2000 A
6120534 Ruiz Sep 2000 A
6126686 Badylak et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6159240 Sparer Dec 2000 A
6165119 Schweich et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6165210 Lau et al. Dec 2000 A
6174332 Loch Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6187020 Zegdi et al. Feb 2001 B1
6187040 Wright Feb 2001 B1
6193686 Estrada et al. Feb 2001 B1
6193745 Fogarty et al. Feb 2001 B1
6315784 Djurovic Feb 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6251092 Qin et al. Jun 2001 B1
6254609 Vrba et al. Jul 2001 B1
6264700 Kilcoyne et al. Jul 2001 B1
6287339 Vasquez et al. Sep 2001 B1
6296656 Bodluc et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6319281 Patel Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6334873 Lane et al. Jan 2002 B1
6346074 Roth Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352561 Leopold et al. Mar 2002 B1
6391036 Berg et al. May 2002 B1
6402780 Williamson, IV Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6409755 Vrba Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6428550 Vargas et al. Aug 2002 B1
6440164 Dimatteo et al. Aug 2002 B1
6451054 Stevens Sep 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461366 Seguin Oct 2002 B1
6470892 Forsell Oct 2002 B1
6478807 Foreman et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6491711 Durcan Dec 2002 B1
6503274 Howanec et al. Jan 2003 B1
6511491 Grudem et al. Jan 2003 B2
6524338 Gundry Feb 2003 B1
6530952 Vesely Mar 2003 B2
6533772 Sherts et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6540782 Snyders Apr 2003 B1
6547801 Dargent et al. Apr 2003 B1
6551350 Thornton et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6558396 Inoue May 2003 B1
6558418 Carpentier et al. May 2003 B2
6564805 Garrison et al. May 2003 B2
6565603 Cox May 2003 B2
6569196 Vesely May 2003 B1
6569198 Wilson et al. May 2003 B1
6579297 Bicek et al. Jun 2003 B2
6582464 Gabbay Jun 2003 B2
6589160 Schweich et al. Jul 2003 B2
6602263 Swanson et al. Aug 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6613078 Barone Sep 2003 B1
6613079 Wolinsky et al. Sep 2003 B1
6616675 Evard et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich et al. Oct 2003 B1
6651671 Donlon et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6669724 Park et al. Dec 2003 B2
6682558 Tu et al. Jan 2004 B2
6689125 Keith et al. Feb 2004 B1
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6699256 Logan et al. Mar 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6716244 Klaco Apr 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6719781 Kim Apr 2004 B1
6719786 Ryan et al. Apr 2004 B2
6719788 Cox Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730121 Ortiz et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755857 Peterson et al. Jun 2004 B2
6764310 Ichihashi et al. Jul 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6764514 Li et al. Jul 2004 B1
6764518 Godin Jul 2004 B2
6767362 Schreck Jul 2004 B2
6770083 Seguin Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790231 Liddicoat et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802319 Stevens et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6821297 Snyders Nov 2004 B2
6830585 Artof et al. Dec 2004 B1
6830638 Boylan et al. Dec 2004 B2
6855126 Flinchbaugh Feb 2005 B2
6858039 McCarthy Feb 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6884257 Cox Apr 2005 B1
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6908482 McCarthy et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6926715 Hauck et al. Aug 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6939370 Hartley et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6964686 Gordon Nov 2005 B2
6974476 McGuckin et al. Dec 2005 B2
6976995 Mathis et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997918 Soltesz et al. Feb 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7011681 Vesely Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7041132 Quijano et al. May 2006 B2
7074236 Rabkin et al. Jul 2006 B2
7077850 Kortenbach Jul 2006 B2
7077861 Spence Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7118595 Ryan et al. Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7137184 Schreck Nov 2006 B2
7150737 Purdy et al. Dec 2006 B2
7159593 McCarthy et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7169187 Datta et al. Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7175656 Khairkhahan Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192443 Solem et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal Apr 2007 B2
7220277 Arru et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7252682 Seguin Aug 2007 B2
7261686 Couvillon, Jr. Aug 2007 B2
7288097 Seguin Oct 2007 B2
7288111 Holloway et al. Oct 2007 B1
7294148 McCarthy Nov 2007 B2
7297150 Cartledge et al. Nov 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis et al. Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316710 Cheng et al. Jan 2008 B1
7316716 Egan Jan 2008 B2
7329279 Haug et al. Feb 2008 B2
7329280 Bolling et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7351256 Hojeibane et al. Apr 2008 B2
7361190 Shoulian et al. Apr 2008 B2
7364588 Mathis et al. Apr 2008 B2
7374571 Pease et al. May 2008 B2
7374573 Gabbay May 2008 B2
7377938 Sarac et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381218 Schreck Jun 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7390329 Westra et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7422603 Lane Sep 2008 B2
7429269 Schwammenthal Sep 2008 B2
7431692 Zollinger et al. Oct 2008 B2
7442204 Schwammenthal Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7445630 Lashinski et al. Nov 2008 B2
7452376 Lim et al. Nov 2008 B2
7455677 Vargas et al. Nov 2008 B2
7455688 Furst et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7462162 Phan et al. Dec 2008 B2
7481838 Carpentier et al. Jan 2009 B2
7485142 Milo Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7510577 Moaddeb et al. Mar 2009 B2
7513909 Lane et al. Apr 2009 B2
7524331 Birdsall Apr 2009 B2
7527646 Rahdert et al. May 2009 B2
7527647 Spence May 2009 B2
7530995 Quijano et al. May 2009 B2
7549983 Roue et al. Jun 2009 B2
7556632 Zadno Jul 2009 B2
7556646 Yang et al. Jul 2009 B2
7559936 Levine Jul 2009 B2
7562660 Saadat Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7582111 Krolik et al. Sep 2009 B2
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7591826 Alferness et al. Sep 2009 B2
7597711 Drews et al. Oct 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608103 McCarthy Oct 2009 B2
7611534 Kapadia et al. Nov 2009 B2
7618449 Tremulis et al. Nov 2009 B2
7621948 Hermann et al. Nov 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632302 Vreeman et al. Dec 2009 B2
7632303 Stalker et al. Dec 2009 B1
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7648528 Styrc Jan 2010 B2
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7682319 Martin Mar 2010 B2
7682369 Seguin Mar 2010 B2
7682380 Thornton et al. Mar 2010 B2
7686822 Shayani Mar 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704269 St. Goar et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7717952 Case et al. May 2010 B2
7717955 Lane et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7731741 Eidenschink Jun 2010 B2
7731742 Schlick et al. Jun 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7758595 Allen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7758640 Vesely Jul 2010 B2
7771467 Svensson Aug 2010 B2
7771469 Liddicoat Aug 2010 B2
7776080 Bei et al. Aug 2010 B2
7776083 Vesely Aug 2010 B2
7780726 Seguin Aug 2010 B2
7785341 Forster et al. Aug 2010 B2
7799069 Bailey et al. Sep 2010 B2
7803181 Furst et al. Sep 2010 B2
7811296 Goldfarb et al. Oct 2010 B2
7811316 Kalmann et al. Oct 2010 B2
7824442 Salahieh et al. Nov 2010 B2
7837645 Bessler et al. Nov 2010 B2
7837727 Goetz et al. Nov 2010 B2
7842081 Yadin Nov 2010 B2
7850725 Vardi et al. Dec 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871432 Bergin Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7871436 Ryan et al. Jan 2011 B2
7887583 Macoviak Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7914544 Nguyen et al. Mar 2011 B2
7914569 Nguyen et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7927371 Navia et al. Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947072 Yang et al. May 2011 B2
7947075 Goetz et al. May 2011 B2
7951195 Antonsson et al. May 2011 B2
7955375 Agnew Jun 2011 B2
7955377 Melsheimer Jun 2011 B2
7955384 Rafiee et al. Jun 2011 B2
7959666 Salahieh et al. Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7967833 Sterman et al. Jun 2011 B2
7967857 Lane Jun 2011 B2
7981151 Rowe Jul 2011 B2
7981153 Fogarty et al. Jul 2011 B2
7988725 Gross et al. Aug 2011 B2
7992567 Hirotsuka et al. Aug 2011 B2
7993368 Gambale et al. Aug 2011 B2
7993393 Carpentier et al. Aug 2011 B2
7993397 Lashinski Aug 2011 B2
8002825 Letac et al. Aug 2011 B2
8002826 Seguin Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8016877 Seguin et al. Sep 2011 B2
8016882 Macoviak Sep 2011 B2
8021420 Dolan Sep 2011 B2
8021421 Fogarty et al. Sep 2011 B2
8025695 Fogarty et al. Sep 2011 B2
8029518 Goldfarb et al. Oct 2011 B2
8029557 Sobrino-Serrano et al. Oct 2011 B2
8029564 Johnson et al. Oct 2011 B2
8034103 Burriesci Oct 2011 B2
8034104 Carpentier et al. Oct 2011 B2
8038720 Wallace et al. Oct 2011 B2
8043360 McNamara et al. Oct 2011 B2
8048138 Sulivan et al. Nov 2011 B2
8048140 Purdy Nov 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8052741 Bruszewski et al. Nov 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8057532 Hoffman Nov 2011 B2
8057540 Letac et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070708 Rottenberg et al. Dec 2011 B2
8070800 Lock et al. Dec 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8070804 Hyde Dec 2011 B2
8070805 Vidlund Dec 2011 B2
8075611 Milwee et al. Dec 2011 B2
8075616 Solem Dec 2011 B2
8080054 Rowe Dec 2011 B2
8083793 Lane et al. Dec 2011 B2
D652927 Braido et al. Jan 2012 S
D653341 Braido et al. Jan 2012 S
8092518 Schreck Jan 2012 B2
8092520 Quadri Jan 2012 B2
8092521 Figulla et al. Jan 2012 B2
8100964 Spence Jan 2012 B2
8105377 Liddicoat Jan 2012 B2
8109996 Stacchino et al. Feb 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8123800 McCarthy Feb 2012 B2
8123801 Milo Feb 2012 B2
8323334 Deem et al. Feb 2012 B2
8133270 Kheradvar et al. Mar 2012 B2
8136218 Millwee et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8142492 Forster et al. Mar 2012 B2
8142493 Spence et al. Mar 2012 B2
8142494 Rahdert et al. Mar 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8142497 Friedman Mar 2012 B2
8147504 Ino et al. Apr 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao Apr 2012 B2
8157852 Bloom et al. Apr 2012 B2
8157853 Laske et al. Apr 2012 B2
8157860 McNamara et al. Apr 2012 B2
8163008 Wilson et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8163014 Lane et al. Apr 2012 B2
D660433 Braido et al. May 2012 S
D660967 Braido et al. May 2012 S
8167894 Miles et al. May 2012 B2
8167932 Bourang et al. May 2012 B2
8167935 McGuckin, Jr. et al. May 2012 B2
8172896 McNamara et al. May 2012 B2
8172898 Alferness et al. May 2012 B2
8177836 Lee et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187324 Webler et al. May 2012 B2
8202315 Hlavka et al. Jun 2012 B2
8206439 Gomez-Duran Jun 2012 B2
8211169 Lane et al. Jul 2012 B2
8216256 Raschdorf, Jr. et al. Jul 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8221492 Case et al. Jul 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8231670 Salahieh et al. Jul 2012 B2
8231671 Kim Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8236049 Rowe et al. Aug 2012 B2
8241351 Cabiri Aug 2012 B2
8252042 McNamara et al. Aug 2012 B2
8252050 Maisano et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8257390 Carley et al. Sep 2012 B2
8262725 Subramanian Sep 2012 B2
8267988 Hamer et al. Sep 2012 B2
8277501 Chalekian et al. Oct 2012 B2
8277502 Miller et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8298280 Yadin et al. Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308798 Pintor et al. Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8317853 Agnew Nov 2012 B2
8317855 Gregorich et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8333777 Schaller et al. Dec 2012 B2
8337541 Quadri et al. Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8348999 Kheradvar et al. Jan 2013 B2
8349002 Milo Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8361144 Fish et al. Jan 2013 B2
8366767 Zhang Feb 2013 B2
8372140 Hoffman et al. Feb 2013 B2
8377119 Drews et al. Feb 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8398708 Meiri et al. Mar 2013 B2
8403981 Forster et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8408214 Spenser Apr 2013 B2
8414644 Quadri et al. Apr 2013 B2
8425593 Braido et al. Apr 2013 B2
8430926 Kirson Apr 2013 B2
8430934 Das Apr 2013 B2
8444689 Zhang May 2013 B2
8449599 Chau et al. May 2013 B2
8449625 Campbell et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460365 Haverkost et al. Jun 2013 B2
8460370 Zakay et al. Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8474460 Barrett et al. Jul 2013 B2
8475491 Milo Jul 2013 B2
8480732 Subramanian Jul 2013 B2
8500800 Maisano et al. Aug 2013 B2
8500821 Sobrino-Serrano et al. Aug 2013 B2
8512400 Tran et al. Aug 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8523940 Richardson et al. Sep 2013 B2
8529431 Baker et al. Sep 2013 B2
8539662 Stacchino et al. Sep 2013 B2
8540767 Zhang Sep 2013 B2
8545544 Spenser et al. Oct 2013 B2
8545553 Zipory et al. Oct 2013 B2
8551160 Figulla et al. Oct 2013 B2
8551161 Dolan Oct 2013 B2
8562672 Bonhoeffer et al. Oct 2013 B2
8568475 Nguyen et al. Oct 2013 B2
8579964 Lane et al. Nov 2013 B2
8579965 Bonhoeffer et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8591460 Wilson et al. Nov 2013 B2
8591570 Revuelta et al. Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8608797 Gross et al. Dec 2013 B2
8623075 Murray et al. Jan 2014 B2
8623080 Fogarty et al. Jan 2014 B2
8628569 Benichou et al. Jan 2014 B2
8628570 Seguin Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8641727 Starksen et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8652204 Quill et al. Feb 2014 B2
8657872 Seguin Feb 2014 B2
8663322 Keranen Mar 2014 B2
8673020 Sobrino-Serrano et al. Mar 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8690939 Miller et al. Apr 2014 B2
8696742 Pintor et al. Apr 2014 B2
8715342 Zipory et al. May 2014 B2
8728097 Sugimoto et al. May 2014 B1
8728155 Montorfano et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8734507 Keranen May 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8771345 Tuval et al. Jul 2014 B2
8778021 Cartledge Jul 2014 B2
8784472 Eidenschink Jul 2014 B2
8784479 Antonsson et al. Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790367 Nguyen et al. Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8801776 House et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8808371 Cartledge Aug 2014 B2
8840663 Salahieh et al. Sep 2014 B2
8840664 Karapetian et al. Sep 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845722 Gabbay Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858623 Miller et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8870950 Hacohen Oct 2014 B2
8876800 Behan Nov 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8900294 Paniagua et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8906083 Obermiller et al. Dec 2014 B2
8911455 Quadri et al. Dec 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911489 Ben-Muvhar Dec 2014 B2
8911493 Rowe et al. Dec 2014 B2
8911494 Hammer et al. Dec 2014 B2
8926695 Gross et al. Jan 2015 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8940042 Miller et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945177 Dell et al. Feb 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986370 Annest Mar 2015 B2
8986373 Chau et al. Mar 2015 B2
8986375 Garde et al. Mar 2015 B2
8992599 Thubrikar et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
8998982 Richter et al. Apr 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011468 Ketai et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011527 Li et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
D730520 Braido et al. May 2015 S
D730521 Braido et al. May 2015 S
9023100 Quadri et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
D732666 Nguyen et al. Jun 2015 S
9050188 Schweich et al. Jun 2015 B2
9060858 Thornton et al. Jun 2015 B2
9072603 Tuval et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095434 Rowe Aug 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125738 Figulla et al. Sep 2015 B2
9125740 Morriss et al. Sep 2015 B2
9132006 Spenser et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9155619 Liu et al. Oct 2015 B2
9173646 Fabro Nov 2015 B2
9173659 Bodewadt et al. Nov 2015 B2
9173738 Murray et al. Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9180009 Majkrzak et al. Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9220594 Braido et al. Dec 2015 B2
9226820 Braido et al. Jan 2016 B2
9226825 Starksen et al. Jan 2016 B2
9226839 Kariniemi et al. Jan 2016 B1
9232995 Kovalsky et al. Jan 2016 B2
9241790 Lane et al. Jan 2016 B2
9241791 Braido et al. Jan 2016 B2
9241792 Benichou et al. Jan 2016 B2
9241794 Braido et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9277994 Miller et al. Mar 2016 B2
9289290 Alkhatib et al. Mar 2016 B2
9289291 Gorman et al. Mar 2016 B2
9295550 Nguyen et al. Mar 2016 B2
9295551 Straubinger et al. Mar 2016 B2
9295552 McLean et al. Mar 2016 B2
9301836 Buchbinder et al. Apr 2016 B2
9308087 Lane et al. Apr 2016 B2
9320591 Bolduc Apr 2016 B2
D755384 Pesce et al. May 2016 S
9326852 Spenser May 2016 B2
9326876 Acosta et al. May 2016 B2
9345573 Nyuli et al. May 2016 B2
9351830 Gross et al. May 2016 B2
9358107 Nguyen et al. Jun 2016 B2
9387078 Gross et al. Jul 2016 B2
9393110 Levi et al. Jul 2016 B2
9421098 Gifford et al. Aug 2016 B2
9427303 Liddy et al. Aug 2016 B2
9427316 Schweich, Jr. et al. Aug 2016 B2
9439757 Wallace et al. Sep 2016 B2
9445893 Vaturi Sep 2016 B2
9463102 Kelly Oct 2016 B2
9474599 Keränen Oct 2016 B2
9474638 Robinson et al. Oct 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9492273 Wallace et al. Nov 2016 B2
9498314 Behan Nov 2016 B2
9498332 Hacohen et al. Nov 2016 B2
9510947 Straubinger et al. Dec 2016 B2
9532870 Cooper et al. Jan 2017 B2
9554897 Lane et al. Jan 2017 B2
9554899 Granada et al. Jan 2017 B2
9561103 Granada et al. Feb 2017 B2
9566152 Schweich et al. Feb 2017 B2
9572665 Lane et al. Feb 2017 B2
9597182 Straubinger et al. Mar 2017 B2
9629716 Seguin Apr 2017 B2
9662203 Sheahan et al. May 2017 B2
9681952 Hacohen et al. Jun 2017 B2
9717591 Chau et al. Aug 2017 B2
9743932 Amplatz et al. Aug 2017 B2
9763657 Hacohen et al. Sep 2017 B2
9763817 Roeder Sep 2017 B2
9770256 Cohen et al. Sep 2017 B2
D800908 Hariton et al. Oct 2017 S
9788941 Hacohen Oct 2017 B2
9895226 Harari et al. Feb 2018 B1
9974651 Hariton et al. May 2018 B2
9987132 Hariton et al. Jun 2018 B1
9993360 Shalev et al. Jun 2018 B2
10010414 Cooper et al. Jul 2018 B2
10016271 Morriss et al. Jul 2018 B2
10045845 Hacohen et al. Aug 2018 B2
10076415 Metchik et al. Sep 2018 B1
10098732 Hariton et al. Oct 2018 B1
10105222 Metchik et al. Oct 2018 B1
10111751 Metchik et al. Oct 2018 B1
10123873 Metchik et al. Nov 2018 B1
10130475 Metchik et al. Nov 2018 B1
10136993 Metchik et al. Nov 2018 B1
10143552 Wallace et al. Dec 2018 B2
10149761 Granada et al. Dec 2018 B2
10154903 Albitov et al. Dec 2018 B2
10154906 Granada et al. Dec 2018 B2
10159570 Metchik et al. Dec 2018 B1
10182908 Tubishevitz et al. Jan 2019 B2
10206668 Mcgoldrick et al. Feb 2019 B2
10226341 Gross et al. Mar 2019 B2
10231831 Hacohen Mar 2019 B2
10231837 Metchik et al. Mar 2019 B1
10238493 Metchik et al. Mar 2019 B1
10245143 Gross et al. Apr 2019 B2
10245144 Metchik et al. Apr 2019 B1
10258471 Lutter et al. Apr 2019 B2
10292816 Raanani et al. May 2019 B2
10299927 McLean et al. May 2019 B2
10321995 Christianson et al. Jun 2019 B1
10322020 Lam et al. Jun 2019 B2
10327895 Lozonschi et al. Jun 2019 B2
10335278 McLean et al. Jul 2019 B2
10357360 Hariton et al. Jul 2019 B2
10376361 Gross et al. Aug 2019 B2
10390952 Hariton et al. Aug 2019 B2
10426610 Hariton et al. Oct 2019 B2
10426614 Hariton et al. Oct 2019 B2
10449047 Hariton et al. Oct 2019 B2
10456256 Braido et al. Oct 2019 B2
10463487 Hariton et al. Nov 2019 B2
10463488 Hariton et al. Nov 2019 B2
10492908 Hammer et al. Dec 2019 B2
10507105 Hariton et al. Dec 2019 B2
10507108 Delgado et al. Dec 2019 B2
10507109 Metchik et al. Dec 2019 B2
10512456 Hacohen et al. Dec 2019 B2
10517719 Miller et al. Dec 2019 B2
10524792 Hernandez et al. Jan 2020 B2
10524903 Hariton et al. Jan 2020 B2
10524910 Hammer et al. Jan 2020 B2
10531866 Hariton et al. Jan 2020 B2
10531872 Hacohen et al. Jan 2020 B2
10537426 Iamberger et al. Jan 2020 B2
10548726 Hacohen et al. Feb 2020 B2
10548731 Lashinski et al. Feb 2020 B2
10575948 Iamberger et al. Mar 2020 B2
10595992 Chambers Mar 2020 B2
10595997 Metchik et al. Mar 2020 B2
10610358 Vidlund et al. Apr 2020 B2
10610359 Hacohen Apr 2020 B2
10631871 Goldfarb et al. Apr 2020 B2
10631982 Hammer et al. Apr 2020 B2
10646342 Marr et al. May 2020 B1
10660751 Hacohen May 2020 B2
10667908 Hariton et al. Jun 2020 B2
10667912 Dixon et al. Jun 2020 B2
10682227 Hariton et al. Jun 2020 B2
10695177 Hariton et al. Jun 2020 B2
10702380 Morriss et al. Jul 2020 B2
10702385 Hacohen Jul 2020 B2
10722360 Hariton et al. Jul 2020 B2
10736742 Hariton et al. Aug 2020 B2
10758342 Chau et al. Sep 2020 B2
10758344 Hariton et al. Sep 2020 B2
10779939 Hariton et al. Sep 2020 B2
10799345 Hariton et al. Oct 2020 B2
10813760 Metchik et al. Oct 2020 B2
10820998 Marr et al. Nov 2020 B2
10842627 Delgado et al. Nov 2020 B2
10849748 Hariton et al. Dec 2020 B2
10856972 Hariton et al. Dec 2020 B2
10856975 Hariton et al. Dec 2020 B2
10856978 Straubinger et al. Dec 2020 B2
10864078 Hariton et al. Dec 2020 B2
10874514 Dixon et al. Dec 2020 B2
10881511 Hariton et al. Jan 2021 B2
10888421 Hariton et al. Jan 2021 B2
10888422 Hariton et al. Jan 2021 B2
10888425 Delgado et al. Jan 2021 B2
10888644 Ratz et al. Jan 2021 B2
10905548 Hariton et al. Feb 2021 B2
10905549 Hariton et al. Feb 2021 B2
10905552 Dixon et al. Feb 2021 B2
10905554 Cao Feb 2021 B2
10918481 Hariton et al. Feb 2021 B2
10918483 Metchik et al. Feb 2021 B2
10925595 Hacohen et al. Feb 2021 B2
10925732 Delgado et al. Feb 2021 B2
10945843 Delgado et al. Mar 2021 B2
10945844 McCann et al. Mar 2021 B2
10952850 Hariton et al. Mar 2021 B2
10959846 Marr et al. Mar 2021 B2
10973636 Hariton et al. Apr 2021 B2
10993809 McCann et al. May 2021 B2
11065114 Raanani et al. Jul 2021 B2
11083582 McCann et al. Aug 2021 B2
11147672 McCann et al. Oct 2021 B2
11179240 Delgado et al. Nov 2021 B2
11291545 Hacohen Apr 2022 B2
11291546 Gross et al. Apr 2022 B2
11291547 Gross et al. Apr 2022 B2
11291844 Gross Apr 2022 B2
11304805 Hariton et al. Apr 2022 B2
11304806 Hariton et al. Apr 2022 B2
11389297 Franklin et al. Jul 2022 B2
11426155 Hacohen et al. Aug 2022 B2
11517429 Gross et al. Dec 2022 B2
11517436 Hacohen Dec 2022 B2
11571298 Hariton et al. Feb 2023 B2
20010002445 Vesely May 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010021874 Carpentier et al. Sep 2001 A1
20010044656 Williamson et al. Nov 2001 A1
20010056295 Solem Dec 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020022862 Grafton et al. Feb 2002 A1
20020029080 Mortier et al. Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020042621 Liddicoat et al. Apr 2002 A1
20020082525 Oslund et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020099436 Thornton et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020177894 Acosta et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20020198586 Inoue Dec 2002 A1
20030009236 Godin Jan 2003 A1
20030018358 Saadat Jan 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030050693 Quijano et al. Mar 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030060846 Egnelov et al. Mar 2003 A1
20030060875 Wittens Mar 2003 A1
20030069635 Cartledge Apr 2003 A1
20030074052 Besselink Apr 2003 A1
20030074059 Nguyen et al. Apr 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030100943 Bolduc May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030158578 Pantages et al. Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171760 Gambale Sep 2003 A1
20030191528 Quijano et al. Oct 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030229350 Kay Dec 2003 A1
20030229395 Cox Dec 2003 A1
20030233142 Morales et al. Dec 2003 A1
20040010272 Manetakis et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040039414 Carley et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040059413 Argento Mar 2004 A1
20040092962 Thornton et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040122448 Levine Jun 2004 A1
20040122503 Campbell et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133267 Lane Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040133374 Kattan Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040143315 Bruun et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040176788 Opolski Sep 2004 A1
20040176839 Huynh et al. Sep 2004 A1
20040181287 Gellman Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040210244 Vargas et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040249433 Freitag Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050010787 Tarbouriech Jan 2005 A1
20050016560 Voughlohn Jan 2005 A1
20050021056 St. Goar et al. Jan 2005 A1
20050027305 Shiu et al. Feb 2005 A1
20050027348 Case et al. Feb 2005 A1
20050038494 Eidenschink Feb 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055086 Stobie Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075726 Svanidze et al. Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050080430 Wright et al. Apr 2005 A1
20050080474 Andreas et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050085903 Lau Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050137681 Shoemaker et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050149160 McFerran Jul 2005 A1
20050154443 Linder et al. Jul 2005 A1
20050159728 Armour et al. Jul 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050187613 Bolduc et al. Aug 2005 A1
20050192596 Jugenheimer et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050197696 Gomez Duran Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050222678 Lashinski et al. Oct 2005 A1
20050234508 Cummins et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251251 Cribier Nov 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050256566 Gabbay Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050267573 Macoviak et al. Dec 2005 A9
20050273138 To et al. Dec 2005 A1
20050288776 Shaoulian et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20050288781 Moaddeb et al. Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060004443 Liddicoat et al. Jan 2006 A1
20060004469 Sokel Jan 2006 A1
20060015171 Armstrong Jan 2006 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060020326 Bolduc et al. Jan 2006 A9
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060025858 Alameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060041189 Vancaillie Feb 2006 A1
20060041319 Taylor et al. Feb 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060052868 Mortier Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074486 Liddicoat et al. Apr 2006 A1
20060085012 Dolan Apr 2006 A1
20060089627 Burnett et al. Apr 2006 A1
20060095009 Lampropoulos et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060111773 Rittgers et al. May 2006 A1
20060116750 Herbert et al. Jun 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060129166 Lavelle Jun 2006 A1
20060135964 Vesley Jun 2006 A1
20060149280 Harvine et al. Jul 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060155357 Melsheimer Jul 2006 A1
20060161250 Shaw Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060047297 Case Aug 2006 A1
20060178700 Quinn Aug 2006 A1
20060178740 Stacchino et al. Aug 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060190036 Wendel et al. Aug 2006 A1
20060190038 Carley et al. Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060201519 Frazier et al. Sep 2006 A1
20060212111 Case et al. Sep 2006 A1
20060216404 Seyler et al. Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060241622 Zergiebel Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247680 Amplatz et al. Nov 2006 A1
20060247763 Slater Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060271171 McQuinn et al. Nov 2006 A1
20060271175 Woolfson Nov 2006 A1
20060282150 Olson et al. Dec 2006 A1
20060282161 Huyn et al. Dec 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070001627 Lin et al. Jan 2007 A1
20070008018 Nagashima et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070021781 Jervis et al. Jan 2007 A1
20070027528 Agnew Feb 2007 A1
20070027533 Douk Feb 2007 A1
20070027536 Mihaljevic et al. Feb 2007 A1
20070027549 Godin Feb 2007 A1
20070038221 Fine et al. Feb 2007 A1
20070038293 St. et al. Feb 2007 A1
20070038295 Case et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070055340 Pryor Mar 2007 A1
20070056346 Spenser et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083168 Whiting et al. Apr 2007 A1
20070106328 Wardle et al. May 2007 A1
20070112359 Kimura et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118213 Loulmet May 2007 A1
20070118215 Moaddeb May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070173932 Cali et al. Jul 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070198077 Cully et al. Aug 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070208550 Cao et al. Sep 2007 A1
20070213582 Zollinger et al. Sep 2007 A1
20070213810 Newhauser et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070219558 Deutsch Sep 2007 A1
20070219630 Chu Sep 2007 A1
20070225759 Thommen et al. Sep 2007 A1
20070225760 Moszner et al. Sep 2007 A1
20070233186 Meng Oct 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239208 Crawford Oct 2007 A1
20070239272 Navia et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070244555 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070244557 Rafiee et al. Oct 2007 A1
20070250160 Rafiee Oct 2007 A1
20070255397 Ryan et al. Nov 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070270755 Von Oepen et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070276437 Call et al. Nov 2007 A1
20070282375 Hindrichs et al. Dec 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070295172 Swartz Dec 2007 A1
20070299424 Cumming et al. Dec 2007 A1
20080004688 Spenser et al. Jan 2008 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080027483 Cartledge et al. Jan 2008 A1
20080027555 Hawkins Jan 2008 A1
20080035160 Woodson et al. Feb 2008 A1
20080039935 Buch Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080058595 Snoke et al. Mar 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065204 Mackoviak et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080077235 Kirson Mar 2008 A1
20080082083 Forde et al. Apr 2008 A1
20080082159 Tseng et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080086164 Rowe et al. Apr 2008 A1
20080086203 Roberts Apr 2008 A1
20080086204 Rankin Apr 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080091261 Long et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080097595 Gabbay Apr 2008 A1
20080132989 Snow et al. Jun 2008 A1
20080140003 Bei et al. Jun 2008 A1
20080140116 Bonutti Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147182 Righini et al. Jun 2008 A1
20080161910 Revuelta et al. Jul 2008 A1
20080167705 Agnew Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080188929 Schreck Aug 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080200980 Robin et al. Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208330 Keranen Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234813 Heuser Sep 2008 A1
20080234814 Salahieh et al. Sep 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255580 Hoffman et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080269879 Sathe et al. Oct 2008 A1
20080275300 Rothe et al. Nov 2008 A1
20080275469 Fanton et al. Nov 2008 A1
20080275551 Alfieri Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080294234 Hartley et al. Nov 2008 A1
20080294248 Yang et al. Nov 2008 A1
20080300629 Surti Dec 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090036966 O'Connor et al. Feb 2009 A1
20090043153 Zollinger et al. Feb 2009 A1
20090043381 Macoviak et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090062866 Jackson Mar 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090082844 Zacharias et al. Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090088837 Gillinov et al. Apr 2009 A1
20090099554 Forster et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105794 Ziarno et al. Apr 2009 A1
20090105816 Olsen et al. Apr 2009 A1
20090112159 Slattery et al. Apr 2009 A1
20090125098 Chuter May 2009 A1
20090125102 Cartledge May 2009 A1
20090149872 Gross et al. Jun 2009 A1
20090157175 Benichou Jun 2009 A1
20090163934 Raschdorf, Jr. et al. Jun 2009 A1
20090177274 Scorsin et al. Jun 2009 A1
20090171363 Chocron Jul 2009 A1
20090171439 Nissl Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090177277 Milo Jul 2009 A1
20090177278 Spence Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090222081 Linder et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090241656 Jacquemin Oct 2009 A1
20090248143 Laham Oct 2009 A1
20090248148 Shaolian et al. Oct 2009 A1
20090254103 Deustch Oct 2009 A1
20090259306 Rowe Oct 2009 A1
20090259307 Gross et al. Oct 2009 A1
20090264859 Mas Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090264995 Subramanian Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090299449 Styrc Dec 2009 A1
20090306768 Quardi Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100001038 Levin et al. Jan 2010 A1
20100010538 Juravic et al. Jan 2010 A1
20100022823 Goldfarb et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100023120 Holecek et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100036484 Hariton et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100049306 House et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100063542 Van der Burg et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100063586 Hasenkam et al. Mar 2010 A1
20100069852 Kelley Mar 2010 A1
20100076499 McNamara et al. Mar 2010 A1
20100076548 Konno Mar 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100114180 Rock May 2010 A1
20100114299 Ben-Muvhar et al. May 2010 A1
20100121349 Meier May 2010 A1
20100130992 Machold et al. May 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
20100152845 Bloom et al. Jun 2010 A1
20100160958 Clark Jun 2010 A1
20100161036 Pintor et al. Jun 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100161042 Maisano et al. Jun 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100161047 Cabiri Jun 2010 A1
20100168845 Wright Jul 2010 A1
20100174358 Rabkin et al. Jul 2010 A1
20100174363 Castro Jul 2010 A1
20100179574 Longoria et al. Jul 2010 A1
20100179643 Shalev Jul 2010 A1
20100179648 Richter et al. Jul 2010 A1
20100179649 Richter et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100222810 DeBeer et al. Sep 2010 A1
20100228285 Miles et al. Sep 2010 A1
20100234935 Bashiri et al. Sep 2010 A1
20100234940 Dolan Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100249917 Zhang Sep 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100256737 Pollock et al. Oct 2010 A1
20100262232 Annest Oct 2010 A1
20100262233 He Oct 2010 A1
20100280603 Maisano et al. Nov 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100280605 Hammer et al. Nov 2010 A1
20100280606 Naor Nov 2010 A1
20100286628 Gross Nov 2010 A1
20100286767 Zipory et al. Nov 2010 A1
20100305475 Hinchliffe et al. Dec 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100324595 Linder et al. Dec 2010 A1
20100331971 Keränen et al. Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110004227 Goldfarb et al. Jan 2011 A1
20110004296 Lutter et al. Jan 2011 A1
20110004298 Lee et al. Jan 2011 A1
20110004299 Navia et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110015731 Carpentier et al. Jan 2011 A1
20110015739 Cheung et al. Jan 2011 A1
20110021985 Spargias Jan 2011 A1
20110022165 Oba et al. Jan 2011 A1
20110178597 Navia et al. Jan 2011 A9
20110026208 Otsuro et al. Feb 2011 A1
20110029066 Gilad et al. Feb 2011 A1
20110029067 Mcguckin, Jr. et al. Feb 2011 A1
20110029072 Gabbay Feb 2011 A1
20110035000 Nieminen et al. Feb 2011 A1
20110040374 Goetz et al. Feb 2011 A1
20110040375 Letac et al. Feb 2011 A1
20110046662 Moszner et al. Feb 2011 A1
20110054466 Rothstein et al. Mar 2011 A1
20110054596 Taylor Mar 2011 A1
20110054598 Johnson Mar 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110077730 Fentster Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087146 Ryan et al. Apr 2011 A1
20110087322 Letac et al. Apr 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110093063 Schreck Apr 2011 A1
20110098525 Kermode et al. Apr 2011 A1
20110098802 Braido et al. Apr 2011 A1
20110106245 Miller et al. May 2011 A1
20110106247 Miller et al. May 2011 A1
20110112625 Ben-Muvhar et al. May 2011 A1
20110112632 Chau et al. May 2011 A1
20110113768 Bauer et al. May 2011 A1
20110118830 Liddicoat et al. May 2011 A1
20110118832 Punjabi May 2011 A1
20110125257 Seguin et al. May 2011 A1
20110125258 Centola May 2011 A1
20110137326 Bachman Jun 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137409 Yang et al. Jun 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144703 Krause et al. Jun 2011 A1
20110144742 Madrid et al. Jun 2011 A1
20110166636 Rowe Jul 2011 A1
20110166649 Gross et al. Jul 2011 A1
20110172784 Richter Jul 2011 A1
20110184510 Maisano et al. Jul 2011 A1
20110190877 Lane et al. Aug 2011 A1
20110190879 Bobo et al. Aug 2011 A1
20110202076 Richter Aug 2011 A1
20110202130 Cartledge et al. Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110208293 Tabor Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110213459 Garrison et al. Sep 2011 A1
20110213461 Seguin et al. Sep 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110218620 Meiri et al. Sep 2011 A1
20110224785 Hacohen Sep 2011 A1
20110230941 Markus Sep 2011 A1
20110230961 Langer et al. Sep 2011 A1
20110238088 Bodluc et al. Sep 2011 A1
20110238094 Thomas et al. Sep 2011 A1
20110238159 Guyenot et al. Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110245917 Savage et al. Oct 2011 A1
20110251675 Dwork Oct 2011 A1
20110251676 Sweeney et al. Oct 2011 A1
20110251678 Eidenschink et al. Oct 2011 A1
20110251679 Weimeyer et al. Oct 2011 A1
20110251680 Tran et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110251683 Tabor Oct 2011 A1
20110257433 Walker Oct 2011 A1
20110257633 Cartledge et al. Oct 2011 A1
20110257721 Tabor Oct 2011 A1
20110257728 Kuehn Oct 2011 A1
20110257729 Spenser et al. Oct 2011 A1
20110257736 Marquez et al. Oct 2011 A1
20110257737 Fogarty et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110264198 Murray, III et al. Oct 2011 A1
20110264199 Tran et al. Oct 2011 A1
20110264200 Tran et al. Oct 2011 A1
20110264201 Yeung Oct 2011 A1
20110264202 Murray, III et al. Oct 2011 A1
20110264203 Dwork et al. Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110264208 Duffy Oct 2011 A1
20110270276 Rothstein et al. Nov 2011 A1
20110271967 Mortier et al. Nov 2011 A1
20110276062 Bolduc Nov 2011 A1
20110276128 Cao et al. Nov 2011 A1
20110282361 Miller et al. Nov 2011 A1
20110282438 Drews et al. Nov 2011 A1
20110282439 Thill et al. Nov 2011 A1
20110282440 Cao Nov 2011 A1
20110283514 Fogarty et al. Nov 2011 A1
20110288435 Christy et al. Nov 2011 A1
20110288632 White Nov 2011 A1
20110288634 Tuval et al. Nov 2011 A1
20110288635 Miller et al. Nov 2011 A1
20110295354 Bueche et al. Dec 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110301498 Maenhout et al. Dec 2011 A1
20110301688 Dolan Dec 2011 A1
20110301698 Miller et al. Dec 2011 A1
20110301701 Padala et al. Dec 2011 A1
20110301702 Rust et al. Dec 2011 A1
20110306916 Nitzan et al. Dec 2011 A1
20110307049 Kao Dec 2011 A1
20110313452 Carley et al. Dec 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022557 Cabiri et al. Jan 2012 A1
20120022629 Perera et al. Jan 2012 A1
20120022633 Olson et al. Jan 2012 A1
20120022637 Ben-Movhar et al. Jan 2012 A1
20120022639 Hacohen et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120022644 Reich et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035712 Maisano et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval et al. Feb 2012 A1
20120041547 Duffy et al. Feb 2012 A1
20120041551 Spenser et al. Feb 2012 A1
20120046738 Lau et al. Feb 2012 A1
20120046742 Tuval et al. Feb 2012 A1
20120053676 Ku et al. Mar 2012 A1
20120053680 Bolling et al. Mar 2012 A1
20120053682 Kovalsky et al. Mar 2012 A1
20120053688 Fogarty et al. Mar 2012 A1
20120059337 Eilat Mar 2012 A1
20120059454 Millwee et al. Mar 2012 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120078237 Wang et al. Mar 2012 A1
20120078353 Quadri et al. Mar 2012 A1
20120078355 Zipory et al. Mar 2012 A1
20120078357 Conklin Mar 2012 A1
20120078359 Li et al. Mar 2012 A1
20120083832 Delaloye et al. Apr 2012 A1
20120083839 Letac et al. Apr 2012 A1
20120083879 Eberhardt et al. Apr 2012 A1
20120089022 House et al. Apr 2012 A1
20120089223 Nguyen et al. Apr 2012 A1
20120095552 Spence et al. Apr 2012 A1
20120101570 Tuval et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120109155 Robinson et al. May 2012 A1
20120123511 Brown May 2012 A1
20120123529 Levi et al. May 2012 A1
20120123530 Carpentier et al. May 2012 A1
20120130473 Norris et al. May 2012 A1
20120130474 Buckley May 2012 A1
20120130475 Shaw May 2012 A1
20120136434 Carpentier et al. May 2012 A1
20120136436 Cabiri et al. May 2012 A1
20120143323 Hasenkam et al. Jun 2012 A1
20120150218 Sandgren et al. Jun 2012 A1
20120150290 Gabbay Jun 2012 A1
20120158021 Morrill Jun 2012 A1
20120165915 Melsheimer et al. Jun 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179086 Shank et al. Jul 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120191182 Hauser et al. Jul 2012 A1
20120197292 Chin-Chen et al. Aug 2012 A1
20120197388 Khairkhahan et al. Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120245604 Tegzes Sep 2012 A1
20120271198 Whittaker et al. Oct 2012 A1
20120277845 Bowe Nov 2012 A1
20120283757 Miller et al. Nov 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20120296349 Smith et al. Nov 2012 A1
20120296360 Norris et al. Nov 2012 A1
20120296417 Hill et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120296419 Richardson Nov 2012 A1
20120300063 Majkrzak et al. Nov 2012 A1
20120123531 Tsukashima et al. Dec 2012 A1
20120310328 Olson et al. Dec 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20120323316 Chau et al. Dec 2012 A1
20120330408 Hillukka et al. Dec 2012 A1
20120330410 Hammer et al. Dec 2012 A1
20120330411 Gross et al. Dec 2012 A1
20130006347 McHugo Jan 2013 A1
20130018450 Hunt Jan 2013 A1
20130018458 Yohanan et al. Jan 2013 A1
20130023758 Fabro Jan 2013 A1
20130030519 Tran et al. Jan 2013 A1
20130030522 Rowe et al. Jan 2013 A1
20130035759 Gross et al. Feb 2013 A1
20130041204 Heilman et al. Feb 2013 A1
20130041451 Patterson et al. Feb 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130066342 Dell et al. Mar 2013 A1
20130079872 Gallagher Mar 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130085529 Housman Apr 2013 A1
20130090724 Subramanian et al. Apr 2013 A1
20130096673 Hill et al. Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130116779 Weber May 2013 A1
20130116780 Miller et al. May 2013 A1
20130123896 Bloss et al. May 2013 A1
20130123900 Eblacas et al. May 2013 A1
20130123910 Cartledge et al. May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130131792 Miller et al. May 2013 A1
20130144381 Quadri et al. Jun 2013 A1
20130150945 Crawford et al. Jun 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130158647 Norris et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130166022 Conklin Jun 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130172992 Gross et al. Jul 2013 A1
20130178930 Straubinger et al. Jul 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130190863 Call et al. Jul 2013 A1
20130190866 Zipory et al. Jul 2013 A1
20130197632 Kovach et al. Aug 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130211501 Buckley et al. Aug 2013 A1
20130211508 Lane et al. Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130245742 Norris Sep 2013 A1
20130253643 Rolando et al. Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Clague et al. Oct 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130274870 Lombardi et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130289711 Liddy et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130289740 Liddy et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304093 Serina et al. Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130325114 McLean et al. Dec 2013 A1
20130325118 Cartledge Dec 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20140000112 Braido et al. Jan 2014 A1
20140005767 Glazier et al. Jan 2014 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140018911 Zhou et al. Jan 2014 A1
20140018914 Zipory et al. Jan 2014 A1
20140018915 Biadillah et al. Jan 2014 A1
20140031928 Murphy et al. Jan 2014 A1
20140046430 Shaw Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140067050 Costello et al. Mar 2014 A1
20140067054 Chau et al. Mar 2014 A1
20140081376 Burkart et al. Mar 2014 A1
20140088368 Park Mar 2014 A1
20140094826 Sutherland et al. Apr 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140099726 Heller Apr 2014 A1
20140106951 Brandon Apr 2014 A1
20140120287 Jacoby et al. May 2014 A1
20140121749 Roeder May 2014 A1
20140121763 Duffy et al. May 2014 A1
20140135799 Henderson May 2014 A1
20140135894 Norris et al. May 2014 A1
20140135895 Andress et al. May 2014 A1
20140142619 Serina et al. May 2014 A1
20140142681 Norris May 2014 A1
20140142688 Duffy et al. May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148849 Serina et al. May 2014 A1
20140148891 Johnson May 2014 A1
20140148898 Gross et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140163670 Alon et al. Jun 2014 A1
20140163690 White Jun 2014 A1
20140172069 Roeder et al. Jun 2014 A1
20140172077 Bruchman et al. Jun 2014 A1
20140172082 Bruchman et al. Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188140 Meier et al. Jul 2014 A1
20140188210 Beard et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140188221 Chung et al. Jul 2014 A1
20140194970 Chobotov et al. Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140200649 Essinger et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140214157 Börtlein et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140222137 Miller et al. Aug 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140236287 Clague et al. Aug 2014 A1
20140236289 Alkhatib Aug 2014 A1
20140243859 Robinson Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140249622 Carmi et al. Sep 2014 A1
20140257461 Robinson et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140257476 Montorfano et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140277358 Slazas Sep 2014 A1
20140277409 Börtlein et al. Sep 2014 A1
20140277411 Börtlein et al. Sep 2014 A1
20140277412 Börtlein et al. Sep 2014 A1
20140277418 Miller Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140277427 Ratz et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20140303720 Sugimoto et al. Oct 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140329225 Morin Nov 2014 A1
20140330371 Gloss et al. Nov 2014 A1
20140331475 Duffy et al. Nov 2014 A1
20140336744 Tani et al. Nov 2014 A1
20140343668 Zipory et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140350662 Vaturi Nov 2014 A1
20140350670 Keränen Nov 2014 A1
20140358222 Gorman, III et al. Dec 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140378331 Morin Dec 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20140379065 Johnson et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150012087 Miller et al. Jan 2015 A1
20150018940 Quill et al. Jan 2015 A1
20150018944 O'connell et al. Jan 2015 A1
20150032205 Matheny Jan 2015 A1
20150045880 Hacohen Feb 2015 A1
20150045881 Lim Feb 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150105855 Cabiri et al. Apr 2015 A1
20150119970 Nakayama et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150148894 Damm et al. May 2015 A1
20150157457 Hacohen Jun 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150164640 McLean et al. Jun 2015 A1
20150173896 Richter et al. Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150216661 Hacohen et al. Aug 2015 A1
20150230924 Miller et al. Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150245934 Lombardi et al. Sep 2015 A1
20150250588 Yang et al. Sep 2015 A1
20150272730 Melnick et al. Oct 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282964 Beard et al. Oct 2015 A1
20150320556 Levi et al. Nov 2015 A1
20150327994 Morriss et al. Nov 2015 A1
20150328000 Ratz et al. Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342736 Rabito et al. Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351904 Cooper et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20150359631 Sheahan et al. Dec 2015 A1
20160008129 Siegel Jan 2016 A1
20160030169 Shahriari Feb 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160089482 Siegenthaler Mar 2016 A1
20160095700 Righini Apr 2016 A1
20160100939 Armstrong et al. Apr 2016 A1
20160106539 Buchbinder et al. Apr 2016 A1
20160113765 Ganesan et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160125160 Heneghan et al. May 2016 A1
20160175095 Dienno et al. Jun 2016 A1
20160184098 Vaturi Jun 2016 A1
20160200773 Morin Jul 2016 A1
20160213473 Hacohen et al. Jul 2016 A1
20160220367 Barrett Aug 2016 A1
20160228247 Maimon et al. Aug 2016 A1
20160242902 Morriss et al. Aug 2016 A1
20160245802 Morin et al. Aug 2016 A1
20160258939 Morin et al. Sep 2016 A1
20160262885 Sandstrom et al. Sep 2016 A1
20160266089 Morin et al. Sep 2016 A1
20160270911 Ganesan et al. Sep 2016 A1
20160296330 Hacohen Oct 2016 A1
20160310268 Oba et al. Oct 2016 A1
20160310274 Gross et al. Oct 2016 A1
20160317301 Quadri et al. Nov 2016 A1
20160317305 Pelled et al. Nov 2016 A1
20160324633 Gross et al. Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160324640 Gifford et al. Nov 2016 A1
20160331525 Straubinger et al. Nov 2016 A1
20160331526 Schweich et al. Nov 2016 A1
20160331527 Vidlund et al. Nov 2016 A1
20160338706 Rowe Nov 2016 A1
20160367360 Cartledge et al. Dec 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20160374801 Jimenez et al. Dec 2016 A1
20160374802 Levi et al. Dec 2016 A1
20170042678 Ganesan et al. Feb 2017 A1
20170049435 Sauer et al. Feb 2017 A1
20170056166 Ratz et al. Mar 2017 A1
20170056171 Cooper et al. Mar 2017 A1
20170065407 Hacohen et al. Mar 2017 A1
20170065411 Grundeman et al. Mar 2017 A1
20170074855 Morin et al. Mar 2017 A1
20170100236 Robertson et al. Apr 2017 A1
20170128205 Tamir et al. May 2017 A1
20170135816 Lashinski et al. May 2017 A1
20170165054 Benson et al. Jun 2017 A1
20170189174 Braido et al. Jul 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170196692 Kirk et al. Jul 2017 A1
20170209264 Chau et al. Jul 2017 A1
20170216026 Quill et al. Aug 2017 A1
20170224323 Rowe et al. Aug 2017 A1
20170231757 Gassler Aug 2017 A1
20170231759 Geist et al. Aug 2017 A1
20170231760 Lane et al. Aug 2017 A1
20170231766 Hariton et al. Aug 2017 A1
20170234850 Morin Aug 2017 A1
20170239048 Goldfarb et al. Aug 2017 A1
20170252159 Hacohen et al. Sep 2017 A1
20170266003 Hammer et al. Sep 2017 A1
20170281337 Campbell Oct 2017 A1
20170325948 Wallace et al. Nov 2017 A1
20170333183 Backus Nov 2017 A1
20170333187 Hariton et al. Nov 2017 A1
20170349940 Morin et al. Dec 2017 A1
20170360426 Hacohen et al. Dec 2017 A1
20170367823 Hariton et al. Dec 2017 A1
20180000580 Wallace et al. Jan 2018 A1
20180014930 Hariton et al. Jan 2018 A1
20180014932 Hammer et al. Jan 2018 A1
20180021129 Peterson et al. Jan 2018 A1
20180023114 Morin et al. Jan 2018 A1
20180023115 Morin et al. Jan 2018 A1
20180028215 Cohen Feb 2018 A1
20180028311 Hacohen Feb 2018 A1
20180049873 Manash et al. Feb 2018 A1
20180055628 Patel et al. Mar 2018 A1
20180055629 Oba et al. Mar 2018 A1
20180055630 Patel et al. Mar 2018 A1
20180098850 Rafiee et al. Apr 2018 A1
20180116790 Ratz et al. May 2018 A1
20180116843 Schreck et al. May 2018 A1
20180125644 Conklin May 2018 A1
20180132999 Perouse May 2018 A1
20180133003 Levi May 2018 A1
20180147059 Hammer et al. May 2018 A1
20180153687 Hariton et al. Jun 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180153695 Cunningham et al. Jun 2018 A1
20180153696 Albitov et al. Jun 2018 A1
20180161159 Lee et al. Jun 2018 A1
20180177593 Hariton et al. Jun 2018 A1
20180177594 Patel et al. Jun 2018 A1
20180185148 Hariton et al. Jul 2018 A1
20180206982 Haivatov et al. Jul 2018 A1
20180206983 Noe et al. Jul 2018 A1
20180214263 Rolando et al. Aug 2018 A1
20180243086 Barbarino et al. Aug 2018 A1
20180250126 O'connor et al. Sep 2018 A1
20180250130 Hariton et al. Sep 2018 A1
20180250147 Syed Sep 2018 A1
20180271654 Hariton et al. Sep 2018 A1
20180280136 Hariton et al. Oct 2018 A1
20180296333 Dixon et al. Oct 2018 A1
20180296336 Cooper et al. Oct 2018 A1
20180296341 Noe et al. Oct 2018 A1
20180325671 Abunassar et al. Nov 2018 A1
20180344457 Gross et al. Dec 2018 A1
20180344490 Fox et al. Dec 2018 A1
20180353294 Calomeni et al. Dec 2018 A1
20180360457 Ellis et al. Dec 2018 A1
20190000613 Delgado et al. Jan 2019 A1
20190015200 Delgado et al. Jan 2019 A1
20190021852 Delgado et al. Jan 2019 A1
20190021857 Hacohen et al. Jan 2019 A1
20190038404 Iamberger et al. Feb 2019 A1
20190038405 Iamberger et al. Feb 2019 A1
20190053896 Adamek-bowers et al. Feb 2019 A1
20190060060 Chau et al. Feb 2019 A1
20190060068 Cope et al. Feb 2019 A1
20190060070 Groothuis et al. Feb 2019 A1
20190069997 Ratz et al. Mar 2019 A1
20190069998 Hacohen Mar 2019 A1
20190083248 Hariton et al. Mar 2019 A1
20190083249 Hariton et al. Mar 2019 A1
20190083261 Perszyk et al. Mar 2019 A1
20190083262 Hariton et al. Mar 2019 A1
20190105153 Barash et al. Apr 2019 A1
20190117391 Humair Apr 2019 A1
20190167423 Hariton et al. Jun 2019 A1
20190175339 Vidlund Jun 2019 A1
20190175342 Hariton et al. Jun 2019 A1
20190183639 Moore Jun 2019 A1
20190192295 Spence et al. Jun 2019 A1
20190216602 Lozonschi Jul 2019 A1
20190224008 Bressloff et al. Jul 2019 A1
20190231525 Hariton et al. Aug 2019 A1
20190240010 Hacohen Aug 2019 A1
20190262507 Adamek-bowers et al. Aug 2019 A1
20190336280 Naor Nov 2019 A1
20190350701 Adamek-bowers et al. Nov 2019 A1
20190365530 Hoang et al. Dec 2019 A1
20190388218 Vidlund et al. Dec 2019 A1
20190388220 Vidlund et al. Dec 2019 A1
20200000449 Goldfarb et al. Jan 2020 A1
20200000579 Manash et al. Jan 2020 A1
20200000580 Hacohen Jan 2020 A1
20200015964 Noe et al. Jan 2020 A1
20200030098 Delgado et al. Jan 2020 A1
20200038181 Hariton et al. Feb 2020 A1
20200046496 Hammer et al. Feb 2020 A1
20200054335 Hernandez et al. Feb 2020 A1
20200060818 Geist et al. Feb 2020 A1
20200069417 Morin et al. Mar 2020 A1
20200113677 McCann et al. Apr 2020 A1
20200113689 McCann et al. Apr 2020 A1
20200113692 McCann et al. Apr 2020 A1
20200138567 Marr et al. May 2020 A1
20200146671 Hacohen et al. May 2020 A1
20200146824 Hammer et al. May 2020 A1
20200163760 Hariton et al. May 2020 A1
20200163761 Hariton et al. May 2020 A1
20200205969 Hacohen Jul 2020 A1
20200214832 Metchik et al. Jul 2020 A1
20200237512 McCann et al. Jul 2020 A1
20200246136 Marr et al. Aug 2020 A1
20200246140 Hariton et al. Aug 2020 A1
20200253600 Darabian Aug 2020 A1
20200261094 Goldfarb et al. Aug 2020 A1
20200306037 Siegel et al. Oct 2020 A1
20200315786 Metchik et al. Oct 2020 A1
20200337842 Metchik et al. Oct 2020 A1
20200360139 Hammer et al. Nov 2020 A1
20200390546 Hariton et al. Dec 2020 A1
20200390548 Hariton et al. Dec 2020 A1
20210085455 Bateman et al. Mar 2021 A1
20210093449 Hariton et al. Apr 2021 A1
20210106419 Abunassar Apr 2021 A1
20210113331 Quadri et al. Apr 2021 A1
20210137680 Kizuka et al. May 2021 A1
20210259835 Tyler, II et al. Aug 2021 A1
20210361422 Gross et al. Nov 2021 A1
20210401573 Gross et al. Dec 2021 A1
20220000612 Hacohen Jan 2022 A1
20220023036 Levi et al. Jan 2022 A1
20220061984 Humair et al. Mar 2022 A1
20220105238 Reimer et al. Apr 2022 A1
20220151779 Pintor May 2022 A1
Foreign Referenced Citations (213)
Number Date Country
2822801 Aug 2006 CA
2671966 Jun 2008 CA
101653365 Feb 2010 CN
202313807 Jul 2012 CN
103974674 Aug 2014 CN
103997990 Aug 2014 CN
105324091 Feb 2016 CN
112603598 Apr 2021 CN
0170262 Feb 1986 EP
0614342 Sep 1994 EP
1006905 Jun 2000 EP
0954257 Aug 2000 EP
1258437 Nov 2002 EP
1264582 Dec 2002 EP
0871417 Oct 2003 EP
1266641 Oct 2004 EP
1034753 Feb 2005 EP
1637092 Mar 2006 EP
1990014 Nov 2008 EP
1562522 Dec 2008 EP
1258232 Jan 2009 EP
1420723 Jan 2009 EP
1903991 Sep 2009 EP
1418865 Oct 2009 EP
2119399 Nov 2009 EP
1531762 Apr 2010 EP
1450733 Feb 2011 EP
2446915 May 2012 EP
2088965 Nov 2012 EP
2641569 Sep 2013 EP
1768630 Jan 2015 EP
1861045 Mar 2015 EP
1465555 May 2015 EP
2219558 Aug 2015 EP
2349124 Oct 2018 EP
2739214 Oct 2018 EP
3417813 Dec 2018 EP
3583922 Dec 2019 EP
3270825 Apr 2020 EP
2485795 Sep 2020 EP
223448 Dec 2012 IL
S53152790 Dec 1978 JP
20010046894 Jun 2001 KR
9205093 Apr 1992 WO
9310714 Jun 1993 WO
9639963 Dec 1996 WO
9640344 Dec 1996 WO
9701369 Jan 1997 WO
9846149 Oct 1998 WO
1998043557 Oct 1998 WO
1999030647 Jun 1999 WO
0022981 Apr 2000 WO
2000-047139 Aug 2000 WO
0126586 Apr 2001 WO
0156457 Aug 2001 WO
2001-062189 Aug 2001 WO
0182832 Nov 2001 WO
02085250 Oct 2002 WO
02085251 Oct 2002 WO
02085252 Oct 2002 WO
2003020179 Mar 2003 WO
2003028558 Apr 2003 WO
03047467 Jun 2003 WO
2003049647 Jun 2003 WO
2003105667 Dec 2003 WO
2004028399 Apr 2004 WO
04103434 Dec 2004 WO
2004108191 Dec 2004 WO
05021063 Mar 2005 WO
05046488 May 2005 WO
2005062931 Jul 2005 WO
2005107650 Nov 2005 WO
2006007389 Jan 2006 WO
2006007401 Jan 2006 WO
06012013 Feb 2006 WO
06012038 Feb 2006 WO
06054930 May 2006 WO
2006065212 Jun 2006 WO
2006070372 Jul 2006 WO
06086434 Aug 2006 WO
2006089236 Aug 2006 WO
2006091163 Aug 2006 WO
06097931 Sep 2006 WO
06105084 Oct 2006 WO
2006113906 Oct 2006 WO
06116558 Nov 2006 WO
2006128193 Nov 2006 WO
07011799 Jan 2007 WO
2007030063 Mar 2007 WO
2007047488 Apr 2007 WO
2007059252 May 2007 WO
07121314 Oct 2007 WO
07136783 Nov 2007 WO
07136981 Nov 2007 WO
08013915 Jan 2008 WO
2008014144 Jan 2008 WO
2008029296 Mar 2008 WO
2008031103 Mar 2008 WO
2008058940 May 2008 WO
08068756 Jun 2008 WO
2008070797 Jun 2008 WO
2008103722 Aug 2008 WO
2009026563 Feb 2009 WO
09033469 Mar 2009 WO
09053497 Apr 2009 WO
2009080801 Jul 2009 WO
2009091509 Jul 2009 WO
2009130631 Oct 2009 WO
10004546 Jan 2010 WO
2010000454 Jan 2010 WO
2010005827 Jan 2010 WO
2010006627 Jan 2010 WO
2010006905 Jan 2010 WO
2010027485 Mar 2010 WO
2010037141 Apr 2010 WO
2010044851 Apr 2010 WO
2010045297 Apr 2010 WO
2010057262 May 2010 WO
2010073246 Jul 2010 WO
2010081033 Jul 2010 WO
2010085649 Jul 2010 WO
2010121076 Oct 2010 WO
2010128502 Nov 2010 WO
2010128503 Nov 2010 WO
2010150178 Dec 2010 WO
2011025972 Mar 2011 WO
2011051942 May 2011 WO
2011057087 May 2011 WO
2011067770 Jun 2011 WO
2011069048 Jun 2011 WO
2011072084 Jun 2011 WO
2011089401 Jul 2011 WO
2011089601 Jul 2011 WO
2011106137 Sep 2011 WO
2011111047 Sep 2011 WO
0187190 Nov 2011 WO
2011137531 Nov 2011 WO
2011-143263 Nov 2011 WO
2011144351 Nov 2011 WO
2011148374 Dec 2011 WO
2011154942 Dec 2011 WO
2012011108 Jan 2012 WO
2012014201 Feb 2012 WO
2012024428 Feb 2012 WO
2012036740 Mar 2012 WO
2012048035 Apr 2012 WO
2012068541 May 2012 WO
2012127309 Sep 2012 WO
2012176195 Dec 2012 WO
2012177942 Dec 2012 WO
2012178115 Dec 2012 WO
2013021374 Feb 2013 WO
2013021375 Feb 2013 WO
2013021384 Feb 2013 WO
2013028387 Feb 2013 WO
2013059743 Apr 2013 WO
2013059747 Apr 2013 WO
2013069019 May 2013 WO
2013072496 May 2013 WO
2013078497 Jun 2013 WO
2013088327 Jun 2013 WO
2013114214 Aug 2013 WO
2013128436 Sep 2013 WO
2013175468 Nov 2013 WO
2014022124 Feb 2014 WO
2014064694 May 2014 WO
2014064695 May 2014 WO
2014076696 May 2014 WO
2014087402 Jun 2014 WO
2014115149 Jul 2014 WO
2014121275 Aug 2014 WO
2014121280 Aug 2014 WO
2014144937 Sep 2014 WO
2014145338 Sep 2014 WO
2014164364 Oct 2014 WO
2014194178 Dec 2014 WO
2014195786 Dec 2014 WO
2015059699 Apr 2015 WO
2015173794 Nov 2015 WO
2015191923 Dec 2015 WO
2016016899 Feb 2016 WO
2016093877 Jun 2016 WO
2016098104 Jun 2016 WO
2016125160 Aug 2016 WO
2016150806 Sep 2016 WO
2016183526 Nov 2016 WO
2017223486 Dec 2017 WO
2018025260 Feb 2018 WO
2018025263 Feb 2018 WO
2018029680 Feb 2018 WO
2018039631 Mar 2018 WO
2018106837 Jun 2018 WO
2018112429 Jun 2018 WO
2018118717 Jun 2018 WO
2018131042 Jul 2018 WO
2018131043 Jul 2018 WO
2019026059 Feb 2019 WO
2019027507 Feb 2019 WO
2019030753 Feb 2019 WO
2019077595 Apr 2019 WO
2019086958 May 2019 WO
2019116369 Jun 2019 WO
2019138400 Jul 2019 WO
2019195860 Oct 2019 WO
2019202579 Oct 2019 WO
2020058972 Mar 2020 WO
2020167677 Aug 2020 WO
2021156866 Aug 2021 WO
2021178400 Sep 2021 WO
2021186424 Sep 2021 WO
2022046568 Mar 2022 WO
2022061017 Mar 2022 WO
2022118316 Jun 2022 WO
Non-Patent Literature Citations (611)
Entry
Notice of Allowance dated Sep. 20, 2023, which issued during the prosecution of U.S. Appl. No. 17/839,538.
An Office Action dated Oct. 13, 2023, which issued during the prosecution of U.S. Appl. No. 17/181,722.
Grounds of Opposition to European Patent No. EP 2 948 103, filed Sep. 6, 2023.
An Office Action dated Aug. 31, 2023, which issued during the prosecution of U.S. Appl. No. 17/397,235.
An Office Action dated Sep. 8, 2023, which issued during the prosecution of U.S. Appl. No. 18/216,391.
An Office Action dated Sep. 8, 2023, which issued during the prosecution of U.S. Appl. No. 18/218,419.
Opposition to European Patent No. EP 2 948 103, filed Sep. 6, 2023.
An International Search Report and a Written Opinion both dated Aug. 23, 2023, 2023, which issued during the prosecution of Applicant's PCT/IL2023/050586.
An Office Action dated Aug. 3, 2023, which issued during the prosecution of U.S. Appl. No. 17/683,875.
An International Search Report and a Written Opinion both dated Sep. 13, 2023, which issued during the prosecution of Applicant's PCT/IL2023/050587.
An Office Action dated Nov. 23, 2012, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An Office Action dated Dec. 31, 2012, which issued during the prosecution of U.S. Appl. No. 13/044,694.
An Office Action dated Feb. 6, 2013, which issued during the prosecution of U.S. Appl. No. 13/412,814.
Langer F et al., “Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation,” J Thorac Cardiovasc Surg 133:247-9, Jan. 2007.
Langer F et al., “Ring+String: Successful repair technique for ischemic mitral regurgitation with severe leaflet tethering,” Circulation 120[suppl 1]: S85-S91, Sep. 2009.
“Transcatheter Valve-in-Valve Implantation for Failed Bioprosthetic Heart Valves”, J Webb et al., Circulation. Apr. 2010; 121: 1848-1857.
Jansen, J., Willeke, S., Reul, H. and Rum, G. (1992), Detachable Shape-Memory Sewing Ring for Heart Valves. Artificial Organs, 16:294-297. 1992 (an abstract).
Alexander S. Geha, et al., Replacement of degenerated mitral and aortic bioprostheses without explanation Ann Thorac Surg. Jun. 2001; 72:1509-1514.
An International Search Report and a Written Opinion both dated Oct. 13. 2011 which issued during the prosecution of Applicant's PCT/IL11/00231.
An Office Action dated Jul. 1, 2016, which issued during the prosecution of U.S. Appl. No. 14/161,921.
An International Search Report and a Written Opinion both dated Dec. 5, 2011, which issued during the prosecution of Applicant's PCT/IL11/00582.
An Office Action dated May 29, 2012, which issued during the prosecution of U.S. Appl. No. 12/840,463.
U.S. Appl. No. 61/555,160, filed Nov. 3, 2011.
U.S. Appl. No. 61/525,281, filed Aug. 19, 2011.
U.S. Appl. No. 61/537,276, filed Sep. 21, 2011.
U.S. Appl. No. 61/515,372, filed Aug. 5, 2011.
U.S. Appl. No. 61/492,449, filed Jun. 2, 2011.
U.S. Appl. No. 61/588,892, filed Jan. 20, 2012.
An International Search Report and a Written Opinion both dated Feb. 6, 2013, which issued during the prosecution of Applicant's PCT/IL12/00292.
An International Search Report and a Written Opinion both dated Feb. 6, 2013, which issued during the prosecution of Applicant's PCT/IL12/00293.
An Office Action dated Nov. 28, 2012, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Feb. 15, 2013, which issued during the prosecution of U.S. Appl. No. 12/840,463.
An Office Action dated Feb. 10, 2014, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An Office Action dated Sep. 19, 2014, which issued during the prosecution of U.S. Appl. No. 13/044,694.
An International Search Report and a Written Opinion both dated Sep. 4, 2014 which issued during the prosecution of Applicant's PCT/IL2014/050087.
Invitation to Pay Additional Fees dated Jun. 12, 2014 PCT/IL2014/050087.
An Office Action dated Jun. 17, 2014, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Jul. 3, 2014, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An Office Action dated May 23, 2014, which issued during the prosecution of U.S. Appl. No. 13/412,814.
An Dominique Himbert; Mitral Regurgitation and Stenosis from Bioprosthesis and Annuloplasty Failure: Transcatheter approaches and outcomes, 24 pages Oct. 28, 2013.
An International Search Report and a Written Opinion both dated Mar. 17, 2014 which issued during the prosecution of Applicant's PCT/IL2013/050937.
An International Preliminary Report on patentabilty dated Dec. 2, 2013, which issued during the prosecution of Applicant's PCT/IL11/00582.
An Office Action dated Sep. 12, 2013, which issued during the prosecution of U.S. Appl. No. 13/412,814.
An Office Action dated Aug. 2, 2013, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An International Preliminary Report on patentabilty dated Sep. 11, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000231.
An Office Action dated Jul. 2, 2014, which issued during the prosecution of U.S. Appl. No. 13/811,308.
An Office Action dated Jan. 20, 2016, which issued during the prosecution of U.S. Appl. No. 14/161,921.
An Office Action dated Jul. 23, 2013, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Jul. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/044,694.
An Office Action dated Nov. 8, 2013, which issued during the prosecution of U.S. Appl. No. 12/840,463.
An Office Action dated Jun. 4, 2014, which issued during the prosecution of U.S. Appl. No. 12/840,463.
An Office Action dated Aug. 13, 2012, which issued during the prosecution of U.S. Appl. No. 13/044,694.
An Office Action dated Jul. 2, 2012, which issued during the prosecution of U.S. Appl. No. 13/033,852.
An Office Action dated Feb. 3, 2014, which issued during the prosecution of U.S. Appl. No. 13/811,308.
An International Preliminary Report on patentabilty dated Feb. 11, 2014, prosecution of Applicant's PCT/IL12/00292.
An International Preliminary Report on patentabilty dated Feb. 11, 2014, which issued during the prosecution of Applicant's PCT/IL12/00293.
A Notice of Allowance dated Aug. 15, 2014, which issued during the prosecution of U.S. Appl. No. 13/412,814.
An Office Action dated Aug. 14, 2012, which issued during the prosecution of U.S. Appl. No. 12/961,721.
U.S. Appl. No. 61/283,819, filed Dec. 8, 2009.
Notice of Allowance dated Apr. 8, 2016, which issued during the prosecution of U.S. Appl. No. 14/237,258.
U.S. Appl. No. 61/756,034, filed Jan. 24, 2013.
U.S. Appl. No. 61/756,049, filed Jan. 24, 2013.
An International Preliminary Report on Patentability dated Jan. 31, 2017, which issued during the prosecution of Applicant's PCT/IL2015/050792.
U.S. Appl. No. 62/372,861, filed Aug. 10, 2016.
Notice of Allowance dated Aug. 13, 2018, which issued during the prosecution of U.S. Appl. No. 15/995,597.
Notice of Allowance dated Apr. 20, 2018, which issued during the prosecution of U.S. Appl. No. 15/878,206.
An Office Action dated Dec. 10, 2015, which issued during the prosecution of U.S. Appl. No. 14/237,258.
An International Preliminary Report on Patentability dated Jul. 28, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050087.
An Office Action dated Nov. 27, 2015, which issued during the prosecution of U.S. Appl. No. 14/626,267.
An Office Action dated Jan. 21, 2016, which issued during the prosecution of U.S. Appl. No. 14/237,264.
An Office Action dated Jan. 30, 2015, which issued during the prosecution of UK Patent Application No. 1413474.6.
An International Search Report and a Written Opinion both dated May 30, 2016, which issued during the prosecution of Applicant's PCT/IL2016/050125.
An Office Action dated Sep. 26, 2016, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Jan. 18, 2017, which issued during the prosecution of U.S. Appl. No. 14/626,267.
An Office Action dated Feb. 7, 2017, which issued during the prosecution of U.S. Appl. No. 14/689,608.
An Office Action dated Feb. 7, 2017, which issued during the prosecution of UK Patent Application No. 1613219.3.
An Office Action together dated Feb. 10, 2017: which issued during the prosecution of European Patent Application No. 12821522.5.
An International Search Report and a Written Opinion both dated Oct. 27, 2015, which issued during the prosecution of Applicant's PCT/IL2015/050792.
European Search Report dated Feb. 18, 2015, which issued during the prosecution of Applicant's European App No. 12821522.5.
Saturn Project—a novel solution for transcatheter heart valve replacement specifically designed to address clinical therapeutic needs on mitral valve: Dec. 2016.
Righini presentation EuroPCR May 2015 (Saturn)—(downloaded from: https://www.pcronline.com/Cases-resourcesimages/Resources/Course-videos-slides/2015/Cardiovascularinnovation-pipeline-Mitral-and-tricuspid-valve-interventions).
An Advisory Action dated Apr. 2, 2018, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Jul. 26, 2018, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated May 4, 2018, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated Apr. 20, 2018, which issued during the prosecution of U.S. Appl. No. 15/886,517.
An Office Action dated Aug. 9, 2018, which issued during the prosecution of U.S. Appl. No. 15/899,858.
An Office Action dated Aug. 9, 2018, which issued during the prosecution of U.S. Appl. No. 15/902,403.
An Office Action dated Jun. 28, 2018, which issued during the prosecution of Design U.S. Appl. No. 29/635,658.
An Office Action dated Jun. 28, 2018, which issued during the prosecution of Design U.S. Appl. No. 29/635,661.
Georg Lutter, MD, et al; “Percutaneous Valve Replacement: Current State and Future Prospects”, The Annals of Thoracic Surgery ; vol. 78, pp. 2199-2206, Dec. 2004.
An Office Action dated Jun. 6, 2018, which issued during the prosecution of UK Patent Application No. 1720803.4.
An International Search Report and a Written Opinion both dated Jun. 20, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050024.
An Office Action dated Jun. 18, 2018, which issued during the prosecution of UK Patent Application No. 1800399.6.
An Office Action dated Oct. 23, 2017, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Dec. 7, 2017, which issued during the prosecution of U.S. Appl. No. 15/213,791.
Interview Summary dated Feb. 8, 2018, which issued during the prosecution of U.S. Appl. No. 15/213,791.
An Office Action dated Feb. 7, 2018, which issued during the prosecution of U.S. Appl. No. 15/197,069.
An International Search Report and a Written Opinion both dated Nov. 24, 2017, which issued during the prosecution of Applicant's PCT/IL2017/050873.
An Office Action dated Jan. 5, 2018, which issued during the prosecution of U.S. Appl. No. 15/541,783.
An Office Action dated Feb. 2, 2018, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Invitation to pay additional fees dated Jan. 2, 2018, which issued during the prosecution of Applicant's PCT/IL2017/050849.
An Invitation to pay additional fees dated Sep. 29, 2017, which issued during the prosecution of Applicant's PCT/IL2017/050873.
European Search Report dated Jun. 29, 2017, which issued during the prosecution of Applicant's European App No. 11809374.9.
An Invitation to pay additional fees dated Oct. 11. 2018, which issued during the prosecution of Applicant's PCT/IL2018/050725.
An Office Action dated Dec. 4, 2018, which issued during the prosecution of U.S. Appl. No. 16/045,059.
An Office Action together with the English translation dated Nov. 5, 2018 which issued during the prosecution of Chinese Patent Application No. 201680008328.5.
Notice of Allowance dated Sep. 25, 2018, which issued during the prosecution of U.S. Appl. No. 15/188,507.
European Search Report dated Sep. 26, 2018 which issued during the prosecution of Applicant's European App No. 18186784.7.
An Office Action dated Jun. 30, 2015, which issued during the prosecution of U.S. Appl. No. 14/522,987.
Notice of Allowance dated Dec. 13, 2013, which issued during the prosecution of U.S. Appl. No. 13/675,119.
An International Preliminary Report on Patentability dated Aug. 8, 2017, which issued during the prosecution of Applicant's PCT/IL2016/050125.
An Office Action dated Jan. 17, 2018, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Mar. 25, 2015, which issued during the prosecution of U.S. Appl. No. 12/840,463.
An Office Action dated Feb. 25, 2016, which issued during the prosecution of U.S. Appl. No. 14/522,987.
An Office Action dated Apr. 13, 2016, which issued during the prosecution of U.S. Appl. No. 14/626,267.
An Office Action dated Aug. 28, 2015, which issued during the prosecution of U.S. Appl. No. 14/237,264.
Maisano (2015) TCR presentation re Cardiovalve.
Notice of Allowance dated Sep. 29, 2016, which issued during the prosecution of U.S. Appl. No. 14/442,541.
Notice of Allowance dated May 10, 2016, which issued during the prosecution of U.S. Appl. No. 14/237,258.
Notice of Allowance dated May 20, 2016, which issued during the prosecution of U.S. Appl. No. 14/237,258.
An International Preliminary Report on Patentability dated May 19, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050937.
Dusan Pavcnik, MD, PhD2, et al; “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement”, Cardiovascular Radiology. Radiology Apr. 1992, vol. 183, pp. 151-154.
Notice of Allowance dated Oct. 16, 2013, which issued during the prosecution of U.S. Appl. No. 13/675,119.
Notice of Allowance dated Feb. 11, 2015, which issued during the prosecution of U.S. Appl. No. 13/033,852.
Notice of Allowance dated May 5, 2015, which issued during the prosecution of U.S. Appl. No. 12/840,463.
Notice of Allowance dated Mar. 10, 2015, which issued during the prosecution of U.S. Appl. No. 13/811,308.
Notice of Allowance dated Jul. 1, 2016, which issued during the prosecution of U.S. Appl. No. 14/442,541.
An Office Action dated Mar. 25, 2019, which issued during the prosecution of European Patent Application No. 14710060.6.
An International Search Report and a Written Opinion both dated Nov. 9, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050869.
An International Search Report and a Written Opinion both dated Dec. 5, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050725.
An International Search Report and a Written Opinion both dated Apr. 25, 2019, which issued during the prosecution of Applicant's PCT/IL2019/050142.
An International Preliminary Report on Patentability dated Feb. 12, 2019, which issued during the prosecution of Applicant's PCT/IL2017/050873.
An Office Action dated Sep. 13, 2019, which issued during the prosecution of U.S. Appl. No. 16/460,313.
An Office Action dated Nov. 26, 2019, which issued during the prosecution of U.S. Appl. No. 16/532,945.
An Office Action dated Aug. 16, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,659.
An Office Action dated Nov. 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated Jun. 14, 2019, which issued during the prosecution of U.S. Appl. No. 15/703,385.
An Office Action dated Oct. 4, 2019, which issued during the prosecution of U.S. Appl. No. 16/183,140.
An Office Action dated Jun. 13, 2019, which issued during the prosecution of U.S. Appl. No. 16/388,038.
An International Preliminary Report on Patentability dated Feb. 4, 2020, which issued during the prosecution of Applicant's PCT/IL2018/050725.
An International Search Report and a Written Opinion both dated Jan. 25, 2019, which issued during the prosecution of Applicant's PCT/IL2018/051122.
An International Search Report and a Written Opinion both dated May 13, 2019, which issued during the prosecution of Applicant's PCT/IL2018/051350.
An International Preliminary Report on Patentability dated Feb. 5, 2019, which issued during the prosecution of Applicant's PCT/IL2017/050849.
An Office Action dated Oct. 25, 2018, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Mar. 4, 2019, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Jan. 9, 2019, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated Jan. 30, 2019, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated Feb. 5, 2019, which issued during the prosecution of U.S. Appl. No. 15/899,858.
An Office Action dated May 23, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,659.
An Office Action dated May 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/691,032.
An Office Action dated Aug. 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,559.
An Office Action dated Jun. 19, 2019, which issued during the prosecution of U.S. Appl. No. 15/682,789.
Notice of Allowance dated Jan. 13, 2020, which issued during the prosecution of U.S. Appl. No. 15/956,956.
An Office Action dated Jun. 25, 2019, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated May 16, 2019, which issued during the prosecution of U.S. Appl. No. 15/433,547.
U.S. Appl. No. 62/560,384, filed Sep. 19, 2017.
U.S. Appl. No. 62/112,343, filed Feb. 5, 2015.
An International Preliminary Report on Patentability dated Feb. 11, 2020. which issued during the prosecution of Applicant's PCT/IL2018/050869.
An International Preliminary Report on Patentability dated Oct. 20, 2020, which issued during the prosecution of Applicant's PCT/IL2019/050142.
An Office Action dated Jan. 6, 2020, which issued during the prosecution of U.S. Appl. No. 16/660,231.
An Office Action dated Dec. 31, 2019, which issued during the prosecution of U.S. Appl. No. 16/183,140.
Notice of Allowance dated Apr. 24. 2019, which issued during the prosecution of U.S. Appl. No. 16/045,059.
An Office Action dated Jan. 14, 2020, which issued during the prosecution of U.S. Appl. No. 16/284,331.
European Search Report dated Mar. 5, 2020 which issued during the prosecution of Applicant's European App No. 17752184.6.
European Search Report dated Mar. 4, 2020 which issued during the prosecution of Applicant's European App No. 16706913.7.
Notice of Allowance dated Mar. 12, 2020, which issued during the prosecution of U.S. Appl. No. 16/460,313.
An Office Action dated Jan. 9, 2020, which issued during the prosecution of U.S. Appl. No. 15/600,190.
An Office Action dated Jan. 3, 2020, which issued during the prosecution of U.S. Appl. No. 16/678,355.
An Office Action dated Feb. 6, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Notice of Allowance dated Jan. 16, 2020, which issued during the prosecution of U.S. Appl. No. 16/532,945.
Notice of Allowance dated Aug. 19, 2020, which issued during the prosecution of U.S. Appl. No. 16/637,166.
Notice of Allowance dated Jul. 27, 2020, which issued during the prosecution of U.S. Appl. No. 16/637,166.
Notice of Allowance dated Jun. 23, 2020, which issued during the prosecution of U.S. Appl. No. 16/637,166.
Notice of Allowance dated May 7, 2020, which issued during the prosecution of U.S. Appl. No. 16/637,166.
Sündermann, Simon H., et al. “Feasibility of the Engager™ aortic transcatheter valve system using a flexible over-the-wire design.” European Journal of Cardio-Thoracic Surgery 42.4 (2012): e48-e52.
An Office Action summarized English translation and Search Report dated Jul. 3, 2020, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
Serruys, P. W., Piazza, N., Cribier, A., Webb, J., Laborde, J. C., & de Jaegere, P. (Eds.). (2009). Transcatheter aortic valve implantation: tips and tricks to avoid failure. CRC Press.—Screenshots from Google Books downloaded from: https://books.google.co il/books?id=FLzLBOAAQBAJ&lpg=PA198&ots=soqWrDH-y_&dq=%20%22Edwards%20SAPIEN%22&lr&pg=PA20#y=onepage&q=%22Edwards%20SAPIEN%22&F=false ; Downloaded on Jun. 18, 2020.
An International Search Report and a Written Opinion both dated Jun. 24, 2020, which issued during the prosecution of Applicant's PCT/IL2019/051398.
An Office Action dated Jul. 14, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Aug. 28, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Jul. 29, 2020, which issued during the prosecution of U.S. Appl. No. 16/132,937.
An Office Action dated Jul. 29, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
Notice of Allowance dated Aug. 26, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
An Office Action dated Aug. 7, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Tchetche, D. and Nicolas M. Van Mieghem: “New-generation TAVI devices: description and specifications” EuroIntervention, 2014, No. 10:U90-U100.
An Office Action dated Aug. 23, 2019, which issued during the prosecution of U.S. Appl. No. 15/600,190.
Symetis S.A.: “ACURATE neo™ Aortic Bioprosthesis for Implantation using the ACURATE neo™ TA Transapical Delivery System in Patients with Severe Aortic Stenosis,” Clinical Investigation Plan, Protocol No. 2015-01, Vs. No. 2, 2015:1-76.
Notice of Allowance dated Sep. 10, 2020, which issued during the prosecution of U.S. Appl. No. 15/600,190.
Notice of Allowance dated Sep. 10, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Oct. 19, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Sep. 21, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
Notice of Allowance dated Oct. 28, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
Notice of Allowance dated Jan. 16, 2020, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated May 11, 2020, which issued during the prosecution of U.S. Appl. No. 16/811,732.
An Office Action dated Sep. 24, 2020, which issued during the prosecution of U.S. Appl. No. 16/811,732.
Notice of Allowance dated Mar. 29, 2017, which issued during the prosecution of U.S. Appl. No. 14/161,921.
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493.
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting Oct. 7-11, Book of Procees. (2000).
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
AMPLATZER® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
Dictionary.com definition of “lock”, Jul. 29, 2013.
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005).
Maisano, The double-orifice technique as a standardized approach to treat mitral . . . , European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
“Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978.
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995).
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006).
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994).
Invitation to pay additional fees dated Jan. 31, 2014, which issued during the Applicant's PCT/IL2013/050860.
U.S. Appl. No. 62/030,715, filed Jul. 30, 2014.
U.S. Appl. No. 62/139,854, filed Mar. 30, 2015.
U.S. Appl. No. 61/312,412, filed Mar. 10, 2010.
An Invitation to pay additional fees dated Jan. 31, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050861.
An International Preliminary Report on Patentability dated Dec. 23, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000250.
An International Preliminary Report on Patentability dated Sep. 18, 2007, issued during the of Applicant's PCT/IL2006/000342.
An International Preliminary Report on Patentability dated Jun. 5, 2012, which issued during the prosecution of Applicant's PCT/IL2010/001024.
An International Preliminary Report on Patentability dated Apr. 28, 2015, which prosecution of Applicant's PCT/IL2013/050861.
An International Preliminary Report on Patentability dated Apr. 26, 2016, which issued during the prosecution of Applicant's PCT/IL2014/050914.
An International Preliminary Report on Patentability dated Jun. 10, 2009, which issued during the prosecution of Applicant's PCT/IL07/01503.
An International Preliminary Report on Patentability dated Dec. 18, 2010, which issued during the prosecution of Applicant's PCT/IL09/00593.
An International Preliminary Report on Patentability dated Jun. 29, 2011, which prosecution of Applicant's PCT/IL2009/001209.
Notice of Allowance dated Aug. 18, 2017, which issued during the prosecution of U.S. Appl. No. 14/689,608.
Notice of Allowance dated Jul. 6, 2017, which issued during the prosecution of U.S. Appl. No. 14/689,608.
Notice of Allowance dated May 22, 2017, which issued during the prosecution of U.S. Appl. No. 14/689,608.
An Office Action dated Apr. 21, 2017, which issued during the prosecution of U.S. Appl. No. 15/213,791.
An Office Action dated Sep. 29, 2017, which issued during the prosecution of U.S. Appl. No. 15/197,069.
An International Preliminary Report on Patentability dated Nov. 9, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000357.
An International Preliminary Report on Patentability dated Nov. 9, 2011 which issued during the prosecution of Applicant's PCT/IL2010/000358.
An International Preliminary Report on Patentability dated Nov. 27, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000404.
An International Preliminary Report on Patentability dated Feb. 4, 2014, which issued during the prosecution of Applicant's PCT/IL2011/000446.
An International Preliminary Report on Patentability dated Jan. 29, 2013, which issued during the prosecution of Applicant's PCT/IL2011/000600.
An International Preliminary Report on Patentability dated Dec. 23, 2014, which issued during the prosecution of Applicant's PCT/IL2012/050451.
A Notice of Allowance dated Jul. 30, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007.
An Office Action dated Sep. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/504,870.
An Office Action dated Jan. 13, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013.
An Office Action dated Mar. 23, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013.
Notice of Allowance dated Mar. 25, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153.
An Office Action dated Oct. 3, 2014, which issued during the prosecution of U.S. Appl. No. 13/749,153.
Notice of Allowance dated May 22, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153.
Notice of Allowance dated Aug. 3, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153.
An Office Action dated Dec. 19, 2013, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Aug. 22, 2014, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Apr. 2, 2015, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/084,426.
An Office Action dated Mar. 16, 2015, which issued during the prosecution of U.S. Appl. No. 14/084,426.
An Office Action dated Jan. 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An Office Action dated May 11, 2016, which issued during the prosecution of U.S. Appl. No. 14/128,756.
Notice of Allowance dated Oct. 20, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954.
Notice of Allowance dated Feb. 19, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,192.
An Office Action dated Jul. 20, 2012, which issued during the prosecution of U.S. Appl. No. 12/843,412.
An Office Action dated Mar. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/843,412.
A Restriction Requirement dated May 1, 2012, which issued during the prosecution of U.S. Appl. No. 12/843,412.
A Notice of Allowance dated May 2, 2013, which issued during the prosecution of U.S. Appl. No. 12/843,412.
A Restriction Requirement dated Nov. 19, 2012, which issued during the prosecution of U.S. Appl. No. 12/926,673.
An Office Action dated Feb. 12, 2013, which issued during the prosecution of U.S. Appl. No. 12/926,673.
An Office Action dated Oct. 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/926,673.
A Notice of Allowance dated Jan. 7, 2014, which issued during the prosecution of U.S. Appl. No. 12/926,673.
An Office Action dated Oct. 9, 2013, which issued during the prosecution of U.S. Appl. No. 12/996,954.
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954.
An Office Action dated Oct. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/996,954.
Notice of Allowance dated Jul. 7, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954.
An Office Action dated Nov. 16, 2018, which issued during the prosecution of U.S. Appl. No. 16/042,028.
An International Search Report with Written Opinion both dated Feb. 2, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000600.
An International Search Report together with Written Opinion both dated Mar. 30, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001024.
An International Search Report and a Written Opinion both dated Feb. 10, 2011, which issued during the prosecution of Applicant's PCT/IL10/00890.
An Office Action dated May 28, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An Office Action dated Sep. 6, 2018, which issued during the prosecution of U.S. Appl. No. 15/994,022.
An Office Action dated Sep. 7, 2018, which issued during the prosecution of U.S. Appl. No. 15/995,725.
An Office Action dated Nov. 26, 2018, which issued during the prosecution of U.S. Appl. No. 16/040,831.
An Office Action dated Jul. 11, 2018, which issued during the prosecution of U.S. Appl. No. 15/978,494.
An Office Action dated Nov. 23, 2018, which issued during the prosecution of U.S. Appl. No. 16/041,208.
An Office Action dated Jun. 15, 2018, which issued during the prosecution of U.S. Appl. No. 15/970,314.
An Office Action dated Oct. 12, 2018, which issued during the prosecution of U.S. Appl. No. 15/970,314.
An Office Action dated Jul. 26, 2018, which issued during the prosecution of U.S. Appl. No. 15/979,686.
An Office Action dated Sep. 10, 2018, which issued during the prosecution of U.S. Appl. No. 16/008,618.
An International Preliminary Report on Patentability dated Apr. 28, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050860.
An Office Action dated Apr. 22, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,559.
Notice of Allowance dated Aug. 30, 2019, which issued during the prosecution of U.S. Appl. No. 15/682,789.
Notice of Allowance dated Mar. 29, 2018, which issued during the prosecution of U.S. Appl. No. 15/541,783.
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
An Advisory Action dated Dec. 13, 2013, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Aug. 7, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An Office Action dated May 19, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868.
An Office Action dated Sep. 1, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868.
An Office Action dated May 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/706,868.
A Notice of Allowance dated Sep. 18, 2012, which issued during the prosecution of U.S. Appl. No. 12/706,868.
Restriction Requirement dated May 5, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868.
A Restriction Requirement dated Mar. 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/785,717.
An Office Action dated Oct. 5, 2020, which issued during the prosecution of Canadian Patent Application No. 2,973.940.
An Office Action dated Nov. 30, 2020, which issued during the prosecution of U.S. Appl. No. 16/138,129.
An Office Action summarized English translation and Search Report dated Nov. 25, 2020, which issued during the prosecution of Chinese Patent Application No. 201910449820.1.
Notice of Allowance dated Nov. 19, 2020, which issued during the prosecution of U.S. Appl. No. 16/318,025.
An Office Action dated Aug. 2, 2011, which issued during the prosecution of U.S. Appl. No. 12/435,291.
Notice of Allowance dated Dec. 7, 2011, which issued during the prosecution of U.S. Appl. No. 12/435,291.
An Office Action dated Apr. 6, 2010, which issued during the prosecution of Applicant's U.S. Appl. No. 12/484,512.
An Office Action dated Oct. 6, 2010, which issued during the prosecution of Applicant's U.S. Appl. No. 12/484,512.
Notice of Allowance dated Apr. 20, 2011, which issued during the prosecution of U.S. Appl. No. 12/484,512.
Notice of Allowance dated Mar. 23, 2011, which issued during the prosecution of U.S. Appl. No. 12/484,512.
An Office Action dated Jan. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991.
An Office Action dated Aug. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991.
An Advisory Action dated Sep. 6, 2012 which issued during the prosecution of U.S. Appl. No. 12/548,991.
Notice of Allowance dated Jun. 23, 2014, which issued during the prosecution of U.S. Appl. No. 12/548,991.
A Restriction Requirement dated Nov. 14, 2011 which issued during the prosecution of U.S. Appl. No. 12/548,991.
Amendment, Terminal Disclaimer and Extension dated Jun. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991.
A Restriction Requirement dated Jul. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,930.
An Office Action dated Apr. 2, 2013, which issued during the prosecution of U.S. Appl. No. 12/785,717.
An Office Action dated Dec. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/785,717.
An Office Action dated Nov. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026.
An Office Action dated May 10, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026.
Notice of Allowance dated Nov. 13, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,026.
Notice of Allowance dated Dec. 24, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,026.
A Restriction Requirement dated Jan. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026.
A Restriction Requirement dated Sep. 14, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,192.
An Office Action dated Aug. 15, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192.
An Office Action dated Jan. 17, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192.
Notice of Allowance dated Nov. 19, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192.
A Notice of Allowance dated Jun. 26, 2012, which issued during the prosecution of U.S. Appl. No. 12/608,316.
An Office Action dated Nov. 14, 2011, which issued during the prosecution of U.S. Appl. No. 12/608,316.
A Restriction Requirement dated Apr. 1, 2011, which issued during the prosecution of U.S. Appl. No. 12/608,316.
An Office Action dated Jul. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/692,061.
An Office Action dated Jan. 23, 2012, which issued during the prosecution of U.S. Appl. No. 12/692,061.
An Office Action dated Mar. 9, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,635.
An Office Action dated Nov. 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,635.
A Notice of Allowance dated May 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/689,635.
Restriction Requirement dated Nov. 14, 2011, which issued during the prosecution of U.S. Appl. No. 12/689,635.
An Office Action dated May 6, 2013, which issued during the prosecution of U.S. Appl. No. 12/689,693.
An Office Action dated Feb. 3, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693.
Notice of Allowance dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693.
A Restriction Requirement dated Sep. 17, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,693.
A Notice of Allowance dated Sep. 3, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693.
European Search Report dated Jul. 8, 2016, which issued during the prosecution of Applicant's European App No. 13849843.1.
A Supplementary European Search Report dated Dec. 4, 2012, which issued during the prosecution of European Patent Application No. EP 09834225.6.
A Supplementary European Search Report dated Mar. 28, 2013, which issued during the prosecution of European Patent Application No. EP 1077 2091.4.
Search Report in European Patent Application 10772090.6 dated Jan. 17, 2014.
Supplementary European Search Report dated Oct. 23, 2014 which issued during the prosecution of Applicant's European App No. 10826224.7.
Notice of Allowance dated May 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/667,090.
Notice of Allowance dated Apr. 12, 2016, which issued during the prosecution of U.S. Appl. No. 14/667,090.
An Office Action dated Jun. 7, 2013 which issued during the prosecution of U.S. Appl. No. 13/141,606.
An Office Action dated Jun. 13, 2014, which issued during the prosecution of U.S. Appl. No. 13/141,606.
Notice of Allowance dated Sep. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/141,606.
An Office Action dated Feb. 4, 2013 which issued during the prosecution of U.S. Appl. No. 13/141,606.
An English translation of an Office Action dated Apr. 23, 2014 which issued during the prosecution of Chinese Patent Application No. 201080059948.4.
Communication dated Jul. 25, 2014, issued by the State Intellectual Property Office of the P.R. of China in counterpart Application No. 200980157331.3.
An International Search Report and a Written Opinion both dated Jan. 25. 2016, which issued during the prosecution of Applicant's PCT/IL2015/051027.
An International Search Report dated May 19, 2011, which issued during the prosecution of Applicant's PCT/IL2011/00064.
An International Search Report and a Written Opinion both dated Feb. 22, 2013, which issued during the prosecution of Applicant's PCT/IL201/050451.
An International Search Report & Written Opinion both dated Mar. 21, 2014, which issued during the prosecution of Applicant's PCT/IL13/50992.
An International Search Report and Written Opinion both dated Apr. 9, 2014, which issued during the prosecution of Applicant's PCT/IL13/50860.
An International Search Report and a Written Opinion both dated Apr. 15, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050861.
An International Search Report & Written Opinion both dated May 12, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050914.
An International Search Report and a Written Opinion both dated May 30, 2007, which issued during the prosecution of Applicant's PCT/IL2006/000342.
An International Search Report and a Written Opinion both dated Jun. 10, 2010, which issued during the prosecution of Applicant's PCT/IL09/01209.
An International Search Report and a Written Opinion both dated Aug. 17, 2010, which issued during the prosecution of Applicant's PCT/IL10/00357.
An International Search Report & Written Opinion both dated Sep. 8, 2009, which issued during the prosecution of Applicant's PCT/IL09/00593.
An International Search Report and a Written Opinion both dated Sep. 12, 2008, which issued during the prosecution of Applicant's PCT/IL07/01503.
An International Search Report and Written Opinion dated Nov. 8, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000358.
An International Search Report and a Written Opinion both dated Nov. 23, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000446.
Supplementary European Search Report dated Sep. 25, 2015, which issued during the prosecution of Applicant's European App No. 09794095.1.
A Supplementary European Search Report dated Feb. 1, 2011, which issued during the prosecution of European Patent Application No. EP 07849540.
An English translation of an Office Action dated Dec. 12, 2013 which issued during the prosecution of Chinese Patent Application No. 200980157331.3.
Communication regarding amended claims filed dated Dec. 27, 2012, regarding European App No. 11792047.0.
An Office Action dated Mar. 23, 2015, which issued during the prosecution of European Patent Application No. EP 09834225.6.
An English translation of an Office Action dated Jul. 17, 2015 which issued during the prosecution of Chinese Patent Application No. 201080059948.4.
An English translation of an Office Action dated Dec. 16, 2015 which issued during the prosecution of Chinese Patent Application No. 201080059948.4.
Communication from the European Patent Office dated Jun. 11, 2015, which issued during the prosecution of European Patent Application No. 11811934.
A communication from the European Patent Office dated Sep. 28, 2011 which issued during the prosecution of European Application No. 09834225.6.
A communication from the European Patent Office dated Oct. 19, 2012 which issued during the prosecution of European Application No. 11792047.0.
An Office Action dated Oct. 23, 2012, which issued during the prosecution of Japanese Patent Application No. 2009-539871.
An English Translation of an Office Action dated Nov. 24, 2015, which issued during the prosecution of Israel Patent Application No. 223448. (the relevant part only).
Notice of Allowance dated Nov. 17, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226.
Notice of Allowance dated Jan. 29, 2016, which issued during the prosecution of U.S. Appl. No. 14/551,951.
An Office Action dated Jun. 18, 2015, which issued during the prosecution of U.S. Appl. No. 14/551,951.
An Office Action dated Jan. 4, 2016, which issued during the prosecution of U.S. Appl. No. 14/589,100.
An Office Action dated May 4, 2016, which issued during the prosecution of U.S. Appl. No. 14/589,100.
An International Search Report and a Written Opinion both dated Nov. 14, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000404.
An International Search Report and a Written Opinion both dated Dec. 6, 2012 which issued during the prosecution of Applicant's PCT/IL2012/000250.
A Notice of Allowance dated Apr. 3, 2013, which issued during the prosecution of U.S. Appl. No. 12/563,930.
An Office Action dated Aug. 24, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,930.
An Office Action dated Dec. 29, 2011, which issued during the prosecution of U.S. Appl. No. 12/563,952.
A Restriction Requirement dated Oct. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/563,952.
A Notice of Allowance dated May 24, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,952.
An Office Action dated Apr. 1, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,476.
An Office Action dated Nov. 21, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,476.
An Advisory Action dated Feb. 4, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,476.
A Restriction Requirement dated Oct. 25, 2012 which issued during the prosecution of U.S. Appl. No. 13/167,444.
An Office Action dated Jan. 17, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,444.
An Office Action dated Aug. 26, 2014 which issued during the prosecution of U.S. Appl. No. 13/167,444.
An Office Action dated Aug. 23, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,444.
Notice of Allowance dated Nov. 12, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007.
Notice of Allowance dated Jan. 7, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,007.
An Office Action dated Oct. 2, 2013, which issued during the prosecution of U.S. Appl. No. 13/167.492.
A Restriction Requirement dated Nov. 2, 2012, which issued during the prosecution of U.S. Appl. No. 13/167,492.
An Office Action dated Feb. 14, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,492.
Notice of Allowance dated Nov. 7, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,492.
An Office Action dated Jun. 10, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,492.
Notice of Allowance dated Dec. 9, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,476.
Notice of Allowance dated Jan. 22, 2015, which issued during the prosecution of U.S. Appl. No. 13/167,444.
An International Preliminary Report on Patentability dated May 1, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000890.
An International Preliminary Report on Patentability dated Jun. 9, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050992.
U.S. Appl. No. 60/873,075, filed Dec. 5, 2006.
U.S. Appl. No. 60/902,146, filed Feb. 16, 2007.
An Office Action dated Mar. 29, 2018, which issued during the prosecution of U.S. Appl. No. 12/961,721.
Notice of Allowance dated Sep. 17, 2014, which issued during the prosecution of U.S. Appl. No. 12/961,721.
An Office Action dated Oct. 1, 2015, which issued during the prosecution of U.S. Appl. No. 14/141,228.
A Restriction Requirement dated Jun. 2, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030.
An Office Action dated Oct. 14, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030.
An Office Action dated Jun. 18. 2015, which issued during the prosecution of U.S. Appl. No. 13/319,030.
An Office Action dated May 3, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,030.
Notice of Allowance dated Dec. 30, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,030.
An Office Action dated Apr. 7, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007.
An Office Action dated Apr. 8, 2016, which issued during the prosecution of U.S. Appl. No. 14/141,228.
An Office Action dated Oct. 5, 2015, which issued during the prosecution of U.S. Appl. No. 14/246,417.
An Office Action dated Apr. 7, 2016, which issued during the prosecution of U.S. Appl. No. 14/242,151.
An Office Action dated May 23, 2016, which issued during the prosecution of U.S. Appl. No. 14/209,171.
An Office Action dated Jul. 20, 2016, which issued during the prosecution of U.S. Appl. No. 14/246,417.
An Office Action dated Jun. 14, 2016, which issued during the prosecution of U.S. Appl. No. 14/273,155.
An Office Action dated Jun. 17, 2016, which issued during the prosecution of U.S. Appl. No. 14/357,040.
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226.
U.S. Appl. No. 61/001,013, filed Oct. 29, 2007.
U.S. Appl. No. 61/132,295, filed Jun. 16, 2008.
U.S. Appl. No. 61/265,936, filed Dec. 2, 2009.
U.S. Appl. No. 61/283,445, filed Dec. 2, 2009.
U.S. Appl. No. 61/207,908, filed Feb. 17, 2009.
U.S. Appl. No. 61/733,979, filed Dec. 6, 2012.
U.S. Appl. No. 61/717,303, filed Oct. 23, 2012.
U.S. Appl. No. 61/820,979, filed May 8, 2013.
U.S. Appl. No. 61/745,848, filed Dec. 6, 2012.
U.S. Appl. No. 61/555,570, filed Nov. 4, 2011.
U.S. Appl. No. 61/557,082, filed Nov. 8, 2011.
U.S. Appl. No. 60/662,616, filed Mar. 17, 2005.
U.S. Appl. No. 60/700,542, filed Jul. 18, 2005.
U.S. Appl. No. 61/782,121, filed Mar. 14, 2013.
European Search Report dated Jul. 15, 2016, which issued during the prosecution of Applicant's European App No. 13849947.0.
European Search Report dated Nov. 4, 2015, which issued during the prosecution of European Patent Application No. EP 1077 2091.4.
Search Report in European Patent Application 10826224.7 dated Nov. 16, 2015.
Supplementary European Search Report dated Dec. 23, 2014 which issued during the prosecution of Applicant's European App No. 10834311.
Supplementary European Search Report dated Jan. 21, 2014 which issued during the prosecution of Applicant's European App No. 11 78 6226.
A Supplementary European Search Report dated Jan. 20, 2015, which issued during the prosecution of European Patent Application No. 12803037.6.
Supplementary European Search Report dated Aug. 4, 2014 which issued during the prosecution of Applicant's European App No. 11 81 1934.6.
European Search Report dated Jun. 24, 2016, which issued during the prosecution of European Patent Application No. EP 12847363.
Supplementary European Search Report dated Apr. 29, 2015, which issued during the prosecution of Applicant's European App No. 14200202.
An Office Action dated Dec. 16, 2013, which issued during the prosecution of U.S. Appl. No. 13/666,262.
An Office Action dated Dec. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/666,141.
Notice of Allowance dated Jun. 25, 2014, which issued during the prosecution of U.S. Appl. No. 13/666,262.
A Notice of Allowance dated Feb. 2, 2015, which issued during the prosecution of U.S. Appl. No. 13/504,870.
Notice of Allowance dated Aug. 19, 2013, which issued during the prosecution of U.S. Appl. No. 11/908,906.
An Office Action dated Jun. 8, 2012, which issued during the prosecution of U.S. Appl. No. 11/908,906.
An Office Action dated Dec. 21, 2013, which issued during the prosecution of U.S. Appl. No. 11/908,906.
A Restriction Requirement dated Aug. 5, 2011, which issued during the prosecution of U.S. Appl. No. 11/908,906.
An Office Action dated Sep. 16, 2009 which issued during the prosecution of U.S. Appl. No. 11/950,930.
Notice of Allowance dated Sep. 12, 2014, which issued during the prosecution of U.S. Appl. No. 11/950,930.
An Office Action dated Aug. 5, 2010 which issued during the prosecution of U.S. Appl. No. 11/950,930.
An Office Action dated Feb. 17, 2010 which issued during the prosecution of U.S. Appl. No. 11/950,930.
A Restriction Requirement dated Apr. 19, 2010 which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Office Action dated Sep. 28, 2011, which issued during the prosecution of U.S. Appl. No. 12/437,103.
An Office Action dated Jun. 13, 2012, which issued during the prosecution of U.S. Appl. No. 12/437,103.
A Restriction Requirement dated Jul. 12, 2011, which issued during the prosecution of U.S. Appl. No. 12/437,103.
Notice of Allowance dated Mar. 6, 2014, which issued during the prosecution of U.S. Appl. No. 12/437,103.
Notice of Allowance dated Dec. 20, 2013, which issued during the prosecution of U.S. Appl. No. 12/437,103.
Notice of Allowance dated Apr. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Office Action dated Mar. 29. 2011, which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Office Action dated Aug. 4, 2010, which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Interview Summary dated Jul. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/341,960.
Notice of Allowance dated Aug. 21, 2019, which issued during the prosecution of U.S. Appl. No. 15/703,385.
Notice of Allowance dated Oct. 16, 2019, which issued during the prosecution of U.S. Appl. No. 15/703,385.
Notice of Allowance dated Dec. 24, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Notice of Allowance dated Oct. 21. 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Declaration of Ivan Vesely, Ph.D., in Support of Petition for Inter Partesreview of U.S. Pat. No. 7,563,267—dated May 29, 2019.
U.S. Appl. No. 60/128,690, filed Apr. 9, 1999.
U.S. Appl. No. 60/613,867, filed Sep. 27, 2004.
An Office Action dated Dec. 24, 2020, which issued during the prosecution of U.S. Appl. No. 16/144,054.
An Office Action dated Feb. 2, 2021, which issued during the prosecution of U.S. Appl. No. 16/811,732.
An Office Action dated Jan. 13, 2021, which issued during the prosecution of European Patent Application No. 15751089.2.
An Office Action together with an English summary dated Mar. 3, 2021, which issued during the prosecution of Chinese Patent Application No. 201780047391.4.
Declaration of Dr. Ivan Vesely, Ph.D. in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,226,341—dated Dec. 17, 2020.
Petition for Inter Partes Review of U.S. Pat. No. 10,226,341 and Exhibits 1001-1013—dated Dec. 29, 2020.
Batista, Randas JV, et al. “Partial left ventriculectomy to treat end-stage heart disease.” The Annals of thoracic surgery 64.3 (1997): 634-638.
Beall Jr, Arthur C., et al. “Clinical experience with a dacron velour-covered teflon-disc mitral-valve prosthesis.” The Annals of thoracic surgery 5.5 (1968): 402-410.
Kalbacher, D., et al. “1000 MitraClip™ procedures: Lessons learnt from the largest single-centre experience worldwide.” (2019): 3137-3139.
Maisano, F., et al. “The edge-to-edge technique: a simplified method to correct mitral insufficiency.” European journal of cardio-thoracic surgery 13.3 (1998): 240-246.
Fucci, C., et al. “Improved results with mitral valve repair using new surgical techniques.” European journal of cardio-thoracic surgery 9.11 (1995): 621-627.
Notice of Allowance dated Nov. 19, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,559.
Mitral Valve Academic Research Consortium. “Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 1: Clinical Trial Design Principles a Consensus Document from the Mitral Valve Academic Research Consortium.” Journal of the American College of Cardiology 66.3 (2015): 278-307.
An Office Action dated Aug. 29, 2018, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated May 8, 2018, which issued during the prosecution of U.S. Appl. No. 15/902,403.
An Office Action dated May 11, 2018, which issued during the prosecution of U.S. Appl. No. 15/899,858.
Notice of Allowance dated Oct. 5, 2018, which issued during the prosecution of U.S. Appl. No. 15/886,517.
Notice of Allowance dated Jul. 19, 2019, which issued during the prosecution of U.S. Appl. No. 15/899,858.
Notice of Allowance dated Nov. 16, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Apr. 27, 2020, which issued during the prosecution of U.S. Appl. No. 16/591,330.
An Advisory Action dated Jan. 2, 2020, which issued during the prosecution of U.S. Appl. No. 15/329,920.
Notice of Allowance dated Oct. 17, 2019, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated Dec. 31, 2019, which issued during the prosecution of U.S. Appl. No. 16/591,330.
Notice of Allowance dated Feb. 9, 2021, which issued during the prosecution of U.S. Appl. No. 16/937,216.
An International Search Report and a Written Opinion both dated Mar. 27, 2018, which issued during the prosecution of Applicant's PCT/IL2017/050849.
Notice of Allowance dated Oct. 30, 2018, which issued during the prosecution of U.S. Appl. No. 15/197,069.
European Search Report dated Jun. 10, 2021 which issued during the prosecution of Applicant's European App No. 21157988.3.
Notice of Allowance dated Nov. 19, 2018, which issued during the prosecution of U.S. Appl. No. 15/197,069.
Poirier, Nancy C., et al. “A novel repair for patients with atrioventricular septal defect requiring reoperation for left atrioventricular valve regurgitation.” European journal of cardio-thoracic surgery 18.1 (2000): 54-61.
An Office Action dated Mar. 29, 2021, which issued during the prosecution of U.S. Appl. No. 16/738,516.
Ando, Tomo, et al. “Iatrogenic ventricular septal defect following transcatheter aortic valve replacement: a systematic review.” Heart, Lung and Circulation 25.10 (2016): 968-974.
Urena, Marina, et al. “Transseptal transcatheter mitral valve replacement using balloon-expandable transcatheter heart valves: a step-by-step approach.” JACC: Cardiovascular Interventions 10.19 (2017): 1905-1919.
An English summary of an Official Action dated Mar. 29, 2021, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
An International Search Report and a Written Opinion both dated Jan. 28, 2020, which issued during the prosecution of Applicant's PCT/IL2019/051031.
An International Preliminary Report on Patentability dated Mar. 9, 2021, which issued during the prosecution of Applicant's PCT/IL2019/051031.
An Office Action dated May 4, 2021, which issued during the prosecution of U.S. Appl. No. 16/636,204.
Notice of Allowance dated May 17, 2021, which issued during the prosecution of U.S. Appl. No. 16/138,129.
Notice of Allowance dated Jun. 4, 2021, which issued during the prosecution of U.S. Appl. No. 16/802,353.
An Office Action dated May 12, 2021, which issued during the prosecution of Canadian Patent Application No. 2,973,940.
Petition for Inter Partes Review of U.S. Pat. No. 10,702,385—dated Jun. 4, 2021.
Declaration of Ivan Vesely, Ph.D. in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,702,385—dated Jun. 4, 2021.
Notice of Allowance dated Oct. 5, 2022, which issued during the prosecution of U.S. Appl. No. 17/101,787.
An International Search Report and a Written Opinion both dated Jul. 12, 2021, which issued during the prosecution of Applicant's PCT/IL2021/050132.
Notice of Allowance dated Dec. 21, 2022, which issued during the prosecution of U.S. Appl. No. 17/101,787.
An Office Action dated Mar. 3, 2023, which issued during the prosecution of European Patent Application No. 17751143.3.
An Office Action dated Mar. 20, 2023, which issued during the prosecution of U.S. Appl. No. 17/181,722.
Notice of Allowance dated Apr. 6, 2023, which issued during the prosecution of U.S. Appl. No. 16/746,489.
Feldman, Ted, et al. “Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort.” Journal of the American College of Cardiology 54.8 (2009): 686-694.
European Search Report dated Mar. 20, 2023 which issued during the prosecution of Applicant's European App No. 22204764.9.
Notice of Allowance dated Nov. 12, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
IPR2021-00383 Petitioners' Authorized Reply to Patent Owner's Preliminary Response dated May 27, 2021.
Exhibit 1014—Transcript of proceedings held May 20, 2021 (Edwards Lifesciences vs. Cardiovalve).
Exhibit 1015—Facilitate, Meriam-Webster.com, https://www.merriamwebster.com/dictionary/facilitate (visited May 26, 2021).
Patent Owner's Authorized Surreply to Petitioner's Reply to Patent Owner's Preliminary Response dated Jun. 4, 2021(Edwards Lifesciences vs. Cardiovalve).
An Invitation to pay additional fees dated May 19, 2021, which issued during the prosecution of Applicant's PCT/IL2021/050132.
An Office Action dated Aug. 18, 2021, which issued during the prosecution of U.S. Appl. No. 17/210,183.
An Office Action dated Sep. 9, 2021, which issued during the prosecution of U.S. Appl. No. 16/768,909.
An Office Action dated Sep. 15, 2021, which issued during the prosecution of U.S. Appl. No. 16/135,599.
An Office Action dated Oct. 14, 2021, which issued during the prosecution of U.S. Appl. No. 16/680,739.
An Office Action dated May 25, 2023, which issued during the prosecution of U.S. Appl. No. 17/397,235.
European Search Report dated Oct. 11, 2021 which issued during the prosecution of Applicant's European App No. 21176010.3.
Fann, James I., et al. “Beating heart catheter-based edge-to-edge mitral valve procedure in a porcine model: efficacy and healing response.” Circulation 110.8 (2004): 988-993.
IPR2021-00383 Patent Owner's Contingent Motion to Amend Under 37 C.F.R. §42.121 dated Oct. 13, 2021.
IPR2021-00383 Patent Owner's Response Pursuant to 37 C.F.R. §42.120 dated Oct. 13, 2021.
IPR2021-00383 Second Declaration of Dr. Michael Sacks dated Oct. 13, 2021.
An Office Action dated Oct. 21, 2021, which issued during the prosecution of U.S. Appl. No. 17/306,231.
Maisano, Francesco, et al. “The evolution from surgery to percutaneous mitral valve interventions: the role of the edge-to-edge technique.” Journal of the American College of Cardiology 58.21 (2011): 2174-2182.
An Office Action dated Sep. 29, 2022, which issued during the prosecution of U.S. Appl. No. 17/010,886.
An Office Action dated Jan. 26, 2022, which issued during the prosecution of U.S. Appl. No. 16/888,210.
IPR2021-00383 Deposition of Dr. Ivan Vesely, dated Sep. 22, 2021.
Cardiovalve Exhibit 2009—Percutaneous Mitral Leaflet Repair: MitraClip® Therapy for Mitral Regurgitation (2012).
Feldman, Ted, et al. “Percutaneous mitral valve repair using the edge-to-edge technique: six-month results of the EVEREST Phase I Clinical Trial.” Journal of the American College of Cardiology 46.11 (2005): 2134-2140.
An Office Action summarized English translation and Search Report dated Oct. 8, 2021, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
An Office Action dated Nov. 4, 2021, which issued during the prosecution of U.S. Appl. No. 17/366,711.
An Office Action summarized English translation and Search Report dated Aug. 12, 2021, which issued during the prosecution of Chinese Patent Application No. 201880058940.2.
An Office Action dated Nov. 25, 2021, which issued during the prosecution of European Patent Application No. 18826823.9.
IPR2021-01051 Institution decision dated Dec. 10, 2021.
Notice of Allowance dated Dec. 7, 2021, which issued during the prosecution of U.S. Appl. No. 17/394,807.
Notice of Allowance dated Dec. 6, 2021, which issued during the prosecution of U.S. Appl. No. 16/738,516.
Notice of Allowance dated Dec. 29, 2021, which issued during the prosecution of U.S. Appl. No. 17/210,183.
IPR2021-00383 Petitioners' Reply to Patent Owner's Response dated Jan. 5, 2022.
IPR2021-00383 Petitioners' Opposition to Patent Owner's Contingent Motion to Amend dated Jan. 5, 2022.
An Office Action dated Sep. 22, 2021, which issued during the prosecution of European Patent Application No. 20714289.4.
Summary of Examination Notice dated Jan. 6, 2022, which issued during the prosecution of Chinese Patent Application No. 201880064313.X.
An Office Action dated Jan. 12, 2022, which issued during the prosecution of U.S. Appl. No. 17/101,787.
An Office Action dated Sep. 6, 2018, which issued during the prosecution of U.S. Appl. No. 15/213,791.
An Office Action dated Jul. 20, 2022, which issued during the prosecution of U.S. Appl. No. 17/101,787.
Notice of Allowance dated Jan. 31, 2022, which issued during the prosecution of U.S. Appl. No. 17/479,418.
An Office Action dated Aug. 1, 2022, which issued during the prosecution of European Patent Application No. 18826823.9.
An Office Action dated Apr. 11, 2022, which issued during the prosecution of U.S. Appl. No. 17/473.472.
IPR2021-00383 Preliminary Guidance dated Jan. 31, 2022.
An Office Action dated Mar. 18, 2022, which issued during the prosecution of U.S. Appl. No. 16/746,489.
Notice of Allowance dated Mar. 22, 2022, which issued during the prosecution of U.S. Appl. No. 17/366,711.
Notice of Allowance dated Mar. 4, 2022, which issued during the prosecution of U.S. Appl. No. 16/768,909.
An Office Action dated Dec. 9, 2021, which issued during the prosecution of U.S. Appl. No. 16/135,969.
An Office Action dated Jan. 24, 2022, which issued during the prosecution of U.S. Appl. No. 16/135,466.
An Office Action dated May 15, 2023, which issued during the prosecution of U.S. Appl. No. 16/656,790.
An Office Action dated Aug. 5, 2022, which issued during the prosecution of U.S. Appl. No. 16/760,147.
An Office Action dated Jul. 27, 2022, which issued during the prosecution of U.S. Appl. No. 16/881,350.
IPR2021-01051 Patent Owner's Sur-Reply to Petitioners' Reply to Preliminary Guidance dated Aug. 23, 2022.
Preliminary Guidance Patent Owner's Motion to Amend dated Jun. 24, 2022.
Ex Parte Quayle dated May 2, 2022, which issued during the prosecution of U.S. Appl. No. 16/879,952.
An International Search Report and a Written Opinion both dated May 3, 2022, which issued during the prosecution of Applicant's PCT/IL2021/051433.
An Office Action together with an English Summary dated May 7, 2022 which issued during the prosecution of Chinese Patent Application No. 201880058940.2.
Notice of Allowance dated May 4, 2022, which issued during the prosecution of U.S. Appl. No. 16/680,739.
An Office Action dated Jun. 28, 2022, which issued during the prosecution of U.S. Appl. No. 16/135,969.
An Office Action dated Jul. 8, 2022, which issued during the prosecution of U.S. Appl. No. 16/144,054.
An Office Action dated Oct. 19, 2022, which issued during the prosecution of U.S. Appl. No. 17/875,589.
An International Preliminary Report on Patentabilty dated Jun. 16, 2020, which issued during the prosecution of Applicant's PCT/IL2018/051350.
An Office Action dated Jul. 6, 2022, which issued during the prosecution of U.S. Appl. No. 16/656,790.
An Office Action dated Sep. 29, 2022, which issued during the prosecution of U.S. Appl. No. 16/656,790.
European Search Report dated Sep. 6, 2022, which issued during the prosecution of Applicant's European App No. 22161862.2.
IPR2021-01051 Petitioners' Reply to Preliminary Guidance dated Aug. 2, 2022.
An International Preliminary Report on Patentabilty dated Jul. 28, 2022, which issued during the prosecution of Applicant's PCT/IL2021/050132.
An Invitation to pay additional fees dated Mar. 14, 2019, which issued during the prosecution of Applicant's PCT/IL2018/0051350.
An Office Action dated Nov. 28, 2022, which issued during the prosecution of U.S. Appl. No. 17/141,853.
An Office Action dated Nov. 2, 2022, which issued during the prosecution of U.S. Appl. No. 17/004,693.
An Office Action dated Sep. 8, 2022, which issued during the prosecution of U.S. Appl. No. 16/896,858.
An Office Action dated Sep. 21, 2022, which issued during the prosecution of U.S. Appl. No. 16/776,581.
An Office Action dated Sep. 16, 2022, which issued during the prosecution of U.S. Appl. No. 16,135,466.
An Office Action dated May 16, 2023, which issued during the prosecution of U.S. Appl. No. 17/114,771.
An Office Action dated Apr. 14, 2023, which issued during the prosecution of U.S. Appl. No. 16,144,054.
Notice of Allowance dated Jun. 22, 2023, which issued during the prosecution of U.S. Appl. No. 17,141,853.
An Office Action dated May 17, 2023, which issued during the prosecution of U.S. Appl. No. 17/466,785.
An Office Action dated Oct. 26, 2022, which issued during the prosecution of U.S. Appl. No. 16/746,489.
An International Preliminary Report on Patentability dated May 30, 2023, which issued during the prosecution of Applicant's PCT/IL2021/051433.
Institution decision dated Jul. 20, 2021(Edwards Lifesciences vs. Cardiovalve).
IPR2021-00383 Final Written Decision Determining All Challenged Claims Unpatentable Denying Patent Owner's Contingent Motion to Amend Granting-in-Part and Denying-in-Part Petitioner's Motion to Strike Denying Patent Owner's Motion to Exclude dated Jul. 18, 2022.
An Office Action dated Oct. 21, 2021, which issued during the prosecution of U.S. Appl. No. 17/335,845.
An Office Action dated Dec. 22, 2023, which issued during the prosecution of U.S. Appl. No. 18/216,391.
An International Search Report and a Written Opinion both dated Jan. 18, 2024, which issued during the prosecution of Applicant's PCT/IL2023/050958.
An Office Action dated Sep. 29, 2023, which issued during the prosecution of Chinese Patent Application No. 201880076340.9.
An Office Action dated Oct. 20, 2023, which issued during the prosecution of Canadian Patent Application No. 3,170,042.
Notice of Allowance dated Nov. 8, 2023, which issued during the prosecution of U.S. Appl. No. 16/656,790.
Related Publications (1)
Number Date Country
20230137909 A1 May 2023 US
Provisional Applications (1)
Number Date Country
62560384 Sep 2017 US
Continuations (2)
Number Date Country
Parent 17101787 Nov 2020 US
Child 18090058 US
Parent PCT/IL2018/050725 Jul 2018 WO
Child 16776581 US
Continuation in Parts (7)
Number Date Country
Parent 16776581 Jan 2020 US
Child 17101787 US
Parent 16269328 Feb 2019 US
Child 17101787 US
Parent 16135969 Sep 2018 US
Child 16776581 US
Parent 16135979 Sep 2018 US
Child 16776581 US
Parent PCT/IL2018/050725 Jul 2018 WO
Child 16269328 US
Parent 15956956 Apr 2018 US
Child PCT/IL2018/050725 US
Parent 15668559 Aug 2017 US
Child 15956956 US